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Applications of Mathematical Heat
Transfer and Fluid Flow Models in
Engineering and Medicine

No problem can be solved from the same level of consciousness that created it.

Albert Einstein

Preface

This textbook for advanced graduate and post-graduate courses presents the applications of
the modern heat transfer and fluid flow mathematical models in engineering, biology, and
medicine. By writing this work, the author continues the introduction of brand-new efficient
methods in fluid flow and heat transfer that have been developed and widely used during the
last 50 years after computers became common. While his previous two monographs presented
these contemporary methods on an academic level in heat transfer only [119] or in both areas
heat transfer and fluid flow on the preliminary level [121], this manual introduces the modern
approaches in studying corresponding mathematical models—a core of each research means
determining its efficiency and applicability. Two types of new mathematical models are con-
sidered: the conjugate models in heat transfer and in fluid flow and models of direct numerical
simulation of turbulence. The current situation of applications of these models is presented in
two parts: applications of conjugate heat transfer in engineering (Part I) and applications of
conjugate fluid flow (peristaltic flow) in medicine and biology and applications in engineering
of direct numerical simulation (Part II). These parts contain theory, analysis of mathemat-
ical models, and methods of problem solution introduced via 134 detailed and 231 shortly
reviewed examples selected from a list of 448 cited original papers adopted from 152 scien-
tific general mathematic, computing, and different specific oriented journals, 42 proceedings,
reports, theses, and 37 books. This list of 448 references comprehends the whole period of the
new methods existing from the 1950s to present time, including more than 100 results pub-
lished during the last 5 years among which more than half of the studies were issued in 2014
to 2016.
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The term conjugate, or coupled problem, was coined in the 1960s to designate the heat
transfer strict investigation that requires matching temperature fields of bodies flowing around
or inside the fluids. Later on, it became clear that these terms and procedures are important
to many other natural and technology processes, consisting of interactions between elements
and/or substances. In particular, the peristaltic flow is an inherent conjugate phenomenon
because such flow occurs due to interaction between the elastic channel walls and the fluid
inside channel. The conjugate formulation reflects the basic features of a studied phenomenon.
Due to that, the models of this type are reliable and significantly improve the correctness and
physical understanding of the results. Conjugate methods constitute a powerful tool for solv-
ing contemporary problems, substituting the previous approximate approaches. At the same
time, it is important to know when the common more simple approaches may be used with
comparable exactness, instead of more complex conjugate procedures. The textbook answers
this question, as well as significant other questions governing the applications of conjugate
methods.

The other group of new methods considered in this text is based on direct numerical solu-
tion of exact unsteady (without averaging) Navier-Stokes equations. Because the unsteady
Navier-Stokes equations describe the complete space- and time-dependent field of turbulent
flow, the results of direct numerical simulation are considered as an experimental data gained
computationally. Such results provide highly accurate instantaneous turbulence characteris-
tics giving further insight into physics of turbulence, opening new possibilities, fresh ideas
and improving applications.

The discussion goes along with 239 exercises and 136 comments. Whereas the former
allowed the reader to improve his or her skills and experience, the latter are used to clear
up specific terms and to note some instructive historical facts. The majority of exercises are
used by the author to divide the derivation of particular expressions or formulae with a reader.
To realize such an offer, the way of solution and the result are given in the text. However,
the mathematical procedure is left for the reader as an exercise. Such a type of exercise gives
a person a choice to be satisfied only by results, or use the suggested drill to improve their
own expertise. For convenience, it is pointed out in the text when each exercise should be per-
formed, and to find a specific one, the reader may apply the contents where the locations of
exercises are indicated. Also, for the reader orientation, the more sophisticated exercises and
examples (and hence, corresponding publications) are marked by an asterisk (∗).

As mentioned above, comments provide significant information required for understand-
ing. Such valuable subjects as, for example, special means, like tridiagonal matrix algorithm
(TDMA), or alternating direction implicit method (ADI), or scientific terms, such as order
of the value of magnitude, function singularities, tensor or factor of nonisothermicity, are
explained via comments incorporated in the text. Meaningful historical notes are also intro-
duced through comments at the relevant manual points. Thus, after discussing the benefits of
the boundary layer theory, it is noticed that boundary-layer methods was not utilized for the
first 25 years until Prandtl’s lecture at the Royal Aeronautical Society meeting in 1927. The
other examples of historical notes given by comments are explanations of the name BBO of
differential equation, the Saffman slip boundary condition, the Paul Erlich role in monoclonal
antibodies, and the Smagorinsky contribution in the direct numerical simulation of turbulence.

In view of the intended audience, special attention is given to the balance between strictness
and comprehensibility of the writing. Such a compromise is realized using a strict formulation
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of the problems on one side and the detailed explanation of definitions, special terms and
procedures on the other. For example, it is justified that both problems—heat transfer of flow
past a body and peristaltic flow in a flexible channel—are similar, and both are inherently
conjugate. At the same time, it is explained in detail why a nonlinear model of peristaltic flow
differs in essence from a linear heat transfer pattern.

In contrast to exciting college courses on heat transfer presenting basically simple empirical
approaches based on the heat transfer coefficients, the conjugate methods are grounded on
contemporary fluid flow and heat transfer models. Therefore, to help the reader to understand
the conjugate principles and procedures, the third part of this textbook offers fundamental
laws of laminar and turbulent fluid flows and applied mathematic methods frequently used in
engineering (Part III). Setting subsidiary chapters behind the body text, it is assumed that the
reader takes a relatively small part of the information required to understand only a specific
thesis or topic, rather than studying the whole subject in advance. In addition, the references
given in the text in the form: Chap. (Chapter), S. (Section), Exam. (Example), Exer. (Exercise),
and Com. (Comment) help the reader to find directly the desired portion of knowledge. Such a
book structure permits the reader to get explanation step by step during studying. At the same
time, an experienced person may read the text ignoring those citations.

As a whole, the textbook is written so as to be usable to senior and post-graduate students
and engineers with the prerequisites of calculus, fluid mechanics, and heat transfer college
engineering courses.

The textbook begins with Part I presenting applications in heat transfer, which starts with
an introduction containing two pieces. The first writing, “When and why conjugate procedure
is essential” explains in detail where the term conjugate came from, what it means, and in
which cases conjugation procedure is important. The second piece entitled “A core of con-
jugation” presents the qualitative analysis of a simple problem of heat transfer from a plate
heated from one end. This assay clarifies a physical meaning of the conjugation principle by
showing the contrasting distributions of the heat transfer characteristics on the interface in two
flow directions, from heated and unheated ends.

This part consists of four chapters, incorporating the theory of conjugate heat transfer based
on universal functions (Chapter 1) and three chapters of applications: universal function appli-
cations (Chapter 2), conjugate problem applications in flows around bodies and inside channels
(Chapter 3), and special application of conjugate heat transfer models in industrial and tech-
nological processes (Chapter 4).

The first chapter begins from the formulation of conjugate heat transfer problems specifying
two sets of equations, the initial and boundary conditions governing the conjugate problem
for a body and fluid. Each equation, such as Navier-Stokes or Laplace equation, is followed
by references to chapter or section from the third part, presenting appropriate explanation.
The initial conditions, the three kinds of common boundary conditions, and the Dirichlet and
Neumann problem formulation for elliptic differential equations are considered in detail. The
conjugate conditions on fluid/body interface (fourth kind boundary condition) and specific
methods for performing the conjugate procedure are discussed also.

The next section introduces the universal functions that are widely used in this text. It
explains what universal functions are, and shows that these types of functions are proper and
convenient tools for nonisothermal and conjugate heat transfer analyzing. Two forms of uni-
versal functions, integral and differential, are employed.
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First, the special form of Duhamel’s integral containing influence function is derived which,
in fact, presents a universal function for the heat transfer on a plate with arbitrary temperature
and zero pressure gradient flow.

Then, the equivalent differential universal function, in the form of a series of tempera-
ture head derivatives, is obtained by the consecutive differentiation of the Duhamel’s integral.
The calculation data for the series coefficients and for the exponents of influence function in
Duhamel’s integral conclude the determination of the universal functions for laminar flows.

Because the universal functions are valid in the same form for other regimes and con-
ditions, the remaining part of the first chapter specifies only the series coefficients and the
appropriate exponents of the influence function for differential and integral forms of universal
functions. These results are obtained for the following cases: turbulent flow, compressible zero
pressure gradient flow, power-law Non-Newtonian fluids, moving through surrounding con-
tinuous sheet, plate with unsteady arbitrary temperature distribution, flow past axisymmetric
body, inverse universal functions for arbitrary heat flux distribution, and functions for recovery
factor.

Chapter 2 provides applications of universal functions. General properties of conjugate heat
transfer are investigated, considering the conjugate problem as a case of heat transfer from
arbitrary nonisothermal surface. The results are obtained analyzing universal functions and
are supplemented with relevant examples. It is found that: (i) the second term of series with
the first derivative in differential universal function basically determines the effect of the tem-
perature head gradient because the first coefficient of series is from 3 to 10 times larger than
the second one, whereas the others are negligible small, (ii) because the first coefficient is pos-
itive, the increasing temperature heads (positive derivative) leads to greater and the decreasing
temperature heads (negative derivative) results in lesser heat transfer coefficients than that for
an isothermal surface, (iii) strikingly large effects, resulting in zero heat transfer if the negative
derivative is large or the surface is long enough, (iv) the positive and negative pressure gradi-
ents respectively decrease and increase the heat transfer coefficient of nonisothermal surface,
(v) the higher the Prandtl number is, the less the effect of nonisothermicity in turbulent flow
is, and the higher the Prandtl and Reynolds numbers, the less the effect of nonisothermicity
in turbulent flow is, (vi) the effect of nonisotermicity caused by variable time temperature is
greater than that of variable space temperature, and (vii) the Biot number specifies the degree
of problem conjugation and shows that in both limiting cases, Bi → ∞ and Bi → 0 conjugate
problem decays, so that the greatest effect of conjugation occurs at comparable body/fluid
resistances at Bi ≈ 1.

The second part of Chapter 2 describes some inherent characteristics and phenomena for
conjugate heat transfer, indicating that:

• The differential universal function builds up the general convective boundary condition tes-
tifying that a series with only the first term constructs the boundary condition of the third
kind, taking into account only isothermal effect, whereas retaining of the followed terms
increases the accuracy of boundary conditions, accounting for the effect of the first and
higher temperature head derivatives.

• Because the second term with the first derivative basically defines the effect of nonisother-
micity, the calculation of its value gives an estimation of error caused by a boundary con-
dition of the third kind telling us whether the conjugate solution is required or the simple
common approach is acceptable.
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• Using a general boundary condition allows reducing the conjugate problem to equivalent
conduction problem for the body only.

• There exists a gradient analogy, which means that the temperature head gradient affects the
heat transfer coefficient, as the free stream velocity gradient influences the friction coeffi-
cient.

• In the case of decreasing temperature head, the heat flux inversion might occur when the
heat flux vanishes—a phenomenon analogous to separation of boundary layer in flows with
adverse pressure gradient.

Chapter 3 presents results of conjugate heat transfer investigations in flows around bodies
(external flows) and inside the channels and tubes (internal flows) in general, without speci-
fying a concrete application in any device or process. The examples reviewed in this chapter
differ by methods of problem solution, form of objects, boundary conditions, flow regimes,
and state of flow (initial or developed). These results present effects of different parameters
and conditions on conjugate heat transfer intensity in external and internal flows in general,
without reference to particular application. The specific practical applications of conjugate
heat transfer are discussed in the next chapter.

Special attention is given to conjugate heat transfer in flows past the thin plate, which are
considered first. Due to the relative simplicity of this type of problem, we used the universal
functions to create effective methods and obtain significant results, which include: (i) investi-
gation of the temperature singularities on the solid/fluid interface, (ii) creation of the charts for
simple conjugate problems solution, (iii) consideration of examples to help a reader to possess
the charts usage, and (vi) computation of the inequalities for quasi-steady approach validation.

The other part of this chapter contains 15 reviewed and 27 indicated as other works of
original studies of conjugate heat transfer in external and internal flows. Here, as well as in the
following Chapters 4 and 6, the original studies are presented describing problem formulation,
a mathematical model as the system of equations, ideas of solutions, and the basic results, but
without exercises, which would be difficult for beginners.

The following examples are reviewed:

• Past plate and bodies: laminar flow past finite rectangular slab, flush sources on an infi-
nite slab, free convection on vertical and horizontal thin plates, elliptic cylinder in laminar
flow, translating fluid sphere, radiating plate with internal source, and radiating thin plate in
compressible flow.

• Inside channels and tubes: fully developed laminar flow in a pipe heated by uniform heat
flux, turbulent flow in parallel plats duct at periodical inlet temperature, fully developed
flow in thick-walled channel with moving wall, hydrodynamically and thermally developed
flow in a thick-walled pipe, laminar flow in the entrance of plane duct, flow in a channel of
finite length, unsteady heat transfer in a duct with laminar flow, and transient heat transfer
in a pipe with constant surface temperature.

Chapter 4 contains specific conjugate heat transfer applications in different industrial areas
and technology processes. Thirty-one original papers are reviewed in four sections considering
heat exchangers and finned surfaces (12 examples), thermal treatment and cooling systems (9),
simulation of industrial (3) and technological (7) processes. Chapter 4 begins with conjugate
solution of the classical problem of overall heat transfer coefficient of two flows separated by
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a thin plate, which is usually considered as a model of heat exchanger. Six conjugate solu-
tions of this problem using different methods are analyzed, showing how much the conjugate
strict results differ from data obtained by simple common approach. The following solutions
are considered: two solutions of concurrent and countercurrent laminar and turbulent flows,
solutions for two quiescent and two flowing fluids separated by vertical plate, and vertical
thin-walled pipe with forced inside and natural outside flows.

The conjugate results for overall heat transfer coefficient obtained for a thin plate are com-
pared with exact two-dimensional conjugate solution to understand where assumption of thin
plate is applicable, and how otherwise such results should be corrected. It is found that conju-
gate results for thin plate are practically accurate, except a small area close to the leading edge,
where two-dimensional effects are important and should be taken into account. The next three
examples present more reliable heat exchanger models: two conjugate models using double
pipes and a special model for the microchannel exchanger. The two last samples of this section
consider models of finned surfaces.

In the second section of Chapter 4, the thermal treatment of moving continuous materials
is analyzed in the first three examples, and conjugate heat transfer in different cooling
systems is studied in the other six examples. The heat transfer in electronic packages is
discussed in the first two examples, the results for cooling turbine blades and vanes are
presented in the next two examples, and the last two samples analyzed the protection of
systems in reentry rocket, and in a nuclear reactor at emergency loss of coolant. The next
section gives three examples of simulation of the processes in industrial equipment. Because
of complexity, there are relatively few publications of this type. The three models considered
here simulate processes in twin-screw extruder, optical fiber coating, and continuous wires
casting.

The last section of Chapter 4 presents heat transfer investigations in seven technologi-
cal processes. The first three examples examine heat and mass transfer in multiphase flows
using models of such complicated processes; wetted-wall absorber, concrete production, and
Czochralski crystal growing. The next three samples studied drying of wood board, porous
materials, and pulled through coolant continuous sheets. The last example presents freeze dry-
ing of two specimens of food. Forty-seven relevant other works are introduced shortly after
the reviewed examples.

Part I is closed by a short summary of results. The basic dependences of heat transfer char-
acteristics are presented in the form of a table where the influence parameters are arranged in
order of a degree of conjugation. Such comparative information is useful in making a deci-
sion whether the conjugate solution is needed in a particular problem, or the common simple
approach is enough to solve it. This question is discussed in detail and possible recommenda-
tions are formulated.

Part II incorporates two chapters consisting of applications of modern methods in fluid flow.
The theory and general characteristics of those methods in both areas, peristaltic flow and direct
turbulence simulation, are outlined in Chapter 5. Applications of peristaltic flow in medicine,
biology and engineering and applications of direct simulation of turbulence in engineering are
introduced in Chapter 6, reviewing 24 and presenting 42 as other works of original papers.

Chapter 5 starts from considering the peristaltic motion as conjugate phenomenon. Physical
analysis shows that peristaltic motion adopted from creation exists due to conjugation (say
interaction) between flexible walls and fluid inside tubular human organs, so that the conjuga-
tion nature is an inherent property of peristaltic flow. These considerations are confirmed by
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subsequent examples of human organs operating under the peristaltic flow and by explaining
working principles of some devices simulating this natural motion mechanism.

The next part of Chapter 5 consists of the formulation of the conjugate model for peri-
staltic motion. This model is similar to that for heat transfer described in detail in Part I, and
involves two subdomains with conjugate conditions on the wall/fluids interface. Conjugate
relations in the case of peristaltic flow contain no-slip conditions for velocities and the bal-
ance of forces on the interface instead of equalities of temperatures and heat fluxes in the case
of heat transfer. The essential difference between both conjugate models is explained, stress-
ing that nonlinear peristaltic flow model is more complex than the linear heat transfer one. To
take into account that complexity after analyzing published studies, the term “semi-conjugate
model” is introduced which describes the situation when only the effect of flexible walls on the
flow is investigated, ignoring more complicated impacts of flow on walls motion. The samples
reviewed in Chapter 6 show that the majority of studies are of the semi-conjugate type.

The discussion of the problem solutions begins from the first simple research. The main
objective of early studies was the understanding of the peristalsis mechanism in order to get
insight into physical processes in the ureter, like reflux of bacteria. To simplify the problems,
early authors used a linear model and assumptions of low Reynolds number and long wave-
length, which are often applied up to now. Two more substantial nonlinear semi-conjugate
solutions are introduced next: the analytical solution at low Reynolds number based on a per-
turbation series and numerical solution of a two-dimensional peristaltic flow at a moderate
Reynolds number.

Two examples are analyzed to introduce fully conjugate solutions, taking into account both
effects of interaction of the flexible walls and fluid inside channel. In the early paper, the equal-
ity conditions of forces on the interface are defined, employing the relatively simple approx-
imate expressions. Conjugate conditions on the interface in another study published later are
much more complicated but more realistic. These conditions are constructed using relations
from the theory of thin oscillating elastic plate and two-dimensional Navier-Stokes equations
and result in a system of three differential equations. Both solutions are compared with corre-
sponding semi-conjugate data showing that the flow significantly affects the wall’s behavior.

The second part of Chapter 5 presents the modern methods of direct numerical simulation
of turbulence. Here, the discussion starts with a short introduction explaining the difficulties
associated with extremely wide scales of turbulence eddies, which range from scales of integral
length to Taylor and Kolmogorov smallest scales. In the following three sections, the new
methods: direct numerical simulation (DNS), large eddy simulation (LES) and detached eddy
simulation (DES) are introduced and compared.

A direct numerical simulation is a method to solve the unsteady Navier-Stokes equations in
order to obtain the complete space- and time-dependent field of turbulent flow. By estimation
of a number of grid points and time steps required for performing DNS, it is shown that
only relatively simple engineering problems at real Reynolds numbers can be investigated by
direct simulation.

A large eddy simulation is a method of reduction of the requirements for DNS in order
to solve directly Navier-Stokes equations at higher Reynolds numbers. The main idea of LES
proposed by Smagorinsky is to separate the treatment of large and small eddies, computing the
large eddies by DNS and small eddies by Reynolds-average models. To demonstrate how the
filtering procedure works providing the separation of areas with DNS and Reynolds-average
models, a simple filter based on the integration is described.
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The filtered form of Navier-Stokes equations are analyzed showing that this procedure gives
the field of filtered large scales modified by the subgrid scales stresses (SGS). This pattern rep-
resents the interaction between large and small eddies testifying the essential role of modeling
SGS in LES.

Large eddy simulation significantly widened the application of the direct solutions of the
Navier-Stokes equation. However, the important engineering applications such as airfoil,
ground or marine vehicle require much higher Reynolds numbers and, accordingly, greater
numbers of grid points and time steps. These large requirements are caused by the near-wall
region with the smallest eddies whose role increases about three times proportional to the
value of Reynolds number. To reduce the number of grid points and to achieve further
progress, Spalart, with co-authors, suggested detached eddy simulation. This method (DES)
is a hybrid approach combining the RANS (Reynolds-average Navier-Stokes equation) for
near-wall region and the LES for domain with large eddies. To provide the model behavior
according to required treatment by LES or by RANS, the blending functions are used. The
idea of a blending function is described showing the principle of comparing the closest
to the surface distance d with the largest grid sell Δ so that the model uses RANS close
to the walls, where d << Δ, and works as a subgrid type pattern away from walls, where
Δ << d.

Some examples demonstrate the accomplishments of DES in modeling the flow separations
at high Reynolds numbers, such as sub- and super-critical flows around sphere and flows past
aircraft models. Nevertheless, to correct weaknesses of DES, two modifications were pro-
posed: the delayed detached eddy simulation (DDES) and the zonal detached eddy simulation
(ZDES). In these versions of DES, the treatment of the area where the model switches from
RANS to LES is improved in order to get rid of the rapid decrease of the RANS eddy vis-
cosity, which might result in strong instabilities. In DDES, to prevent this undesired depletion
of the RANS strength, the switch into LES is delayed. In ZDES, this problem is resolved by
introducing separated zones for RANS and LES where the regime in each zone is selected
individually in line with requirements.

At the end of this chapter, a small paragraph represents the chaos theory, which studies phe-
nomena sensitive to initial conditions, like weather, when the small variations in one location
may result in widely different outcomes far away (butterfly effect). Though currently the chaos
theory is not a tool for turbulence modeling, some characteristics of turbulence are of a chaotic
kind, which gives hope of using the chaos theory in the future.

Chapter 6 represents applications of advanced peristaltic and turbulence models in biology,
medicine and engineering. Examples of original studies are reviewed, as well as the heat trans-
fer articles in Chapter 4, presenting problem formulation, mathematical models as systems of
equations, ideas of solutions and basic results. The applications in biology and medicine are
described in three sections analyzing blood flows in normal and pathologic vessels, flows in
disordered human organs and biological transport processes. The first section presents flow
in the arterial stenosis and flow through series of stenoses, blood flow affected by magnetic
field during MRA and MRI tests, and blood flow under the hyperthermia cancer treatment. In
the second section, the abnormal flows and/or irregular situations are simulated: the particle
motion in ureter modeling of a bacterium or stone motility, chyme flow during gastrointestinal
endoscopy and bile flow in a duct with stones. The third section describes fluid transport in the
cerebral perivascular space, macromolecules transport in tumors, embryo transport modeling,
and the bioheat transfer in human tissues. Twenty articles are indicated as other works.
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The second part of Chapter 6 consists of applications in engineering contributed by peri-
staltic flow simulation (PFS), DNS, LES, and DES (4 and 9 reviewed examples of peristaltic
flow and turbulence simulations, respectively). Each section of reviewed articles is followed
by other works citations. 13, 15, 12, and 14 studies of PFS, DNS, LES, and DES including
IDDES and ZDES, respectively, are indicated. We begin the discussion with peristaltic flow
applications in engineering, and then consider the engineering applications of direct numerical
turbulence simulation. The contribution of peristaltic flow in engineering is presented by four
recent results obtained during the last five years, including the effects of chemical reaction, a
micropumping systems optimization, the method of valve-less microfluidic peristaltic pump-
ing design, and the construction of biomimetic swallowing robot published in 2015. These
examples demonstrate the effectiveness of mathematical models in peristaltic motion applica-
tions, which cardinally changes the methods of investigation in this area.

The review of DNS examples starts from simulation of turbulent boundary layer at a rela-
tively high Reynolds number as Re𝜃 = 2560 published four years ago. The next two studies
introduce the effects of Reynolds and Prandtl numbers in turbulent heat transfer, and a more
involved recent study of exothermic gas-phase reaction in a packed bed. The last example and
15 latest results, including three articles published in 2016 cited as other works, show progress
in DNS.

The next three examples demonstrate the advances in LFS via simulation of vortex and pres-
sure fluctuation in aerostatic bearings, effects of equivalence ratio fluctuations in combustion
chamber of gas turbine, and the heat transfer in pebble bed of nuclear reactor at a high tem-
perature. Ten other works published during the last few years and the two most recent studies
appearing in 2016 show in addition to reviewed articles the current situation in LES.

The last three examples display the great progress in studying the real objects characteristics
by DES. The first result published 13 years ago presents patterns of sub- and super-critical
flows over sphere confirming the well-known experimental data of early (82∘) and much later
(120∘) separations in the first and second cases, respectively. Two other samples show recent
investigations of complicated natural prototypes: Reentry-F flight experiment and free-surface
flow around a submerged submarine fairwater. Both studies are performed at real values of
Reynolds number of order ≈ 107 and the Mach number about 20 in the first study and the
Froude number about 0.4 in the second one. Fourteen modern articles employed DES including
the latest versions DDES and ZDES cited as other works present manifold achievements of
contemporary methods of direct numerical simulation of turbulence in studying the complex
engineering systems.

As mentioned above, Part III serves as a subsidiary intended to help a reader to find infor-
mation during studying of the basic text. Three chapters containing fundamental laws and
methods compose this part: laminar and turbulent fluid flows and heat transfer (Chapters 7 and
8) and basic analytical and numerical methods in applications (Chapter 9). Chapter 7 starts
with discussing two similar mechanisms of momentum, energy, and mass transport described
by conservation laws. Physically grounded analysis shows that structures of Navier-Stokes,
energy, and mass transfer equations are similar consisting of two groups of terms responsible
for the molecular and convective transport processes.

The next several sections present different forms and properties of Navier-Stokes equations.
The vector, vorticity, stream function, and irrotational invisced forms as well as the form in Ein-
stein notations are considered. The other often used notations, Kronecker delta and Levi-Civita
index are also explained. Some basic exact solutions of Navier-Stokes and energy equations



�

� �

�

xxiv Preface

(Stokes problems, flow and heat transfer in a channel and a tube, stagnation point flow, and heat
transfer in Couette flow) are analyzed. The two cases of simplified Navier-Stokes equations,
the small (creeping flows) and large (boundary layer) Reynolds numbers, are presented. As an
example of creeping flow, the Stokes flow around a sphere is shortly described. The derivation
of boundary layer equations and dimensionless numbers are given using the comparison of the
terms order in Navier-Stokes and energy equations. The merits of boundary layer approach are
described. The Prandtl-Mises and Görtler forms of boundary layer equation are analyzed. The
physical meaning of several dimensionless numbers is explained indicating that each number
may be interpreted as a ratio of particular physical parameters. As examples of exact solu-
tions of boundary layer equations, the Blasius, Pohlhausen, and Falkner and Skan problems are
considered, showing how the initial partial differential equations are reduced to ordinary differ-
ential equations. The Karman-Pohlhausen integral method is described and some approximate
solutions of boundary layer problems are analyzed.

The last section of this chapter presents the natural convection, comparing it with forced
convection considered in previous sections. It is noted that a free convection occurs naturally
whenever there are density differences in gravitational field in contrast to the forced one, which
exists due to external force. Three examples are reviewed to show the basic features of natural
convective problems. Analyzing the solution for the vertical plate reveals some characteristics
of natural convection that cause this type of convection to differ from the forced one. Two
examples show that in case of natural convection some additional effects should be taken into
account. In particular, the radiation should often be considered along with natural convection
because both heat transfer rates are usually of the same order. The other effect that is significant
in that case is the flow stability as, for example, in Rayleigh-Benard free convection flow
between parallel horizontal plates.

Chapter 8 presents features that differentiate turbulent flow from the laminar issue. Two
parts describing averaging procedure and diverse turbulence models construct this chapter. It is
explained that the process of averaging parameters developed by Reynolds leads to formulating
the governing equations for turbulent flow in the form similar to that for laminar flow. Presented
analysis shows how the averaging procedure yields additional unknown terms in the governing
equations, called the Reynolds stresses, and finally results in an unclosed system of equations.
The problem of closing this system, known as a problem of closure, is solved employing the
semi-empirical or statistical turbulence models.

We begin the discussion of turbulent models from the simpler algebraic models. The first
Prandtl model of this type is grounded on Boussinesq relation with unknown turbulent vis-
cosity 𝜇tb defined through the mixing-length hypothesis. The physical interpretation of both
Boussinesq and Prandtl hypotheses is followed by discussion of the structure of equilibrium
turbulent boundary layers, which is the basis of the modern algebraic models. The typical
velocity profile in such boundary layer consists of three standard parts: the viscous sublayer
where the law of the wall holds, the defect layer with Clauser’s velocity law, and the overlap
logarithmic region where both laws are asymptotically valid. Three modern algebraic models,
Mellor-Gibson, Cebeci-Smith, and Baldwin-Lomax, are considered. The results of model-
ing flows in a channel, tube, in some boundary layers, and heat transfer from surface with
arbitrary temperature distribution using these models show reasonable agreement with exper-
imental data.

The remaining part of this chapter deals with the one- and two-differential equations mod-
els. These types of models grounded on the turbulence kinetic energy equation, simulate the
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turbulent flows much closer than algebraic models. A special section is devoted to the turbu-
lence kinetic energy equation explaining the physical meaning of terms and the role of the
Kolmogorov kinetic energy equation. Some one-equation models and results of testing these
models at AFOSR conference are presented. It is noted that, according to AFOSR, the basic
shortage of the one-equation models is the absence of length scale. At the same time, it is
underlined that only two-equation models are complete models, which means that the solution
might be obtained by the model itself without using additional experimental data.

The two most popular k − 𝜔 and k − 𝜀 two-equation models are considered, and both
equations defining the turbulent kinetic energy and dissipation energy rate (it serves as
length scale) are discussed. The applicability of one- and two-equation models reveals that
the turbulent flows with strong adverse pressure gradients, separated or reattachment flows,
compressible and other complex flows may be studied with reasonable accuracy only by
two-equation models since applications of more accurate new methods of direct numerical
simulation are restricted at present. At the same time, the simpler algebraic models are
preferable for the solution of problems with zero and benign pressure gradients.

Two parts of Chapter 9 present analytical and numerical mathematical methods frequently
used in applications. To illustrate the usage of considered methods, we apply mainly problems
of heat transfer in solids. Such a manner completed the set of topics important for studying the
basic text since two others, laminar and turbulent fluid flow and heat transfer, are reviewed in
previous chapters of Part III. The analytical methods are reviewed starting from error function.
It is shown that error function satisfied the unsteady one-dimensional conduction equation and
boundary conditions for infinite and semi- infinite solids and for lateral insulated thin rods.
Two examples are analyzed.

The method of separation variables is considered next. Three cases are indicated when the
general procedure of separation is possible for solution. Solutions of one-dimensional unsteady
problems applying standard technique of Fourier series are presented. A special case when the
usual Fourier series are not applicable is studied, giving an understanding of what are the eigen-
values and orthogonal eigenfunctions. The Sturm-Liouville problem is reviewed, specifying
the conditions of the existing orthogonal eigenfunctions and defining the proper series. Two
steady two-dimensional problems for Laplace equation with Dirichlet and mixed boundary
conditions are examined as well.

The Fourier and Laplace integral transforms present the next two sections. The idea of inte-
gral transform is described, and the difference between these two widely used integral methods
is explained. Four solutions for rods and rectangular sheets following this discussion show that
Fourier transform is applicable to infinite domains, whereas the Laplace transform is relevant
for semi-infinite positive variables domain.

The Green’s method of analytical solution is described in the last section of this part of
Chapter 9. The idea of this approach is close to Duhamel’s method: presenting a solution of
a problem with space-time dependent variables in terms of similar results for problem with
constant parameters (S.1.3.1). The general formula defining the Green function is derived for
the solution of a one-dimensional conduction problem.

In the second part of Chapter 9, we review shortly classical numerical methods Three
sections completed this review. The first section “What method is proper” shows that there is
no reason to oppose analytical and numerical methods as it becomes popular after computer
advent. In the second section, we discuss the approximate methods for solving the differential
equations. It is justified that these methods were developed and widely used many years
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before they became a basis of modern numerical methods, but before they are used for entire
computation domain as analytical means. As the computers came, it became possible to apply
the same approximate methods for each cell of grid vastly increasing the computing accuracy
and converting these simple analytical approaches into the contemporary numerical methods.
We classify numerical methods according to the types of discretization of the computation
domain and analytical methods used for solution. Three methods, finite-difference (FDM),
finite-element (FEM), and boundary element (BEM) methods applying uniform and irregular
grids are considered.

To describe the technique of employing different analytical methods, we use the weighted
residual approach. The idea of this approach is explained considering solutions of a simple
conduction problem governed by a one-dimensional equation. Analysis of relevant examples
clarifies the features, the merits, and lack of different methods. In particular, it is explained
what is the weak solution and why the boundary element method requires data only along
boundaries of computing domain, whereas the other methods demand information of the whole
variable field.

The final section of Chapter 9 deals with the complications in computing flow and heat
transfer characteristics. Following Patankar, we discuss some ways for overcoming problems
arising in computing pressure and velocity, convection-diffusion terms, and cases of false dif-
fusion. It is shown that the difficulty in computing flow characteristics associated with the
absence of explicit equations for pressure is in fact an apparent problem because the correct
pressure estimation is controlled by continuity equation. Analysis indicates that usual control
volume approach fails resulting in zero pressure, and to resolve the pressure computing, the
staggered control volume was developed. This procedure is described, explaining that in this
case, in contrast to the usual approach, the velocity components and pressure are calculated on
the control volume faces. The software SIMPLE and three modified versions of it are shortly
described.

The textbook is closed with a conclusion summarizing the purpose, applicability, and pre-
diction of the feature of the contemporary methods considered in the book.

Abram Dorfman
February 2016
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Nomenclature

Bi = hΔ
𝜆w

Biot number

Br = 𝜆Δ
𝜆wL

Pr mRen Brun number

C = u′Δt
Δx

Courant number

C1,C2 Exponents of integral universal functions

Cf =
𝜏w

𝜌U2
∞

Friction coefficient

2Cf ∕St Reynolds analogy coefficient

c, cp Specific heat and specific heat at constant pressure, J/kg K

ĉ = 𝜌cΔ Thermal capacity, J/m2K

D, Dh Diameter and hydraulic diameter m

Dm Diffusion coefficient, m2/s

Da = k
L2

Darcy number

Ec = U2

cp𝜃w
Eckert number

f (𝜉∕x) Influence function of unheated zone at temperature jump

fq(𝜉∕x) Influence function of unheated zone at heat flux jump

Fo = 𝛼t
L2

Fourier number

Fr = U
√

gL
Froude number

Gr =
𝛽𝜃wgL2

𝜈2
Grashof number

gk, hk Coefficients of differential universal functions

g Gravitational acceleration, m/s2

h, hm Heat and mass transfer coefficients, W/ m2K, W/ m2s
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k Specific heat ratio or turbulence energy, m2 /s2

K𝜏 ,Kq Constants of rheology laws for non-Newtonian fluids

Kn = l
D h

Knudsen number

l Body length or mixing length, or free path, m

L Characteristic length, m

Le =
Dm

𝛼
Levis number

Ls =
𝜆wh

𝜌2
wc2

wU2
wΔ

Leidenfrost number

Lu
𝜌c
𝜌wcw

Luikov number

M = U
Usd

Mach number

M Moisture content, kg/kg

n, s Exponents of rheology law for non-Newtonian fluids

Nu = hL
𝜆
, Nu = hLs+1

KqUs
Nusselt numbers for Newtonian and non-Newtonian fluids

p Pressure, Pa

Pe = UL
𝛼

Peclet number

Pr = 𝜈

𝛼
, Pr =

𝜌cpU1−sL1+s

Kq
Prandtl numbers for Newtonian and non-Newtonian fluids

q, qv Heat flux, W/m2 or volumetric heat source, W/m3

r∕s Exponent of isothermal heat transfer coefficient

Ra =
𝛽𝜃wgL3

𝜈𝛼
Rayleigh number

Re = UL
𝜈
, Re

𝜌U2−nLn

K𝜏

Reynolds number for Newtonian and non-Newtonian fluids

Sc = 𝜈

Dm
Schmidt number

Sh =
hm

𝜌cpDm
Sherwood number

Sk =
4𝜎T4

∞L

𝜆∞
Starks number

St = h
𝜌cpU

and St = 𝜔L
U

Stanton number and Strouhal number

Ste =
cpΔT

Λ
Stephan number
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Stk =
tpU

Dp
Stokes number

t Time, s

T Temperature, K

u, v,w Velocity components or u, v parts of integration procedure

U Velocity on outer edge of boundary layer

Ue Velocity on outer edge of turbulent boundary layer

u𝜏 =
√
𝜏w∕𝜌 Friction velocity

u+ = u∕u𝜏 , y+ = yu𝜏∕𝜈 Variables of wall law

x, y, z Coordinates

Greek symbols

𝛼 Thermal diffusivity, m/s2

𝛽 Dimensionless pressure gradient or volumetric thermal expansion
coefficient, 1/K

𝜒 t =
h
h∗
, 𝜒p =

hm

hm∗
Nonisothermicity and nonisobaricity coefficients

𝜒 f =
Cf

Cf∗
Nonisotachicity coefficient

𝛿, 𝛿1, 𝛿2 Boundary layer thicknesses, m

𝛿, 𝛿ij Delta function and Kronecker delta

Δ Body or wall thickness, m

𝜀 Dissipation energy rate, m2∕s3 or fraction of phase

𝜅 Constant determining mixing length

𝜆 Thermal conductivity, W/mK

Λ Latent heat, J/kg or 𝜆s∕𝜆
𝜇 Viscosity, kg/s m

𝜈 Kinematic viscosity, m2∕s

𝜉 Unheated zone length, m

𝜃 = T − T∞, Temperature excess, K

𝜃w = Tw − T∞ Temperature head, K

𝜌 Density, kg∕m3

𝜎 Stefan-Boltzmann constant, W∕m2K4

𝜏 Shear stress, N∕m2

Φ, 𝜑 Prandtl-Mises-Görtler variables

𝜓 Stream function, m2∕s

𝜔 Frequency or specific dissipation energy rate
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Some of these symbols are also used in different ways as it is indicated in each case.

Subscripts Superscipts

av Average +,− From both sides of interface

ad Adiabatic +, ++ Wall law

as Asymptotic

bl Bulk Overscores
e End or effective o, õ Dimensionless, or transformed

i Initial; inside

L At x = L

m Mass average, or mean
value, or moisture

o Outside

p Pressure or particle

q Constant heat flux

sd Sound

t Thermal

T Constant temperature

tb Turbulent

w Fluid-solid interface

𝜉 After jump

∞ Far from solid

∗ Isothermal or special
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Part I
Applications in
Conjugate Heat
Transfer

Introduction

When and why Conjugate Procedure is Essential

Behavior and efficiency of natural and engineering systems and processes depend on inter-
action of basic components forming those creations. It is clear that characteristics of such
processes, as for example, heat transfer, blood flow, or combustion are determined by interac-
tion of a body and fluid in the first, blood and the vessel wall in second, and fresh and burned
gases in third cases, respectively. Therefore, conditions developed on the interface of basic
components due to their interaction largely define the system.

However, these conditions are usually unknown in advance even if the properties of the com-
ponents are specified. The conjugate procedure is an approach of determining the distribution
of parameters arising on the interface as a result of elements interaction. This is achieved by
solving the governing equations for each interaction element, and by following conjugation of
these solutions at the interface. In fact, the conjugate procedure is essential for any problem
containing at least two interaction subjects because that is only one way to find the parameters
on interface and then the solution. For instance, a conjugation of the body and fluid temperature
fields gives the temperature of interface and then solution of heat transfer problem. Similarly,

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine,
First Edition. Abram S. Dorfman.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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one gets the solutions of two other problems mentioned above conjugating at the interface
forces in the blood and the wall of the vessel or the velocity and pressure distributions of the
fresh and burned gases at the flame, which is an interface in combustion process.

There are countless other phenomena required by the conjugate procedure for strict
investigation. In particular, such important processes in meteorology problems as energy
exchange between the atmosphere and a sea or ocean or falling through air solid or liquid
drops, are obviously conjugation problems requiring the study of two fluids or of drops and
air interaction. The conjugate procedure is also needed in the study of drying a brick or a
wood board and even in the relatively simple problem of conduction between two different
solids or between subjects from the same substance but with different physical properties.

The list of such examples may be continued as long as desired because, as it will be
clear from what follows, the conjugate methods are widely used in applications in different
ways from complicated aerospace systems to relatively simple food processing. Moreover,
there are areas where any problem is inherently conjugate. This is truth, first of all, about the
heat transfer specifying, in particular, why the conjugate approach was born in this area, soon
after it was recognized that such idea is realizable owning the computer advent. This gives
also understanding why conjugate methods, starting with simple examples in the 1960s of the
last century, now are intensively employed establishing a new avenue where the number of
publications grows as avalanche.

Another phenomenon inherently conjugate is the peristaltic flow. This follows from the
nature of such motion, which actually exists due to interaction between flexible wall and fluid
inside channel. The Greek word peristaltikos means clasping and compressing. The corre-
sponding English word peristalsis stands for fluid motion in a channel with flexible walls when
a progressive wave propagating along the walls originates a fluid motion in a wave direction.
Although there are engineering devices working on this principle, the idea of such motion was
adopted from structure of human organs transporting physiological fluids, like blood vessels,
urinary channels, or gastrointestinal tract. Muscular walls of such organs in the form of a tube
provide consecutive narrowing and relaxing of the wall portions, which travel lengthwise the
channel and results in flow movement downstream a tube.

Simulation of peristaltic motion is used in artificial organs, such as heart-lung machine or
the device for hemodialysis. Other similar appliances of this type are utilized for mixing chem-
ical reactions, transporting blood, and other biomedical clean or sterile fluids to prevent the
carrying stuff from contact with parts of common pump. Similar devices are used for isolating
environment from conveying corrosive and sewage fluids. In such engineering applications
instead of muscular, the mechanical gears are employed. Indeed, the conjugate procedure was
known long before the 1960s,when the term conjugate problem was coined. It has been a long
time known that the heat transfer problems should satisfy the boundary conditions of fourth
kind, which are in fact the conjugate conditions. However, before computer time, the calcula-
tion recourses permit solutions with such exact conditions only of very simple problems. As a
result, the Newton’s approximate expression of proportionality of the heat flux to temperature
head qw = h(Tw − T∞), known as boundary condition of the third kind, was employed instead
of exact boundary conditions. Such assumption ignores the real conditions on the solid-fluid
interface and rests the accuracy of solution on a heat transfer coefficient h precision. There-
fore, this approach yields acceptable solutions only when the effect of interface temperature
distribution is small, and the results are close to the case of isothermal interface. Otherwise,
the experimental data for heat transfer coefficient is required for successful calculation.
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Nevertheless, until the last fifty years, this simple relation was only one means for calcula-
tion and study convective heat transfer. Today, the conjugate methods along with appropriate
software constitute a powerful tool for heat transfer investigation and practical calculation
substituting approximate methods based on heat transfer coefficient. These methods give the
temperature and heat flux distributions on the interface, and then, there is no need in heat
transfer coefficient, even though it can be calculated using data obtained in conjugate solution.
Example of such solutions presented in suggested books (see references) show the applicability
and versatility of modern conjugate methods.

A Core of Conjugation

To see the basic feature of the conjugate formulation, consider a heat transfer from a thin
plate heated from one edge. Analyze the heat transfer coefficient variation along the plate in
two cases of flow direction: from heated to unheated edge (first case) and in the opposite line
from unheated to heated edge (second case). This simple problem clearly shows the role of
interface conditions because: (i) as it follows from exact conjugate solution in two considered
cases, the distributions of the heat transfer coefficient along the plate significantly differ due to
contrasting interface characteristics, and (ii) according the common approach, the heat transfer
coefficient distribution is the same in both cases.

Indeed, it is easy to understand that in the first case, the temperature head on the interface
is maximal at the beginning, and because of that the temperature head decreases in flow direc-
tion, whereas in the second case, the starting value of temperature head on the interface is the
smallest, and due to that it increases in flow direction. In the next chapters, we will see that the
type of temperature head variation on the interface is the basic characteristic determining the
behavior of nonisothermal or conjugate heat transfer. The value of heat transfer coefficients
strongly depends on the temperature head variation, so that in the case of temperature head
increasing in flow direction or in time, the heat transfer coefficients are moderately greater
than those on an isothermal interface, whereas in the opposite case, when the temperature
head decreases, the heat transfer coefficients dramatically lessen and might even reach zero.
Below, these general features of nonisothermal heat transfer are theoretically established and
are confirmed by numerous of applications including some appropriate experiments.

In particular, the exact conjugate results (Exam. 3.5) show that in two cases of flow direction
along the plate heated from one edge, the heat transfer coefficients differ so much significantly
that the ratio of total heat flux from the plate in both cases may reach 1.2–1.25 in turbulent and
1.5–1.6 in laminar flows. At the same time, the common approach with boundary condition of
the third kind and constant or isothermal heat transfer coefficients do not show any difference
for both considered cases.

Comment This example is a model of the following practical problem:
A heated from one edge object is moving through surroundings (air or water) and as a result

is cooled. If the heat is supplied at the trailing edge, the temperature head increases in flow
direction as in the second case considered above, whereas if the heat is delivered through the
leading edge, the temperature head decreases in flow direction as in the first case of the model
discussed above. As mentioned above, the exact solution of the model problem shows that in
such two cases cooling effects significantly differ, so that the ratio of removing total heat may
reach substantial values ≈20–50%.
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1
Universal Functions for
Nonisothermal and Conjugate
Heat Transfer

1.1 Formulation of Conjugate Heat Transfer Problem

As it follows from the above discussion, the domain of any conjugate problem consists at least
of two subdomains according to the interaction components. Therefore, to formulate conjugate
problem, it is necessary to specify two sets of equations: initial and boundary conditions gov-
erning the problem in each of subdomains in order to further conjugation of the corresponding
solutions. In the case of heat transfer, such subdomains and sets of governing equations and
boundary conditions are as follows:

• Body domain:
Unsteady conduction equation

𝜕T
𝜕t

= 𝛼w

(
𝜕2T
𝜕x2

+ 𝜕2T
𝜕y2

+ 𝜕2T
𝜕z2

)
+

qv

𝜌wcw
,

𝜕T
𝜕t

= 𝛼w∇2T +
qv

𝜌wcw
(1.1)

or steady conduction equations:
Laplace’s and Poisson’s equations (without and with heat source qv) (Com. 1.1)

∇2T = 𝜕2T
𝜕x2

+ 𝜕2T
𝜕y2

+ 𝜕2T
𝜕z2

= 0, ∇2T = 𝜕2T
𝜕x2

+ 𝜕2T
𝜕y2

+ 𝜕2T
𝜕z2

= −
qv

𝜆w
(1.2)

or simplified conduction equations for “thin body” and “thermally thin body” (Com. 1.1)

𝛼w
d2T
dy2

+
qv

𝜆w
= 0,

1
𝛼w

𝜕Tav

𝜕t
−
𝜕2Tav

𝜕x2
+

qw1 + qw2

𝜆wΔ
−

qv.av

𝜆w
= 0 (1.3)

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine,
First Edition. Abram S. Dorfman.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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• Fluid flow domain:
For laminar flow: Navier-Stokes and energy equations (S. 7.1)

𝜕u
𝜕x

+ 𝜕v
𝜕y

+ 𝜕w
𝜕z

= 0 (1.4)

𝜌

(
𝜕u
𝜕t

+ u
𝜕u
𝜕x

+ v
𝜕u
𝜕y

+ w
𝜕u
𝜕z

)
= −

𝜕p

𝜕x
+ 𝜇
(
𝜕2u
𝜕x2

+ 𝜕2u
𝜕y2

+ 𝜕2u
𝜕z2

)
(1.5)

𝜌

(
𝜕v
𝜕t

+ u
𝜕v
𝜕x

+ v
𝜕v
𝜕y

+ w
𝜕v
𝜕z

)
= −

𝜕p

𝜕y
+ 𝜇
(
𝜕2v
𝜕x2

+ 𝜕2v
𝜕y2

+ 𝜕2v
𝜕z2

)
(1.6)

𝜌

(
𝜕w
𝜕t

+ u
𝜕w
𝜕x

+ v
𝜕w
𝜕y

+ w
𝜕w
𝜕z

)
= −

𝜕p

𝜕z
+ 𝜇
(
𝜕2w
𝜕x2

+ 𝜕2w
𝜕y2

+ 𝜕2w
𝜕z2

)
(1.7)

𝜌cp

(
𝜕T
𝜕t

+ u
𝜕T
𝜕x

+ v
𝜕T
𝜕y

+ w
𝜕T
𝜕z

)
= 𝜆

(
𝜕2T
𝜕x2

+ 𝜕2T
𝜕y2

+ 𝜕2T
𝜕z2

)
+ 𝜇S

S = 2

[(
𝜕u
𝜕x

)2
+
(
𝜕v
𝜕y

)2

+
(
𝜕w
𝜕z

)2
]

+
(
𝜕u
𝜕y

+ 𝜕v
𝜕x

)2

+
(
𝜕u
𝜕z

+ 𝜕w
𝜕x

)2

+
(
𝜕v
𝜕z

+ 𝜕w
𝜕y

)2

(1.8)

or simplified equations for high and low Reynolds and Peclet numbers:
Boundary layer equations (S. 7.4.4.1)

𝜕u
𝜕x

+ 𝜕v
𝜕y

= 0 (1.9)

𝜕u
𝜕t

+ u
𝜕u
𝜕x

+ v
𝜕u
𝜕y

+ 1
𝜌

dp

dx
− 𝜈 𝜕

2u
𝜕y2

= 0 (1.10)

𝜕T
𝜕t

+ u
𝜕T
𝜕x

+ v
𝜕T
𝜕y

− 𝛼 𝜕
2T
𝜕y2

− 𝜈

cp

(
𝜕u
𝜕y

)2

= 0 (1.11)

− 1
𝜌

𝜕p

𝜕x
= 𝜕U
𝜕t

+ U
𝜕U
𝜕x

− 1
𝜌

dp

dx
= U

dU
dx

(1.12)

Creeping flow equations (S. 7.4.1)

∇ ⋅ V = 0 ∇p = 𝜇∇2V (1.13)

For turbulent flow: Reynolds averaged Navier-Stokes and energy equations in Einstein
notations (S. 7.1.2.2)

𝜕ui

𝜕xi
= 0, 𝜌

𝜕ui

𝜕t
+ 𝜌uj

𝜕ui

𝜕xj
= −

𝜕p

𝜕xi
+ 𝜕

𝜕xj

[(
𝜇 + 𝜇tb

) 𝜕ui

𝜕xj

]
(1.14)

𝜌
𝜕T
𝜕t

+ 𝜌uj
𝜕T
𝜕xj

= 𝜕

𝜕xj

[(
𝜇

Pr
+
𝜇tb

Prtb

)
𝜕T
𝜕xj

]
+
𝜇 + 𝜇tb

cp

(
𝜕u
𝜕y

)2

(1.15)
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or simplified boundary layer equations for high Reynolds and Peclet numbers (S. 8.3):

𝜕u
𝜕t

+ u
𝜕u
𝜕x

+ v
𝜕u
𝜕y

+ 1
𝜌

dp

dx
− 𝜕

𝜕x

[(
𝜈 + 𝜈tb

) 𝜕u
𝜕x

]
= 0 (1.16)

𝜕T
𝜕t

+ u
𝜕T
𝜕x

+ v
𝜕T
𝜕y

− 𝜕

𝜕y

[(
𝛼 + 𝛼tb

) 𝜕T
𝜕y

]
−
𝜈 + 𝜈tb

cp

(
𝜕u
𝜕y

)2

= 0 (1.17)

and continuity (1.9) and Bernoulli (1.12) equations.
• Conjugate conditions (boundary conditions of the forth kind) (Com.1.1)

T+ = T−, 𝜆w
𝜕T
𝜕y

||||

+
= −𝜆 𝜕T

𝜕y

||||

−
(1.18)

Comment 1.1 Body domain: (i) in equations (1.2) ∇2 is the Laplace operator
(S. 7.1.2.1) and ∇2T is called Laplacian of T , (ii) the first equation (1.3) is obtained
from two-dimensional second equation (1.2) for thin body (Δ∕L ≪ 1), which thermal
resistance is of the same order or greater than that of coolant (Bi = hΔ∕𝜆w ≥ 1), and
due to that longitudinal derivative may be neglected, (iii) the second equation (1.3) is
derived for thermally thin body (Bi ≤ 1) by integration of two-dimensional equation (1.1)
in y-direction taken into account that transverse resistance of such body is small in
comparison with that of the coolant.

Fluid flow domain: (i) the Navier-Stokes and energy equations are used in both three-
and two-dimensional forms, whereas the boundary layer equations are basically employed
in two-dimensional form that is appropriate for majority of applications, (ii) the creeping
flow equations written in vector form (1.13) may be obtained from Navier-Stokes and energy
equations after neglecting the inertia terms (left parts of equations (1.5)–(1.7) (S. 7.4.1), in
this case, the continuity equation is the same equation (1.4), (iii) Navier-Stokes and energy
equations are presented in instantaneous parameters, whereas the equations (1.14)–(1.17)
for turbulent flow are written in averaged parameters using the same notations (S. 8.2), (iv)
eddy-viscosity coefficient 𝜇tb in these equations is determined by one of turbulent models
(S. 8.3) and the value of turbulent Prandtl number Prtb is usually taken to be equal or close
to unit (S. 2.1.2.4).

Conjugate conditions are expressions providing continuity of the temperature fields at
the interface in the form of equalities of temperatures and heat fluxes computed from both
interface sides and marked by (+) and (−) for body and fluid, respectively (Exer. 1.1–1.7).

• Initial and boundary conditions for subdomains (S.7.2)
The equations just considered are used to solve the subdomain problems. The relevant
initial and boundary conditions depend on the type and order of governing equation. For
example, the conduction equation is of the first order in time and of the second order in
space. Because of that, the solution of one-dimensional conduction problem depends on one
initial and two boundary conditions given at two points. Solutions of more complicated two-
or three-dimensional conduction problems also require satisfaction of one initial condition
and of boundary conditions, but specified around the outline of the whole problem domain.
The initial condition defines the temperature of the system as a function of coordinates at
some instant t = 0, which is taken to be a beginning of the process, whereas the boundary
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conditions prescribe the values of some parameters on the boundaries of the system as the
functions of time and position.

Besides the boundary conditions of the fourth kind (1.18), there are three usually
employed boundary conditions that differ from each other by kind of variables assigned
at some points or around boundaries of domain. The boundary condition of the first kind
designates the temperature values, the second one specifies heat fluxes, and the third kind
of boundary condition presents Newton’s expression with known heat transfer coefficient
and temperature head. For example, at some point of domain with coordinate x, three types
of conditions have the form

T|x = Tw, or qw = −𝜆w
𝜕T
𝜕x

||||x
, or qw = h(T|w,x − T∞) (1.19)

The equations specifying the conjugate problem formulation considered above are par-
tial differential equation of the second order. The appropriate boundary conditions for those
equations depend on the type of a particular equation. It is said that such equation in its
canonical form is of elliptic or hyperbolic type, depending whether it consist of a sum or a
difference of two second order derivatives, whereas such canonical equation with only one
second partial derivative is called a parabolic partial differential equation (Exer. 1.8). Thus,
the two- and three-dimensional conduction equations, Laplace and Poisson equations as
well as Navier-Stokes and energy equations for laminar flow and similar equations for turbu-
lent flow are of elliptic type, whereas both sets of boundary layer equations for laminar and
turbulent flows are the parabolic equations. The parabolic equation requires relatively sim-
ple boundary conditions specifying variable values only on a part of computational domain.
For boundary layer equations, these conditions are: (i) the no-slip condition u = v = 0 for
dynamic equation and conjugate (1.18) or one of the regular (1.19) conditions for thermal
equation on the body surface (y = 0) and (ii) asymptotic conditions u → U, T → T∞ far
from the body on the outer edge of the boundary layer (y → ∞) (S. 7.4.4).

In contrast to that, the elliptic equations require boundary conditions specifying the values
of parameters around the entire computational domain, and formulation of such conditions
is more complicated procedure. In this case, two problem formulations with different types
of boundary conditions, known as Dirichlet and Neumann problems, are usually considered.
The Dirichlet problem is stated using boundary conditions of the first kind by specifying the
temperature on the boundaries of domain. The Neumann problem is composed similarly by
employing the boundary conditions of the second kind by specifying the derivatives of the
temperatures on the boundaries domain.

The Dirichlet problem is a well-posted problem, whereas the Neumann problem is an
ill-posted problem. Physically it means that the solution behavior of an elliptic equation
with Dirichlet boundary conditions is regular, whereas the solution of an elliptic equation
under the ill-posted Neumann boundary conditions requires satisfaction on some additional
conditions. For example, the solution of the Neumann heat transfer problem demands the
thermal equilibrium that a system reaches when the total heat flux inside it is zero.

Comment 1.2 Formulation of boundary conditions for the Navier-Stokes equation is associ-
ated with additional difficulties arising due to fluid nature. To understand these complications,
consider a flow through a channel or past a body immersed in a parallel fluid stream. Con-
sidering the Dirichlet problem, one should specify velocities along the boundaries of domain,
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which for a channel or tube include the walls or body surface plus entrance and exit sections
of a channel or body. However, in such a case, only zero velocity boundary conditions on the
surfaces of the immersed channel or body are known and a uniform stream velocity U∞ at
x → ±∞ far away from the immersed object. The velocity profiles at the entrance and the exit
sections required for the Dirichlet problem formulation are unknown because: (i) the profile at
the entrance is established due to interaction of initial uniform stream with surrounding during
the way from x → −∞ to channel or body entrance, and (ii) the velocity profile at the exit is
formed as a result of processes inside the flow in the channel or around the body. Because of
that in practice, the experimental data or relevant assumptions are used. The same situation
holds for full energy equation since this equation is of elliptic type as well, and the initial uni-
form temperature profiles are deformed along with the velocity profiles (S. 7.2, Exam. 7.4 and
7.5, Exer. 1.9 and 1.10).

1.2 Methods of Conjugation

Physical analysis shows that any heat transfer conjugate problem is a question of thermal
interaction of a body and a fluid with unknown temperature and heat flux distribution on the
body/fluid interface. This becomes clear if one looks at what is known at the beginning of the
conjugate problem solution. Indeed at the beginning, we know only: (i) set of equations gov-
erning heat transfer in a body and in a fluid separately, and (ii) conjugate conditions (1.18).
However, the separate boundary conditions for each subdomain are unknown since data on
interface may be obtained only as a result of conjugate problem solution. Thus, the situa-
tion is deficient: to solve a particular conjugate problem we need boundary conditions for
each subdomain, which may be obtained only after solution of the same conjugate problem.
There are several methods for resolving this challenging problem. Here, we consider two
mostly used numerical methods and analytical approach based on employing so called uni-
versal functions [120]. Examples of other procedures for solving this problem are discussed in
applications.

1.2.1 Numerical Methods

One relatively simple way to realize conjugation is to apply the iterations. The idea of such a
approach is that each solution for the body or for the fluid produces a boundary condition for
other component of the system. The process of interactions starts by assuming that one of the
boundary conditions (1.19) exists on the interface. Then, one solves the problem for a body or
for fluid applying this boundary condition and uses the result of solution as a boundary condi-
tion for solving the set of governing equations for other component and so on. If this iterative
process converges, it might be continued until the desired accuracy is achieved. However, the
rate of convergence of the iterations highly depends on the first guessing boundary condition,
and there is no way to find an appropriate condition, except using the trial-and-error approach
(Exer. 1.12).

Another known numerical conjugate procedure is grounded on the simultaneous solution
of a large set of governing equations for both subdomains and conjugate conditions. Patankar
[306] proposed a method and software for such a solution using one generalized expression
for continuous computing of the velocities and temperatures fields through the whole problem
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domain that includes satisfying the conjugate boundary conditions. To make sure that one
generalized equation provides the correct results in different part of the whole domain, the
corresponding value of physical properties for each subdomain is employed. Thus, to ensure
that the velocity is zero in the solid when the velocity field is calculated, one puts a very large
value of viscosity coefficient for the grids points in the body domain, whereas for the grid
points in the fluid domain, the real fluid viscosity coefficient is applied. When the temperature
field is computed, the real values of heat transfer characteristics for the fluid and for the body
are used, which gives the actual temperature field as a result of matching the temperature
distribution in both computing subdomains (Exer. 1.13).

1.2.2 Using Universal Functions

Since the boundary conditions for subdomins are unknown, the required analytical solutions
for body and fluid might be obtained only applying arbitrary nonisothermal boundary condi-
tions. In other words, it is necessary to find a solution in the form that satisfies the governing
equation at any (or arbitrary) boundary conditions (Exer. 1.14). Such solutions are given, in
particular, in the form of universal functions, which are called universal because they satisfied
a particular equation independent of boundary conditions [120]. In the next several paragraphs,
we present two forms of universal functions used in this text for investigation of nonisothermal
and conjugate heat transfer, including the performance of a conjugation procedure described
in Section 2.2.2.

1.3 Integral Universal Function (Duhamel’s Integral)

1.3.1 Duhamel’s Integral Derivation

The Duhamel’s integral presents a solution of some problems with varying variables in terms of
known solutions of similar problems with the same variables considered as a constant param-
eters. This idea is based on two principles: (i) at a small interval of a variable, the function
of interest may be approximately considered as a constant, and (ii) a solution of linear differ-
ential equation is presentable as a sum of other solutions of the same equation (superposition
principle) (Exer. 1.15).

Letting the solution of the problem in question depend on some variable t according to
function F(t) and function f (x, t) is a solution of similar problem for a different but constant t.
For example, we consider the heat transfer from a body with time-dependent surface temper-
ature F(t), and function f (x, t) is a known solution of the same problem with constant surface
temperature. During a small interval Δt of variable t (Fig. 1.1) the given function F may be
considered as an approximate constant. Then, on this small interval ΔF = F′(t)Δt an approx-
imate solution of the problem in question is defined as a product f (x, t)ΔF, where f (x, t) is the
approximate solution for constant t and ΔF is the interval. Consequently, for the first interval
we have f (x, t)F(0), where F(0) stands for ΔF(0) at the beginning at t = 0 (Fig. 1.1).

For the next interval, the approximation starts at the time t − Δt instead of t for the first one.
Thus, the approximate solution is f (x, t − 𝜏1)ΔF(𝜏1) = f (x, t − 𝜏1)F′(𝜏1)Δ𝜏1, where 𝜏1 = Δt is
the time lag in the second interval, and the small variation of function F is determined for time
𝜏1 when the second interval begins (Fig. 1.1). For the third interval, one gets similar solutions
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F(t)

F(0)

t = τ1 t = τ2 t = τ3 ... t = τn t

Figure 1.1 Duhamel’s integral derivation: approximation of arbitrary dependence by step function

as f (x, t − 𝜏2)ΔF(𝜏2) = f (x, t − 𝜏2)F′(𝜏2)Δ𝜏2 with time lag 𝜏2 in the third interval, and so forth.
The sum of those results gives the approximate solution of the considered problem, which in
the limit at Δt → 0 transforms in Duhamel’s integral

T(x, t) = f (x, t)F(0) +
n∑

k=1

f (x, t − 𝜏k)F′(𝜏k)Δ𝜏k (1.20)

T(x, t) = f (x, t)F(0) +

t

∫
0

f (x, t − 𝜏)F′(𝜏)d𝜏 (1.21)

Expression (1.21) presents the temperature of a body with given time-variable surface tem-
perature F(t) but in fact this is a general relation applicable to many other problems governed
by linear equations. To use this integral in any particular case, it is enough to know desired
function F(t) and the relevant simple solution (Exer. 1.16 and 1.17).

In creating an universal function describing dependence between heat flux qw and temper-
ature head 𝜃w(x) = Tw − T∞ in heat transfer, the role of function F(t) plays temperature head
𝜃w(x), which is considered as a given, like a function F(t). Since we are looking for relation
defining the heat flux, it is clear that a heat transfer coefficient h from some solved problem
should be taken instead of function f (x, t). In such a case, the product h𝜃w(x) determines the
heat flux qw as well as product f (x, t)F(t) defines the body temperature in the example con-
sidered above. Then, the limit of a sum of products h𝜃w(x), similar to the limit of the sum in
equation (1.20), gives the desired universal function in the form of Duhamel’s integral

qw = h1𝜃w(0) +

x

∫
0

h𝜏
d𝜃w

d𝜉
d𝜉 (1.22)

In this equation h1 and h𝜏 are the heat transfer coefficients for the first and all other steps from a
known solution of simple problem playing the same role as the functions f (x, t) and f (x, t − 𝜏)
in equation (1.21) (Exer. 1.18).
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The general expression (1.22) is applicable to any flow regime: laminar, turbulent, at zero,
or non zero pressure gradient, if the heat transfer coefficients h1 and h𝜏 from some relevant
problem are known. It is common [201, 123] to consider as a known solution of a standard
problem of heat transfer after temperature jump on a plate with an isothermal initial zone. In
such a problem, the wall temperature remains constant (with isothermal heat transfer coeffi-
cient h∗) up to some point x = 𝜉 and then suddenly changes to another value resulting after
temperature jump in heat transfer with coefficient h𝜉 . The ratio of coefficients h∗ and h𝜉 defines
the influence function f (x, 𝜉) = h𝜉∕h∗ so called because it describes the effect of initial isother-
mal zone on heat transfer intensity after jump. The influence function is usually employed for
putting h1 = h∗ and h𝜏 = h𝜉 which transforms equation (1.22) to the following standard form
(Exer. 1.19)

qw = h∗

⎡
⎢
⎢
⎣
𝜃w (0) +

x

∫
0

f (x, 𝜉)
d𝜃w

d𝜉
d𝜉
⎤
⎥
⎥
⎦

(1.23)

This expression is an universal function because it determines the heat flux for arbitrary (for
any) temperature head distribution 𝜃w(x) through integral of it derivative d𝜃w∕dx.

1.3.2 Influence Function

Relation (1.23) is general as well as equation (1.22) and is also applicable to any flow regime,
if the influence function for a specific case is known (Exer. 1.20). However, determining this
function is another difficult task. For some simple cases, when the influence function depends
on ratio 𝜉∕x instead of each of those variables, an influence function was obtained using
approximate methods. For the simplest case of laminar flow, Prandtl number close to one,
and zero pressure gradient, the influence function was found by integral method (S. 7.6) in the
form [123, 201] (Exam. 7.13)

f (𝜉∕x) = [1 − (𝜉∕x)3∕4]−1∕3 (1.24)

The more general result for the laminar gradient flow, the influence function was obtained for
self-similar flows with power-law velocities U = Cxm (S. 7.5.2), but only for fluids with large
or small Prandl numbers. It was shown that the same formula (1.24) is valid with exponents
depending on velocity power m for large and small Prandtl numbers according to the first and
second formula, respectively

f (𝜉∕x) = [1 − (𝜉∕x)3(m+1)∕4]−1∕3 f (𝜉∕x) = [1 − (𝜉∕x)m+1]−1∕2 (1.25)

The first formula was obtained assuming a linear velocity distribution in the thermal boundary
layer [201, 230]. Therefore, it is applicable to fluids with large Prundtl numbers for which such
assumption is close to reality because in this case the thermal boundary layer is thin relatively
to velocity layer (S. 7.7). At the limit Pr → ∞, this approximate formula becomes exact. For
another limiting case Pr → 0, the situation is opposite: the dynamic boundary layer thickness
is so thin that velocity across the thermal boundary layer is practically equal to the external
velocity U(x) (S. 7.7). Since in this case, the velocity in the thermal layer is independent on
y, the thermal boundary layer equation simplifies, and for self-similar flows, second formula
(1.25) is derived [338].
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For turbulent flows, the structure of known relations for influence function remains also
the same. In particular, for this case at the same conditions as for laminar flow (Pr ≈ 1, zero
pressure gradient), it was shown that formula (1.24) is valid with exponents 9/10 at (𝜉∕x)
and (−1/9) at brackets [123, 201]. There are also several relations for turbulent flows derived
from experimental data. Those are presented also in the form (1.24), but with slightly different
exponents: unity at (𝜉∕x) and at the brackets: (−0.114) [208], (−0.12) [201, 275] and (−0.2) or
with giving practically the same results exponents 39/40 at (𝜉∕x) and (−7/39) at the brackets
(instead of unity and −0.2) [267].

The review shows that the known relations for influence function for laminar and turbulent
flows pertain only for the simplest cases: limiting values of Prandtl numbers and basically
at zero pressure gradients. Later we will see that employing the universal functions permits
general expressions for influence function from which follow the particular results.

1.4 Differential Universal Function (Series of Derivatives)

This form of universal function may be obtained from the integral relation (1.23) using suc-
cessive integration by parts. We start from simple case of zero pressure gradient. As we have
seen above, for this simple case, the influence function depends on the ratio 𝜉∕x, rather than
of each variable separately, and integral formula (1.23) takes the form (Exer. 1.21)

qw = h∗

⎡
⎢
⎢
⎣
𝜃w (0) +

x

∫
0

f (𝜉∕x)
d𝜃w

d𝜉
d𝜉
⎤
⎥
⎥
⎦

(1.26)

Denoting 𝜁 = 𝜉∕x and applying for integration the following parts

u1 =
d𝜃w

d𝜉
, dv1 = xf (𝜁 )d𝜁, v1 = x

⎛
⎜
⎜
⎝

𝜁

∫
0

f (𝛾)d𝛾 − 1
⎞
⎟
⎟
⎠
, (1.27)

we get according to formula for integration by parts an expression (Exer. 1.22)

uv|||
𝜉=x

𝜉=0
−

x

∫
0

vdu = x
d𝜃w

d𝜉

⎛
⎜
⎜
⎝

1

∫
0

f (𝜁 )d𝜁 − 1
⎞
⎟
⎟
⎠
+ x

d𝜃w

d𝜉

||||x=0

− x

x

∫
0

⎛
⎜
⎜
⎝

𝜁

∫
0

f (𝜁 )d𝜁 − 1
⎞
⎟
⎟
⎠

d2𝜃w

d𝜉2
d𝜉 (1.28)

Substitution of this result in equation (1.26) leads to modified relation for heat flux

qw = h∗

⎡
⎢
⎢
⎣
𝜃w (0) + x

1!
d𝜃w

dx

||||x=0
+ g1x

d𝜃w

dx
− x

x

∫
0

⎛
⎜
⎜
⎝

𝜁

∫
0

f (𝛾)d𝛾 − 1
⎞
⎟
⎟
⎠

d2𝜃w

d𝜉2
d𝜉
⎤
⎥
⎥
⎦

(1.29)

g1 =

1

∫
0

f (𝜁 )d𝜁 − 1

Here g1 is a constant defined by the first integral in the right hand part of equation (1.28).
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Comment 1.3 In this derivation we used several variables: x, 𝜉, 𝛾, 𝜁 = 𝜉∕x. Two of those,
x and 𝜁 , are working variables, whereas two others, 𝜉 and 𝛾 , are so-called dummy variables,
which play a subsidiary role. In this case, dummy variables are used for carry out integrals (to
distinguish from upper limit of integral). Thus, 𝛾 is employed in integral (1.27) instead of 𝜁 ,
and 𝜉 is applied instead of x in the last integral in (1.28).

Relation (1.28) is further modified using the following parts for k integration

uk =
dk𝜃w

d𝜉k
, vk =

𝜁

∫
0

vk−1d𝛾 + (−1)kx
k!

(1.30)

Putting here k = 2, we obtain the parts (1.31) for transforming the last integral in relation (1.29)
via integration by parts that result in further modification of expression (1.29) for heat flux in
a similar form (1.32) (Exer. 1.23)

u2 =
d2𝜃w

d𝜉2
, v2 = x

𝜁

∫
0

d𝛾
⎛
⎜
⎜
⎝

𝜁

∫
0

f2 (𝛾)d𝛾 − 1
⎞
⎟
⎟
⎠
+ x

2!
, f2(𝜁 ) =

𝜁

∫
0

d𝜁

𝜁

∫
0

f (𝜁 )d𝜁 − 𝜁 + 1
2

(1.31)

qw = h∗

⎡
⎢
⎢
⎣
𝜃w (0) + x

1!
d𝜃w

dx

||||x=0
+ x2

2!
d2𝜃w

dx2

|||||x=0

+ g1x
d𝜃w

dx
+ g2x2 d2𝜃w

dx2
+ x2

x

∫
0

f2(𝜁 )
d3𝜃w

d𝜉3
d𝜉
⎤
⎥
⎥
⎦

(1.32)

In the first equation f2(𝜁 ) = v2(𝜁 )∕x, and in the second equation coefficient g2 = −f2(1) is
the value of this function at 𝜁 = 1. As it is seen, function v2(𝜁 ) arises in the last integral in
equation (1.32) and is defined by relations (1.31), where for simplicity the dummy variable 𝛾
is substituted by variable 𝜁 = 𝜉∕x (Exer. 1.24).

Repeating the integration by applying the parts indicated by equation (1.30), we finally
arrive in the following series with coefficients gk determined by relations (1.34)

qw = h∗

[

𝜃w (0) + x
1!

d𝜃w

dx

||||x=0
+ x2

2!
d2𝜃w

dx2

|||||x=0

+ … + xk

k!
dk𝜃w

dxk

|||||x=0

+ … + g1x
d𝜃w

dx

+ g2x2 d2𝜃w

dx2
+ … + gkxk dk𝜃w

dxk
… + (−1)kxk

x

∫
0

fk(𝜁 )
dk+1𝜃w

d𝜉k+1
d𝜉
⎤
⎥
⎥
⎦

(1.33)

gk = (−1)k+1fk(1), fk(𝜁 ) =

𝜁

∫
0

d𝜁

𝜁

∫
0

d𝜁 …

𝜁

∫
0

f (𝜁 )d𝜁 +
n=k∑

n=1

(−1)n𝜁 k−n

n!(k − n)!
(1.34)

The k times repeated integral and the sum in the last equation may be presented as follows
(Exer. 1.25 and 1.26)

𝜁

∫
0

d𝜁

𝜁

∫
0

d𝜁 …

𝜁

∫
0

f (𝜁 )d𝜁 = 1
(k − 1)!

𝜁

∫
0

(1 − 𝜁 )k−1f (𝜁 )d𝜁 (1.35)
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n=k∑

n=1

(−1)n𝜁 k−n

n!(k − n)!
= 1

k!
[(𝜁 − 1)k − 𝜁 k] (1.36)

Then, the coefficients gk according to relation (1.34) are defined as (Exer. 1.27)

gk =
(−1)k+1

k!

⎛
⎜
⎜
⎝
k

1

∫
0

(1 − 𝜁 )k−1f (𝜁 )d𝜁 − 1
⎞
⎟
⎟
⎠

(1.37)

Analyzing equation (1.33) for heat flux, one sees that the first sum, starting with 𝜃w(0),
represents an expansion of function 𝜃w(x) as a Taylor series at x = 0. Therefore, if at k → ∞,
the last integral in equation (1.33) (which is a remainder) goes to zero, this expression turns into
infinite series determining the heat flux in terms of derivatives of temperature head distribution
𝜃w(x) in the following form (Exer. 1.28)

qw = h∗

(

𝜃w +
∞∑

k=1

gkxk dk𝜃w

dxk

)

(1.38)

As shown in [101] and repeated in [119, p. 55], this relation is an exact particular result for
zero pressure gradient obtained from more general exact solution of thermal boundary layer
equation. At the same time, we just derive this relation from integral formula for heat flux (1.26)
using the exact procedure of integration by parts. These two facts show that both relations—the
integral (1.26) and differential formula (1.38)—are two equivalent exact expressions for heat
flux in a flow with a zero pressure gradient. These expressions are universal because they both
describe the dependence between heat flux and arbitrary (say any) surface temperature head
in two forms: as integral consisting of the first derivative of temperature head or as a series of
derivatives of it (Exer. 1.29).

1.5 General Forms of Universal Function

The more general expression for heat flux than relation (1.38), derived in [101] and men-
tioned above, is an exact solution of thermal boundary layer equation for self-similar flows
with power-low external velocity distribution U = Cxm (S. 7.5.2). This solution is the same
series (1.38) but written in Görtler variable Φ (S. 7.4.4.2) (see [119])

qw = h∗

(

𝜃w +
∞∑

n=1

gkΦk dk𝜃w

dΦk

)

Φ = 1
𝜈

x

∫
0

U(𝜉)d𝜉 (1.39)

In the case of zero pressure gradient (U = const), series (1.39) transforms in (1.38) since for
constant U variable Φ = Rex, and due to that Φ is proportional to x (Exer. 1.30). Because series
(1.38) and integral relation (1.26) are equivalent, it is clear that substituting the Görtler variable
Φ for x in integral (1.26) yields expression also valid for self-similar flows with power-low
external velocity distribution U = Cxm (Exer. 1.31 and 1.32)

qw = h∗

⎡
⎢
⎢
⎣
𝜃w (0) +

Φ

∫
0

f (𝜉∕Φ)
d𝜃w

d𝜉
d𝜉
⎤
⎥
⎥
⎦

(1.40)
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The two equivalent universal functions (1.39) and (1.40) are solutions of boundary layer
equations because, as it noted at the beginning of this section, expression (1.39) is obtained
from thermal boundary layer equation. It is known, that solutions of that type are applicable to
majority of practically important applications. Two facts ensure this conclusion: (i) the prop-
erties (kinematic viscosity and thermal diffusivity) of the essential technical fluids, such as air,
water, oil, and liquid metals, are small, and due to that the corresponding Reynolds and Peclet
numbers are large, and (ii) as it was shown by Prandtl, the Navier-Stokes equations simplifies
to boundary layer equations for high Re and Pe because in this case, the viscosity effects are
significant only in a thin layer adjacent to the body surface (S. 7.4.4.1).

To employ universal functions (1.39) and (1.40) for calculations, the series coefficients gk
and influence function f (𝜉∕Φ) for the integral are required. Examples considered above in
Section 1.3.2 show that all known formulae for influence function have the same structure
with different values of exponents. Proceeding from that fact of similarity, we use analogous
expression for general form of influence function with unknown exponents C1 and C2

f (𝜉∕Φ) = [1 − (𝜉∕Φ)C1 ]−C2 (1.41)

In the next sections, the coefficients gk and exponents C1 and C2 are calculated for laminar,
turbulent flows, and several other regimes and conditions.

Exercises

It is assumed (see Preface) that to perform some exercises a reader gets additional knowledge
from Part III using references indicated in text.

1.1 Explain how the conjugate problem differs from other heat transfer problems.

1.2 Why do conjugate heat transfer problems contain at least two subdomains? Name these
subdomains.

1.3 What is the difference between Laplace and Poisson equations? In what cases and why
are these equations simplified? Explain physically the difference between “thin” and
“thermally thin” bodies.

1.4 Compare Navier-Stokes and full energy equations with simplified boundary layer and
creeping equations. Explain what and why part of equation terms may be neglected?
Are the simplified equations exact or approximate? Think: why the set of equations for
creeping flow does not include the equation for turbulent flow?

1.5 Study Sections 8.2.3 to understand the Reynolds averaging and arising Reynolds
stresses in averaged Navier-Stokes equations. Think: why are these stresses so
much greater than molecular ones? Explain the differing between physical nature
of coefficients 𝜇 and 𝜇tb, Compare Navier-Stokes (1.4)–(1.7) and Reynolds (1.14)
equations to better understand the Einstein notations.

1.6 What is the essential difference between boundary conditions of the third and forth
kinds?
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1.7 Is the problem of atmosphere and ocean interaction a conjugate one? Explain your
answer. What are the subdomains in such a problem? What equations are relevant?

1.8 Study some features of partial differential equation of second order using, for example,
Advanced Engineering Mathematics Course, to understand what is a canonical equation
form? How do canonical equations differ from each other? Learn or recall why the
Navier-Stokes equation is difficult to solve. What is nonlinearity? How do nonlinear
and linear equations differ?

1.9 Discuss with other students or colleagues the difficulties arising in formulating the
boundary conditions for Navier-Stokes and full energy equations. Explain why it is
easier to formulate boundary conditions for boundary layer equations.

1.10 Compare well- and ill-posted problems. What causes the additional difficulties in for-
mulating Dirichlet problem for Navier-Stokes and energy equations?

1.11 Explain the term “deficient situation”. Why do such situations occur in conjugate prob-
lem statements? How can this difficulty be resolved?

1.12 What is the basic idea of iteration method of conjugation? What is the method of
trial-and-error? (see article “Trial and Error” on Google, on Wikipedia)

1.13 Explain how the problem of different physical properties of body and fluid is resolved
in the conjugation by one equation for entire domain.

1.14 What is the universal function? Why is such a function required for an analytical solu-
tion of the conjugate problem?

1.15 The idea of Duhamel’s integral is based on a superposition principle. Read about the
superposition method to understand why it is applicable for linear, and is not appropri-
ate for nonlinear equations (see Exer. 1.8).

1.16 In the development of Duhamel’s integral, we used the first ordinate of each interval as
a value of function F(t). Think: will the result (1.20) be the same if we use the middle
or final ordinate of each interval instead of the first one? Explain your answer.

1.17 What is the time lag? Remind or read about this term, for example, on Wikipedia. Think:
what is the difference between time legs in the two equations (1.20) and (1.21)? Can
the first one be transformed in the second?

1.18 Repeat the derivation of equation (1.22) from Duhamel’s integral (1.21) to answer why:
(i) function 𝜃w(x) and heat transfer coefficient represent in this case functions F(t) and
f (x, t) in initial integral (1.21), and (ii) heat transfer coefficients h1 and h𝜏 relate to
functions f (x, t) and f (x, t − 𝜏).

1.19* Describe the problem of heat transfer after a temperature jump on the plate with an
isothermal initial zone, which is usually used as a standard problem with a known
solution. Draw a graph showing the temperature variation along the plate. Obtain
equation (1.23).

1.20 What is an influence function? How does it relate to Duhamel’s integral?
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1.21 Discuss with your friend or colleague the benefits of universal function for conjugate
heat transfer problems. Think about other examples where universal functions might
be useful. What is the basic characteristic that distinguishes this type of relations from
others?

1.22* Repeat the first integration by parts and derive equation (1.29) from universal function
(1.26). Hint: note that the integration is performed by variable 𝜉, and because of that, x
is considered as a constant parameter in process of this integration.

1.23* Obtain parts for third integration from general relation (1.30). Hint: begin from deriv-
ing the parts for first and second integrations using relations (1.30) to understand the
procedure.

1.24 Extend the series (1.32) by adding two next terms without farther calculations. Compare
your results with formulae (1.33) and (1.34). Hint: first, analyze the rules according to
which the existing terms are constructed and then proceed using these rules.

1.25* Expression (1.35) for k-times repeated integral is obtained by series of integration by
parts. Show that this is true for k = 2. Hint: take the integral with function f (𝜁 ) as one
part (u) and d𝜁 as another part (dv).

1.26 Check equation (1.36) for k = 2 and k = 3 to see that this equation is correct.

1.27 Derive equation (1.37) from relation (1.34) using expressions (1.35) and (1.36). Hint:
take into account that k! is a product of (k-1)! and k.

1.28 Recall or study the Taylor series to understand the procedure of transforming
equation (1.33) into series (1.38).

1.29 At the end of this section (S. 1.4) it is stated that the integral with the first derivative of
temperature head and a series with successive derivatives of it are universal functions,
because they describe the dependence between heat flux and arbitrary (say any) surface
temperature head. Explain why this statement is true or in other words, why a function
describing a dependence of some arbitrary variable is universal? In what sense is such
function universal?

1.30 Show that in the case of constant external flow U = const, the Görtler variable Φ
becomes Reynolds number, and expression (1.39) transforms into relation (1.38).

1.31 Prove that in the case of constant external flow the expression (1.40) transforms into
equation (1.26). Explain why it is possible to write f (𝜉∕Φ) = f (𝜉∕x) in this case. Hint:
think about the connection between dummy and working variables explained in analyz-
ing examples in Comment 1.2. Are the dummy variables 𝜉 the same in both influence
functions in equations (1.26) and (1.40)?

1.32 Recall why the arbitrary external velocity corresponds to arbitrary pressure gradient.
What equation from a set of relations given in the beginning of this chapter tells us
about this fact? What is the name of this equation? In what type of flow does such
connection between velocity and pressure hold? Hint: see Section 7.1.2.5.



�

� �

�

Universal Functions for Nonisothermal and Conjugate Heat Transfer 19

1.6 Coefficients gk and Exponents C1 and C2 for Laminar Flow

In this section we discuss the basic features of coefficients gk that determine the differential
universal function for laminar flows and show how the exponents C for the general form (1.41)
of influence function may be estimated using known coefficients gk. Then, in the next sections,
similar coefficients and exponents are evaluated for turbulent, compressible flows and for some
other cases.

1.6.1 Features of Coefficients gk of the Differential Universal Function

We discussed in the previous section how the exact solution of the thermal boundary layer
equation is obtained for self-similar laminar flows with power-law external velocity distribu-
tion U = cxm. Such distribution occurs on the wage with open angle 𝜋𝛽 (Fig. 1.2) streamlined
by potential flow. The exponent m in velocity distribution and open wage angle 𝛽 are con-
nected by relation m = 𝛽∕(2 − 𝛽). The first four coefficients gk of series (1.39) calculated for
this case are plotted in Figures 1.3 and 1.4 as functions of Prandl number for different external
flow velocities (different 𝛽).

These data are obtained numerically (details in [119]). For limiting cases Pr → 0 and
Pr → ∞, the corresponding simplified equations are solved analytically leading to following

X

πβ

Figure 1.2 Flow past a wage. At the leading edge, the potential velocity is U = cxm
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Figure 1.3 Coefficient g1(Pr, 𝛽) of universal function (1.39) for laminar boundary layer. Asymptotes:
1 − Pr = 0, 6 − Pr → ∞; 𝛽: 2-1 (stagnation point), 3− 0.5 (favorable pressure gradient), 4-0 (zero pres-
sure gradient), 5-(−0.16) (preseparation pressure gradient) (S. 7.5.2)
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gk
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Figure 1.4 Coefficients gk(Pr) of universal function (1.39) for laminar boundary layer. 1 − (−g2),
2-g3, 3 − (−g4), ∘ − numerical integration

formulae and numerical results [119] (Γ(j) -is gamma function, Exer. 1.33)

gk =
(−1)k+1

k!(2k − 1)
Pr → 0, gk = Γ

(2
3

) i=k∑

i=0

(−1)k+iΓ [(4i∕3) + 1]
(k − i) ! i ! Γ [(4i∕3) + 2∕3]

Pr → ∞

(1.42)

g1 = 1, g2 = −1∕6, g3 = 1∕30, g4 = −1∕168, g5 = 1∕1080, g6 = −1∕7920 Pr = 0
(1.43)

g1 = 0.6123, g2 = −0.1345, g3 = 0.0298, g4 = −0.0057 Pr → ∞ (1.44)

Data from Figures 1.3 and 1.4 and limiting values (1.43) and (1.44) yield the following basic
features of coefficients gk of universal function (1.39): (i) coefficient g1 depends on the exter-
nal velocity (via 𝛽) and on the Prandtl number; this dependence is more significant for small
Prandtl numbers (Pr < 0.5); for Pr → 0 and Pr → ∞, the values of g1 for all 𝛽 tend to the
greatest g1 = 1 and to the lowest g1 = 0.6123 values, respectively, (ii) coefficient g2 is prac-
tically independent of the external velocity and depends slightly only on the Prandtl number
in the region of small Prandtl numbers; for Pr → 0 and Pr → ∞ the values of g2 also tend to
the greatest absolute value |g2| = 1∕6 and to the lowest absolute value |g2| = 0.1345, respec-
tively; (iii) coefficients g3 and g4 are independent of both the external velocity and the Prandtl
number, so that numerically obtained values for whole diapason of Prandtl numbers practically
coincide with the limiting values g3 = 1∕30 and 0.0298 and g4 = −1∕168 and −0.0057, (iv)
therefore, for k ≥ 3, coefficients gk may be estimated using simple formula (1.42) for Pr → 0,
(v) coefficients gk for universal function (1.39) rapidly decrease with the number of terms, so
that using first two or three coefficient usually gives acceptable results (Exer. 1.34).
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Comment 1.4 The isothermal heat transfer coefficient h∗ required for employing both
universal functions (1.39) and (1.40) may be estimated by any of known methods reviewed,
for example, in [369]. These methods are well tested during many years when the isothermal
heat transfer coefficient was used for practical calculations, in particular, as a part of the
boundary conditions of the third kind.

Analysis of just considered features of coefficients gk shows that the exact for power-law
external flows universal function (1.39) provides practically accurate approximate results
for arbitrary external flow velocity distribution. The following facts specified this statement:
(i) coefficient g1 slightly depends on external velocity (say on 𝛽), whereas other coefficients
are practically independent of the external velocity, (ii) if coefficients g1 were also independent
of 𝛽, the relation (1.39) would be an exact relation for arbitrary external velocity U(x), (iii) in
reality, according to Figure 1.3, the effect of 𝛽 (i.e., external velocity) on the first coefficient
reaches the maximum of ±12% from average value g1 ≈ 0.675 in vicinity of Pr = 0.1 and
then decreases to zero in both limiting cases of Prandtl number at Pr → 0 and Pr → ∞.

Thus, universal function (1.39) in general case of arbitrary external flow (or pressure gra-
dient) with average values of coefficients gk provides the calculation results with inaccuracy
less than ±12% which is comparable with accuracy of other existing approximate methods (S.
7.6) (see also [338]). Accuracy may be increased by estimating the value of 𝛽. In some cases,
𝛽 is known, for example, it is clear that for the flow past plate 𝛽 = 0 as well as for transverse
flow past circular cylinder or other body with blunt nose 𝛽 = 1 close to the stagnation point,
whereas for the rest part of the surface of such body the value of 𝛽 may be approximately con-
sidered as zero. In other cases, the parameter 𝛽 may be estimated using some simple relation,
for example, formula

𝛽 = 2(1 − Φ∕Rex) (1.45)

which results from assumption that average velocities of considering distribution U(x) and
power-law flow distribution U = cx𝛽∕(2−𝛽) are equal (Exer. 1.35).

Comment 1.5 To understand why Görtler variable extends applicability of universal func-
tion (1.38) obtained for zero pressure gradients, consider Görtler variable in the form Φ =
Uavx∕𝜈 = Re(av) x (Exer. 1.36). Here, Uav(x) is the average external flow velocity for the inter-
val from the leading edge (x = 0) to point with coordinate x. It follows from this presentation
of Görtler variable that function Φ (1.39) takes into account the flow history. Physically, it
means that the flow characteristics at point x are determined not only by local parameters at
this point but also by those at other points along the whole considering interval (0, x). Thus,
Görtler variable takes into account, in particular, the variation of pressure gradients along the
considering interval.

Comment 1.6 In general, the characteristics of some point of interest are governed by: (i) in
the simplest case, local data only (at this point); for example, the coefficients of friction and
heat transfer at some point in a flow past wage with given surface and free stream temperatures
are specified only by local values of Reynolds and Nusselt numbers (S. 7.5.2), (ii) local and
historical data (at this and behind points) as, for example, in the same problem for wage but
with nonisothermal surface when to get characteristics of some point, the surface tempera-
ture at this and behind points is required in addition (S. 2.1.1 ), and (iii) local, historical and
future data (at this, behind and advanced points) as, for example, in any Dirichlet problem
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for elliptical equation when for characteristics of any point, the information is necessary from
whole boundary of domain (Exer. 1.37).

1.6.2 Estimation of Exponents C1 and C2 for Integral Universal Function

Relation (1.37) establishes the connection between coefficients gk and influence function f (𝜁 )
where for general case 𝜁 = 𝜉∕Φ. Substituting expression (1.41) into relation (1.37), expanding
(1 − 𝜁 )k−1 via a binominal formula, and introducing a new variable r = 𝜁C1 leads to an equation

gk =
(−1)k+1

k!

[
k

C1

k−1∑

m=0

(−1)m (k − 1)!
m!(k − m − 1) !

B

(
m + 1

C1
, 1 − C2

)
− 1

]

(1.46)

determining the dependence between coefficients gk and exponents C1 and C2 required for
integral universal function (1.40). Here, B(i, j) is beta function, which is specified through
combination of gamma functions (Exer. 1.38)

B(i.j) =

1

∫
0

ri−1(1 − r)j−1dr = Γ(i)Γ(j)∕Γ(i + j) (1.47)

It is easy to calculate coefficients gk employing relation (1.46) and knowing exponents of
some influence function. For example, since relation (1.46) is a result of exact solution for
self-similar flows, this equation may be used to check the accuracy of influence function
(1.24) and others of this type approximate equations. Substitution C1 = 3∕4 and C2 = 1∕3
in equation (1.46) gives: g1 = 0.612, g2 = −0.131, g3 = 0.03, g4 = −0.0056. Those are prac-
tically the same as (1.44) obtained from exact solution for the limiting case Pr → ∞. This tells
us that function (1.24) is correct (Exer. 1.38). Similarly, equation (1.46) with exponents C1 = 1
and C2 = 1∕2 gives coefficients gk that are in agreement with the values (1.43) obtained from
exact solution for Pr → 0 (details in [119]).

More complicated is the inverse problem of determining exponents in influence function
(1.41) knowing coefficients gk. Two facts cause the difficulties in solving this problem: (i)
relation (1.46) is transcendental, and due to that could not be solved for exponent C1 or C2
(Exerc. 1.39), and (ii) there are only two unknowns C1 and C2, but countless known coef-
ficients gk. While the first difficulty is a technical question that may be resolved applying
a graphic approach, or software based on trial and error or on other numerical method, the
second problem is a fundamental complexity, known as an overdetermined system, when a
number of equations exceeds the number of unknowns. In this case, such situation produces
numerous results because each pair of coefficients gk after substitution in equation (1.46) gives
two equations defining unknown C1 and C2. However, as we have seen, this particular set of
coefficients gk consists of only two weighty coefficients g1 and g2, whereas the others are
comparatively negligible. Due to that, it may be expected that exponents C1 and C2 obtained
from system of two equations with coefficients g1 and g2 would be appropriate (Exer. 1.40
and 1.41).

This is confirmed by calculation results plotted in Figure 1.5 showing that all particular
cases of laminar flow considered in Section 1.3.2 follow from data of this pattern. It is seen
from Figure 1.5 that for whole interval of Prandtl number, exponents C1 and C2 vary slightly
from 1 to 3∕4 and from 1∕2 to 1∕3, respectively, as it should be according to relations (1.25).
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Figure 1.5 Exponents C1 and C2 for laminar boundary layer. 1 − Pr = 0, 2 − 𝛽 = 1, 3− 0, 4-(−0.16)

These data tells us as well as data of a slight dependence of gk on pressure gradient (on 𝛽
from Figs 1.3 and 1.4) identifies that the Görtler variable Φ takes into account the flow history
(Com. 1.5). This property of variable Φ results in independence of the exponents in influence
function (1.41) written in variables (𝜉∕Φ) on pressure gradients. That means that the values
of C1 and C2 remains the same 3∕4 and 1∕3 at Pr → ∞ as well as 1 and 1∕2, at Pr → 0 for
arbitrary external velocity distribution, as those in the known simple influence functions (1.25)
for the plate at zero pressure gradient (m = 0) presented in variables (𝜉∕x).

This is also in line with data from Figure 1.5 showing that C1 and C2 are independent on 𝛽 in
both limiting cases being the same for arbitrary external velocity as just indicated values 3∕4
and 1∕3 at Pr → ∞ and 1 and 1∕2, at Pr → 0. Moreover, it is easy to check that the functions
(1.25) for self-similar flows follow from relation (1.41) because in the case of U = cxm, one
gets: 𝜉∕Φ = (𝜉∕x)m+1 (Exer. 1.42).

Now we have a full set of constants for using universal functions for general case of laminar
flow. The same universal function (1.39) and (1.40) are applicable to other flow regimes and
situations, however, with proper coefficients gk and exponents C. Next sections present those
constants for several other cases.

Comment 1.7 As we will see in applications, employing two forms of universal function pro-
vides accurate results of calculations. This is achieved by using the differential form with
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several first terms, when the series converges fast, and employing the integral form if the
achieved by series accuracy is not satisfactory.

1.7 Universal Functions for Turbulent Flow

To get coefficients gk and exponents C for the two forms of universal functions in the case of
turbulent flow, the solution of thermal boundary layer equation for this case, analogous to that
given in [101] for laminar flow, was obtained in [106] using the same Görtler variable (1.39).

Comment 1.8 This solution as well as some others considering in this and in the next chapters
are presented more detailed in author’s monograph [119]. Therefore, below we indicate in the
brackets only the relevant page or section of this book without repeating citation [119]. For
the case of turbulent flow solution such citation is [Chapter 4] instead of [119, Chapter 4].

The thermal boundary layer equation (1.17) for turbulent flow differs from similar equation
(1.11) for laminar flow by last two terms containing additional dynamic 𝜈tb and thermal 𝛼tb
turbulent transfer coefficients. In contrast to analogous 𝜈 and 𝛼 laminar coefficients, which
are physical properties, the turbulent coefficients are complex functions depending on flow
characteristics, and because of that a turbulence model is required for their estimation. Usually,
to estimate turbulent thermal diffusivity, the turbulent Prandtl number Prtb = 𝜈tb∕𝛼tb similar to
physical Prandtl number is introduced. Then, coefficient 𝜈tb is defined, and turbulent diffusivity
is found as ratio 𝛼tb = 𝜈tb∕Prtb using Prtb which usually is taken to be close or equal unity (S.
2.1.2.4, Exer. 1.43).

Solution of turbulent thermal boundary layer equation requires also the velocity profiles
in boundary layer. In solution derived in [106], the Mellor-Gibson turbulence model [260] is
used to calculate both transfer coefficients and velocity profiles. This model is one of the mod-
ern algebraic models based on dependences valid for equilibrium turbulent boundary layers,
which are as well as the self-similar laminar boundary layers flows with constant dimensionless
pressure gradient (S. 8.3.2 and S. 8.3.3)

𝛽 =
𝛿1

𝜏w

dp

dx
(1.48)

where 𝛿1 and 𝜏w are displacement thickness and skin friction stress (S. 7.5.1.1). As we have
seen in Section 1.6.1, the parameter 𝛽 determines the wage angle 𝜋𝛽 and in the case of laminar
self-similar flows is connected with the exponent in velocity power law U = cxm. For this
case, it is easy to check that the complex (1.48) is a constant (Exer. 1.44). In the case of the
equilibrium turbulent boundary layer that can be demonstrated as well by more complicated
analysis [422].

It is shown [106 or p. 99, Com. 1.8] that solution of thermal turbulent boundary layer
equation for heat flux on arbitrary nonisothermal surface may be presented by the same two
universal functions in slightly different Görtler variables (S. 8.3.6.3) with specific coefficients
gk of series (1.39) and exponents C of influence function in integral (1.40). In this case, these
specific parameters depend on pressure gradient via 𝛽 and on Prandtl number as in the case of
laminar flow and in addition on Reynolds number. Calculations were performed for 𝛽 = −0.3
(flow at stagnation point), 𝛽 = 0 (zero pressure gradient flow), 𝛽 = 1 and 𝛽 = 10 (flows with
weak and strong adverse pressure gradients) for the following Prandtl and Reynolds numbers:
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Figure 1.6 Coefficient g1 for turbulent boundary layer: ___ Re𝛿1
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Pr = 0.01, 0.1, 1, 10, 100, 1000 Re𝛿1
= 103, 105, 109. Other details of turbulent boundary layer

computing may be found in [106, p. 102]. The results are plotted in Figures 1.6 and 1.7 for
coefficients gk and in Figures 1.8 and 1.9 for exponents C as functions of Prandtl number for
different values of 𝛽 and Re𝛿1

.
The following conclusions are formulated analyzing these data: (i) the values of the coef-

ficients gk rapidly decrease with increasing k as well as in the case of laminar flow; hence,
one may use only a few of the first terms in series (1.39) to get satisfactory accuracy, (ii) as
in the case of laminar flow, the coefficients gk decrease with increasing Prandtl number (Exer.
1.45); however, in contrast to the case of laminar flow, where at large Prandtl numbers the
value of coefficients become independent of Pr, but remain finite, in the case of turbulent flow
they tends to zero with increasing Pr, so that starting with some value of Prandtl number (say
≈ 102), the effect of nonisothermicity becomes negligible, (iii) for this case, coefficients gk are
smaller than the corresponding coefficients for laminar flow, and they decrease with increas-
ing Reynolds number indicating that the nonisothermicity affects the heat transfer in turbulent
flows relatively lesser (Exer. 1.46), (iv) coefficients g1 and g2 depend slightly on 𝛽, whereas
the others are practically independent of 𝛽, this allows one to use the universal function (1.39)
for turbulent flows with an arbitrary pressure gradient as for laminar flows estimating value
of 𝛽 by the same approach, (v) exponents C1 and C2 increase with decreasing Prandtl and
Reynolds numbers, (vi) exponent C2 increases with decreasing pressure gradient, whereas the
exponent C1 is practically independent of pressure gradient.

It follows from Figures 1.8 and 1.9 that C1 = 1, C2 = 0.18 for zero pressure gradient flow
when Pr = 1 and Re𝛿1

= 103, but under the same conditions and Re𝛿1
= 105, the same figures

give C1 = 0.84,C2 = 0.1. These computed results are close to exponents in well-known influ-
ence function considered in Section 1.3.2: the first exponents are almost the same as C1 = 1
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Figure 1.8 Exponent C1 for turbulent boundary layer: Re𝛿1
= 103, 2 − 105, 3 − 109

and C2 = 0.2 derived theoretically and confirmed by measuring data at relatively low Reynolds
number Rex = 5 ⋅ 105 [201], and the second values are close to C1 = 9∕10 and C2 = 1∕9
obtained experimentally at greater Reynolds number Rex = 108 in [267] (Exer. 1.47).

Comment 1.9 In the case of turbulent flow, the isothermal heat transfer coefficient h∗ is
required also for applying both universal functions (1.39) and (1.40). For this purpose, a spe-
cial investigation was provided for wide range of Reynolds and Prandtl numbers [107] using
the same Mellor turbulent model. We present those results and comparison with available
experimental data in applications in Section 2.1.2.3.
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Figure 1.9 Exponent C2 for turbulent boundary layer: Re𝛿1
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Exercises

1.33 Read about gamma function in some Advanced Engineering Mathematics Course and
calculate limiting values (1.43) and (1.44) using formulae (1.42). Hint: for Gamma
function estimation use some handbook or Mathcad.

1.34 Estimate a rate of convergence of series (1.39) by comparing the first four values of
terms using limiting coefficients for Pr → 0 or Pr → ∞ and assuming that all products
Φk(dk𝜃w∕dΦk) are of the same order.

1.35 Derive relation (1.45) for estimating 𝛽. Hint: equal results of integration of two flows
velocity distributions: given U(x) and self-similar U = cx𝛽∕(2−𝛽), which is used for esti-
mating 𝛽.

1.36 Show that the Görtler variable Φ (1.39) is the average value of Reynolds number on
interval (0, x).

1.37 Think about other examples of problems and different types of information required to
understand the role of local, historical, and future data in determining point character-
istics of interest.

1.38 Read about beta function (see Exer. 1.33) and calculate coefficients gk using relation
(1.46) and exponents from influence function (1.24).

1.39 Recall or read about a term “transcendental expression” using, for example, Wikipedia
to understand the difficulties in solving the inverse problem and methods to overcome
those.

1.40* Think how the inverse problem may be solved graphically. Hint: (i) calculate two func-
tions g1(C1,C2) and g2(C1,C2) using equation (1.46) and varying C1 from 1 to 3∕4 and
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C2 from 1∕2 to 1∕3, (ii) plot these functions and choose coefficients g1 and g2 from
Figures 1.3 and 1.4 for the same value of Prandtl number, (iii) draw lines g1 = const.
and g2 = const. on each of graphs to get two relations between exponents C1 and C2,
(iv) find the intersection point of two curves plotted according to data for C1 and C2
from (iii).

1.41* Create a software for solving the inverse problem applying trial and error method. Hint:
(i) choose coefficients g1 and g2 from Figures 1.3 and 1.4 for the same value of Prandtl
number, (ii) take two equations (1.46) for g1 and g2 and guess a value of C1 or C2, (iii)
by varying another than guessed exponent satisfy one of equation (1.46) to get the corre-
sponding coefficient g, (iv) by varying another exponent satisfy another equation (1.46)
to get the second coefficient g, (iv) continue the procedure until desired accuracy of
both refined coefficients g1 and g2 will be achieved, (vi) if the process would be poor
converged, change the value of the first guessing coefficient.

1.42 Show using the Görtler variable that for self-similar flows with velocity U = cxm, the
formula (1.25) is valid. Hint: calculate variable Φ for U = cxm, and substitute 𝜉∕Φ for
𝜉∕x in equation (1.24).

1.43 What means physically Prtb = 1? Recall, what is the Reynolds analogy? Explain phys-
ically why such an analogy exits. Hint: think about similarity of transport processes
(S. 7.1.1).

1.44 Prove that for laminar boundary layer the parameter 𝛽 = (𝛿1∕𝜏w)(dp∕dx) is constant.
Hint: use the external velocity distribution U = Cx𝛽∕(2−𝛽), second equation (1.12) for
dp∕dx, and equations for 𝛿1 and 𝜏w from Section 7.5.1.

1.45 Explain physically why coefficients gk decrease with a Reynolds or Prandtl number
increasing. Hint: think about relation between dynamic and thermal boundary layer
thicknesses (Exam. 7.8).

1.46 Explain why effect of nonisothermicty (and coefficients gk) in turbulent flow is less
than in laminar flow. Hint: think about different nature of transport process in both
cases (S.8.2.1).

1.47 Calculate exponents C1 and C2 for several examples using laminar and turbulent data
for g1 and g2 and graphical approach or software described in Exercises 1.41 and 1.42,
respectively.

1.8 Universal Functions for Compressible Low

The results obtained above for incompressible flows are applicable to the compressible
flows with variable density in the case of zero pressure gradient. This follows from the
fact that boundary layer equations for compressible flow past plate in Dorodnizin or
Illingworth-Stewartson variables (according Russian or English literature) has the same form
as the boundary layer equations for incompressible flow in physical variables (Exer. 1.48).
Therefore, the solution of thermal boundary layer equation for heat flux on a plate with
arbitrary temperature distribution in compressible flow in such variables may be presented as
universal function (1.38), but written in differences of enthalpy instead of temperature head
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[111, p. 78]

qw =
qw∗Cx√

C

(

i0w +
∞∑

k=1

gkxk dki0w

dxk

)

, i0w =
Jw − Jad

J∞
= iw − r

2
(k − 1)M2 (1.49)

C =

√
Tw.av

T∞

T∞ + TS

Tw.av + TS

Here, qw∗ is the heat flux on an isothermal surface with average temperature head of con-
sidering nonisothermal plate (like h∗ in relation (1.38)), Jw and Jad are wall and adiabatic wall
enthalpy, i0w is stagnation enthalpy difference (Exer. 1.49), C and Cx are coefficients of propor-
tionality in approximation law for gas viscosity 𝜇∕𝜇∞ = C (T∕T∞) calculated using average
Tw.av or local Tw surface temperature, r is a recovery factor (S. 1.14), M is Mach number,
and TS is Sutherland gas constant. Equation (1.49) is an exact solution of a thermal bound-
ary layer equation for the plate with an arbitrary temperature distribution. The well-known
Chapman-Rubesin solution for polynomial surface temperature follows from this relation as a
particular case.

The equivalent integral universal function for compressible flow past plate is obtained from
equation (1.26) after similar substitution of stagnation enthalpy difference i0w and product
qw∗Cx∕

√
C before brackets for the temperature head and isothermal heat transfer coefficient

h∗, respectively

qw =
qw∗Cx√

C

⎡
⎢
⎢
⎣
i0w (0) +

x

∫
0

f (𝜉∕x)
di0w

d𝜉
d𝜉
⎤
⎥
⎥
⎦

(1.50)

1.9 Universal Functions for Power-Law Non-Newtonian Fluids

The term “non-Newtonian fluid” belongs to fluids which rheology (a science of flow of a
matter) behavior is different from that of Newtonian fluids. In particular, the Newtonian fluids
viscosity depends only on the temperature, whereas there are countless other fluids and materi-
als (like polymers) whose viscosity is governed by more complex laws depending on spatial or/
and on time deformation (Com. 5.8). The universal function was obtained for non-Newtonian
and non-Fourier power laws fluids [351, p. 83] which characteristics obeys the following
expressions of power types

𝛕 = K𝜏

(1
2

I2

) n−1
2

e, q = Kq

(1
2

I2

) s
2
grad T , I2 = 4

(
𝜕u
𝜕x

)2
+ 4

(
𝜕v
𝜕y

)2

+ 2

(
𝜕u
𝜕y

+ 𝜕v
𝜕x

)2

(1.51)
Here, 𝛕 and e are the stress and rate of deformation tensors, q is the heat flux vector, K𝜏 and Kq
are constants and I2 is a second invariant of rate of deformation tensor. Non-Newtonian power
laws satisfactory describe the behavior of a group of substances, like suspensions, polymer
solutions and melts, starch pastes, clay mortars.

Comment 1.10 Tensor is a general term defining the other quantities by order of its degree.
A tensor order depends on array of numerical values (or indices) that determines the tensor. In
this terminology, the scalar is a tensor of zero order, whereas the vector is the tensor of order
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one since three values (three coordinate) is necessary to define a vector. Similarly, the tensor
of second order is an array of nine values.

Relations (1.51) simplifies for boundary layer flows for which they become

τ = K𝜏

(
𝜕u
𝜕y

)n

, q = Kq

(
𝜕u
𝜕y

)S
𝜕T
𝜕y

(1.52)

The Newton and Fourier laws follow from (1.52) as well as from (1.51) at n = 1 and s =
n − 1 = 0 (Exer. 1.50 and 1.51).

It is shown that universal functions (1.39) and (1.40) are valid also for power law
non-Newtonian fluids, but only for such, for which the condition s = n − 1 is satisfied. This
equality means that viscosity K𝜏 and heat conductivity Kq (called apparent parameters for
non-Newtonian fluids, Exer. 1.52) are proportional to each other as for Newtonian fluids, and
due to that, the analogous exact solution of thermal boundary layer equation may be obtained.
[111, p. 84] In that, more general case, the Görtler variable and parameter 𝛽, defined the
self-similar flows, are determined as follows (Exer. 1.53)

Φ = 𝜌

K𝜏

x

∫
0

U2n−1(𝜉)d𝜉 𝛽 = (n + 1)m
(2n − 1)m + 1

m = Ux
x∫
0

U(𝜉)d𝜉
− 1 (1.53)

These equations indicate that for power-law fluids, the pressure gradient parameter 𝛽 is
depended not only on exponent m of the external velocity U = cxm as for Newtonian fluid,
but also on exponent n in rheology law (1.51) or (1.52). Because of that, the pressure gradient
is characterized not by 𝛽, which depends also on n, but by using directly the exponent m
applying the third formula (1.53) instead of relation (1.45) for 𝛽 in the case of Newtonian
fluid (Exer. 1.54).

The coefficients gk were calculated in the same way only for large Prandtl numbers Pr =
10, 100, 1000 typical for non-Newtonian fluids, exponents n from 0.2 to 1.8, and for m = 0
(zero pressure gradient), m = 1∕3 (negative pressure gradient) and m = 1 (stagnation point
flow). The results given in Figure 1.10 indicate that: (i) the dependences of coefficients gk
on Prandtl number and pressure gradient are similar to those for Newtonian fluids (Fig.1.3),
(ii) for Pr > 10 and relatively small pressure gradients m = 0 and m = 1∕3, coefficients gk
are practically independent on Pr as well as for Newtonian fluid, (iii) as the pressure gradi-
ent increases (m = 1), this dependence becomes more significant, but still remains slight, (iv)
functions g1(n) and g2(n) (for m = 1∕3, m = 1 and Pr = 100 they merge in one curve 2) present
the effect of non-Newtonian behave of fluid (exponent n) on heat transfer intensity showing
that nonisotermicity effect increases markedly with growing exponent n, (v) the greatest coef-
ficient g1 becomes larger from two to more than three times as the exponent n increases from
0.2 to 1.8.

In Figure 1.11 are plotted the results obtained for coefficient g0 which defines the isothermal
heat transfer coefficient h∗ for non-Newtonian fluids according to formula for Nusselt number
[111, p. 84]

Nu∗

Re
n

n+1

= g0

(Cf

2
Re

1
n+1

) 2n−1
2n ( Φ

Re

) 1
2(n+1)

(1.54)
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Figure 1.11 Quotient g0∕Pr1∕3 of the coefficient g0 and Prandtl number Pr1∕3 for non-Newtonian fluids:
s = n − 1, 1 − m = 0, Pr > 10, 2 − m = 1∕3, Pr > 10, 3 − m = 1. Pr > 1000, 4 − m = 1, Pr = 100, 5 −
m = 1, Pr = 10

where Nu and Re are special numbers for non-Newtonian fluids given in nomenclature.
The friction coefficient Cf containing in (1.54) may be estimated using special literature,
for example [351]. Figure 1.11 presents the value g0∕Pr1∕3 (instead of g0) as a function of
exponent n for different values of pressure gradient (different m) and Prandtl number. It is
seen that for large Pr, this quotient slightly depends on Prandl number. This indicates that
the heat transfer coefficient for an isothermal surface for power-law fluids is practically
proportional to Pr1∕3 as well as for Newtonian fluids (S. 7.5.1).
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Although the coefficients C1 and C2 here are not given, they may be calculated by the same
way using data for coefficients gk (Exer. 1.55). For the general case of arbitrary exponents n and
s (not connected by condition s = n − 1) for laws (1.51) only approximate similar solutions
for universal function have been obtained [104].

1.10 Universal Functions for Moving Continuous Sheet

The systems in which a continuous material goes out of a slot and moves through surrounding
coolant are used in a number of industrial processes, such as forming of synthetic films and
fibers, the rolling of metals, glass production, and so on. Due to viscosity of the surrounding,
on the surface of such moving sheet a boundary layer similar to that on a streamlined or a fly-
ing body forms as it schematically is shown on Figure 1.12. Despite both boundary layers are
similar, at the middle of the last century it was shown [333] that the boundary layer on contin-
uous sheet differs from the well-known boundary layer existing on streamlined bodies. As it
is clear from Figure 1.12 in this case, the boundary layer grows in the direction of the motion,
whereas on the moving or streamlined body, the boundary layer develops in an opposite to the
moving direction.

It can be shown that in coordinate system attached to the moving surface, the boundary layer
equations are unsteady (Exer. 1.56), and hence, they differ from the usual steady equations for
a plate, but the boundary conditions in the moving frame are identical with those for stream-
lined plate. At the same time, in a frame attached to the slot, the problem of the moving sheet
is steady, and both boundary layer equations coincide, however, in this case, the boundary
conditions differ because the flow velocity on a sheet relatively to a slot is not zero.

The first calculations revealed that for the moving continuous sheet, the friction coefficient
and the isothermal heat transfer coefficient at Pr = 0.7 are greater than those for streamlined
plate by 34% and 20%, respectively [333, 395]. Exact solution for arbitrary nonisothermal
surface in the same form of universal functions (1.38) and (1.26) for zero pressure gradient
was obtained in [109] for stationary and blowing surrounding coolant with different ratio 𝜙 =
U∞∕Uw, where Uw and U∞ are velocities of surface and coolant. The coefficients gk and the
exponents C1 and C2 are given in Figure 1.13 and 1.14. The coefficient g0 plotted in Figure 1.15

y

T0

0

U∞1

U∞2

T∞1

T∞2

Uw

x
xCR

Figure 1.12 Schematic pattern of boundary layer on moving continuous sheet for symmetric (U1 =
U2,T∞1 = T∞2) and asymmetric flows
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for different ratio 𝜙 = U∞∕Uw defines the isothermal heat transfer coefficient according to
formula h∗ = g0

√
Uw∕𝜈x (Exer. 1.57).

The coefficients gk in this case are markedly greater than those for streamlined plate (Figs.
1.3 and 1.4), but decrease rapidly as well with coefficient number increasing. For instance, in
the case of stationary surrounding, the first coefficient g1 for the moving sheet is twice greater
which indicates that the effect of nonsothermcity in this case is significantly larger than that
for streamlined stationary or moving plate. As well as for usual case, the coefficients gk for
k ≥ 3 are practically independent of the Prandtl number and blowing parameter 𝜙 and may be
calculated by the same formula (1.42) for Pr → 0 as for universal functions (1.38).

1.11 Universal Functions for a Plate with Arbitrary Unsteady
Temperature Distribution

An exact solution of unsteady thermal boundary layer equation for a plate with arbitrary
unsteady temperature distribution Tw(t, x) shows that in this case, a differential universal func-
tion has the form similar to series (1.38) [117, p. 75] (Exer. 1.58)

qw = h∗

(
𝜃w + g10x

𝜕𝜃w

𝜕x
+ g01

x
U

𝜕𝜃w

𝜕t
+ g20x2 𝜕

2𝜃w

𝜕x2
+ g02

x2

U2

𝜕2𝜃w

𝜕t2
+ g11

x2

U

𝜕2𝜃w

𝜕x𝜕t
+ …

)

(1.55)
Series (1.55) contains three types of terms with derivatives depending: on coordinate only,
on time only, and on both coordinate and time with coefficients gk0, g0i and gki, respectively.
Coefficients gk0 are the same as gk in universal function (1.38) for steady temperature distribu-
tion. The two others depend on Prandtl number as well as gk and on time (Exer. 1.59). For the
case of zero pressure gradient and Pr = 1, the first four coefficients gki(i ≠ 0) are computed
numerically. They are plotted on Figure 1.16, which shows that the coefficients gki are simi-
lar to coefficients gk rapidly decreasing with growing number ki. Due to that, it is possible to
obtain satisfactory accurate calculations using only first several terms of the series (1.55) as
well as in the case of employing steady state universal function (1.38).

2.4
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0.8
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g21

Figure 1.16 Coefficients gki(i ≠ 0) as functions of z for zero pressure gradient and Pr = 1



�

� �

�

Universal Functions for Nonisothermal and Conjugate Heat Transfer 35

It follows from Figure 1.16 that the coefficients gki gradually grow with time and finally
attain the values of (gki)t→∞ that coincide with those obtained by Sparrow in a similar problem
without an initial conditions [370]. The ratio gki(z)∕(gki)t→∞ is about 0.99 when dimensionless
time z = Ut∕x (see Exer. 1.59) becomes z > 2.4. Hence, for z > 2.4, the coefficients gki are
practically independent of time. Comparing these coefficients with coefficients gk of series
(1.38) for zero pressure gradient and Pr = 1 reveals that coefficients gki for large time are much
greater. In particular, the first coefficient g01 ≈ 2.4 is four times larger than corresponding value
of steady state g1 ≈ 0.6 (Fig.1.3). This specifies that the nonisothermicity effect caused by time
temperature gradient 𝜕𝜃w∕𝜕t is four times greater than the effect of nonisothermicity produced
at the same conditions by spatial temperature gradient 𝜕𝜃w∕𝜕x.

The following integral universal function corresponds to unsteady differential universal
function (1.55)

qw = h∗

⎡
⎢
⎢
⎣
𝜃w (t, 0) +

x

∫
0

f [(𝜉∕x, ) 0, z]
𝜕𝜃w

𝜕𝜉
d𝜉 +

t

∫
0

f [0, (𝜂∕t), z]
𝜕𝜃w

𝜕𝜂
d𝜂

+

t

∫
0

d𝜂

x

∫
0

f
[
(𝜉∕x) , (𝜂∕t), z

] 𝜕2𝜃w

𝜕𝜉𝜕𝜂
d𝜉
⎤
⎥
⎥
⎦

(1.56)

Applying the same technique of repeated integration by part as in the case of steady-state
heat transfer described in Section 1.4, one can show that this expression is identical with the
differential form in series (1.55).

1.12 Universal Functions for an Axisymmetric Body

According to Stepanov and Mangler (in conformity with Russian and English literature), the
problem for an axisymmetric body is transformed to two-dimensional problem by using vari-
ables which in case of non-Newtonian power law fluids are [351]

x̃ =

x

∫
0

Rn+1(𝜉)d𝜉, ỹ = Ry, (1.57)

where R is a cross section radius (Exer. 1.60). It follows from this result that universal functions
(1.39) and (1.40) are valid for flow past axisymmetric body in Görtler variable transformed
according to relation (1.57). Such variable for the case of the power law non-Newtonian
fluids is obtained after substituting Rn+1dx for dx in the corresponding Görtler variable for
non-Newtonian fluids (1.53). The heat flux qw obtained for plane two-dimensional problems
should be multiplied in this case by Rn to get

Φ = 𝜌

K𝜏

x

∫
0

U2n−1(𝜉)Rn+1(𝜉)d𝜉, q̃w = Rnqw (1.58)

In the case of Newtonian fluid (n = 1), the first expression (1.58) in conformity with
equations (1.57) transforms in the Görtler variable Φ (1.39) modified by multiplying the
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integrand by R2. The second equation (1.58) in this case reduces to q̃w = Rqw where qw is the
heat flux obtained by universal function (1.39) for plane problem, which also is in line with
the second equation (1.57 ) (Exer. 1.61).

Comment 1.11 Special variables play a significant role in simplifying the initial form of
equations. So far, we consider those three variables: Görtler variable, which transforms the
solution for zero pressure gradient to form applicable for flows with arbitrary pressure gradi-
ent, Dorodnizin-Illingworth-Stefartson variable transforming the equations for compressible
fluid in an incompressible form, and the Stepanov-Mangler variable which reduces the axisym-
metric equation to the equivalent two-dimensional equation. There are other specific variables
transforming equations, in particular, as later we will see the Falkner-Skan, Blasius, and other
similarity variables, which change the partial boundary layer equations in ordinary differential
equations (S. 7.5.1 and 7.5.2), Prandtl-Mises variables converting boundary layer equation in
the form, which is close to one-dimensional conduction equation (S. 7.4.4.2). These examples
are taken from boundary layer theory. However, the equations transforming by applying new
variables is a general method widely used in mathematics.

1.13 Inverse Universal Function

The inverse universal function is obtained as a result of solution of the inverse problem when
the surface heat flux distribution is specified and the corresponding temperature head distri-
bution should be found. We consider two such problems: first, the general inverse universal
functions for surface with given arbitrary heat flux distribution is obtained and then, the specific
inverse problem determining the universal function for recovery factor is solved.

1.13.1 Differential Inverse Universal Function [112]

Because we are seeking a temperature distribution, we solve equation (1.39) for temperature
head to obtain

𝜃w +
∞∑

k=1

gkΦk dk𝜃w

dΦk
=

qw

h∗
= 𝜃w∗(Φ) (1.59)

The right hand part of this equation is a known function of x and hence, of Görtler variable Φ
since in the problem in question the heat flux distribution is given. Physically the ratio qw∕h∗
determines the temperature head which would be established by given heat flux if the consid-
ering surface were isothermal. Therefore, we use for this function the notation 𝜃w∗(Φ) (Exer.
1.62). In fact, equation (1.59) is a differential equation defining unknown function 𝜃w(Φ),
which solution may be presented in terms of known function 𝜃w∗(Φ) = qw∕h∗ as a series sim-
ilar to universal function (1.39)

𝜃w = 𝜃w∗ +
∞∑

n=1

hnΦn dn𝜃w∗
dΦn

, (1.60)

where hn denotes coefficients similar to gk. To prove this, we show that relation (1.60) satisfies
equation (1.59) which we transform by replacing the right hand part to the left

𝜃w − 𝜃w∗(Φ) +
∞∑

k=1

gkΦk dk𝜃w

dΦk
= 0 (1.61)
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Substitution of equation (1.60) into this equation leads to following equation (Exer. 1.63)

∞∑

n=1

hnΦn dn𝜃w∗
dΦn

+
∞∑

n=1

gkΦk dk𝜃w∗

dΦk
+

∞∑

n=1

gkΦk dk

dΦk

∞∑

n=1

hnΦn dn𝜃w∗
dΦn

= 0 (1.62)

After changing indices n to k and performing differentiation in the last term, we mod-
ify this equation by assembling terms containing the same groups Φk(𝜕k𝜃w∗∕𝜕Φk) for k =
1, 2, 3 … . The expression obtained in such a way is a summation of the partial sums of groups
Φk(𝜕k𝜃w∗∕𝜕Φk) for different numbers k, which according to (1.62) should be equal zero. Since
those partial sums of different groups are independent of each other, the required condition of
zero may be satisfied only if each sum of groups would be equal zero. The equalities obtained
in such procedure by setting each of partial sums to zero contain known k coefficients gk and
k − 1 coefficients hk. Therefore, they define coefficients hk in sequence so that the first equal-
ity for k = 1 specifies h1, the second one gives h2 via known h1, and so on, resulting in the
following equations (Exer. 1.64)

h1 + g1(h1 + 1) = 0, h2 + g1(2h2 + h1) + g2(2h2 + 2h1 + 1) = 0,

h3 + g1(3h3 + h2) + g2(6h3 + 4h2 + h1) + g3(6h3 + 6h2 + 3h1 + 1) = 0,

h4 + g1(4h4 + h3) + g2(12h4 + 6h3 + h2) + g3(24h4 + 18h3 + 6h2 + h1)

+g4(24h4 + 24h3 + 12h2 + 4h1 + 1) = 0 + … (1.63)

Figures 1.17 and 1.18 present the values of the first four coefficients hk for laminar and
turbulent flows. For the limiting Prandtl numbers the coefficients hk are

h1 = −1∕2, h2 = 3∕16, h3 = −5∕96, h4 = 35∕1968 Pr → 0 (1.64)

h1 = −0.38, h2 = 0.135, h3 = −0.037, h4 = 0.00795 Pr → ∞ (1.65)

Like coefficients gk, the first few coefficients hk are a weak functions of 𝛽 and the others are
practically independent of 𝛽 and Pr.

1.13.2 Integral Inverse Universal Function [112]

The integral inverse universal function is obtained in the same way by considering the universal
function (1.40) as an equation for temperature head determination to get

Φ

∫
0

f (𝜉∕Φ)
d𝜃w

d𝜉
d𝜉 =

qw(Φ)
h∗(Φ)

or

Φ

∫
0

[1 − (𝜉∕Φ)C1 ]−C2 d𝜃w

d𝜉
d𝜉 =

qw(Φ)
h∗(Φ)

(1.66)

It is seen that in this case, the unknown function 𝜃w is located under sign of an integral with
variable limit. To find such unknown function, one should solve the second equation (1.66),
which is Volterra integral equations (Exer. 1.65). Because there is no standard approach for
solving integral equations, the solution of such a problem is a hard task. In this specific case,
applying new variables: ΦC1 = z, 𝜉C1 = 𝜁 , and qw(Φ)∕h∗(Φ) zC2 = F(z) converts second
equation (1.66) into Abel integral equation (1.67), of which the known solution for this
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particular case is shown by second expression (1.67) (Exer. 1.66)

z

∫
0

d𝜃w

d𝜁
d𝜁

(z − 𝜁 )C2
= F(z)

d𝜃w

dz
= 1

(C2 − 1) !(−C2) !
d
dz

z

∫
0

F(𝜁 )d𝜁
(z − 𝜁 )1−C2

(1.67)

Returning to variables Φ and 𝜉 yields a relation for the temperature head (Exer. 1.67)

𝜃w =
C1

Γ(1 − C2)Γ(C2)

Φ

∫
0

[

1 −
(
𝜉

Φ

)C1
]C2−1(

𝜉

Φ

)C1(1−C2) qw(𝜉)
h∗(𝜉)𝜉

d𝜉 (1.68)

For the case of zero pressure gradient, this expression coincides with known relation

𝜃w = 0.623
𝜆

Re−1∕2
x Pr −1∕3

x

∫
0

[

1 −
(
𝜉

x

)3∕4
]−2∕3

qw(𝜉)d𝜉 (1.69)

obtained in [201] using another approach (Exer. 1.68).

1.14 Universal Function for Recovery Factor

The recovery factor determines a part of fluid mechanical energy that is recovered as thermal
energy. This process is important for estimation of the wall adiabatic temperature (S. 7.3.5).
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Actually, the recovery factor calculation is an inverse problem of the temperature head
determining under condition of zero heat flux (Exer. 1.49) and significant mechanical energy
dissipation. Solution of such a problem is similar to that considered in the previous section,
but in this case in addition, the effect of mechanical energy dissipation should be taken into
account.

It is shown [119, p. 57] that the exact solution of the laminar thermal boundary layer
equation for the case with significant mechanical energy dissipation differs from universal
function (1.39) by the term gd(U2∕cp) where gd is a special coefficient similar to coefficients
gk. Taking this into account, we solve equation (1.39) with such additional term (the first
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equation (1.70)) for temperature head 𝜃w in the same way as in Section 1.13.1 to obtain the
second equation (1.70) instead of similar equation (1.59)

qw = h∗

(

𝜃w +
n=k∑

n=1

gkΦk dk𝜃w

dΦk
− gd

U2

cp

)

, 𝜃w +
∞∑

k=1

gkΦk dk𝜃w

dΦk
=

qw

h∗
+ gd

U2

cp
(1.70)

Considering the last equation (1.70) as the differential equation defining temperature head as
a sum (qw∕h∗ + gdU2∕cp) instead of 𝜃w∗, we get the same solution (1.60) for the problem with
significant mechanical dissipation in which 𝜃w∗ = qw∕h∗ is substituted by the sum (qw∕h∗ +
gdU2∕cp) regarding the effect of dissipation

𝜃w = qw∕h∗ + gdU2∕cp +
∞∑

n=1

hnΦn
dn(qw∕h∗ + gdU2∕cp)

dΦn
(1.71)

After putting here qw = 0, this expression gives the universal function for recovery factor

r =
Tad − T∞

U2∕2cp

=
Tw − Tad

U2∕2cp

= 2gd

(

1 +
∞∑

k=1

hk
Φk

U2

dkU2

dΦk

)

(1.72)

where Tad is adiabatic wall (i.e., isolated) temperature, and Tw is the temperature of the usual
non-isolated wall defined by equation (170) which wall has if it would be nonisolated. It fol-
lows from the last two relations that the adiabatic may be determined as a temperature of
isolated wall or as a wall temperature cooled due to dissipation mechanical energy (Exer. 1.69
and 1.70).

Accordingly, integral universal function for recovery factor is obtained from relation (1.68)
by the same substitution of the sum (qw∕h∗ + gdU2∕cp) for 𝜃w∗ = qw∕h

∗
in its integrand and

following putting qw = 0 (Exer. 1.71)

r =
Tw − Tad

U2∕2cp

=
2gdC1

Γ(1 − C2)Γ(C2)U2

Φ

∫
0

[

1 −
(
𝜉

Φ

)C1
]C2−1(

𝜉

Φ

)C1(1−C2) U2(𝜉)
𝜉

d𝜉 (1.73)

Relations (1.72) and (1.73) present recovery factor for flows with arbitrary external flow
U(x). For zero pressure gradient with U = const. both expressions (1.72) and (1.73) give the
well-known result r = 2gd (Exer. 1.72).

The effect of dissipation, which is proportional to the square of velocity U2(x)., is minor for
incompressible fluids due to typical relatively small incompressible flows velocities. In such
a case, the effect of dissipation becomes significant only for large Prandtl numbers when the
last term in thermal boundary layer equation (1.11), which is proportional to Prandl number, is
comparable with other terms (Exer.1.73). The large Prandtl numbers are common, in particular,
for non-Newtonian fluids. Because of that, the coefficient gd was calculated for non-Newtonian
(n = 0.6 − 1.2) including Newtonian (n = 1) fluids only for large Prandtl numbers, Pr >1000,
for zero pressure gradient (m = 0) and for stagnation point flow (m = 1). The same approach
as for coefficients gk calculation (S. 1.6.1) was used (Exer. 1.74). The results are plotted in
Figure 1.19. It is seen from Figure 1.19 that the recovery factor and hence, the effect of dissi-
pation increases with pressure gradient and decreases as the exponent n increases. This implies
that the effect of dissipation for non-Newtonian fluids with n > 1 (dilatant fluids) is greater and
limited for with n < 1 (pseudoplasic fluids) is smaller than that for Newtonian fluid with n = 1.
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Figure 1.19 Coefficients gd for Newtonian (n = 1) and non-Newtonian fluids (s = n − 1, S.1.6), Pr
>1000

Comment 1.12 One merit of using the adiabatic wall temperature is that the substitution of
the adiabatic temperature head defined as 𝜃ad = Tw − Tad for usual temperature head 𝜃w =
Tw − T∞ in known relations yields the expressions valid for the case with heat dissipation. For
example, equation (1.49) for compressible fluid written using adiabatic stagnation enthalpy
difference i0w has the same form as the relation (1.39) written in terms of usual tempera-
ture head 𝜃w for incompressible fluid. This is achieved due to applying adiabatic stagnation
enthalpy difference according to the second equation (1.49) (Exer. 1.75). Applying adiabatic
temperature is also important to understand some heat exchange processes. For instance, as
it shown in Section 2.1.4.3, the fluid cools the wall until it reaches the adiabatic temperature,
and then, the heat flux changes its direction so that the fluid heats the wall.

Exercises

1.48* The basic idea of transforming boundary layer equation for compressible fluid to the
form of incompressible fluid is to take into account the variability of gas density using

integral of density 𝜂 = 𝜂0

y∫
0

𝜌(𝜉)
𝜌0

d𝜉. That gives the transverse variable 𝜂, which converts

the compressible boundary layer equation to the form of incompressible boundary layer
equation. Note, that expression for 𝜂 is of the same type as Görtler variableΦ defined by
equation (1.39). Compare these relations, thinking of their similarity and dissimilarity.
Are the considerations about different kinds of information and flow history outlined in
comments 1.5 and 1.6 applicable to relation for 𝜂 defined as integral of density? Think
about dummy variables in this relation and in Görtler variable (1.39). Compare both
these dummy variables denoted by the same letter 𝜉. Are they actually the same? If no,
explain why do you think so, and how differ these dummy variables from each other?

1.49 Recall what is the adiabatic wall temperature (S.7.3.5) and enthalpy to understand what
is the stagnation enthalpy difference i0w and how is it calculated? Compare relations
(1.49) and (1.50) for compressible fluids with analogous relations (1.38) and (1.26) for
incompressible flows.
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1.50 Show that for the boundary layer flows, the relations (1.52) follow from general expres-
sions (1.51). Hint: compare magnitude order of terms as in derivation boundary layer
equations (S. 7.4.4.1) and use Newton’s law for shear stress.

1.51 Obtain Newton’s and Fourier’s laws from relations (1.52) for Newtonian fluids (n = 1)
and prove that in this case the proportionality between viscosity and conductivity exists
because of s = n − 1. Hint: note that in this case the deformation tensor e (see (1.51))
equals 𝜕u∕𝜕y.

1.52* Show the same from relations (1.52) for non-Newtonian fluid (at any n) for the case

when s = n − 1. Hint: modify the relations (1.52) to the forms 𝜏 = K𝜏

(
𝜕u
𝜕y

)n−1
𝜕u
𝜕y

and

q = Kq

(
𝜕u
𝜕y

)n−1
𝜕T
𝜕y

which are similar to those obtained for Newtonian fluid in example
1.51. Compare the Newton’s and Fourier’s laws for Newtonian fluid with similar rela-
tions for non-Newtonian fluids to see the difference between viscosity 𝜇 and conduc-

tivity 𝜆 in the first case and factors K
(
𝜕u
𝜕y

)n−1
at velocity and temperature derivatives

in the second case. Think: why those coefficients for non-Newtonian fluids are called
“apparent” viscosity and conductivity (see Com. 5.8)?

1.53* Show that in the case of constant external flow U = const, the Görtler variable (1.53)
becomes Reynolds number in a special form for non-Newtonian fluids (see nomencla-
ture) as in similar case for Newtonian fluid (Exer. 1.30).

1.54 Derive the third formula (1.53) for exponent m using approach described in Exer. 1.35.

1.55* Calculate exponents C1 and C2 for several examples using coefficients gk from
Figure 1.10 by graphical approach or software described in Exer. 1.41 and 1.42,
respectively; see also Exer. 1.47.

1.56 Think and explain why the problem of a moving continuous sheet is unsteady in the
frame attached to the sheet, but is steady in unmoved frame located out of sheet. Hint:
consider what the observer sees looking at the boundary layer when he or she: (i) moves
along with the sheet and (ii) sit out of the moving sheet.

1.57* Compare coefficients g0, g1 and g2 for different values of parameter 𝜙 = U∞∕Uw on
Figures 1.13 and 1.15. Think: why coolant blowing increases the first coefficient, but
reduces two others showing that the cooling effect of isothermal surface grows, whereas
the effect of nonisithermicity decreases as coolant velocity increases? What physically
causes those opposite effects? Hint: analyze the mechanism of such two phenomena.

1.58 Continue series (1.55) for i = 0, k > 0, k = 0, i > 0, k > 0, i > 0 knowing that the
general term is gki(xk+i∕Ui)(𝜕k+i𝜃w∕𝜕xk𝜕ti). Hint: first check the given terms.

1.59* Show that time and mixed derivatives are in fact derivatives with respect to dimension-
less time z = Ut∕x so that, for example, the third, fifth and sixth terms in equation (1.55)
actually are 𝜕𝜃w∕𝜕z, 𝜕2𝜃w∕𝜕z2, 𝜕2𝜃w∕𝜕x𝜕z.

1.60* Compare variable (1.57) with others of this type, Görtler variable (1.39) and
Dorodnizin-Illingworth-Stewartson variable, considered in Exercise 1.48. Answer the
same questions about variable (1.57): are the considerations about different kinds of
information outlined in comment 1.3 applicable to this variable defined as integral
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of cross section radius? What variable represents the same dummy variable 𝜉 in this
integral?

1.61 Show that in the case of Newtonian fluid, equation (1.58) transforms in both Görtler
variable for plane two-dimensional problem and for axisymmetric body that are relation
(1.39) and modified relation (1.39), respectively.

1.62 Explain physically why the ratio qw∕h∗ presents the temperature head on an isothermal
surface and why the notation 𝜃w∗(Φ) is proper for this ratio.

1.63 Obtain expression (1.62) by substituting equation (1.60) into equation (1.61). Hint:
the first sum in (1.62) represents the difference 𝜃w − 𝜃w•, which is found from
equation (1.60), the second and the third terms are obtained by substituting 𝜃w defined
by the same equation (1.60) into derivatives in the last term of equation (1.61).

1.64* Derive relations (1.63) following directions from text and calculate coefficients hk for
limiting cases. Explain why the summation of the sums of groups with the same com-
plexes Φk(𝜕k𝜃w∗∕𝜕Φk) equals zero it follows that each these sums equals zero.

1.65 Read the article about integral equations on Wikipedia (at least the beginning part
of definitions) to understand the difference between Volterra and Fredholm integral
equations. Read also on Wikipedia about young mathematician Abel who became
famous despite he died at the age of 26.

1.66* Show that substitution of new variables indicated in the text transforms the second
integral equation (1.66) into integral Abel equation (1.67). Hint: note that 𝜁 is the inte-
gration variable, whereas z is considered as a parameter (see Exercise 1.22).

1.67 Obtain the inverse universal function (1.68) from solution of Abel equation (1.67) by
returning to physical variables. Hint: take care of difference between functions of vari-
ables Φ and 𝜉. Note also, that factorial of noninteger numbers is determined by gamma
function as 𝛾 ! = Γ(𝛾 + 1).

1.68* Prove that expression (1.68) becomes (1.69) in the case of zero pressure gradient. Hint:
as in previous example, be careful in using variable Φ, which in this case is proportional
to x, and variable 𝜉. To calculate gamma function apply known formulae, for example,
Γ(x)Γ(1 − x) = 𝜋∕ sin𝜋x.

1.69* Show that the first and second expressions (1.72) for recovery factor follow from
equations (1.71) and (1.70), respectively. Verify that that both definition of adiabatic
temperature given in text follow from these equations.

1.70 Derive differential universal function (1.72) for recovery factor using relation (1.60)
as described in the text. Comparing sums in functions (1.60) and (1.72), one sees that
the second sum may be obtained directly from the first one by substituting U2 for 𝜃w∗.
Explain physically why such substitution yields true result.

1.71 Obtain integral universal function (1.73) for recovery factor using relation (1.68). Holds
the same physical explanation from the previous exercise in this case?

1.72 Show that in the case of zero pressure gradient, relations (1.72) and (1.73) yield
well-known result for recovery factor r = 2gd. Hint: in integrand (1.73) take a



�

� �

�

44 Applications in Conjugate Heat Transfer

new variable z = (𝜉∕x)3∕4 and transform integral (1.73) to beta function defined by
equation (1.47).

1.73 Prove that that only the last term in thermal boundary layer equation (1.11) is propor-
tional to Prandl number. Explain physically why high Prandtl number leads to signifi-
cant effect of mechanical energy dissipation.

1.74* What parameters should be changed to make relations (1.72) and (1.73) applicable for
turbulent flows?

1.75 Derive the second equation (1.49) for adiabatic stagnation enthalpy difference i0w at
zero pressure gradient from relation (1.72) knowing that Mach number is M = U∕Usd
where speed of sound is Usd =

√
kRT∞ .
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Application of Universal Functions

2.1 The Rate of Conjugate Heat Transfer Intensity

In this section, we investigate the effect of different factors on conjugate heat transfer inten-
sity considering the conjugate problem as a case of heat transfer from a surface with variable
(nonisothermal) temperature or heat flux. Such an approach is founded on the conception (see
Introduction) that a variable temperature (or temperature head) of a body/fluid interface is
one of the basic characteristics of any conjugate problem. The results are obtained analyzing
universal functions and are supplemented with relevant examples.

2.1.1 Effect of Temperature Head Distribution

The universal functions structure shows that there are three factors determining the effect of
temperature head variation on the heat transfer intensity: (i) signs and values of temperature
head derivatives, (ii) signs and values of coefficients gk depending on Prandtl number for lam-
inar and on Prandtl and Reynolds numbers for turbulent flows, and (iii) pressure gradient. The
rate and a type (favorable or adverse) of the temperature head effect are defined basically by
two first factors, whereas the pressure gradient specifies the independent variable (x or Φ) of
derivatives (Exer. 2.1).

2.1.1.1 Effect of Temperature Head Gradient and Higher Derivatives

The results of calculation presented in Table 2.1 show that the first coefficient g1 is significantly
larger than others. Even in comparison with second one, which is the greatest among others,
the first coefficient is from 3 (unsteady laminar flow) to 10 (turbulent flow) times larger. If all
derivatives of the temperature head are of the same order, this means that the first derivative
that defines the temperature head gradient basically specifies the effect of nonisotermicity
(Exer. 2.2).

It is seen that the first coefficient g1 is positive for all universal functions (except for inverse
function, as indicate positions 3 and 4 in Table 2.1). Due to that, the positive temperature
head gradients (the first derivative) lead to an increasing of heat flux, whereas the negative

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine,
First Edition. Abram S. Dorfman.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.



�

� �

�

46 Applications in Conjugate Heat Transfer

Table 2.1 Relation between coefficients g1 and g2 of the universal functions.
Laminar layer: arbitrary 𝜃w − 1 − Pr → 0, 2 − Pr → ∞, arbitrary
qw − 3 − Pr → ∞, 4 − Pr → 0, unsteady laminar layer: 5 − Pr = 1, turbulent layer:
6 − Pr → 0, Re𝛿1

= 103, 7 − Re𝛿1
= 109, 8 − Pr = 1, Re𝛿1

= 103, non-Newtonian
fluid: 9 − n = 1.8, 10 − n = 0.2, 11-moving sheet: Pr ≈ 1, 𝜀 = 0.

g1 g2

|g2|
|g1|

1 1 −1/6 1/6
2 0.6123 −0.1345 0.22
3 −0.380 0.135 0.36
4 −1/2 3/16 3/8
5 2.4 −0.8 1/3
6 ≈0.5 ≈ −0.05 ≈0.1
7 ≈0.1 ≈ −0.01 ≈0.1
8 ≈0.2 ≈ −0.04 ≈0.2
9 ≈0.8 ≈ −0.2 ≈0.25
10 ≈0.4 ≈ −0.06 ≈0.15
11 1.25 −0.15 0.12

gradients cause a decreasing of the heat flux. This results in a greater than an isothermal heat
transfer coefficients in the case of increasing temperature heads (positive first derivative) and in
smaller than an isothermal heat transfer coefficients in the opposite case of decreasing temper-
ature heads (negative first derivative). However, the calculations show that the same value of
increasing and decreasing of the temperature head yields significantly different changes in the
heat transfer coefficients. Physically, the reason of this is that the same absolute change in the
falling and growing temperature heads yields much greater relative variation in the first case,
when the temperature head itself is small, than in the second one when the temperature head
increases. These considerations give the understanding why growing temperature heads results
in only relatively modern increasing of heat transfer intensity, whereas the falling temperature
heads lead to extremely small heat transfer coefficients reaches sometimes even zero.

The universal functions show that the third, fifth and higher odd derivatives cause quali-
tatively a similar effect, increasing the heat flux for positive and decreasing it for negative
derivatives. This follows from the fact that all odd coefficients gk as well as first one g1 are
positive. An opposite effect is produced by even derivatives because the corresponding even
coefficients gk are negative, resulting in decreasing and increasing heat flux for positive and
negative derivatives, respectively.

The other feature that one may see from universal functions structure is that the total change
in heat flux determines not by derivatives only, but rather by the products xk(dk𝜃w∕dxk) or
Φk(dk𝜃w∕dΦk) of coordinate x or Görtler variable Φ with corresponding derivatives for zero
pressure gradient or for general case, respectively. This means that, in particular, the second
term of series x(d𝜃w∕dx) or Φ(d𝜃w∕dΦ) may be significantly large even in the case of small
temperature head gradient if the body is enough long. For example, at the large distance from
the leading edge on a plate, the heat transfer coefficient may be small (and even become zero)
not only due to significant negative temperature head gradient d𝜃w∕dx, but also at relatively
minor gradient through large coordinate x.
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Comment 2.1 It is easy to see that if the temperature head is proportional to coordinate
𝜃w = cx, the temperature head gradient is independent on coordinate and hence, the last con-
clusion may be confusing. Exercise 2.4 helps to understand that this is a special case, whereas
in the other, ordinary cases, the just-analyzed relation between temperature head gradient and
corresponding product of gradient and coordinate presents the real situation.

The formulated above basic general properties of the heat transfer behavior in the case of
variable temperature head are discussed in detail and justified, considering the examples of
flows past nonisothermal surfaces, conjugate heat transfer, and different applications. We start
with laminar flows, and then show some examples with turbulent flows as well as more com-
plicated models.

◾Example 2.1: Laminar Flow Past Plate with Linear Temperature Head

The calculation data for this case for the fluids with Pr > 0.5 are plotted in Figure 2.1. The
reason of choosing this case is that the coefficient g1 = 0.6123 is the lowest for such fluids
and is practically constant for 𝛽 = 0 (zero pressure gradient) (Fig. 1.3). At the same time,
these results of the smallest nonisothermicity effects are qualitatively valid for any laminar
flow, including the limiting case Pr → 0 with the greatest value of coefficient g1 = 1 when the
effect of nonisothermicity at the same other conditions is maximum.
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Figure 2.1 Effect of nonisothermicity for linear temperature head distribution on a plate. 1 − 𝜃we∕𝜃wi =
2, 2 − 1.75, 3 − 1.5, 4 − 1.25 5 − 1.1, 6 − 1.0, 7 − 0.9, 8 − 0.8, 9 − 0.7, 10 − 0.6, 11 − 0.5, 12 − 0.4,
13 − 0.3
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The results in Figure 2.1 are presented using nonisothermicity coefficient obtained after
dividing both sides of universal functions (1.39) and (1.40) by heat flux qw∗ = h∗𝜃w

𝜒 t =
h
h∗

= 1 +
∞∑

k=1

gk
Φk

𝜃w

dk𝜃w

dΦk
, 𝜒 t =

h
h∗

= 1
𝜃w

⎡
⎢
⎢
⎣

Φ

∫
0

f

(
𝜉

Φ

)
d𝜃w

d𝜉
d𝜉 + 𝜃w(0)

⎤
⎥
⎥
⎦

(2.1)

Substituting x for Φ gives corresponding equations for zero pressure gradient

𝜒 t =
h
h∗

= 1 +
∞∑

k=1

gk
xk

𝜃w

dk𝜃w

dxk
, 𝜒 t =

h
h∗

= 1
𝜃w

⎡
⎢
⎢
⎣

x

∫
0

f

(
𝜉

x

)
d𝜃w

d𝜉
d𝜉 + 𝜃w(0)

⎤
⎥
⎥
⎦

(2.2)

It follows from those equations that the nonisothermicity coefficient shows how much the heat
transfer coefficient in some variable temperature head is more or less than that for an isothermal
surface.

In Figure 2.1, each curve relates to a fixed value of ratio 𝜃we∕𝜃wi determining the coefficient
K in a linear dependence

𝜃w∕𝜃wi = 1 − (1 − 𝜃we∕𝜃wi)(x∕L) = 1 − K(x∕L), (2.3)

where 𝜃wi and 𝜃we denote the initial and ending temperature heads. It is seen how strongly
the effects for rising (𝜃we∕𝜃wi > 1) and falling (𝜃we∕𝜃wi < 1) temperature heads differ. For
example, an increasing of the temperature head in 1.5 − 2 times leads to growing of heat trans-
fer coefficient of about 20 to 30%, whereas the same decreasing of temperature head results
in lessening of heat transfer coefficient in 1.5 − 2.5 times as compared to that for isothermal
surface. If the decreasing of temperature head becomes more than three times, the heat flux at
the end of the plate reaches zero. For small Prandtl numbers, the effect of nonisothermicity is
greater because coefficient g1 grows as Prandtl number decreases (Fig. 1.3). In particular, the
double decreasing temperature head for Pr = 0.01 yields six times less heat transfer coefficient
at the plate end and for Pr → 0 reduces heat flux to zero (Exer. 2.5).

◾Example 2.2: Laminar Flow Past Cylinder with Linear Temperature Head

This case requires taking into account the nonzero pressure gradient applying the formulae
(2.1). To perform this, it is necessary to have the function 𝜃w(Φ), which corresponds to linear
distribution 𝜃w(x) (2.3). Such function we construct as follows:

(i) adapt from [369] experimentally established function

U∕U∞ = 3.631(x∕D) − 3.275(x∕D)3 − 0.168(x∕D)5 (2.4)

which gives the external velocity distribution around a cylinder, (ii) compute the function
Φ(x∕D) using equation (2.4) and formula (1.39) for Görtler variable, (iii) derive the inverse to
Φ(x∕D) dependence for x∕D as a function of Φ (Exer. 2.6)

x∕D = 0.74(Φ∕Re)1∕2 + 0.1(Φ∕Re), 𝜃w = 1 − K [0.74(Φ∕Re)1∕2 + 0.1(Φ∕Re)] (2.5)

and (iv) substitute first function (2.5 ) into linear distribution (2.3) 𝜃w∕𝜃wi = 1 − K(x∕D) to get
the desired function 𝜃w(Φ) in the form of the second equation (2.5).
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Figure 2.2 Heat transfer from a cylinder with linear temperature head in transverse flow of air
(Pr= 0.7). 1 − 𝜃we∕𝜃wi = 2, 2 − 1.5, 3 − 1.25 4 − 1.0, 5 − 0.75, 6 − 0.5

The dimensionless heat transfer characteristic for cylinder with linear temperature head dis-
tribution is plotted in Figure 2.2. This result is found as a product (Nu∗∕

√
Re)𝜒 t

Nu
√

Re
=

Nu∗√
Re

{

1 −
K(Φ∕Re)1∕2[0.37(g1 + g2∕2) + 0.1g1(Φ∕Re)1∕2]

1 − K(Φ∕Re)1∕2[0.74 + 0.1(Φ∕Re)1∕2]

}

(2.6)

where Nu∗∕
√

Re is similar heat transfer characteristic for isothermal cylinder, which may be
calculated by one of known methods [338, 369] (Exer. 2.7). The nonisothermicity coefficient
is estimated using the first formula 2.1 with only two first derivatives. The derivatives with
respect to Φ are computed applying second relation (2.5).

In Figure 2.2, the same significant effect of nonisothermicity as in example 2.1 is observed.
Comparing the curves for isothermal (curve 4) and nonisothermal cylinders shows that for
𝜃we∕𝜃wi < 1, (K > 0) when the temperature head decreases in flow direction, the Nusselt num-
ber falls much intensely than that in the case of isothermal surface. Thus, for 𝜃we∕𝜃wi = 0.5, the
heat flux becomes almost zero at the point close to separation flow. Vice versa, an increasing
temperature head slows the falling in the Nusselt number. Therefore, in this case, at close to
unity ratio 𝜃we∕𝜃wi > 1, (K < 0) (for example 𝜃we∕𝜃wi = 1.25), the Nusselt number decreases
slower than on an isothermal cylinder, whereas for greater nonisothermities, the heat transfer
intensity even increases first (as for example for 𝜃we∕𝜃wi = 2) and only then goes down.

2.1.1.2 Effect of Pressure Gradient

As follows from the above discussion, the effect of the pressure gradient is specified by the
Görtler variable. This conclusion becomes clear from the second term of series with the first
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temperature head derivative presented in the form

Φ
d𝜃w

dΦ
=

Uav

U
x

d𝜃w

dx
(2.7)

This expression indicates that the ratio Uav∕U is a measure of the effect of the pressure gradient
on heat transfer intensity from nonisothermal surface. Because according to Görtler variable,
Uav is an average velocity on the interval (0, x), one concludes that relations Uav∕U < 1 and
Uav∕U > 1 correspond to accelerating and decelerating flows, respectively (Exer. 2.8). There-
fore, the second term (2.7) of universal function becomes lesser in the first and greater in the
second cases, which leads to decreasing or increasing the effect of the temperature head as
the flow accelerates (pressure reduces) or decelerates (pressure grows). This means that in a
case of reducing pressure (Uav∕U < 1 at accelerating velocity) the heat transfer coefficient
decreases if the first derivative d𝜃∕dx is positive and increases in the opposite case at neg-
ative temperature head derivative d𝜃∕dx. Consequently, in another case of growing pressure
(Uav∕U > 1 at decelerating velocity) heat transfer coefficient increases if the first derivative
d𝜃∕dx is positive and decreases in the opposite case at negative derivative d𝜃∕dx. (Exer. 2.9).

As a simple example, consider the self-similar flows when U = cxm (S. 7.5.2), and hence,
the ratio Uav∕U = 1∕(m + 1) decreases the nonisothermicity effect in the case of m > 0 and
diminishes it in the opposite case when m < 0. In particular, for the flow near stagnation point
(m = 1), the second term (2.7) of universal function is a half as much as in the case of the zero
pressure gradient when Uav∕U = 1 and additional effect of pressure gradient is zero.

Comment 2.2 We considered a qualitative analysis of pressure gradient effect. To estimate
the pressure gradient effect for a given external velocity U(x), one gets a nonisothermicity
coefficient 𝜒 t applying the first formula (2.1) with two or three terms or using the second
formula (2.1) if the accuracy of the first formula is unacceptable. The dependence of 𝜒 t = h∕h∗

on Φ =
x∫
0

U(𝜉)d𝜉 shows the effect of pressure gradient.

2.1.2 Effect of Turbulence

2.1.2.1 Comparative Effects of Turbulent and Laminar Flows

Coefficients gk for turbulent flow are less than those the laminar flow. The higher are the
Reynolds and Prandtl numbers the less are coefficients gk (Figs. 1.6 and 1.7) and, corre-
spondingly, is less the effect of nonisothermicity. Nevertheless, the qualitative effect of the
temperature head gradient on the heat transfer intensity is the same as in the case of laminar
flow discussed in previous section. The quantitative results might be seen on Figure 2.3 where
a comparison of nonisothermicity coefficients for laminar and turbulent flows is given.

It is seen that in spite of smaller coefficients gk, nonisothermicity strongly affects the heat
transfer intensity in turbulent flows if the temperature head decreases. In that case, the effect
of nonisotermicity is not as high as in laminar flows, but if a surface is long enough, the heat
flux finally also reaches zero. This is true for all cases except the turbulent flows of fluids with
large Prandl numbers (say Pr > 100) for which the effect of nonisothermicity is negligible due
to very small coefficients gk, (Figs. 1.6 and 1.7).
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Figure 2.3 Nonisothermicity coefficients for turbulent and laminar flows. -------- Re𝛿1
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2.1.2.2 Comparison of Calculations with Experimental Data

◾Example 2.3: Linear and Exponential Temperature Head and Heat Flux [106]

The effect of nonisothermicity was studied experimentally in zero pressure gradient turbu-
lent flow of air by Leontev et al. [224]. They obtained data for the increasing and decreasing
linear temperature heads and for exponential variations of temperature head and heat flux.
Figure 2.4 presents the comparison of calculation results with these data.

4

2

8

6

6 68
Comparison of results: calculations-1-6, experimental data [224]: temperature heads θw:

82 2

2

3

1

645

4 4

10–3

105 106

St

15 [3.8+110(x/L)]; 16 qCT = 3.4 exp 5.8(x/L);100(x/L)];
11 [44+170(x/L)]; 12 0.19 exp 7(x/L)]; 13 [34+159(x/L)]; 14 [159–
7 158.6; 8 [222—150(x/L)]; 9 [137—81(x/L)]; 10 [204—140(x/L)];

Figure 2.4 Comparison between calculation [106] and experimental [224] results for different temper-
ature heads and heat flux variations for turbulent flow
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In Figure 2.4, the line 1 corresponds to isothermal zero pressure gradient flow and is com-
puted by well-known first equation (2.8) [201]

St∗ = 0.0295 Re−0.2
x Pr −0.4, St = St∗

[

1 −
g1(

Re∕KRex

)
− 1

]

(2.8)

The rest curves are obtained using universal functions. For zero pressure gradient flow and
linear temperature head (2.3), the series (2.2) with two first terms was used in the form of
second equation (2.8), where Re∕Rex = L∕x.

Experiments were performed under low Reynolds numbers. According to Figure 1.6 for
Pr ≈ 1 and low Reynolds number (Re𝛿1

= 103), the first coefficient is estimated as g1 = 0.2.
Experimental data for linear temperature heads were obtained for the following inverse values
of coefficient K in (2.3): 1∕K = 1.46, 1.49, 1.59, 1.68 for decreasing and 1∕K = 0.215, 0.258,
0.346 for increasing temperature heads. Curves 2, 3, 4, and 5 are calculated by second formulae
(2.8) for two limiting values of coefficient K for decreasing (curves 2 and 3) and for increasing
(curve 4, two curves coincide) temperature heads. Line 5 represents exponential increasing
temperature head 𝜃w = 𝜃wi exp[K(x∕L)] with K = 7. For this case with the large value of K
instead of series, which converges slowly, the integral universal function (2.2) with exponents
C1 = 1 and C2 = 0.2 (Pr ≈ 1, Re𝛿1

= 103) is used in the form

St = St∗

⎧
⎪
⎨
⎪
⎩

exp
[
−K (x∕L)

]
+ K(x∕L)0.2

x∕L

∫
0

𝜉−0.2 exp(−K𝜉)d𝜉
⎫
⎪
⎬
⎪
⎭

(2.9)

To calculate curve 6 for exponential temperature head distribution qw = qwi exp[K(x∕L)]
with K = 5.8, equation (1.68) with the same value of C1 = 1 and C2 = 0.2 and the first
equation (2.8) are used to get the expression (Exer. 2.10).

1
St

= 6.35Re0.2 Pr 0.6

x∕L

∫
0

𝜉−0.8 exp(K𝜉)d𝜉 (2.10)

Figure 2.4 shows that there is a reasonable agreement between both results. The points
representing the experimental data are close to corresponding theoretical results: curves 2 and
3 to points 8, 9, 14 (linear decreasing temperature head), curve 4 to points 11, 13, 15 (linear
increasing temperature head), curve 6 to point 12 (exponential growing temperature head), and
curve 5 to point 16 (exponential growing heat flux).

◾Example 2.4: Stepwise Temperature Head [111]

Moretti and Kays [275] experimentally studied heat transfer in the case of stepwise tem-
perature head variations. In Figure 2.5 the comparison between calculations and Moretti and
Kays experimental results is shown.

The experimental conditions differ from each other or by temperature head variation or by
free stream velocity distribution. The free stream velocity along the surface increases: or grad-
ually (Figs. 2.5a, e), or stepwise (Fig. 2.5b, c), or first increases and then decreases (Fig. 2.5d).
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Figure 2.5 Comparison of results for different stepwise temperature heads and various pressure gra-
dients obtained by calculation with experimental data [275] for turbulent flow; ×-numerical integration
(b) [304], (e) [362]; 1 − U, 2 − 𝜃w, 3 − Φ∕Re
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The temperature head variations contain one jump, as in four cases (Fig. 2.5a, b, c, and d),
or several jumps (as in Fig. 2.5e). Since the temperature head distributions contain jumps and
pressure gradients are not zero, the calculations are performed using general form of integral
universal function (2.1) with Görtler variable. For example, in the case presented in Fig. 2.5a,
this equation transformed to Stanton number has the form (Exer. 2.11)

St =
St∗
𝜃w

⎧
⎪
⎨
⎪
⎩

1 +

[

1 −
(
Φ1

Φ

)C1
]−C2

Δ𝜃w +

Φ

∫
Φ2

[

1 −
(
𝜉

Φ

)C1
]−C2

d𝜃w

d𝜉
d𝜉

⎫
⎪
⎬
⎪
⎭

(2.11)

Here, Φ1 and Φ2 relate to the start and to end points of the temperature head jump Δ𝜃w.
It is seen that results giving by integral universal function (2.1) are in agreement with the

experimental data not only for increasing temperature heads but, unlike the other analytical
methods, also in the cases with decreasing temperature heads (Fig. 2.5e). Some more differ-
ences between both data in the cases of sharp increasing free stream velocity (cases 2.5b, c)
are associated with changes in boundary layer structure, which correction requires additional
information [275].

2.1.2.3 Reynolds Analogy and Heat Transfer of an Isothermal Surface [107]

The investigation of Reynolds analogy and heat transfer from an isothermal surface in turbulent
flow was performed applying the same approach as used for coefficients gk estimation (S. 1.7).
Solutions of the thermal boundary layer equation (1.17) with the turbulent transport character-
istics defined by Mellor-Gibson turbulence model were taken to compute the Reynolds analogy
coefficient 2St∗∕Cf = g0, where g0 is a coefficient defining isothermal heat transfer intensity
in the form of Reynolds analogy coefficient, which is similar to coefficients gk. Calculations
were performed for the same range of parameters as for coefficients gk estimation: 𝛽 = −0.3
(stagnation point flow), 𝛽 = 0 (zero pressure gradient), 𝛽 = 1 and 𝛽 = 10 (flows with weak
and strong adverse pressure gradients) and for following Prandtl and Reynolds numbers:

Pr = 0.01, 0.1, 1, 10, 100, 1000 Re𝛿1
= 103, 105, 109

The results obtained in [107] (presented also in Figs. 4.1–4.4 [119]) show that the coefficient
of Reynolds analogy: (i) equals unity for zero pressure gradient and Pr = 1 for all Reynolds
numbers as it should be according to well-known Reynolds analogy, (ii) increases above unity
and decreases below unity for Pr < 1 and Pr > 1, respectively, (iii) decreases at Pr < 1 and
increases at Pr > 1 as the Reynolds number grows, (iv) changes its value much intensively
with Re growing at Pr < 1 than that at Pr > 1, and (v) changes its increasing/decreasing point
depending of pressure gradient: at Pr = 1 for zero pressure gradient (𝛽 = 0) according to
Reynolds analogy, at Pr ≈ 0.5 − 0.7 for favorable pressure gradient (𝛽 = −0.3), at Pr ≈ 3 for
weak ( 𝛽 = 1) and at Pr ≈ 250 for strong (𝛽 = 10) adverse pressure gradients.

It follows from these data that the Reynolds analogy holds at zero pressure gradient and
Pr = 1 but violates in other cases so that, depending on pressure gradient, Prandtl, and
Reynolds numbers, the Stanton number St is greater or lower than half-friction coefficient
Cf∕2. Stanton number is considerably greater than the half-friction coefficient at small
Prandtl and Reynolds numbers. However, as Prandtl number grows, the value of ratio 2St∗∕Cf
reduces significantly at all Reynolds numbers and becomes asymptotically zero at Pr → ∞.
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Reynolds analogy data are used in [107] for creating relations determining the isothermal
heat transfer rate in turbulent flows. The four equations are derived by the computing results
approximation

St∗ = Pr −1.35(Cf∕2)1−0.3 log Pr(1 < Pr < 50), St∗ = 0.113 Pr −3∕4(Cf∕2)1∕2 (Pr > 50)
(2.12)

(Nux)−0.023
∗ = 1.04 − 0.0335 lg Pex St∗ = cPen

Φ (2.13)

c = 0.282, 0.036, 0.00575 and n = −0.38,−0.2,−0.1

PeΦ = ΦPr = 103 − 105, 105 − 5 ⋅ 108, 5 ⋅ 108 − 2.5 ⋅ 1012

The first two equations are applicable for zero pressure gradient and Pr > 1. The two others
describe the data for Pr < 1. The first relation (2.13) is applicable for whole range 0 < Pr < 1,
but only for zero pressure gradient, whereas the second relation (2.13) is suitable for both
zero and nonzero pressure gradients, but with different constants for three intervals of Peclet
number PeΦ = ΦPr defined through Görtler variable.

Figures 2.6 through 2.9 compare calculations with experimental data confirming the appli-
cability of equations (2.12) and (2.13). Figure 2.6 compares the second formula (2.12) with

experimental data from [209]. The curves St∗
√

2∕Cf = f (Pr) computed for different Reynolds

numbers, which merge into one for large Prandtl numbers, are continued into region Pr > 103

10–2

105

109

10–3

10–4

10–5

10–1 102 103 104 105 Pr101

St* 2
Cf

Reδ* = 103

Figure 2.6 Comparison between calculation (second equation (2.12)) and experimental data [209] for
zero pressure gradient flow and large Prandtl numbers Pr > 50
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Figure 2.7 Comparison between calculation (first equation (2.12)) and experimental data [444] for zero
pressure gradient flow and large Prandtl numbers. 1-water (Pr = 5.5), 2-oil (Pr = 55)
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Figure 2.8 Comparison between first equation (2.13) for Pr < 1 and experimental data for air [308]
and liquid metal [136]
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Figure 2.9 Dependence between St∗ and PeΦ for Pr < 1 and zero and nonzero pressure gradients flows:
⊗ − 𝛽 = −0.3, • − 𝛽 = 0, ∘ − 𝛽 = 1, × − 𝛽 = 10, 1, 2, 3-second equation (2.13)
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by calculating the slope of the tangent at the point Pr = 103. Good agreement is seen between
the computed and experimental results: the coefficient 0.113 in the second equation (2.12)
determined by calculation is close to value 0.115 determined from experimental data in [209].
Comparison between other equation (2.12) for region 1 < Pr < 50 and experimental data from
[444] presented in Figure 2.7 also shows good agreement.

The conformity of the first relation (2.13) for Nusselt number at Pr < 1 with experimental
results from [308] for air and from [136] for liquid metals is shown in Figure 2.8. This relation
also well agrees with other experimental results obtained in [444] and [321]. The reliance
of the second relation (2.13) follows from Figure 2.9 showing that the data related to flows
with zero and nonzero pressure gradients at Pr < 1 form a single curve approximated by three
power-law function for Stanton number defined through Görtler variable (Exer. 2.12).

Calculations show that for zero pressure gradient and favorable gradients at large Reynolds
numbers the error of the second formula (2.13) is less than 5%. For low Reynolds numbers,
adverse gradients and Prandtl numbers close to 1, the error increases and reaches 35% for
Pr = 1, Re𝛿1

= 103 and 𝛽 = 10. In these cases, the approximate estimation of isothermal heat
transfer coefficient in turbulent flow may be obtained using well-known formula 2.8 in the
form based on Görtler variable St∗ = 0.0295Φ−0.2 Pr −0.6.

Comment 2.3 Formulae (2.12) and (2.13) along with the last equation for Stanton number
covered the whole diapason of parameters determining the heat transfer coefficients of isother-
mal surfaces in turbulent incompressible flow.

2.1.2.4 Effect of Turbulent Prandtl Number

The same approach is employed in [114] for studying the effect of turbulent Prandtl number on
calculation accuracy of heat transfer characteristics. Computations have been performed for
zero pressure gradient, two values of turbulent Prandtl numbers Prtb = 0.5 and Prtb = 1.5,
four values of Prandtl numbers Pr = 10−1, 1, 102, 103 and three Reynolds numbers Re𝛿1

=
103(Rex = 2.95 ⋅ 105), 105(7.93 ⋅ 107), 109(2.56 ⋅ 1012). The results in the form of the ratio
St∗∕(St∗)Prtb=1 as a function of the Prandtl number are given in Figure 2.10 where St∗ and
(St∗)Prtb=1 are values of Stanton number for turbulent Prandtl values Prtb ≠ 1 and for Prtb = 1.
It follows from Figure 2.10 that an increase in turbulent Prandtl yields a reduction, whereas
the decrease in Prtb leads to an increase in heat transfer compared to that at Prtb = 1.

An increase in Prtb to 1.5 yields less reduction in the Stanton number than the corresponding
increase in the Stanton number caused by the decrease of Prtb to 0.5. The most significant effect
of turbulent Prandtl number is observed when the physical Prandtl number is close to unity. For
Prtb = 0.5, the maximum increase in the Stanton number in comparison with that at Prtb = 1
is 67% at Pr = 1 and Re𝛿1

= 109. The maximum decrease of this effect for Prtb = 1.5 is also at
Pr = 1 and Re𝛿1

= 109, but it is by about 25% less. These differences decrease with increasing
Pr and for Pr > 102 practically vanish becoming independent of Pr as well as of Re (Fig. 2.10).

Comment 2.4 Comparatively small influence of Prtb at large Prandtl numbers is a result of a
thin thermal boundary layer lying basically in the viscous sublayer. The effect of Prtb lessens
also as Prandtl number decreases, which is a result of significant molecular heat conduction at
small Prandtl numbers.
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Figure 2.10 Dependence between St∗∕(St∗)Prtb=1 and Pr for different Re𝛿1
and Prtb

The calculation results for Prtb = 0.5 and Prtb = 1.5 are compared with measuring data.
In particular, the value 0.115 of the coefficient in the second equation (2.12) found in [209]
from experimental data (Fig. 2.6) was compared with coefficients 0.096, 0.113, and 0.136
computed for Prtb = 0.5, Prtb = 1, Prtb = 1.5. It is seen that the value 0.113 obtained for Prtb =
1 practically coincides with the experimental value 0.115, whereas two others for Prtb = 0.5
and Prtb = 1.5 differ from this result markedly. The other result of comparison is presented in
Figure 2.8 where the calculations of Nusselt number for the same three values of Prtb = 0.5,
1, 1.5 are plotted together with data from [308] and [136]. The same conclusion follows from
this pattern: the curve obtained for Prtb = 1 agrees much better with measuring data than the
two others lying up and under of experimental points (Exer. 2.13).

Comment 2.5 For a long time, the contradictory experimental data (e.g., [209, 225, 243, 274])
leads to a lengthy discussion about dependence of the turbulent Prandtl number on transverse
coordinate, in particular, at the wall vicinity. The more relable results are obtained by direct
numerical calculations that we consider below in Chapter 6 (Exam. 6.18). These modern data
confirm the derived here conclusion of Prtb = 1, which is in line with practice becoming com-
mon to take the turbulent Prandtl number as a constant either close to or equal to one [304,
338, 422, 444].

2.1.3 Effect of Time-Variable Temperature Head

It follows from Table 2.1 that the first coefficient in the differential universal function is the
highest at the time-dependent temperature head. According to Figure 1.16, the coefficient in
equation (1.55) at the first derivative with respect to time is g01 ≈ 2.4 for the dimensionless
time z > 2.4 when the coefficients of series (1.55) are independent on time. The coefficient
in this series at the first derivative with respect to space as well as the coefficient g1 in series
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(1.38) for the same case of zero pressure gradient and Pr ≈ 1 is g10 ≈ 0.6 (Fig. 1.3). Thus, if
the both derivatives are of the same order, effect induced by time variation temperature head
is g01∕g10 ≈ 4 times greater than that caused by space temperature head variation.

◾Example 2.5: Linear Time-Dependent Temperature Head

Figure 2.11 shows the time variation of heat flax and nonisothermicity coefficient obtained
by equation (1.55) and first equation (2.2) for a linear decreasing temperature head 𝜃w = a0 −
a1t. In this case, these equations take the form (Exer. 2.14)

qw

h∗a0
= 1 − Ct

[
Z + g01 (z)

x
L

]
, 𝜒 t = 1 −

Ctg01(z)(x∕L)
1 − Ctz

, Ct =
a1L

a0U
, Z = tU

L
(2.14)

where z = tU∕x and coefficient g01(z) is given in Figure 1.16.
The following specific features of unsteady nonisothermal heat transfer may be derived from

equations (2.14) and Figure 2.11: (i) the heat flux and the heat transfer coefficient (as well as
nonisothermicity coefficient) depend not only on time, but also on the coordinate x, despite
the surface temperature depends only on time 𝜃w = a0 − a1t (Exer. 2.15), (ii) it follows from

0.8

qw/h* a0, χt

0.4

0.4 0.8 1.2 1.6 tU/L

x/L = 1

x/L = 0.25

0

–0.4

–0.8

–1.2

Figure 2.11 Unsteady heat transfer on a plate with a linearly decreasing in time temperature head ___
qw∕h∗a0, − − −𝜒 t
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equation (1.55) that this property is always true for unsteady heat transfer because the terms
with time and mixed derivatives depend also on coordinate x and on velocity U, (iii) ) due
to a large coefficient g01, the heat transfer characteristics (qw and 𝜒 t) decrease much faster
than that in steady-state regime, (iv) these characteristics quickly become zero, reaching it the
sooner the greater the distance from leading edge is; in particular, it is seen from Figure 2.11
that in the case in question, this occurs at z = 0.4 and at z = 1.4 for x∕L = 1 and x∕L = 0.25,
respectively.

2.1.4 Effects of Conditions and Parameters in the Inverse Problems

Here, we consider the effects arising in the problems and the solution, which requires the use
of inverse universal functions (1.60) or (1.68) determining the temperature head at a given
heat flux distribution. In a general case with given arbitrary functions qw(Φ) and h∗(Φ), these
problems are solved numerically applying integral function (1.68). At the same time, there
are practical important inverse problems associated with relatively simple functions qw(Φ)
and h∗(Φ), which enable analytical solutions. Below, several of such solutions are analyzed
showing effects of different parameters on the heat transfer rate.

2.1.4.1 Effect of Boundary Conditions

First, the connection between the most often employed simple boundary conditions qw =
const. and Tw = const. is studied. Functions (1.60) and (1.68) after dividing both sides by
qw give the relation between heat transfer coefficients hq and h∗ on surfaces with qw = const.
and Tw = const. in two (serial and integral) forms

1
hq

= 1
h∗

+
∞∑

k=1

hkΦk dk(1∕h∗)
dΦk

1
hq

=
C1

Γ(C2)Γ(1 − C2)

Φ

∫
0

[

1 −
(
𝜉

Φ

)C1
]C2−1(

𝜉

Φ

)C1(1−C2) d𝜉
h∗(𝜉)𝜉

(2.15)

Both relations are valid for laminar and turbulent flows with arbitrary pressure gradient and
Prandtl numbers, but in the case of arbitrary function h∗(Φ), the second equation requires also
numerical evaluation of the integral. Two examples when function h∗(Φ) is given or may be
approximated by polynomial or power-law function are considered next. In the first case, the
known polynomial with coefficients ai for 1∕h∗ produces polynomial for 1∕hq with coefficients
bi determined according to the first equation (2.15) via the beta functions (1.47) (Exer. 2.16)

1
h∗

=
i=k∑

0

aiΦi, 1
hq

=
i=k∑

0

biΦk, bi = aiB

[
C1

(
1 − C2

)
+ i

C1
,C2

]

∕B(C2, 1 − C2) (2.16)

In the second case, when for isothermal heat transfer coefficient is used in the customary form
h∗ = cΦ−n, both equations (2.15) show that ratio h∗∕hq is independent on variable Φ being
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determined as (Exer. 2.17)

h∗
hq

= 1 +
k=∞∑

k=1

hkn(n − 1)(n − 2) … (n − k = 1),

h∗
hq

=
Γ{[C1(1 − C2) + n)]∕C1}

Γ{C2 + [C1(1 − C2) + n)]∕C1}Γ(1 − C2)
(2.17)

◾Example 2.6: Heat Transfer From Cylinder in Transverse Flow at qw = const and
Tw = const

The last relation (2.16) and data of heat flux for cylinder with linear temperature head
variation presented in Figure 2.2 are used to calculate the heat transfer rate from transverse
streamlined cylinder with qw = const. The function Nu∗(x∕D)∕

√
Re for isothermal cylinder

giving by curve with 𝜃we∕𝜃wi = 1 on Figure 2.2 is approximated by polynomial in inverse form√
Re∕Nu∗(Φ) required for using equations (2.16)

√
Re∕Nu∗ = 1.04 + 0.75(Φ∕Re) − 0.83(Φ∕Re)2 + 3.4(Φ∕Re)3 (2.18)

The coefficients bi of corresponding polynomial determining
√

Re∕Nuq for cylinder with qw =
const. are obtained by equation (2.16). Since the values of exponents C slightly depend on 𝛽,
they are estimated from Figure 1.5 approximately: C1 = 0.92 and C2 = 0.4 for the region near
the stagnation point (𝛽 ≈ 1) and C1 = 0.9 and C2 = 0.38 for the rest part of cylinder (𝛽 ≈ 0).
Then, the corresponding polynomial is computed (Exer. 2.18)
√

Re∕Nuq = 1.04 + (0.44 ÷ 0, 46)(Φ∕Re) − (0.39 ÷ 0.42)(Φ∕Re)2 + (1.4 ÷ 1.5)(Φ∕Re)3
(2.19)

Here, a sign ÷ is used to indicate two coefficients obtained for two values of 𝛽 (different C1
and C2). Calculation shows that both coefficients yield practically the same data plotted in
Figure 2.12 confirming that Görtler variable takes into account the flow history (Com. 1.5)
leading to slight effects of parameter 𝛽 on the final calculation results.

Comparison with data for isothermal cylinder giving by equation (2.18) and plotted on the
same figure presents the effect of boundary conditions of the rate of heat transfer.

0.1 0.2 0.3 0.4
0.4

0.5 0.6
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0.6

0.8

x/D

Nu / Re

Tw = const

Figure 2.12 Effect of boundary conditions on heat transfer from a cylinder in transverse flow
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◾Example 2.7: Effects of Prandtl Number and Pressure Gradient

The effects of Prandtl number and pressure gradient on ratio h∗∕hq are estimated by
equations (2.17). As mentioned above, these equations do not depend on Φ, but they
contain the exponent n from customary formula for heat transfer coefficient h∗ = cΦ−n.
To estimate this exponent, consider the self-similar flows with external flow U = cxm.
Because for isothermal surface Nux∗ ∼

√
Rex (see ( 2.33)), we have from this relation

h∗x∕𝜆 ∼
√

Ux∕𝜈, which for self-similar flows gives h∗ ∼ x(m−1)∕2 ∼ Φ(m−1)∕2(m+1) (since
Φ ∼ xm+1). Thus, for zero pressure gradient (m = 0) and for stagnation point (m = 1), we
have n = 1∕2 and n = 0, respectively. Then, the second equation (2.17) with powers C1
and C2 from Figure 1.5 yields for zero pressure gradient with n = 1∕2 the well-known
data: h∗∕hq = 0.74 (C1 = 3∕4,C2 = 1∕3) for 1 < Pr < ∞ (here, exponents are practically
constant), and h∗∕hq = Γ(1)∕Γ(3∕2)Γ(1∕2) = 2∕𝜋 ≈ 0.64 for Pr → 0. Close (about 10%
over) results h∗∕hq ≈ 0.78 (instead of 0.74) and h∗∕hq ≈ 0.7 (instead of 0.64) provides the
first equation (2.17) with first several coefficients hk (1.65) and (1.64), respectively (in this
case, series converges poorly).

For the second case of stagnation point with n = 0, both equations (2.17) show that for any
values of C1 and C2 (which means for any Prandtl number and any pressure gradient) both heat
transfer coefficients are equal to each other, so that h∗∕hq = 1. This is obvious, because in this
case, the sum in the first equation (2.17) is zero resulting in unity, and the second equation
gives in this case Γ(1 − C2)∕Γ(1)Γ(1 − C2) = 1 (Exer. 2.19).

The following conclusions of boundary conditions effects may be formulated: (i) for zero
and positive (adverse) pressure gradients (0 ≥ 𝛽 > −0.199), the ratio h∗∕hq increases from
0.64 to 0.74 as the Prandtl number growth from Pr → 0 to Pr → ∞, so that for any Prandtl
number and zero or possible positive gradient, the heat transfer rate at qw = const. is greater
than that at Tw = const. of 36% for large and 57% for small Prandtl numbers, (ii) for negative
pressure gradients (0 < 𝛽 ≤ 1) for whole diapason of Prandtl numbers from Pr → 0 to Pr → ∞,
the ratio h∗∕hq = 1, so that for any Pr and negative gradients, both heat transfer rate at qw =
const. and Tw = const. are equal to each other, (iii) it follows from these data that the effect
of boundary conditions on heat transfer rate significantly varies from remarkable influence,
like in zero and positive pressure gradient flows at any Prandtl number or in flow past cylinder
(Fig.2.12), when the heat transfer at qw = const. is fairly greater up to 57% than that on the
isothermal surface, to no effects at all in flows with negative pressure gradients at arbitrary
Prandtl numbers, as in stagnation point flow, when the heat transfer rate for both boundary
conditions qw = const. and Tw = const. is the same (Exer. 2.20 and 2.21).

2.1.4.2 Heat Transfer in the Case of Heat Flux Jump

To derive the influence function for the case of the heat flux jump, similar to the function
f (𝜉∕Φ) in equation (1.40) for an unheated isothermal zone at the temperature jump, we inte-
grate by parts the integral function (1.68) by setting

u(𝜉) = qw, v(𝜉,Φ) =
C1

Γ(C2)Γ(1 − C2)

Φ

∫
𝜉

[
1 − (𝜁 )C1

]C2−1(𝜁 )C1(1−C2) d𝜁
h∗(𝜁 )𝜁

(2.20)

Here, 𝜁 = 𝜉∕Φ is a new dummy variable. The last function (2.20) at 𝜉 = Φ equals zero
v(Φ,Φ) = 0 and according to the second equation (2.15) at 𝜉 = 0 becomes v(0,Φ) = 1∕hq.
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Due to that the result of integration takes the form (Exer. 2.22)

𝜃w =
qw(0)

hq
+

Φ

∫
0

v(𝜉,Φ)
dqw

d𝜉
d𝜉 (2.21)

A comparison shows that this equation for temperature head has the same structure as equation
(1.40) for heat flux with influence function f (𝜉∕Φ). To see this, note that: (i) the ratio qw(0)∕hq
in equation (2.21) determines the temperature head 𝜃wq on the surface with qw = const. as the
product 𝜃w(0)h∗ determines the heat flux qw∗ on an isothermal surface in equation (1.40),
(ii) both integrals (2.21) and (1.40) specify the increments: the first one, of the tempera-
ture head, and the second, of the heat flux, whereas (iii) the expressions (dqw∕d𝜉)d𝜉 and
(d𝜃w∕d𝜉)d𝜉 ascertain the corresponding increments of the heat flux and of the temperature
head in equations (2.21) and (1.40), respectively. Consequently, the equation (2.21) is similar
to equation (1.40) and the structure of this equation indicates that function v(𝜉,Φ) in front of
the derivative in (2.21) plays the same role as the influence function f (𝜉∕Φ) in front of the
derivative in (1.40). This implies that: (i) the function v(𝜉,Φ) gives the reciprocal ratio h∗∕hq𝜉
of the heat transfer coefficients after the heat flux jump hq𝜉 and on the initial isothermal zone
h∗ as well as the influence function f (𝜉∕Φ) = h𝜉∕h∗ specifies the ratio of the heat transfer coef-
ficients after the temperature jump h𝜉 and on the initial isothermal zone h∗ and (ii) the function
v(𝜉,Φ) is a reciprocal influence function of the heat flux jump as well as the function f (𝜉∕Φ)
is the influence function of the temperature head jump.

Consequently, the equation (2.21) is similar to equation (1.40) and the structure of this
equation indicates that function v(𝜉,Φ) in front of the derivative in (2.21) gives the reciprocal
ratio h∗∕hq𝜉 of the heat transfer coefficient hq𝜉 after the heat flux jump and the heat transfer
coefficient h∗ on the initial isothermal zone as well as the influence function f (𝜉∕Φ) = h𝜉∕h∗
in front of the derivative in (1.40) specifies the ratio of the heat transfer coefficient h𝜉 after
the temperature jump and the heat transfer coefficient h∗ on an initial isothermal zone. This
implies that the function v(𝜉,Φ) is a reciprocal influence function of the heat flux jump as well
as the function f (𝜉∕Φ) is the influence function of the temperature head jump.

Using for the influence function of the heat flux jump the notation fq(𝜉, Φ) similar to f (𝜉∕Φ),
and applying the second equation (2.20) determining the function v(𝜉,Φ), we arrive to the
following expression for reciprocal influence function 1∕fq(𝜉, Φ), where 𝜁 = 𝜉∕Φ is dummy
variable (Exer. 2.23)

1
fq(𝜉,Φ)

=
h∗
hq𝜉

=
C1h∗

Γ(C2)Γ(1 − C2)

1

∫
𝜉∕Φ

(1 − 𝜁C1)C2−1𝜁C1(1−C2)−1 d𝜁
h∗(Φ𝜁 )

(2.22)

Because h∗ is known, this expression determines the heat transfer coefficient after heat flux
jump hq𝜉 = qw∕𝜃w where qw and 𝜃w are heat flux jump and corresponding temperature head
caused by this jump. Therefore, since the heat flux qw is given, relation (2.22) determines
actually the distribution of the temperature head after heat flux jump.

Equation (2.22) is written in Görtler variables and due to that is valid for arbitrary gradient
flows. To obtain the expression for zero pressure gradient flow, notice that in this case,
Φ = Rex, h∗ = cRe−1∕2

x , and hence, h∗(Φ𝜁 ) = h∗(x)𝜁−1∕2. Then, after using a new variable
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𝜎 = 1 − 𝜁C1 and applying the incomplete beta function B𝜎(i, j), equation (2.22) takes the
well-known form [321]

fq

(
𝜉

x

)
=

hq𝜉

h∗
=

B(C2, 1 − C2)
B𝜎{C2, [C1(1 − C2) + 1∕2]∕C1}

, B𝜎(i, j) =

𝜎

∫
0

ri−1(1 − r)j−1dr (2.23)

The incomplete beta function becomes beta function (1.47) at 𝜎 = 1. For C1 = 3∕4 and C2 =
1∕3 equation (2.23) transforms in formula for temperature head after the heat flux jump in the
simplest case of zero pressure gradient and Pr > 1 (Exer. 2.24 and 2.25).

𝜃w = 0.276 (qw∕h∗)B𝜎(1∕3, 4∕3) (2.24)

Comment 2.6 Although both influence functions for temperature head and for heat flux jumps
are similar, the latter fq(𝜉,Φ), unlike the previous f (𝜉∕Φ), depends not on ratio 𝜉∕Φ only but
on each of variables 𝜉 and Φ separately. This difference is caused by more complex integrand
in expression (2.22), which depends not only on variable 𝜁 = 𝜉∕Φ but also on the isothermal
heat transfer coefficient h∗(Φ𝜁 ).

Comment 2.7 General formulae for laminar flow, like considered in this section, are applica-
ble to turbulent flows and to other cases with relevant values of coefficients gk, hk and exponents
C1 and C2 as well as formulae of type (2.17) (see Exer. 2.21).

◾Example 2.8: The Heat Flux Jump on a Cylinder in Transverse Flow
and on a Plate

The solution for this problem is given by function (2.22) containing isothermal heat transfer
coefficient h∗(Φ𝜁 ). Therefore, in general case of arbitrary pressure gradient flows, the solution
requires numerical evaluation of the integral as in the second formula (2.15). For the poly-
nomial presentation (2.18) for reciprocal isothermal coefficient 1∕h∗(Φ𝜁 ) with coefficients
ai, which we used in Example 2.6, equation (2.22) for 1∕fq yields polynomial solution with
coefficients bi defined by formula (2.16) with the incomplete beta functions (2.23) instead of
complete beta functions (1.47), and the solution of the problem in question takes the form
(Exer. 2.26)

1
hq𝜉

= 1
B(C2, 1 − C2)

i=n∑

i=0

aiΦiB𝜎[(1 − C2 + i ∕C1), C2] (2.25)

where 𝜎 = [1 − (𝜉∕Φ)C1].
It is assumed that the jump occurs at central angle 30∘(x∕D = 𝜋∕12) before which the

unheated isothermal zone exists. The results for Pr > 1 are plotted in Figure 2.13. The data
for a plate calculated by the first equation (2.23) for zero pressure flow is plotted on the same
figure. It is seen that in this case, the pressure gradient significantly affects the variation of the
heat transfer coefficient along the surface showing remarkable increasing of the heat transfer
intensity caused by pressure gradients on a cylinder.

Comment 2.8 The examples just considered show two types of heat transfer behavior at the
leading edge. A body with blunt entrance, like cylinder in a transverse flow, reveals a finite heat
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Figure 2.13 Heat transfer from a cylinder in transverse flow and from a plate after heat flux jump

transfer coefficient at the stagnation point (Figs. 2.2 and 2.12), whereas at the leading edge of
a plate or at the starting point in the cases specifying by influence function of heat flux jump
fq(𝜉,Φ), the heat transfer coefficient is infinite (Fig 2.13) because it is proportional to x−1∕2 in
laminar or to x−1∕5 (equations (2. 33)) in turbulent flow. The cause of this infinite result is the
parabolic type of boundary layer equations, which could not satisfy boundary conditions at
the leading edge of this type, which in order to satisfy requires Dirichlet problem formulation
(S. 7.2).

2.1.4.3 Heat Transfer on an Adiabatic Surface in an Impingent Flow

This problem is of the same type as previous one and is solved similarly. If an isothermal
section precedes the thermally insulated adiabatic surface, at the entrance of it, the heat flux
in impingent flow drops abruptly to zero, whereas the temperature head decreases gradually,
becoming practically equal to zero only at a some distance from the entrance section. To deter-
mine the variation of this temperature head along the adiabatic surface, the universal function
(1.68) is again integrated by parts putting

u(𝜉) =
qw

h∗
= 𝜃w∗, v

(
𝜉

Φ

)
=

C1

Γ(C2)Γ(1 − C2)

Φ

∫
𝜉

[1 − (𝜁 )C1]C2−1(𝜁 )C1(1−C2) d𝜁
𝜁

(2.26)

The function v(𝜉∕Φ) at 𝜉 = Φ equals zero v(1) = 0 and at 𝜉 = 0 becomes unity v(0) = 1
because the integral in (2.26) at 𝜉 = 0 equals [Γ(C2)Γ(1 − C2)]∕C1 (compare to a factor in
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front of integral). Hence, relation for temperature head (1.68) after integration becomes

𝜃w = 𝜃w∗(0) +

Φ

∫
0

v

(
𝜉

Φ

)
d𝜃w∗
d𝜉

d𝜉, (2.27)

where 𝜃w∗(0) is the temperature head on the isothermal section at the entrance of the adiabatic
surface (Exer. 2.27).

Comparing as in previous section relation (2.27) with equation (1.40) for the case of tem-
perature jump, one concludes that: (i) the integral in (2.27) determines the temperature head
change 𝜃w∗(0) − 𝜃w from temperature head 𝜃w∗(0) on an isothermal section to some value 𝜃w
on an adiabatic surface similar to integral (1.40), which in case of temperature jump deter-
mines the heat flux change (qw − qw∗), and (ii) the product (d𝜃w∗∕d𝜉)d𝜉 in (2.27) specifies
the corresponding change of temperature head on the isothermal section as well as similar
product (d𝜃∕d𝜉)d𝜉 in (1.40) specifies the change of the temperature head corresponding to
heat flux change. Therefore, the function in front of derivative in (2.27) may be defined as
v(𝜉∕Φ) = (𝜃w∗ − 𝜃w)∕𝜃w∗ analogously to influence function in front of derivative in (1.40)
f (𝜉 ∕Φ) = [(qw − qw∗)∕𝜃]∕h∗ = h𝜉∕h∗.

Considering the expression (2.26) for function v(𝜉∕Φ) = (𝜃w∗ − 𝜃w)∕𝜃w∗ as an equation,
and solving it for temperature head 𝜃w on the adiabatic surface leads to desired solution (Exer.
2.28)

𝜃w = 𝜃w∗(0)

[

1 −
B𝜎

(
C2, 1 − C2

)

B(C2, 1 − C2)

]

, 𝜎 = 1 − (𝜉∕Φ)C1 (2.28)

Here, B𝜎(i, j) is incomplete beta function defined by equation (2.23). Equation (2.28) gives the
temperature head variation in an impingent flow for general case of arbitrary pressure gradient
and Prandtl number. For zero pressure gradient and Pr > 1, the well-known relation follows
from equation (2.28)

𝜃w = 𝜃w∗(0)
[

1 −
B𝜎 (1∕3, 2∕3)
B(1∕3, 2∕3)

]
, 𝜎 = 1 − (𝜉∕x)3∕4 (2.29)

2.1.5 Effect of Non-Newtonian Power-Law Rheology Fluid Behavior

It was indicated in Section 1.9 that universal functions (1.39) and (1.40) obtained for New-
tonian fluids are valid as well for power-law non-Newtonian fluids for which the condition
s = n − 1 is satisfied. The analogous exact solution of thermal boundary layer equation exists
for self-similar flows in special Görtler variable and pressure gradient parameter 𝛽 defined by
expressions (1.53). Consequently, the effect on the heat transfer intensity may be estimated
using formula (1.54) for an isothermal surface and function (1.39) or (1.40) for nonisother-
mal effect estimation. Coefficients g0 and gk are given in Figures 1.10 and 1.11, whereas the
exponent C1 and C2, which are not present here, may be calculated by the same way using
coefficients gk as it described for Newtonian fluid in Section 1.6.2 and relevant exercises.

◾Example 2.9: Cylinder in Transverse Flow of Non-Newtonian Power-Law Fluid

In this case, the heat transfer from nonisothermal cylinder was studied for a theoretical
external velocity distribution given by a sinusoidal function [338]

U∕U∞ = 2 sin 2(x∕D) (2.30)
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Figure 2.14 Heat transfer from nonisothermal cylinder in transverse flow of power law non-Newtonian
fluid. ____ 𝜃we∕𝜃wi = 1, − − −𝜃we∕𝜃wi = 1 + x∕D, −. − . − 𝜃we∕𝜃wi = 1 − x∕D (notations in Example
2.1) Pr = 1000

and three temperature head variations: increased, decreased, and constant (Fig. 2.14).
Equations (1.54) and (1.40) are used for estimation of heat transfer rate on isothermal cylinder
and for computing the nonisothermicity effect. The results plotted in Figure 2.14 show that
the value of heat flux and it variation along cylinder strongly depend on the type of the fluid
determined by an exponent n in the rheology law (1.51) or (1.52). In particular, the heat
transfer coefficient is a finite value at the stagnation point for Newtonian fluids, whereas
for non-Newtonian fluids it becomes zero for dilatant (n > 1) or tends to the infinite for
pseudoplastic (n < 1) fluids.

The temperature head variation also considerably affects the heat transfer intensity. In this
case as well as in the others discussed above, the distribution of Nusselt number along the
cylinder differs highly for decreasing and increasing temperature heads. Thus, in the first case,
the heat flux becomes zero on cylinder at angle 𝛾 = 80∘, whereas in the second case at the
same location, heat flux value is close to that in the case of constant temperature head. As a
result, the variation of Nusselt number along the cylinder changes from parabolic curve for
dilatant fluids in the case of constant or growing temperature head to a s-shaped curve for
pseudoplastic fluids and falling temperature head (Fig. 2.14) (Exer. 2.29).

2.1.6 Effect of Mechanical Energy Dissipation

As mentioned in Section 1.14, the effect of dissipation is proportional to square of the velocity
(see equation (1.70)). Because of that, for incompressible fluid flows that are usual relatively
low-velocity flows, the effect of dissipation is significant only in the case of large Prandtl
numbers. Therefore, the effect of dissipative heat was studied for non-Newtonian fluids for
which high Prandtl numbers are typical.

◾Example 2.10: Dissipation Effect on a Cylinder in Transverse Non-Newtonian Flow

The results were obtained using equation (1.70) and coefficients gd from Figure 1.19 for
theoretical external sinusoidal flow (2.30) of two types of non-Newtonian fluids as in previous
example and Pr = 1000.
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Figure 2.15 Additional heat flux caused by energy dissipation on a cylinder transversally streamlined
by non-Newtonian fluid, Ec = U2
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The results in Figure 2.15 are given in the form of the ratio Δqw∕qw where Δqw is additional
energy dissipation, when the Eckert number equals unity, to heat flux qw, calculated without
regard to dissipation. Because the additional dissipation energy is proportional to Eckert num-
ber, and the velocity of incompressible flows usually is small, the heat flux associated with
dissipation is small as well. Nevertheless, in some cases, the effect of dissipation is apprecia-
ble. In particular, this is true in the case of decreasing temperature head when the heat flux
without regard to dissipation is small (Fig. 2.15). For constant and increasing temperature
head, the dissipation energy is usually small. For example, if the Eckert number is 1/500, the
addition heat flux in the case given in Figure 2.15 is about 10% for a constant temperature head
and about 5% for increasing one at the point with angle 𝛾 ≈ 70∘ where the effect of dissipation
reaches maximum.

2.1.7 Effect of Biot Number as a Measure of Problem Conjugation

Analysis of universal function (1.39) and others of this type as well as examples considered
above show that the character of heat transfer behavior is basically determined by variation
of temperature head. We have seen that the heat transfer coefficient increases relatively not
much if the temperature head increases in flow direction or in time and vigorously decreases,
becoming even zero sometimes, in the opposite case when the temperature head decreases in
flow direction or in time.

The second basic parameter defining the intensity of conjugate heat transfer is the Biot
number, which is the ratio of thermal resistances of the body and fluid flowing around or
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inside it. In the case of the given temperature head variation, the Biot number largely specifies
the absolute value of heat transfer rate caused by the nonisothermicity of the surface or of the
body-fluid interface. This can be shown using conjugate conditions and the universal function
defining a heat flux. Taken into account that nonisothermicity effect is basically determined
by the second term of a series (1.39) (S. 2.1.1 1) and using the conjugate conditions (1.18),
one gets the following relation (Exer. 2.30)

𝜆w
𝜕T
𝜕y

||||y=0
= h∗g1Φ

𝜕𝜃w

𝜕Φ
or

1
Bi∗

𝜕T

𝜕
(
y∕Δav

)
|||||y=0

= g1Φ
𝜕𝜃w

𝜕Φ
Bi∗ =

h∗Δav

𝜆w
(2.31)

where Δav is the average body thickness.
This relation tells us that the value of temperature head gradient 𝜕𝜃w∕𝜕Φ is inversely pro-

portional to Biot number for an isothermal surface. Because relations (2.31) is obtained from
conjugate conditions, this connection between Bi and 𝜕𝜃w∕𝜕Φ means that Biot number speci-
fies the degree of problem conjugation indicating that the larger the Biot number is the smaller
the gradient 𝜕𝜃w∕𝜕Φ establishes in a conjugate problem. Analysis of equation (2.31) yields the
following conclusions: (i) in both limiting cases Bi∗ → ∞ and Bi∗ → 0, the conjugate problem
degenerates, because in these situations, only one resistance is finite, whereas another is either
infinite as in the first case or becomes zero as in the second one, (ii) in the first case, a conjugate
problem transforms in a problem with isothermal surface, since according to equation (2.31)
the temperature gradient there is zero; this case corresponds to situation when the body of infi-
nite thickness (or negligible conductivity) is streamlined by the fluid with finite heat transfer
coefficient, or when a body of finite thickness and conductivity is streamlined by a fluid with
infinite heat transfer coefficient, (iii) in the other case, a conjugate problem transforms into a
problem in which the temperature head changes in a stepwise manner, because according to
equation (2.31), the temperature head gradient is infinite; this case corresponds to situation
when the body of finite thickness and conductivity thermally interacts with a non-conducting
fluid (h∗ → 0), or the body with infinite conductivity (or negligible thickness) is streamlined
by fluid with finite heat transfer coefficient (Exer. 2.31), (iv) because in both limiting cases the
conjugate problem degenerates, one deduces that the greatest effect of nonisothermicity should
occurs when the both resistances are of the same order, and the Biot number (2.31) is close
to unity; such problems, characterized by close to unity Biot number, should be considered as
conjugate.

In what follows we will see that the results of this analysis are supported by numbers of
conjugate problems considering in the next chapters and in its applications.

Comment 2.9 In deriving equation (2.31) we apply for heat flux only the second term of
series with the first derivative instead of full universal function. Such simplification is possible
because, as mentioned above, the effect of nonisothermicity is defined basically by the second
term of series. This conclusion follows from two facts: (i) the first series term h∗𝜃w defines
the only isothermal heat flux, and (ii) coefficient g1 is the largest, whereas all the others are
comparatively small (Table 2.1) (Exer. 2.32).

Comment 2.10 Some authors use other criteria for characterizing relation of body-fluid
thermal resistances. For example, Luikov, in an early work, suggested Brun number
Br = (Δ∕x)(𝜆∕𝜆w)Pr 1∕3Re1∕2

x or later, Cole proposed criterion (𝜆∕𝜆w)(Pe)1∕3. In fact, both
those criteria are Biot numbers (Exer. 2.33).
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Exercises

2.1 Analyze any of universal functions for heat flux to list the factors determining the
effect of temperature head variation. Compare your results with conclusion indicated
in the text.

2.2 Estimate the relation g2∕g1 using graphs and numerical data from Chapter 1 for some
cases different from those given in Table 2.1. Compare your results with values from
Table 2.1.

2.3 A simple example helps to understand better the difference of effects at growing and
falling temperature heads. Add and subtract 5 from 20 and estimate the percentage
of relative changes in comparison with new amounts in the first 5∕25 = 20% and in
second 5∕15 ≈ 33% cases. Increasing the absolute changes from 5 to 8 gives ≈ 28%
and ≈ 67% respectively, resulting in increasing between relative changes in both cases
from 33 − 20 = 13% to 67 − 28 = 39%. Finally, if we add and subtract 10, we will have
≈ 33% in the first and 100% (similar to zero heat transfer coefficient) in the second
cases.

2.4 Consider some temperature head dependency other than proportionality, for example,
𝜃w = Kx1∕3. Calculate the derivative d𝜃w∕dx and the product x(d𝜃w∕dx) for different
values of coordinate x. Plot both dependencies of the derivative and of the product on
coordinate x to see that the product increases with x growing despite the significant
lessening of the derivative.

2.5 Compute and draw a pattern 2.1 for linear temperature head variation 2.1 for the limiting
case Pr → 0 and zero pressure gradient (𝛽 = 0) when the value of coefficient g1 = 1 is
maximum. Compare your results with data from Figure 2.1 to estimate the difference
between greater and minor effects of surface nonisothermicity. Think: is there only a
quantitative difference or there is a qualitative diversity, similar to distinction between
cases of increasing and decreasing temperature heads?

2.6* Obtain functionΦ(x∕D) using formula (1.39) for Görtler variable and the equation (2.4)
for velocity distribution. Find the inverse function (2.5). Hint: because the first term
of given function Φ(x∕D) is Φ(x) = ax⃗2, where x = x∕D, the first term of the
inverse function is x(Φ) = [(1∕a)Φ]1∕2. Then, it is reasonable to assume that
the second term is b(Φ1∕2)2 = bΦ. To estimate coefficient b, plot the difference
Δ(Φ) = x(Φ) − [(1∕a)Φ]1∕2, and approximate the curve Δ(Φ) by the line ΔΦ = bΦ.
Note: the function x(Φ) in the equation for ΔΦ is obtained using known function
Φ(x∕D), but is plotted as a curve x = x∕D vs. Φ.

2.7 Compute the dependence Nu∕
√

Re(x∕D) using values of Nu∗∕
√

Re for isothermal
cylinder from Figure 2.2 (the curve 4 for 𝜃we∕𝜃wi = 1)) and first equation (2.1) with
two derivatives for calculation of the nonisothermicity coefficient 𝜒 t. Compare your
results with data from Figure 2.2.

2.8 Obtain equation (2.7) and show that inequalities Uav∕U < 1 and Uav∕U > 1 are true
for accelerating and decelerating flows leading to changes of the second term (2.7) of
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universal function described in the text. Hint: note that average velocity for interval
(0, x) lies above the local value of velocity at point x on a falling curve and below the
local value of velocity at point x on a growing curve.

2.9 Repeat the analysis of pressure gradient effect on heat transfer coefficient in accelerat-
ing and decelerating flows presented in the text. Calculate the nonisotermicity coef-
ficient 𝜒 t using first formula (2.1) for self-similar flows with U = K1xm and linear
temperature head 𝜃w = 1 + K2x, where x = x∕L. Consider positive and negative K2,
compare results, and formulate conclusions.

2.10 Derive the second formula (2.8), or formulae (2.9), or (2.10) from example 2.3 as
indicated in the text. Compute the corresponding curve from Figure 2.4 to check the
approximate agreement between calculation and experimental data.

2.11* Derive equation (2.11) and calculate some curves for Stanton number from Figure 2.5
to practice employing the Görtler variable and to see how it works. Hint: the heat flux
in the case of temperature head jump is estimated by the expression, similar to second
equation (2.1), with a sum of products f (𝜉k∕Φ)Δ𝜃wk where f (𝜉k∕Φ) is the influence
function and Φ is the Görtler variable at the beginning of the temperature head jump
Δ𝜃wk at the point k.

2.12 Obtain Figure 2.9 using the first formula (2.13) for Nusselt number. Approximate the
results by the second relation (2.13) applying coordinates lg St∗ and lg PeΦ and esti-
mate the coefficients c and exponents n. Hint: plot the calculation results as a function
lg St∗ = f (lg PeΦ) and draw three lines to determine coefficients c and exponents n.

2.13* It is shown that calculations for Prtb = 1.5 and Prtb = 0.5 give respectively lower and
higher results compared to measured data. The same result is observed in Figure 2.8.
At the same time, the results for corresponding coefficients for second formula (2.12)
are opposite: it is higher for the first case and lower in the second then experimental
value. Think: what is the reason of such seeming contradiction?

2.14 Obtain equations (2.14) from series (1.55) and compute curves plotted in Figure 2.11
for different values of x∕L. Indicate the terms in series (1.55), which show that the
heat transfer characteristics depend on coordinate x also, despite the fact that the given
temperature head depends only on time.

2.15* Think: what physically means that the terms containing time-derivatives are multiply-
ing by ratio xn1∕Un2 with exponents corresponding to the number of relevant derivative?
Hint: see Exercise 1.59.

2.16* Derive formula (2.16) for polynomial coefficients bi by substituting polynomial 1∕h∗ =
aiΦi into integral (2.15) and applying relation (1.47) for beta function. Hint: use a new
variable 𝜁 = (𝜉∕Φ)C1 and polynomial for 1∕h∗ expressed in this variable.

2.17 Obtain expressions (2.17) from equations (2.15) for the case of h∗ = cΦ−n. Hint: use
a new variable, similar to variable in previous exercise to transform (2.15) to beta
function.
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2.18 Calculate coefficients of the polynomial (2.18) proceeding from the polynomial with
coefficients ai and formula (2.16) for coefficients bi. Hint: for estimating Γ-function
use tablets or Mathcad.

2.19 Compute ratio h∗∕hq for different cases considered in Example 2.7 using formulae
(2.17) and coefficients hk or exponents C1 and C2. Compare your results with values
given in the text.

2.20 Analyze effects of boundary condition and other factors on the intensity of heat transfer
using your data from previous exercise.

2.21 To understand the effect of boundary condition in turbulent flows, compute ratio h∗∕hq
for turbulent flow using the second formula (2.17) and exponents C1 and C2 (Fig.
1.8 and 1.9) for Pr = 1 and 10−2,Re𝛿1

= 103and 105 and 𝛽 = −0.3 (negative pres-
sure gradient) and 𝛽 = 1 (positive pressure gradient). Compare the results with data
for laminar flow from Exercise 2.19. Formulate conclusions. Think: why there are no
large Prandtl and Reynolds numbers among just suggested parameters? What are the
physical reasons of such a situation?

2.22 Perform the integration by parts indicated in the text to derive the expression (2.21).

2.23* Discuss with a friend or college the proof that the function v(𝜉,Φ) is the reciprocal
influence function of the heat flux jump to understand the details of this analysis.

2.24 Derive formula (2.23) from expression (2.22) following directions given in the text.

2.25 Obtain formula (2.24) from equation (2.23). See additional information about incom-
plete beta function on Wikipedia.

2.26 Obtain equation (2.25) from relation (2.22) as it is described in the text.

2.27* Show that the integral in equation (2.26) for function v(𝜉∕Φ) at 𝜉 = 0 is equal
[Γ(C2)Γ(1 − C2)]∕C1 and derive the relation (2.27) from universal function (1.68) by
performing integration by parts specified by relations (2.26). Explain why the function
v(𝜉∕Φ) in this case depends on ratio 𝜉∕Φ, while a similar function considered in the
previous section depends on each variable 𝜉 and Φ separately.

2.28* Repeat the reasoning leading to expression for function v(𝜉∕Φ) and finally to the deriva-
tion of equations (2.26) and (2.27). Think to understand why [(qw − qw∗)∕𝜃]∕h∗ equals
h𝜉∕h∗.

2.29 Explain the behavior of Newtonian and non-Newtonian fluids at the stagnation point
observed on Figure 2.14 and described in the text. Hint: analyze the behavior of heat
flux at stagnation point for different n using equations (1.52).

2.30 Obtain relation (2.31) following explanation given in the text. Hint: define the heat flux
in conjugate boundary conditions (1.18) by term with first derivative only, which basi-
cally determines the heat transfer rate, and then divide both side of first equation (2.31)
by h∗ and use variable y∕Δav.

2.31 Repeat the analysis of equation (2.31) to understand details. Think: what type of pro-
cesses analyzing in text are quenching and lumped models?
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2.32 Think: is it always true that only the second term instead of the full universal function
practically defines the heat flux due to large coefficient g1?

2.33* Show that the Brun number is actually a Biot number. Hint: use formula for the Nusselt
number. Show that criterion proposed by Cole becomes a Brun number after includ-
ing the dimensionless body thickness. Think: in what cases a parameter without body
thickness may be used as conjugate parameter?

2.2 The General Convective Boundary Conditions

The universal function (1.39) and other function of this type in the form of series might be
considered as a sum of the surface temperature distribution perturbations or a sum of pertur-
bation of boundary conditions. The case when all derivatives are zero, and in series retains
only the first term, corresponds to the isothermal surface. Such series is considered as undis-
turbed boundary conditions since it does not consist of any derivative. The series containing the
first term and the second one with first derivative presents the linear boundary condition. The
series with two derivatives describes the quadratic boundary condition, and so on. In general,
the series consisting infinite number of derivatives describes an arbitrary boundary conditions
(Exer. 2.34).

It follows from such considerations that universal function (1.39) and others of this type
are general boundary conditions describing different types of boundary conditions. A series
with only the first term is the well-known boundary condition of the third kind, which gives
the solution of the first approximation. A better solution of the same problem yields using
the series with two first terms as a boundary condition. The more terms retained in the series,
the more accurate the data may be obtained resulting, in principle, in an exact solution in the
case of employing the series with infinite number of terms as boundary condition (Exer. 2.35).

Those step-by-step refinements make it possible to estimate the result accuracy at any step
by comparing two consecutive approximations. In particular, comparing data obtained by
boundary conditions with one and two first terms gives an accuracy of solution with bound-
ary condition of the third kind. More coarse estimation of that accuracy may be obtained in
simpler way if one estimates the value of the second term of series using the solution given by
boundary condition of the third kind. Then, comparing this value of the second term with this
solution presents an estimation of accuracy of applying the boundary condition of the third
kind (Exer. 2.36).

2.2.1 Accuracy of Boundary Condition of the Third Kind

As indicated in the introduction, the common simple approach based on boundary condition
of the third kind ignores the real thermal conditions on the body/fluid interface. In such a
case, the accuracy of results depends basically on experimentally estimated heat transfer coef-
ficient. Two reasons are responsible for using this primitive approach during past centuries
and even now. The first one is the absence of alternative practical realizable methods until the
computers came to wide use. The second reason is that there are problems with almost every
isothermal body/fluid interface for which common approach gives practical acceptable accu-
racy. Thus, in such a case, there is no sense to employ more complicated conjugate methods.
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Below are presented several examples showing that the just-described estimation of second
term of the series (1.39) helps to understand what approach a simple common or a conjugate
one is reasonable to use in a particular case.

◾Example 2.11: The Overall Heat Transfer Coefficient in Flow Past Both Sides of a Plate

We start from one of the basic problems considering heat transfer between two fluids sepa-
rated by a thin plate. The conjugate solution of this problem is presented in the next chapter.
Here, we analyze a common solution based on the third kind of boundary condition and isother-
mal heat transfer coefficients. In this case, the dimensionless temperature head on one side of
the plate is determined by estimating the overall heat transfer coefficient as a sum of thermal
resistances

𝜃w1 =
T∞1 − Tw1

T∞1 − T∞2
=

qw

h∗1(T∞1 − T∞2)
= 1

1 + h∗1∕h∗2 + h∗1Δ∕𝜆w
(2.32)

where T∞1 and T∞2 are fluid temperatures far from the plate and the isothermal heat transfer
coefficients are given for laminar and turbulent flows by well-known formulae

Nux∗ = 0.332 Pr 1∕3 Re1∕2
x Nux∗ = 0.0295 Pr 0.4 Re0.8

x (2.33)

The accuracy of formula (2.32) is estimated as described above by computing the second
term g1x(d𝜃w1∕dx) of universal function (1.38) using the result (2.32). If the flow regimes on
both sides of a plate are the same, the second denominator term h∗1∕h∗2 in (2.32) does not
depend on coordinate x. The next term in this sum, which is the Biot number Bi∗ = h∗Δ∕𝜆w,
according to equations (2.33) changes along the plate as a power function x−n. Thus, the
denominator in (2.32) is the function D1 + D2x−n, where D1 and D2 are constants. Then,
expression (2.32) and relative error of this result defined as a ratio of second series term
g1x(d𝜃w1∕dx) and value of 𝜃w1 defined by (2.32) are

𝜃w1 = 1
D1 + D2x−n

, 𝜎 = g1
x
𝜃w

d𝜃w

dx
=

g1nD2

D1xn + D2
(2.34)

Analysis shows that the maximal error 𝜎max = g1n occurs at x = 0 when the denominator
takes minimum. Hence, the greatest error is g1∕2 and g1∕5 for laminar and turbulent flows,
respectively. For laminar flow at zero pressure gradient and Pr > 0.5, the coefficient g1 = 0.62
is practically independent of Pr (Fig. 1.3), so in this case, the maximum error is ≈ 30%. For
turbulent flow with zero pressure gradient and Pr = 0.5, the coefficient g1 = 0.22 (Fig. 1.6).
Because the value of g1 decreases as the Prandtl number increases, in this range of Pr, the max-
imum error is 𝜎max ≈ 4%. However, for Pr = 0.01 g1 = 0.52, and, hence, 𝜎max ≈ 10%. (Exer.
2.37). Thus, for laminar flow the error may be moderate, whereas for turbulent flow, when
Pr > 0.5, the use of the common overall heat transfer coefficient does not lead to significant
errors.

These estimates are in agreement with corresponding conjugate problem solutions. For lam-
inar flow such solution gives the maximum error of 20 − 25% (Exam. 4.1), for turbulent flow
the conjugate solution gives the maximum error of about 7% (Exer. 2.37 and 2.38).

Comment 2.11 The errors in this problem are relatively small because the temperature head
increases in flow direction on both sides of the plate. Usually in problems with increasing
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temperature head the nonisothermicity effect is moderate, and the heat transfer coefficients
are not much different from isothermal coefficients. However, there are problem where this
rule does not work because sometimes the combination of the isothermal heat transfer coef-
ficient behavior and temperature head variations results in unusual notable nonisothermicity
effect. One such example is the heat transfer from the plate heated from one end (second case)
that we considered in introduction. In Section 3.1.3, we consider this question more precisely
analyzing other problems with decreasing temperature heads when conjugate solutions are
necessary independent of flow regime.

◾Example 2.12: A Thermally Thin Plate at Given Temperature at One End

A steel plate of length 0.25 m and of thickness 0.01m is streamlined by air flow of temper-
ature 300 K with velocity 3 m∕s. The left-hand end is insulated, and the temperature of the
right-hand end is maintained at TwL.

The steady-state differential equation (1.3) for a thermally thin plate in variables x = x∕L
and 𝜃w = (T − T∞)∕(TwL − T∞) and its solution satisfying given boundary conditions of the
third kind with average h∗ may be written in the form

d2𝜃w

dx2
+ 2Bi∗L𝜃w = 0, 𝜃w =

Tw − T∞
TwL − T∞

= 1

ch(
√

2Bi∗L)
ch

(√
2Bi∗L

x
L

)
(2.35)

Here, Bi∗L = h∗L2∕𝜆wΔ = Bi∗(L∕Δ)2 is a modified Bio number, which takes into account
effect of relative body length. This complex of parameters appears in thermally thin equation
(1.3) in dimensionless form (2.35) (Exer. 2.39).

The accuracy of result (2.35), obtained by common approach, is estimated as in the previous
example by differentiating expression (2.35) and apprising a value of the ratio of the second
series term and temperature head itself (2.35)

𝜎 = g1
x
𝜃w

d𝜃w

dx
= g1

√
2Bi∗L

x
L

th
(√

2Bi∗L
x
L

)
𝜎max = g1

√
2Bi∗L (2.36)

For calculation of the Biot number, the relation (2.33) for laminar zero pressure gradient of air
flow (Pr = 0.7) and ReL = 5 ⋅ 104 are used giving Nu∗L = 66, and then, the Bio number and
maximal error for g1 = 0.62 (Pr > 0.5) are counted as Bi∗L = Nu∗LL𝜆∕𝜆wΔ = 0.66 (at 𝜆 =
0.267 ⋅ 10−2 and 𝜆w = 65W∕mK ) and 𝜎max ≈ 0.7. This result is obtained using Nusselt num-
ber Nu∗L = 66 estimated at the end of a plate. Usually when a common approach is used, the
average heat transfer coefficient or average Nusselt number would be Nu∗av = 2Nu∗L. Then,
the error will be 𝜎max ≈ 0.7 ⋅

√
2. ≈ 1. Hence, the solution of this problem with the bound-

ary conditions of the third kind is unacceptable despite that the temperature head increases in
flow direction. As follows from Exercise 2.40, the same result yields the estimation error for
this problem in the case of turbulent flow. The conjugate solution of this problem is given in
Example 3.1.

Comment 2.12 The majority examples above and below consider the heated bodies cooled by
the flow with lower temperature. In such a case, the temperature head increases in flow direc-
tion if the body temperature increases along the interface, and vice versa, it decreases in flow
direction if the body temperature decreases along the interface. However, the situation is oppo-
site if the flow temperature is higher than the body temperature, like in the problem considered
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in this example, when the flow heated the body, and the temperature head decreases in flow
direction as the body temperature increases along the interface, and vice verse, it increases in
flow direction if the body temperature decreases along the interface.

◾Example 2.13: Thermally Treated Polymer Sheet Passed Through Surrounding

The sheet of polymer at temperature T0 is extruded from a die and passed at the veloc-
ity Uw through water (Pr = 6.1) at temperature T∞. This problem is solved using boundary
condition of the third kind in Example 4.14. The result is presented in the form 𝜃w(x), where
x = x𝛼w∕Δ2Uw, 𝜃w = .(Tw − T∞)∕(T0 − T∞), and calculation is made for ratio of plate-coolant
thermal resistances 𝛾 = (cp𝜌𝜆)w∕cp𝜌𝜆 = 8.51, and quiescent (U∞ = 0) surrounding. The error
is estimated for the same values of parameters. Numerical differentiation of the curve 𝜃w(x)
(Fig. 4.9) gives the derivative d𝜃w∕dx. Then, using this derivative and the first coefficient
for moving sheet g1 = 1.3 (Fig. 1.13), one obtains the accuracy of this solution as proposed
by computing a ratio of the second term of universal function (1.38) and temperature head
𝜎 = x(d𝜃wdx)∕𝜃w. The results reveal that the error .grows as the distance from the die increases
and finally reaches 𝜎max ≈ 2.6. It is evident that this problem must be solved as conjugate. The
reason of that is again the decreasing along the sheet temperature head (Exer. 2.41).

Comment 2.13 The evaluation of the second term of universal function provides satisfactory
estimations of common approach accuracy in agreement with conjugate problem solutions.
Examples show that in the case of temperature head decreasing, the problem should be consid-
ered as a conjugate one. In another case, when the temperature head increases, the proposed
error estimation helps to understand whether the simple solution of a particular problem is
acceptable or the conjugate analysis is required.

2.2.2 Conjugate Problem as an Equivalent Conduction Problem

It is clear from the above discussion that the solution of a conjugate problem is a result of
coupling two other solutions obtained for a body and for a fluid under an arbitrary tempera-
ture head distribution on their interface. At the same time, the universal function (1.39) is a
solution of thermal boundary layer equations for a fluid at arbitrary surface temperature head
distribution, which in fact is one of the just-mentioned two solutions required for coupling in a
conjugate problem. Because this solution determines the heat flux distribution on the interface,
in the case of using universal function, there is no need to solve the boundary layer equation
for fluid, and only the conduction equation for a body subjected to the boundary condition on
the interface in the form of universal function remains to be solved (like in one of numerical
methods of conjugation, S. 1.2). In other words, application of universal function transforms
the conjugate problem to an equivalent conduction problem for a body with boundary condi-
tion in the form of universal function (1.39) or others of this type defining the heat flux on the
interface.

We have seen at the beginning of this section that the universal function may be considered
as a general boundary condition. Therefore, if the heat conduction equation is solved using this
condition with first term only, an approximate solution of the conjugate problem is obtained
as that in the case of applying the boundary condition of the third kind. By retaining the first
two terms in equation (1.39) or (1.38) and solving the heat conduction equation, one finds a
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more accurate solution of the conjugate problem. This process of refining, in principle, might
be continued by retaining more terms in universal function. However, this entails difficulties
posed by the calculation of higher-order derivatives, and therefore, the integral form of general
boundary condition (1.40) or (1.26) should be used for high-order approximations.

In practical calculations, it is convenient to retain the first few terms of the series and to
calculate the error arising by neglecting the rest terms of it. If the first three terms of the series
are retained, and the error is determined using the integral universal function, the conjugate
problem is transformed to a heat conduction equation for a solid with the boundary condition
in the form

qw = h∗

[
𝜃w + g1Φ

d𝜃w

dΦ
+ g2Φ2 d2𝜃w

dΦ2
+ 𝜀 (Φ)

]
, 𝜀(Φ) = 1

h∗
(qint

w − qdiff
w )

d𝜃w

dΦ
= 𝜈

U

d𝜃w

dx
,

d2𝜃w

dΦ2
= 𝜈2

U2

d2𝜃w

dx2
− 𝜈2

U2

dU
dx

d𝜃w

dx

(2.37)

This form of general boundary condition for arbitrary pressure gradient simplifies in the case
of zero pressure gradient to (Exer. 2.42)

qw = h∗

[
𝜃w + g1x

d𝜃w

dx
+ g2x2 d2𝜃w

dx2
+ 𝜀 (Φ)

]
, 𝜀(Φ) = 1

h∗
(qint

w − qdiff
w ) (2.38)

Quantities qint
w and qdiff

w are defined by integral relation (1.40) and by the first equation (2.37)
in general case and by similar relations (1.26) and first equation (2.38) in the case of zero
pressure gradient. The first approximation is found by solving the conduction equation for
a body employing the first equation (2.37) or (2.38) as a boundary condition and assuming
𝜀(Φ) = 0. Computing the error 𝜀(Φ) using the first approximation data, one incorporates it in
equations (2.37) or (2.38) and obtains the next approximation in the same way, applying one
of these equations as boundary condition. By continuing this process, the solution with the
desired accuracy can be achieved.

Retaining in equations (2.37) and (2.38) terms with first two derivatives only leads to dif-
ferential equations of the second order in any approximation. Methods of solutions of this
type of equations are well investigated. Therefore, in this case, the reducing of a conjugate
problem to conduction equation with universal function as boundary condition results in dif-
ferential equations of which solutions are known. If a solid is thin or thermally thin, and
one-dimensional conduction equation (1.3) is applicable, the proposed approach leads to ordi-
nary differential equation of the second order. Examples of such problems are presented in the
following chapters of applications. In the more complicated two- or three- dimensional con-
duction equation for a body, the solution of a conjugate problem is reduced to corresponding
two- or three-dimensional resulting equations. Numerical solution of those equations are sim-
ilar to well-developed means for solving conduction equations with boundary condition of the
third kind. In some cases of simple form of solid, like a plate, the two-dimensional problem
may be solved analytically. Such problem is considered in Example 4.7. Several examples of
numerical solutions of two-dimensional conjugate problems illustrating usage of this approach
are considered in applications as well.

The method of reducing a conjugate problem to an equivalent conduction problem is appli-
cable to any linear convective heat transfer problem, but not to nonlinear problems for which
the principle of superposition is unacceptable (Exer. 2.43).
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2.3 The Gradient Analogy

Some investigators [14, 224, 445] pointed out that the temperature head gradient qualitatively
affects the heat transfer coefficient as the free stream velocity gradient affects the friction coef-
ficient. In author’s papers [101, 120] it is shown that such analogy holds not only for the both
gradients, which corresponds to the first derivatives, but for all other subsequent derivatives
in both cases. To reveal that the variable, the velocity, and the temperature head affect similar
corresponding coefficients, we should consider universal functions for the friction coefficient
analogous to functions (1.39) and (1.40) for heat transfer characteristic in order to compare
those dynamic and thermal functions.

Since the dynamic boundary layer equation is nonlinear, in this case, the exact solution could
not be presented in the form of a sum of subsequent derivatives like series (1.39) for heat flux.
However, using a linearization of the dynamic boundary layer equation as it shown in [120,
119], an approximate solution in analogous form can be obtained

cf = cf∗

(
1 + b1

Φ
Pw

dPw

dΦ
+ b2

Φ2

Pw

d2Pw

dΦ2
+ b3

Φ3

Pw

d3Pw

dΦ3
. + ..

)
(2.39)

Here, cf∗ = 0.664∕
√

Reav = 0.664Φ−1∕2 (* denotes constant U, like it denotes constant tem-
perature head for universal functions) is the average within interval (0, x) skin friction coeffi-
cient defined for average within this interval Reynolds number Reav = Uavx∕𝜈 with average
external flow velocity Uav and Pw = 𝜌U2∕2 is the dynamic pressure of the external flow, which
remains unchanged across boundary layer (S. 7.4.4.1).

Comparing shows that: (i) equation (2.39) presents the friction coefficient in a series of
derivatives of Pw = 𝜌U2∕2 as well as universal function (1.39) determines in series of deriva-
tives of temperature head the heat transfer coefficient h = qw∕𝜃w (after dividing both parts of
(1.39) by 𝜃w), (ii) the dynamic pressure Pw as well as temperature head 𝜃w is independent on
transverse coordinate y, (iii) structure of both series (2.39) and (1.39) is the same, therefore (iv)
the corresponding to (1.39) integral relation has the same form as integral universal function
(1.40) (Exer. 2.44)

cf =
cf∗

Pw

⎡
⎢
⎢
⎣
Pw (0) +

Φ

∫
0

f (𝜉∕Φ)
dPw

d𝜉
d𝜉
⎤
⎥
⎥
⎦
, f (𝜉∕Φ) =

[

1 −
(
𝜉

Φ

)C1
]−C2

(2.40)

This implies that relations (2.39) and (2.40) are universal function defining friction coefficient
for arbitrary pressure gradient via dynamic pressure Pw(Φ) or through external velocity U(x)
because both variables Pw and Φ are functions of U(x).

Coefficients bk and exponents C are computed in the same way as coefficients gk and expo-
nents C for heat transfer problems (S. 1.6). As one may observe from Table 2.2, they also only
slightly depend on 𝛽 due to using the variable Φ defined by integral (1.39), which takes into
account the flow history. Physically, this means that the value of Φ at the point x is determined
not only by data at point x but rather by data of whole interval from x = 0 to x of the considered
point (Com. 1.5 and 1.6). Because of a slight dependency on 𝛽, the accuracy of it estimation
barely affects the final calculation results Therefore, in this case, 𝛽 also may be evaluated
intuitively or using some approximate formula, for example, relation (1.45) (Exam. 2.6).

Let us introduce a nonisotachicity coefficient 𝜒 f = cf∕cf∗ (an isotach is a line of constant
velocities, like isotherm is a line of constant temperatures) similar to the nonisothermicity
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Table 2.2 Coefficients bk and exponents C for universal functions
(2.39) and (2.40)

𝛽 b1 b2 b3 b4 C1 C2

0 2.28 −0.30 0.058 −0.0096 0.52 0.57
0.5 1.97 −0.26 0.050 −0.0089 0.50 0.54
1 1.85 −0.24 0.047 −0.0085 0.48 0.52
average 2.0 −0.25 0.05 −0.009 0.50 0.54

coefficient, which shows how much the friction coefficient in a flow with a variable external
velocity is more or less than that in a flow with constant velocity. From expressions (2.39)
and (2.40), we get relations for nonisotachicity coefficient analogous to equations (2.1) for
nonisothermicity coefficient

𝜒 f = 1 +
∞∑

k=1

bk
Φk

Pw

dkPw

dΦk
𝜒 f =

1
Pw

⎡
⎢
⎢
⎣

Φ

∫
0

f

(
𝜉

Φ

)
dPw

d𝜉
d𝜉 + Pw(0)

⎤
⎥
⎥
⎦

(2.41)

◾Example 2.14: Friction in Self-Similar Flows

In this case: U2 ∼ x2𝛽∕(2−𝛽), Φ ∼ x2∕(2−𝛽), Pw ∼ U2 ∼ Φ𝛽 (S. 1.6.1). Thus, these equations
lead to the following expressions for nonisotachicity coefficient

𝜒 f = 1 + b1𝛽 + b2𝛽(𝛽 − 1) + .... 𝜒 f = 𝛽

1

∫
0

[1 − 𝜁C1]−C2𝜁𝛽−1d𝜁 (2.42)

The second formula is obtained from the last equation (2.41) after defining the derivative
dPw∕dΦ = 𝛽Φ𝛽−1 and employing the variable 𝜁 = 𝜉∕Φ. For integer 𝛽, the first formula gives:
𝜒 f = 1 and 𝜒 f = 2.85 for 𝛽 = 0 and 𝛽 = 1. Hence, cf = 0.664∕

√
Rex and cf = 2.649

√
Rex for

the first and the second cases, respectively. The second result is 7% larger than the exact value.
For not integer 𝛽, the first expression (2.42) diverges (Exer. 2.45). The second one yields:
𝜒 f = 1.56, 2.17, 2.89, and 3.42 for 𝛽 = 0.2, 0.5, 1.0, and 1.6, respectively (Exer. 2.46). These
values are in reasonable agreement with data for self-similar flows[338, Fig. 9.1] (Exer. 2.47).

◾Example 2.15: Friction in Howarth Flow

The boundary layer flow with linear external velocity distribution U = U0 − ax is known as
the Howarth flow because Howarth was the one to first consider this case. Using dimension-
less variables x = ax∕U0 and Φ = aΦ∕U2

0 , one gets Φ = x − x2∕2, Pw = (𝜌U2
0∕2) (1 − 2Φ),

dPw∕dΦ = −2(𝜌U2
0∕2). Then, equations (2.41) become (Exer. 2.48)

𝜒 f = 1 −
2b1Φ

1 − 2Φ
, 𝜒 f =

1

1 − 2Φ

⎡
⎢
⎢
⎢
⎣

1 − 2

Φ

∫
0

[

1 −
(
𝜉

Φ

)C1
]−C2

d𝜉

⎤
⎥
⎥
⎥
⎦

(2.43)
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Both relations with average values of b1 = 2 and exponents C1 = 0.5 and C2 = 0.54 lead to
the practically same numerical results: 𝜒 f = 1.33, 1.18, 0.78, 0.53 for x = −0.1,−0.05, 0.05,
and 0.1, which are also in reasonable agreement with the Howarth data.[338, Fig. 9.8] The
coordinate of separation is found using b1 = 2.31 and C1 = 0.53,C2 = 0.58. These quantities
are estimated by extrapolation of data from Table 2.2 to the close of separation value 𝛽 =
−0.199. Both equations (2.43) with those coefficients yield the separation coordinate x ≈ 0.16,
whereas the exact value is x = 0.12 (Exer. 2.49).

Comment 2.14 Estimation of the separation coordinate from the first equation (2.43) leads
to quadratic equation x − x2∕2 = 1∕6.62. Solution of this equation yields small differences of
two mach larger values, which usually results in poor accuracy of the final data. In this case, the
change in the value of square root from 5.5299 to 5.5300 leads to variation in final data from
0.18 to 0.16. Better results may be obtained using iterations. Presenting the quadratic expres-
sion in the form x = 1∕6.62 + x2∕2, one gets the first approximation x = 1∕6.62 by neglecting
the second term. Then, the neglecting term is estimated using this result x2∕2 = (1∕6.62)2∕2,
and the second approximation is calculated: 1∕6.62 + x2∕2 = 1∕6.62 + (1∕6.62)2∕2 = 0.17.

◾Example 2.16: Friction in Transverse Flow Past Cylinder

The potential velocity is given by equation (2.30): U = 2U∞ sin(x∕R) = 2U∞ sin x. Then,
we have: Φ = 1 − cos x, where Φ = Φ∕Re, x = x∕R, and Re = 2RU∞∕𝜈. In these notations,

the dynamic pressure is defined as Pw = 2𝜌U2
∞(2Φ −Φ

2
). To compare the results with known

data, we modified equation (2.39) applying relations cf = 𝜏w∕𝜌U2 and cf∗ = 0.664∕
√
ΦRe.

After that procedure and determining the derivatives of Pw in terms of cos x, the dimension-
less expression (2.39) with first two derivatives only is presented in the form applicable for
comparison with known data (Exer. 2.50).

𝜏w =
𝜏w

𝜌U2
∞

√
U∞R

𝜈
= 0.940[2(1 + b1)(1 − cos x)1∕2 − (1 + 2b1 + 2b2)(1 − cos x)3∕2]

(2.44)
The condition 𝜏 = 0 gives the following equation for the coordinate of a separation point
cos x = −(1 − 2b2)∕(1 + 2b1 + 2b2) (x is an arc length) and the according value of central
angle 𝛾 = 108.9∘ estimated applying constant b1 = 2.31 and b2 = −0.31 adapted from
Example 2.15. This result is in conformity with other approximate predictions 109.5∘
and 108.8∘ [338] given by integral method (S. 7.6 [338, p. 215]) and by Blasius series
approach[338, p. 168], respectively, whereas the more accurate data found by numerical
solution of boundary layer equations is 104.5∘. The results for shearing stress distribution
𝜏w(𝛾∘) around a cylinder, obtained by equation (2.44) and average values of coefficients
b1 = 2 and b2 = −0.25 agreed with other approximate data and with numerical solution
for entire cylinder surface, except a small region near separation point [338, Fig. 10.7]
(Exer. 2.51).

Comment 2.15 The average error of universal functions (2.39) and (2.40) of about 10% is a
common value for approximate methods. At the same time, the comparison with others inexact
methods (for example, from [338]) reveals that estimating the friction coefficient by universal
functions is much simpler because this procedure does not required of any differential equation
solution.



�

� �

�

Application of Universal Functions 81

Comment 2.16 Coefficients bk and exponents C in Table 2.2 are applicable for laminar flow.
For turbulent flow they can be determined analogously using the same procedure as that for
evaluation of coefficients gk (S. 1.6) and exponents C (S. 1.6.2).

Now, we return to analysis of gradient analogy stated at the beginning of this section. Com-
paring equations (2.39) and (1.39), we observe that such similarity actually exists because: (i)
these equations are similar in form, and for each dynamic term with derivative of pressure Pw
(which is proportional to velocity square U2) in the first equation, there is a corresponding
analogous thermal term with derivative of temperature head 𝜃w in the second one, and (ii) it
is clear from equation (2.39) that friction coefficients are greater in favor (dU∕dx > 0) and
lesser in adverse (dU∕dx < 0) pressure gradient flows that that in zero pressure gradient flows
(dU∕dx = 0); in the same way, as it follows from equation (1.39), the increasing (d𝜃w∕dx > 0)
or decreasing (d𝜃w∕dx < 0) temperature head in flow direction affects the heat transfer coef-
ficient leading to growing or lessening its value in comparison with that for an isothermal
surface.

It is known that the different influence of the favor and adverse velocity gradients on the fric-
tion coefficient is induced by deformation of velocity profiles in a dynamic boundary layer.
Similarly, the different effects of increasing and decreasing temperature head on the heat trans-
fer coefficient is caused by deformation of the temperature profiles in a thermal boundary
layer.

To understand physically this process, consider first the case when the surface temperature
is higher than the temperature of flowing fluid. If the wall temperature increases in the flow
direction, the adjoining to the wall descending layers of fluid come in contact with increasingly
hotter wall. Because of the fluid inertness, these layers warm up gradually in vertical direction.
As a result, the cross-sectional temperature gradients near a wall turn out to be greater than in
the case of constant wall temperature, which leads to the higher than for isothermal surface heat
transfer coefficients (according to a slope of the tangent to the temperature profile at the wall).
Similarly, in the case of decreasing surface temperature in the flow direction, the temperature
cross-sectional gradients near a wall and the coincident heat transfer coefficients are less than
those for an isothermal surface. The same situation exists in the case when a fluid heats a cooler
surface. The difference is only that in this case, the absolute values of the falling temperature
head and lesser heat transfer coefficients correspond to increasing in the flow direction wall
temperature, and inversely, the growing absolute values of the temperature head and higher
heat transfer coefficients correspond to the decreasing in the flow direction wall temperature
(Com. 2.12 and Exer. 2.52).

Considering the second terms of the universal functions (2.39) and (1.39), one concludes
that since coefficients g2 and b2 are negative, the effect of the second terms is opposite to just
considered effect of gradients, defined by the first derivatives: the positive second derivatives
lead to a reduction of the friction and heat transfer coefficients, and a negative derivatives yield
an increasing of those coefficients. The effects of the third, fifth, and other odd derivatives is
of the same kind as that of the first derivative, whereas the effects of even derivatives is of the
same kind as that of the second derivative. That is because all odd coefficients of both universal
functions are negative, whereas all even coefficients are positive.

Despite equations (2.39) and (1.39) are similar, they are indeed significantly different due to
nonlinearity of dynamic boundary layer equation in contrast to linear thermal boundary layer
equation. As a result, the coefficients gk in universal function (1.39) are constant or depend
weakly on Pr and 𝛽, but they do not depend on the temperature head 𝜃w that is the basic
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variable in equation (1.39). Although the coefficients bk in universal function (2.39) also only
slightly depend on 𝛽, in contrast to previous case, where 𝛽 is independent on temperature head,
here, the parameter 𝛽 depends on the pressure Pw (or on external velocity U). Consequently,
in universal function (2.39), 𝛽, and therefore, the coefficients bk as well, strongly speaking,
depend on the basic variable Pw in this equation. The reason for this is the nonlinearity of the
dynamic boundary layer equation and using linearization of this equation (Exer. 2.43).

Comment 2.17 Coefficient b1 are greater than coefficient g1, and as a result, the pressure
gradient affects the friction characteristics more significantly than the same temperature head
gradient changes the heat transfer rate. This may be confusing, since according to Newton and
Fourier laws both friction and heat transfer coefficients are defined through similar deriva-
tives (𝜕u∕𝜕y)y=0 and (𝜕𝜃∕𝜕y)y=0. Nevertheless, this diversity occurs because function (1.39)
determines the temperature head 𝜃w, whereas function (2.39) deduces the pressure Pw that is
proportional to U2, rather than to U (Exer. 2.53).

2.4 Heat Flux Inversion

Analysis of universal functions (2.39) and (1.39) shows that for certain relations between terms
of series, the friction or heat transfer coefficient as well as corresponding local friction stress or
local heat flux vanishes. Usually, when the first series term plays a primary role, this may occur
at negative gradients, in which case the external velocity or temperature head decreases along
a surface. It is well known that vanishing of the friction is accompanied by separation of the
boundary layer and is associated with a deformation of the velocity profiles in the boundary
layer of flows with adverse pressure gradient [338]. Analogously, the vanishing of the heat
flux in a flow with decreasing temperature head is associated with the deformation of the

–0.4 0

A

B

1

2

3

4

η(φ)

1 0.9 0.8 0.7 0.6 0.5 0.4 0.2

0.2

(a)
0.4 0.6 0.8 θ–0.2

x =
 0x 

=
 1

.2

η(φ)

1

0.2

0.884

0.1

0.95 0.7

0.3

0.5 0.25

(b)
0.50.30.10 0.7 0.9 θ–0.1–0.3

x 
=

 0

x 
=

 1
.2

Figure 2.16 Deformation of the excess temperature profile for the linear decreasing temperature head
𝜃w∕𝜃wi = 1 − x, with x = x∕L and Pr = 0.7, for laminar (a) and turbulent Re𝛿1

= 103 (b) boundary layers



�

� �

�

Application of Universal Functions 83

temperature profiles in the thermal boundary layer. Examples of such flows are considered in
[65, 123] and [153].

Figure 2.16 presents the schematic pattern of the excess temperature 𝜃 = Tw − T deforma-
tion in laminar and turbulent boundary layers for the case of linear temperature head decreasing
on the plate at zero pressure gradient [111, 119].

It is seen how a usual initial temperature profile deforms first into a profile with an inflec-
tion point and then converts into a profile with a vertical tangent at the wall. Although the
temperature head is finite at this point, the local heat flux vanishes and changes its direction.
The coordinate of this point known as a point of heat flux inversion is found from equation
(1.38) or (2.2), determining heat flux or nonisotrmicity coefficient. In the case of linear tem-
perature head 𝜃w∕𝜃wi = 1 − x∕L = 1 − x, equation (2.2) becomes 𝜒 t = 1 − g1x∕(1 − x). Then,
one gets from equation 𝜒 t = 0 the coordinate of the inversion point (x∕L)inv = 1∕(1 + g1),
which gives (x∕L)inv = 0.62 and (x∕L)inv = 0.834 for laminar (g1 = 0.62, Pr > 1) and turbu-
lent (g1 = 0.2, Pr = 1, Re𝛿1

= 103) boundary layers, respectively (Exer. 2.54 and 2.55).

Comment 2.18 An inflection point is a point of a curve at which a curvature changes from
convex to concave or vice versa. The vertical tangent at the wall indicates that the heat flux
at the wall is zero. This follows from Fourier law because the derivative in normal direction
is zero.

The pattern of the temperature profile deformation in thermal boundary layer shown in
Figure 2.16 is analogous to a well-known picture of velocity profile deformity in dynamic
boundary layer, which leads to separation of the boundary layer. Nevertheless, these phenom-
ena are fundamentally different. Separation leads to restructuring of the flow, to the appearance
of the reverse streams, and results in actual destruction of the boundary layer flow, so that after
separation the completely different flow structure establishes, and boundary layer equations
are no longer valid beyond the separation. In contrast with this situation, the thermal boundary
layer equations remain valid beyond the point of zero heat flux, since only the direction of the
heat flux changes at this point, but the flow structure remains the same. Beyond the inverse
point of the heat flux in the region before the point x = 1, at which the temperature head van-
ishes, the heat flux is directed from the liquid to the wall (because the heat flux changed his
direction), despite (as before) the fact that the wall temperature is higher than that of the fluid
outside of boundary layer.

We present physical analysis [153] of that deformation process considering the same situa-
tion as in the previous section when the surface temperature is higher than that of fluid. Because
in this case, the temperature head gradient decreases in flow direction, the hot wall temperature
decreases as well, and the adjoining to the wall descended layers of fluid come into contact with
cooler parts of the wall. As a result, the temperature difference between the wall and the layers
of fluid near the wall decreases and in time becomes zero at the inverse point with the coor-
dinate xinv = 1∕(1 + g1). After this point with vertical tangent at the wall, the temperature of
the fluid near the wall turns out to be above the wall temperature, because the temperature of
the wall continues to decrease (the temperature head gradient remains the same). Thus, before
the inverse point, the heat flux is directed from the wall to the fluid, whereas after this point,
close to the surface the heat flux direction changes, so that the heat flux near the wall up to the
point A in Figure 2.16 (a) is directed from the fluid to the wall. Because of this, the thermal
boundary layer near the wall is divided vertically by point A, at which the heat flux vanishes,
into two regions. In the region adjacent to the wall, the heat flux is directed toward the wall,
and in the other region, above A until point B, the heat flux is directed away from the wall.
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At the end of this region, at the point x = 1, the flow temperature outside the boundary layer
and the surface temperature become equal, and the temperature head vanishes. Nevertheless,
the heat flux at this point does not vanish, so the functions h(x) and 𝜒 t(x) go to infinity, get
discontinuity, and the concept of the heat transfer coefficient (and of nonisothermicity coeffi-
cient) becomes meaningless, as it first indicated by Chapman and Rubesin [65]. After the point
x = 1, where the temperature head reaches zero, it changes direction for whole boundary layer
(like before until point B), so that both the temperature head and heat flux, which changed the
direction before at inversion point xinv continue to increase to infinity as x → ∞ (Exer. 2.56).

Comment 2.19 The pattern of the temperature head deformation presented in Figure 2.16
could not be obtained using common relation of proportionality of heat flux and temperature
head. In the case of a complicated temperature field and basic heat transfer characteristics,
the hypothesis of proportionality is not applicable. In particular, this is obvious at the specific
points such as A, B, or point with coordinate x = 1 where the heat flux or temperature head
vanish, whereas the other component remains finite. Physically, this means that one of the
components changes its direction, which results or in two zones of flow as at the point A and
B where the heat flux changes direction or in meaningless infinite heat transfer coefficient as
at third point (x = 1) where the temperature head becomes zero (Exers. 2.56).

2.5 Zero Heat Transfer Surfaces

The feature of friction coefficient lessening in flows with decreasing external velocity and
becoming zero at the point of separation is used in so-called preseparated diffusers exhibiting
small energy losses. The shape of such diffuser is designed so that in each channel section the
flow is close to separation. This provides small friction coefficients resulting in low total losses
[146].

Since the nature of heat transfer coefficient in the case of decreasing temperature head is
similar, it makes possible to create a surface with theoretically zero heat losses [123, 201]. The
temperature head along such surface should vary so that the condition of heat flux inversion
is satisfied in each section of flow. In such a case, the temperature profile in the fluid layer
adjoining the wall has a vertical tangent at the surface. Because the vertical tangent at the sur-
face ensures zero heat transfer coefficient (Com. 2.18), the adjoining the wall fluid layer with
vertical tangent serves as an insulating coating. Providing such a condition of vertical tangent
of the temperature profile in each section of flow, one obtains a surface with theoretically zero
heat losses.

In self-similar flows with U = cxm and power law temperature head 𝜃w = c1xm1 , the corre-
sponding distribution of heat flux along the surface turns out to be also of power law qw = c2xm2

with exponent m2 = m1 + (1∕2)(m + 1). This result follows from formula (2.33) for isother-
mal heat transfer coefficient Nux = c3Re1∕2

x . Then, it is easy to find that the heat flux along
the surface becomes constant if the exponent in the temperature head distribution is m1 =
−(1∕2)(1 + m) yielding m2 = 0 in formula for heat flux (Exer. 2.57).

Proceeding from this result, we assume that in general, the zero heat flux may be obtained
also in the case of power law temperature head distribution specified in Görtler variable as
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𝜃w = K(Φ∕Re)s with unknown exponent s. Substituting this relation in the universal function
(1.40) and using a new dummy variable 𝜎 = (𝜉∕Φ)C1 , we find

qw = h∗

⎡
⎢
⎢
⎣

Ks(Φ∕Re)s

C1

1

∫
0

(1 − 𝜎)−C2𝜎(s∕C1)−1d𝜎 + lim
Φ→0

K
( Φ

Re

)s⎤
⎥
⎥
⎦

(2.45)

Here, the last term presents the temperature head 𝜃w(0) from equation (1.40) in the form of limit
at Φ → 0. Such presentation is necessary because in the case of negative unknown exponent s,
this term becomes infinite. The same occurs with the integral in (2.45) where the integrand at
negative exponent s also becomes infinite at 𝜎 → 0. To understand whether this integral (called
improper) is finite (converges) or infinite (diverges), the limiting cases should be considered.
Expression (2.45) after performing integration and substituting integral limits 1 and 0 becomes
(Exer. 2.58)

lim
qw

h∗
= K(Φ∕Re)s

(
lim
𝜎→1

s(1 − 𝜎)−C2+1

C1(1 − C2)
− lim
𝜎→0

𝜎s∕C1

)
+ lim

Φ→0
K
( Φ

Re

)s
(2.46)

Comment 2.20 Improper is an integral for which the interval of integration is not finite.
It follows from Figures 1.5, 1.8, and 1.9 that for laminar and turbulent flows both expo-

nents C1 and C2 are positive and C2 < 1. Therefore, for positive exponent (s > 0), all three
limiting terms are zero, and hence, we have lim(qw∕h∗) = 0, which shows that relation (2.45)
converges. For negative exponent (s < 0), the first term is still zero, but two others go to infi-
nite as Φ → 0, Nevertheless, in this case, the limit (2.46) for qw∕h∗ again is zero because
both infinite terms are equal having opposite signs. This becomes clear if the second term is
modified applying 𝜎 = (𝜉∕Φ)C1 = 𝜁C1 in order to present this term as lim

𝜎→ 0
𝜎s∕C1 = lim

𝜁→ 0
𝜁 s

(Exer. 2.59).
Thus, analysis reveals that relation (2.45) converges at any exponent s and due to that may

be used for farther consideration. From previous discussion we know that integrals of type
(2.45) are expressed via beta function (or through combination of gamma functions) (1.47).
Applying this approach, we arrive at the relation from which follows that the temperature
head distribution providing zero heat flux along a surface is a power law function (as it was
expected) with showing below exponent

qw =
qw∗s

C1

Γ(1 − C2)Γ(s∕C1)
Γ(1 − C2 + s∕C1)

, 𝜃w = K
( Φ

Re

)−C1(1−C2)
(2.47)

The value of this exponent is obtained from first equation (2.47) by satisfying condition qw =
0. This can be achieved if s = 0 or if the denominator in (2.47) goes to infinity Γ(1 − C2 +
s∕C1) → ∞. It is clear that the first case corresponds to isothermal surface. The second case
means that 1 − C2 + s∕C1 = 0 and hence, s = −C1(1 − C2).

Simple calculation shows that for laminar flow (Fig. 1.5) the exponent in the final result
(2.47) is practically the same for whole range of Prandtl number and pressure gradients (differ-
ent 𝛽) and equals s = −1∕2. For turbulent flow (Figs. 1.8 and 1.9), the exponent in (2.47) varies
from s = −1 for small to s = −0.4 for large Prandtl and Reynolds numbers, respectively, and
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is almost independent of pressure gradient (Exer. 2.60). It is known [242] that for self-similar
flows, the heat flux along the surface is zero if the temperature head varies according to
power law with exponent s = −(m + 1)∕2. This particular result follows from general formula
(2.47) since in this case external velocity distribution U = cxm leads to the Görtler variable
Φ ∼ xm+1 and, therefore, for laminar flow the zero heat flux is obtained at temperature head
𝜃w ∼ x−(m+1)∕2 (Exer. 2.61).

The temperature distribution (2.47) is difficult to implement in reality because according
to this relation, the surface temperature becomes infinite at the starting point at Φ → 0 [123].
Therefore, only laws close to (2.47) might be realized practically. For instance, one such tem-
perature distribution, which gradually approaches the relation (2.47) as the distance from the
starting point increases, is as follows

𝜃w = K
(

K1 +
Φ
Re

)s
, qw = qw∗

⎧
⎪
⎨
⎪
⎩

(1 − z)s + s

z

∫
0

[

1 −
(
𝜁

z

)C1
]−C2

d𝜁

(1 − z + 𝜁 )1−s

⎫
⎪
⎬
⎪
⎭
(2.48)

Here, 𝜁 = 𝜉∕(K1 + Φ∕Re) and z is the value of 𝜁 when 𝜁 = Φ. As Φ → ∞, the last expressions
coincides with equations (2.47) and heat flux becomes zero, whereas in preceding sections of
flow, the heat flux is close to zero.

Comment 2.21 In principle, these results may be used to minimize the heat losses in the car
or other vehicles if the heat sources inside a wall are distributed so that heat releases according
to equation (2.48). In such a case, almost total heat remains inside the car because the outer
side of the wall is almost isolated.

2.6 Optimization in Heat Transfer Problems

The universal functions indicate that the heat transfer intensity is determined by an isothermal
heat transfer coefficient and the temperature head distribution. This follows from the structure
of universal functions defining the heat flux as a product of heat transfer coefficient h∗ and
series (1.39) or integral (1.40), which both are specified by temperature head distribution 𝜃w.
Therefore, by appropriate selection of the temperature head distribution, one can ensure that a
given particular system satisfied the desired conditions, for example, a maximum or minimum
rate of heat transfer.

In the general case of gradient flow over an arbitrary nonisothermal surface, the two inte-
gral universal functions (1.40) and (1.68) defining the heat flux or temperature head may be
applied for solution of such problems. Mathematically, the optimization problem is a question
of extreme (maximum or minimum) of one of those integrals. The solution of such problem in
general is difficult, especially in the cases when the conjugate effects are important. It is much
simpler to investigate different possible versions of interest using integral (1.40) or (1.68) and
select the best comparing the results. Although such approach does not capture all capabilities
of the optimization, the results are instructive and useful for applications.

To illustrate the proposed approach, we consider solutions of three simple optimization
problems [116]. As usually in statement of optimization problems, the considered examples
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of solution start with detailed problem formulation indicating the specific conditions of
optimization and applying assumptions. To see the effect of flow regime, the same problems
are solved for laminar and turbulent flows at zero pressure gradients and for laminar flow
near stagnation point. In addition, the second and third problems are considered also for jet
wall flow at zero pressure gradient. The optimal results show significant effects reaching up
to 30% for laminar and 20% for turbulent flows.

2.6.1 Problem Formulation

It is required to install on a plate several heat sources or sinks, for instance, electronic compo-
nents with linear varying strengths. How should these be arranged to ensure the minimum of
the maximal plate temperature?

2.6.1.1 Zero Pressure Gradient Flow

For linear varying heat flux qw = K + K1(x∕L) and zero pressure gradient flow, equation (1.68)
may be presented in following form

𝜃w = 1
h∗

[KI1 + K1I2(x∕L)] (2.49)

Ii =
C1

Γ(C2)Γ(1 − C2)

1

∫
0

(1 − 𝜁C1)C2−1𝜁C1(1−C2)+n+i−2d𝜁

where n is the exponent in the expression Nux∗ = cRe1−n
x , 𝜁 = 𝜉∕x, and i = 1, 2.This integral

can be expressed using gamma functions like other similar integrals above:

Ii =
Γ[1 − C2 + (n + i − 1)∕C1]

Γ(1 − C2)Γ[1 + (n + i − 1)∕C1]
(2.50)

Expressing coefficients K and K1 in terms of difference Δq = qmax − qmin and total heat flux
Qw, one presents first relation (2.49) for temperature head in the form (Exer. 2.62)

𝜃w = 1
h∗

{
I1qav ± Δq

[1
2

I1 − I2 (x∕L)
]}

(2.51)

where qav = Qw∕BL is an average heat flux, B is the width of the plate and signs plus and
minus correspond to decreasing and increasing heat flux along the plate, respectively.

For zero pressure gradient flow h∗ → ∞ as x → 0. Hence, the temperature head at the begin-
ning becomes zero. Then, it follows from equation (2.51) that the maximum temperature head
for increasing heat flux is located at the end of the plate, at x → L. This is not obvious in the
case of decreasing heat transfer. To find the location of temperature head maximum in this case,
one differentiates equation (2.51), taking into account that h•(x) = h∗(L)(x∕L)−n. Equating the
result to zero, gives this coordinate

xm∕L =
I1n[1 + 0.5(Δq∕qav)]

I2(1 + n)(Δq∕qav)
(2.52)
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Setting in this expression xm = L, one finds the limiting value of ratio Δq∕qav which corre-
sponds to case when the maximum is located at the end of the plate

(
Δq

qav

)

lim

=
I1n

I2(1 + n) − 0.5I1n
(2.53)

For all ratios Δq∕qav lower than this limiting value, the maximum of temperature head is
located at the end of the plate, and for all those which are higher than the limiting value, it
is placed at x < L (Exer. 2.63).

In the case of laminar flow at Pr ≥ 1 ∶ C1 = 3∕4, C2 = 1∕3 (Fig.1.5) and n = 1∕2; in the
case of turbulent flow at Pr ≈ 1 ∶ C1 = 1, C2 = 0.18 at Re𝛿1

= 103 (Re = 5 ⋅ 105), C1 = 0.84,
C2 = 0.1 at Re𝛿1

= 105 (Re = 108) (Figs. 1.8 and 1.9) and n = 1∕5; for wall jet of laminar
flow at Pr ≈ 1 ∶ C1 = 0.42, C2 = 0.35 and n = 3∕4 [148]. At these values of the exponents
equation (2.49) yields: for laminar flow I1 = 0.73 and I2 = 5∕9, for turbulent flow I1 = 0.93
and I2 = 0.8 at Re𝛿1

= 103; I1 = 0.96 and I2 = 0.88 at Re𝛿1
= 105; for laminar wall jet I1 =

0.55 and I2 = 0.43 (Exer. 2.64).
Calculation results obtained by equation (2.49) using these values of integrals are plotted in

Figure 2.17 where the differenceΔ𝜃w.max = |𝜃w.max.in − 𝜃w.max.de| of the maximum temperature
heads in the cases of increasing 𝜃w.max.in and decreasing 𝜃w.max.de heat fluxes, referred to the
higher of those two is plotted as a function ofΔq∕qav. Estimating from this figure the difference
Δ𝜃w.max for the value of ratioΔq∕qav of given heat sources or sinks yields the data of how much
the maximum of the temperature head in the case of increasing heat elements is greater than
in the opposite situation with decreasing units. It follows from these data that the maximum
surface temperature at the same heat flux (same Δq∕qav) could be significantly reduced by
arranging the cooled sources in the row with decreasing and the heated sinks in the chain
of increases strength in flow direction, respectively. It is seen from Figure 2.17 that the value
of reduced surface temperature is approximately proportional to ratioΔq∕qav at small values of
this parameter and approaches about 30% at Δq∕qav ≈ 0.5 increasing farther remarkable for
laminar and mach slower for turbulent flows as Δq∕qav grows.

2.6.1.2 The Flow Near Stagnation Point

The external velocity in this case is proportional to coordinate U = cx, and the heat transfer
coefficient from an isothermal surface is independent of x (n = 0). Thus, the Görtler variable
is Φ = cx2∕2, and hence, the linear dependence for heat flux in Görtler variable turns to qw =
KI1 + K1I2

√
(2∕c)Φ. Using this result and knowing that an isothermal heat transfer coefficient

is independent on coordinate, one gets two formulae similar to relations (2.49) for temperature
head 𝜃w and for integrals Ii. This leads to expression (2.50) in gamma functions for integrals
Ii, where (n + i − 1) is replaced by (i − 1)∕2, and results in a formula for temperature head
similar to (2.51)

Ii =
Γ[1 − C2 + (i − 1)∕2C1]

Γ(1 − C2)Γ[1 + (i − 1)∕2C1]
, 𝜃w = 1

h∗

{
qav ± Δq

[1
2
− 0.73 (x∕L)

]}
(2.54)

Here, the last expression is obtained from equation (2.51) after substituting the values of inte-
grals I1 = 1 and I2 = 0.73 computed applying the same as for zero pressure gradient exponents
C1 = 3∕4 and C2 = 1∕3.

It is ease to understand that in this case the temperature head is maximal at x = 0 under
decreasing heat fluxes, whereas the temperature head is the highest at x = L in the case of
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Figure 2.17 Absolute value of difference between maximum temperature heads under linear decreas-
ing and increasing heat fluxes: 1- wall jet, laminar flow, 2-plate, laminar flow, 3 and 4-turbulent flow
Re = 108 and Re = 5 ⋅ 105, 5- stagnation point

increasing heat fluxes. This is obvious because at an invariable heat transfer coefficient, the
temperature head changes according to heat flux variation yielding in increasing or in decreas-
ing of 𝜃w as heat flux increases or decreases. Computing based on this information shows that,
unlike the situation in previous case of zero pressure gradient, the value of maximum tem-
perature head at increasing heat flux is smaller then that in opposite case at decreasing heat
flux. Therefore, in order to reduce the maximal surface temperature, the strength of the sources
should be increased in the flow direction of cold coolant, whereas the strength of sinks should
be decreased in flow direction of a hot stream. It is seen from Figure 2.17 that in this case the
effect of reducing the maximal surface temperature in smaller than that for the case of a plate
(Exer. 2.65).

2.6.2 Problem Formulation

It is given allowable maximal surface temperature. Find the mode of temperature head variation
providing a maximal removed (or supplied) total heat flux.

2.6.2.1 Zero Pressure Gradient Flow

If the sought temperature head is approximated by quadratic polynomial, the heat flux is rea-
sonable to determine by differential universal function since in such a case only two terms are
retained in the series

𝜃w = a0 + a1(x∕L) + a2(x∕L)2

qw = h∗[a0 + a1(1 + g1)(x∕L) + a2(1 + 2g1 + 2g2)(x∕L)2]
(2.55)
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After integrating the last equation and using h∗ = h∗(L)(x∕L)−n, one gets a total heat flux

Qw = h∗(L)LB

[
a0

1 − n
+

a1

(
1 + g1

)

2 − n
+

a2(1 + 2g1 + 2g2)
3 − n

]

(2.56)

Two cases should be considered:

(i) The maximal temperature head is located at a leading or at traveling end of the plate. In
this case first equation (2.55) has one of two forms:

𝜃w = 𝜃w.max + a1(x∕L) + a2(x∕L)2, 𝜃w = 𝜃w.max + a1[1 − (x∕L)] + a2[1 − (x∕L)]2
(2.57)

Because the first terms present the maximal value of the temperature head, the sum of the
two other terms should be negative at any x in the whole range 0 ≤ x ≤ L.:

a1(x∕L) + a2(x∕L)2 ≤ 0, a1[1 − (x∕L)] + a2[1 − (x∕L)]2 ≤ 0 (2.58)

If a2 ≤ 0, then in order to satisfy the first of these inequalities at x → 0 or the second at
x → 1, it is necessary that a1 ≤ 0. Then, it follows from equation (2.57) that the maxi-
mum heat flux is attained at a1 = a2 = 0 and a0 = 𝜃w.max, that is, when a plate is heated
uniformly to the specified maximum temperature. If a2 > 0, then should be a1 < 0. Sat-
isfaction of the first inequality (2.58) at x = L or the second at x = 0 requires |a1| > a2. It
easy to check that under these conditions, the sum of the two last terms in equation (2.57)
for laminar (e.g., Pr ≈ 1, g1 = 0.62, g2 = −0.135, and n = 1∕2) or for turbulent (e.g.,
Pr ≈ 1, Re𝛿1

= 103, g1 = 0.2, g2 = −0.05 and n = 1∕5) flows at zero pressure gradient is
negative, and hence, the total heat flux is again maximum at a1 = a2 = 0 and a0 = 𝜃w.max.

(ii) The maximum temperature head occurs at 0 < x < L. In this case at a2 < 0, the first
parabola (2.55) is open down toward the negative ordinate. Therefore, after changing
the sign to a minus at the last term in equation (2.55), only the case with positive a2
should be studied. In such a case, the coordinates of parabola vortex in the frame (𝜃w vs
x) are determined as xm∕L = a1∕2a2 and 𝜃wmax = a0 + a2

1∕4a2. Considering these rela-
tions as a system of two equations, one finds a0 in terms of two other coefficients, and
after substitution the result in equation (2.56) gets the expression for total heat flux

Qw = h∗LB

[
𝜃w.max

1 − n
+ a2F

(
a1

a2

)]
,

F

(
a1

a2

)
= − 1

4(1 − n)

(
a1

a2

)2

+
1 + g1

2 − n

a1

a2
−

1 + 2g1 + 2g2

3 − n
(2.59)

The discriminant of the last quadratic trinomial defined as

Δ =
1 + 2g1 + 2g2

(1 − n)(3 − n)
−
(

1 + g1

2 − n

)2

(2.60)

is positive for laminar and turbulent flows as well as for laminar wall jet over the plate,
which means that trinomial F (2.59) has no roots. It follows from this result that the
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trinomial F(a1∕a2) is negative at all ratios a1∕a2 because it is negative at a1∕a2 = 0.
Thus, we arrive again at the same conclusion that the maximum heat flux is obtained
when the plate is heated uniformly to the specified maximum temperature (Exer. 2.66).

At first sight, the solution of this problem is worthless. In fact, this is not true because
analysis shows that in this case, the result depends on the relation between values of
coefficients g1 and g2, which govern the effect of nonisothermicity, and exponent n in
relation for the heat transfer coefficient on an isothermal wall. Two examples in which a
nonuniform distribution of temperature head is optimal are given below (Exer. 2.67).

2.6.2.2 The Flow Near Stagnation Point

Although the temperature head is approximated by the same first polynomial (2.55), in this
case, the integral universal function for computing heat flux is convenient to apply. The rea-
son of this is that for flow with pressure gradient the Görtler variable should be used, which
is easier to perform by the integral equation (1.40), required only the first derivative, than
series in derivatives. Substituting a first derivative of temperature head (2.55) with respect to
Görtler variable Φ = cx2∕2 in equation (1.40), gives for heat flux formula similar to expres-
sion (2.55) qw = h∗[a0 + a1(I1∕2)(x∕L) + a2I2(x∕L)2] with I1 = 2.9 and I2 = 1.62. Integration
of this expression and taken into account that n = 0 for stagnation point, one gets for removed
total heat similar to (2.59) relation (Exer 2. 68)

Qw = h∗LB

[
𝜃w.max + a2F

(
a1

a2

)]
, F

(
a1

a2

)
= −1

4

(
a1

a2

)2

+ 0.73
a1

a2
− 0.533 (2.61)

The discriminant of this trinomial is Δ ≈ 0, and the root is 1.46. Therefore, the first
equation (2.61) shows that Qw.max = h∗𝜃w.max is achieved at any a2 as long as ratio
a1∕a2 = 1.46, and hence, F(a1∕a2) = 0. In such a case, the temperature head distribution
(2.55) and corresponding heat flux are (Exer. 2.69)

𝜃w = 𝜃w.max − a2[0.53 − 1.46(x∕L) + (x∕L)2]

qw = h∗{𝜃w.max − a2[0.53 − 2.12(x∕L) + 1.62(x∕L)2]}
(2.62)

The first relation (2.62) presents a nonuniform temperature head distribution providing the
same total removed or supplied heat (2.61) as the uniform heating to a maximally permissible
plate temperature, but at lower than that temperature for whole plate, except one point. Dis-
tribution of temperature head (solid curves) and local heat fluxes (dashed curves) (2.62) are
plotted in Figure 2.18 for different values of a2∕𝜃w.max. It is seen that the ratio 𝜃w∕𝜃w.max < 1 on
whole plate, except point x∕L = 0.8 where the temperature is equal to the permissible maximal
temperature. The temperature head decreases as the value of a2∕𝜃w.max grows, and becomes
zero at the beginning of the plate at maximum value a2∕𝜃w.max = 1.88 (Fig. 2.18). The physi-
cal explanation for this effect is that despite the temperature head is lower than the maximal,
it increases along the basic part of the plate resulting in greater then isothermal heat transfer
coefficient on the uniformly heated plate, and this compensates the decrease in the temperature
head (Exer. 2.70).
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Figure 2.18 Different distributions of the temperature head (solid curves) and the corresponding heat
fluxes distributions (dashed curves) providing the same total heat removed from surface a) stagnation
point a2∕𝜃w.max ∶ 1 − 0.4, 2 − 1.0, 3 − 1.88 b) jet wall: 1 − 0, 2 − 1.0, 3 − 3, 4 − 4

2.6.2.3 The Jet Wall Flow at Low Prandtl Numbers and Zero Pressure Gradient

In this case, g1 = 4, g2 = −0.03 and n = 3∕4 [148]. It is ease to check that under these values
of parameters, the sum of two last terms in equation (2.56) at any value of coefficients a =
a2 = −a1 is close to zero ≈ 0.027. If for simplicity this small value is neglected, the removed
total heat is determined only by coefficient a0 = 𝜃w.max, and distributions of temperature head
and local heat fluxes take the forms similar to (2.55)

𝜃w = 𝜃w.max − a(x∕L)[1 − (x∕L)], qw = h∗{𝜃w.max − a(x∕L)[5 − 9(x∕L)]} (2.63)

Figure 2.18 (b) shows defined by the first equation nonunifom temperature head distributions
for several values of a∕𝜃w.max providing at lower surface temperature the same removed total
heat as in the case of uniformly heated plate at maximal surface temperature. The same effect of
reducing temperature is seen. However, the effect is less than that in the case of the stagnation
point flow (compare, for example, both curves for a∕𝜃w.max = 1) because here, the temperature
head distributions are symmetrical so that the parts of surface with growing and lessening
temperature heads are equal.

Comment 2.22 The calculation shows that despite the distribution of the temperature head
being symmetrical in this case, the average heat transfer coefficient is larger than an isothermal
coefficient, and it increases as a∕𝜃w.max grows also (Exer. 2.71 and 2.72).

2.6.3 Problem Formulation

It is known the total heat flux which is necessary to remove (or supplied). Find the pattern of
this heat flux variation providing the smallest maximal plate temperature.
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The desired heat flux distribution we approximate by a quadratic polynomial (2.64), similar
to the temperature head distribution (2.55)

qw = a0 + a1(x∕L) + a2(x∕L)2, qw.un =
Qw

BL
= a0 +

a1

2
+

a2

3
, (2.64)

Integrating this polynomial gives the total removed heat Qw, and then, the uniform local heat
flux qw.un (2.64) is obtained. The corresponding temperature head distribution is determined
as before in example (2.17) by equation (1.68). Applying the first relation (2.64) and knowing
that for zero pressure gradient n = 1∕2, one gets

𝜃w = 1
h∗

[a0I1 + a1I2(x∕L) + a2I3(x∕L)2] (2.65)

Here, integrals Ii(i = 1, 2, 3) are analogous to integrals (2.49) and are computed by
equation (2.50) through gamma functions for laminar, turbulent flows on a plate, and for jet
wall flow for the same values of parameters as in Example 2.17 (Exer. 2.73).

The coordinate of the temperature head maximum is found by standard procedure of differ-
entiating expression (2.65) for 𝜃w and equating it to zero, which gives an equation

(xm

L

)2
+

I2a1(n + 1)
I3a2(n + 2)

(xm

L

)
+

I1n

I3(n + 2)

(
qw.un

a2
−

a1

2a2
− 1

3

)
= 0 (2.66)

To analyze this quadratic equation, we consider again two cases:

(i) Equation (2.66) has no roots. In this case, the discriminant of equation (2.66) is negative
so that the following inequality is valid

[
I2a1 (n + 1)
2I3a2(n + 2)

]2

−
I1n

I3(n + 2)

(
qw.un

a2
−

a1

2a2
− 1

3

)
< 0 (2.67)

Since there are no roots, the sign of expression (2.66) does not change, and hence, the
maximum of temperature head is attained at the beginning or at the end of a plate. So,
if expression (2.66) is positive at x = 0, it is positive for whole interval 0 < x∕L < 1. It
follows from equation (2.66) that this occurs if the last term is positive because the two
other terms vanish at x = 0. Calculation results presented in Table 2.3 show that in the
cases considered here, this is true because qw.un > 0 and a1∕a2 < 0. Then, it is clear that
under positive last term and negative ratio a1∕a2, the trinomial (2.66) decreases along
the plate, and consequently, the maximal temperature head is located at the plate end at
x = L, because the positive function could not decrease along the plate starting from zero
(Exers. 2.74 and 2.75). In this case, the maximal temperature head is defined as

𝜃w.max

𝜃w.max.un
= 1 +

a2

qw.un

[
a1

a2

(
I2

I1
− 1

2

)
+

I3

I1
− 1

3

]
(2.68)

Here, 𝜃w.max is obtained from equation (2.65) at x∕L = 1 after using the second
equation (2.64) for eliminating coefficient a0. The uniform temperature head 𝜃w.max.un is
found applying universal function (1.68) for the case qw = cont. resulting in equations
similar to (2.49) and (2.50) (Exer. 2.76).
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Table 2.3 Maximal temperature head reducing at optimal pattern of removed heat flux

Kind of flow I1 I2 I3 n a1∕a2 qw.un∕a2 𝜃w.max∕𝜃w.max.un

Laminar flow 0.73 0.56 0.48 1/2 −2.14 1.18 0.79
Turbulent flow

Re𝛿1
= 103

0.93 0.80 0.74 1/5 −2.31 3.23 0.88

Turbulent flow
Re𝛿1

=105
0.96 0.88 0.84 1/5 −2.38 3.33 0.86

Laminar wall jet 0.55 0.43 0.37 3/4 −1.97 0.69 0.67

The optimal values of a1∕a2 correspond to minimum of 𝜃w.max. To find this minimum,
it is necessary to get an equation by setting to zero the derivative of equation (2.68) with
respect to a1∕a2. Thus, differentiation of equation (2.68), yields (Exer. 2.77)

qw.un

a2

(
I2

I1
− 1

2

)
− d

d(a1∕a2)

(
qw.un

a2

) [
a1

a2

(
I2

I1
− 1

2

)
+

I3

I1
− 1

3

]
= 0 (2.69)

This equation consists of two unknown: qw.un∕a2 and a1∕a2. Therefore, it is necessary to
express the ratio qw.un∕a2 in terms of a1∕a2. This is done using an equation that is obtained
from condition (2.67) by changing the sign of inequality to equality sign. After substitut-
ing the result of solving this equation for qw.un∕a2 along with corresponding derivative of
this term in equation (2.69), we arrive at following expression

n + 2
n

(
I2

I1
− 1

2

)
I3

I1

[
I2 (n + 1)
2I3(n + 2)

]2(a1

a2

)2

+ 2

(
I3

I1
− 1

3

)
(n + 2)

n

I3

I1

[
I2 (n + 1)
2I3(n + 2)

]2 a1

a2

+ 1
2

I3

I1
− 1

3

I2

I1
= 0 (2.70)

which determines the optimum values of a1∕a2. The results of solution of this quadratic
equation are listed in Table 2.3 (Exer. 2.78).

Comment 2.23 To understand the way it is possible to use an equation similar to inequal-
ity (2.67), consider such equation as a limiting case of condition (2.67). The inequality
sign in (2.67) tells us that its left side is less than zero, but this sign does not specify how
much it is less than zero. Therefore, this inequality is valid at any difference between the
right inequality side and zero including small amounts up to limiting case of infinite small
difference from zero. But such inequality (2.67) of which the left side differs from zero
by an infinite small amount in fact is an equation that we used (Exer. 2.79).

Table 2.3 shows that an appropriate selection of the heat flux pattern allows us to reduce
the maximal temperature on 12-14% for turbulent, 20% for laminar flows over plate, and
up to 30% for jet wall flow. The corresponding optimal heat flux distribution providing the
required amount of the removed (supplied) heat is defined by the first equations (2.64).
We present this equation in two forms, which may be used depending of calculation
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convenience (Exer. 2.80)

qw = a2

(
qw.un

a2
−

a1

2a2
− 1

3
+

a1

a2
x + x2

)

= qw.un

{
1 +

a2

qw.un

[
a1

a2

( x
L
− 1

2

)
+
( x

L

)2
− 1

3

]}
(2.71)

(ii) The equation (2.66) has roots. We have showed that for the case considered, there are
no roots of equation (2.66). To understand the way we consider the opposite case, take
into account that we study a problem of removing heat. Therefore, if there are roots, they
should be special, such that distribution (2.71) could not change its sign along the surface.
Otherwise, after the sign changes from minus to plus, the heat will be supplied to the plate
instead of removing it, and vice versa in the case of supplying heat when plus will change
to minus resulting in heating instead of supplying. To avoid such a situation, the following
inequality should be satisfied ensuring that only imaginary rots are possible

1
4

(
a1

a2

)2

−
(

qw.un

a2
− 1

2

a1

a2
− 1

3

)
< 0 (2.72)

This relation is a discriminant of quadratic trinomial (2.71), and a satisfaction of inequal-
ity (2.72) means that the heat flux distribution (2.71) does not have points of maximum
or minimum at which the change of sign occurs (Exer. 2.81).

Thus, if desired distribution (2.71) has special roots, the two conditions should be
true: equation (2.66) and inequality (2.73). Substituting the last sum in parentheses from
equation (2.66) in condition (2.72), we obtain inequality

1
4

(
a1

a2

)2

+
I3

I1

n + 2
n

(xm∕L)2 +
I2

I1

a1

a2

n + 1
n

(xm∕L) < 0 (2.73)

which only one should be satisfied if both conditions (2.66) and (2.72) are true.
It is clear that at a1∕a2 > 0 inequality (2.73) is not satisfied for xm∕L > 0. This is not

apparent in the case when a
1
∕a2 < 0. However, one can easily check by direct calcula-

tion that at 0 < xm∕L < 1 inequality (2.73) is not satisfied for the studying cases also at
a

1
∕a2 < 0. So, analysis indicates that there are no any roots of equation (2.66) for the

problem in question showing that the statement at the beginning of the case (ii) is not a
true (Exer. 2.82).

Exercises

2.34 What means the term “perturbation”? Think about examples of perturbation other then
perturbation boundary conditions. Hint: read some examples from the article about
“perturbation” on Wikipedia.

2.35 What is the general boundary condition? What benefits does such a condition offer?
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2.36 Explain how the estimation of the value of the second series term may be used to eval-
uate the accuracy of the boundary condition of the third kind.

2.37 Derive relation (2.34) for estimating error caused by common approach and obtain
corresponding evaluations for laminar and turbulent flows. Show that in this problem
the temperature head on both sides of a plate increases in flow direction. Hint: consider
how the boundary layer thickness and the corresponding difference Tw − T∞ change
along the plate as the distance from the starting point increases.

2.38* Solve the problem from Example 2.11 for the case when the flow on a side 1 is the
same, that is, laminar, and on a side 2, the flow is turbulent. Compare your results with
data from previous exercise. Hint: consider the expression for error taking h1 = c1x−n

1

and h2 = c2x−n
2 to see that: (i) if index 1 denotes side with laminar flow, the result

qualitatively is the same as in Example 2.11 when flow on both sides is laminar or
turbulent, and (ii) if index 1 denotes side with turbulent flow, error becomes negative,
which does not fit consider situation. Think why this awkward result happens.

2.39* Obtain equation and solution (2.35). Prove that this solution satisfies the equation (2.35)
and given boundary conditions.

2.40 Solve the problem from Example 2.12 for turbulent flow at average Rex = 5 ⋅ 105. Com-
pare your results with data from previous exercise.

2.41 Estimate numerically the derivative d𝜃w∕dx of curve 𝜃w(x) in Figure 4.9 (curve 7) and
calculate the error caused by the boundary condition of the third kind in the case of
thermally treatment polymer sheet in Example 2.13.

2.42 Obtain relations (2.36) and show that equation (2.37) follows from (2.36) in the case of
zero pressure gradient. What causes the error determined by the second equations (2.36)
and (2.37)? Why is this error estimated by such difference?

2.43 Recall or study in Advanced Engineering Mathematics the distinction between linear
and nonlinear differential equations. What is the superposition principle? Show that
superposition approach is unacceptable to nonlinear equation. Hint: consider simple
linear and nonlinear equations and substitute a sum of two simple solutions (e.g., two
constants assuming that those are solutions) and see the results after substitution. Are
the results in both cases (of linear and nonlinear equations) as sums of two separate
similar solutions?

2.44 Show that relations (2.39) and (2.40) have exactly the same form as universal functions
(1.39) and (1.40). Hint: take into account a note in parentheses or consider the total skin
friction 𝜏 = cf Pw = cf w

(𝜌U2∕2) to compare it with heat flux qw = h𝜃w.

2.45 Derive the first expression (2.42) for coefficient 𝜒 f and compute skin friction coeffi-
cients for 𝛽 = 0 and 𝛽 = 1 using formula cf = 0.664Φ−1∕2𝜒 f as it done in text Show
that this series (2.42) diverges for not integer values of 𝛽. Hint: use some not integer
value of 𝛽, for example, 𝛽 = 1∕2 or 𝛽 = 1∕3.
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2.46* Obtain the second equation (2.42) from integral formula (2.41) following the explana-
tion given in the text. Repeat the calculation presented in the text. Hints: (i) substitute
the derivative in integrand (2.42) using a dummy variable to get dPw∕d𝜁 = 𝜌𝛽𝜁𝛽−1

instead of dPw∕dΦ = 𝜌𝛽Φ𝛽−1, (ii) to calculate integrals use software, for example,
Mathcad.

2.47 Compare the results obtained in previous exercise with data for self-similar flows given
in [338, Fig. 9.1]. Hints: (i) measure the slope of the tangent to the corresponding curve
at the surface on Fig. 9.1 in [338], and compute the quotient by dividing this result by
0.664. The values of 𝜒 f gained by calculations compare with coincident quotients. For
example, the slope of the tangent to the curve 𝛽 = 1.6 is about ≈ 2, then the quotient is
2∕0.664 = 3.01, whereas the computing value is 2.85, which is ≈ 6% less.

2.48 Derive equations (2.43) and repeat calculation for the same values of x. See hints in the
last exercise.

2.49 Calculate the coordinate of separation point using both relations (2.43). Hints: (i) solve
the quadratic equation defining the point of separation by the first relation (2.43) and
perform calculation to see the problem of small difference arising in this case, (ii) solve
this equation by iteration as explained in Comment 2.14, (iii) in using the second for-
mula (2.43) compute 𝜒 f for several values of Φ, plot the curve 𝜒 f (Φ), and extrapolate
this curve to abscissa axis to find the point of intersection, which gives the point coor-
dinate of separation where 𝜒 f = 0.

2.50 Obtain equations (2.44) and expression for point separation as it described in the text.
Calculate the coordinate of point separation. Hint: use relations for cf , cf∗ and Pw =
2𝜌U2

∞(2Φ −Φ
2
) knowing that Φ = 1 − cos x. Compare your result with other approx-

imate data indicated in text and estimate the errors of your and other results with value
of the separation angle 104.5∘ gained numerically.

2.51 Calculate and plot dependence 𝜏w(𝛾∘.) using coefficients b given in the text. Compare
your results with the data from Figure 10.7 in [338]. Hint: use equation (2.44), relation
for cos x, and dependence between arc length x and central angle 𝛾∘.

2.52 Repeat the physical analysis of temperature profile deformation to understand this pro-
cess in details that gives insight into such type of phenomena.

2.53 Consider Fourier and Newton laws for heat flux and friction stress and equations (2.39)
and (1.39) defining pressure Pw and temperature head 𝜃w to see the similarity of both
laws and difference of both equations explained in comment 2.17.

2.54 Derive the expression for the coordinate of heat flux inversion points using relation
(1.38) for linear temperature head 𝜃w∕𝜃wi = 1 − (x∕L) as explained in text. Find the
coordinate of inversion point for laminar flow for Pr = 0.01 taken value of coeffi-
cient g1 from Figure 1.3. Draw curve 𝜒 t(x) for interval 0.5 < x < 0.7 to see how heat
flux changes its direction resulting in negative 𝜒 t and hence, in negative heat transfer
coefficient.
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2.55 Find the coordinate of heat flux inversion point for turbulent flow for Pr = 0.01, Re𝛿1
=

103 and for Pr = 0.01, Re𝛿1
= 105. Compare your results with data for the cases con-

sidered in the text and in the previous exercise. Describe how Prandtl and Reynolds
numbers affect the location of heat inversion point. Hint: take values of coefficient g1
from Figure 1.6.

2.56 Repeat the analysis of temperature profile deformation to understand the details, in
particular, the role of points A and B on Figure 2.16 and heat flow directions in different
zones.

2.57 Show that in the self-similar flows with U = cxm and power law temperature head 𝜃w =
c1xm1 , the heat flux is also distributed along surface according to power law with expo-
nent m2 = m1 + (1∕2)(m + 1). Hint: use formulae Nux = c3Re1∕2

x and Nux = qwx∕𝜃w𝜆.
Find the value of exponent m1 at which the heat flux is constant and compare the result
with obtained in the text.

2.58 Study in Advanced Engineering Mathematics (simpler explanation is in the Kreyszig’s
book) the improper integral to understand the derivation of equation (2.46) and obtain
this equation. Hint: construct expression (2.46) from (2.45) as two limits after inte-
gration as described in the text and replace ratio s∕C1 from factor before integral into
integrand.

2.59 Show that expression (2.45) is finite at any value of exponent s (positive, negative, and
zero) to understand the analysis from text. Explain why this result is important. What
happens in an opposite case? Hint: use equation (2.46).

2.60 Prove that the second equation (2.47) follows from the first one and gives the solution
of the problem in question. Estimate the value of exponent s in this equation for laminar
flow using several values of exponents C from Fig. 1.5 to see that s slightly depends on
Pr and 𝛽 being about (-1/2). Compute this exponent for turbulent flows taken the values
of C1 and C2 from Figures 1.8 and 1.9. Compare your data with that from the text.

2.61 Show that the known result of temperature head distribution providing the zero heat
flux in self-similar flows follows as a particular case from formula (2.47).

2.62 Derive the second relations (2.49) from integral universal function (1.68) for the case of
linear law qw = K + K1(x∕L) and present the first relation (2.49) for this case in terms
of total heat flux Qw = qavBL and difference Δq = qmax − qmin as expression (2.51).
Hint: first obtain the equation (2.50) using beta function (1.47).

2.63 Obtain equation (2.52) and (2.53) as described in the text and explain the results of
analysis. Hint: first consider simple examples when Δq∕qav is lower or higher than
limiting value (2.53).

2.64* Calculate dependence Δ𝜃w.max∕𝜃w.max = f (Δq∕qav) for laminar flow at low Prandtl
number and for turbulent flow at low Prandtl and Reynolds numbers using
equations (2.50)–(2.53). Draw curves similar to plotted in Figure 2.17 in the
same form and perform analysis analogous to given in the text. Compare your
results with data from Figure 2.17. Hint: first calculate integrals Ii for i= 1 and 2 by
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equation (2.50) and then obtain formula for Δ𝜃w.max∕𝜃w.max using relation (2.51). To
find the points with maximal surface temperature apply equations (2.52) and (2.53).

2.65 Explain why in the case of stagnation point, the sources and the sinks should be
arranged in the opposite manners than that in the case of a plate?

2.66 Recall the role of discriminant in studying algebraic equations from calculus to under-
stand the analysis of case (ii) in example 2.18.

2.67* The analysis of zero pressure gradient case in example 2.18 shows that the largest heat
flux is removed if the plate temperature is uniform and equal to the specified maximal
temperature. Nevertheless, it is clamed that this is not always the case because in gen-
eral the result depends on nonisotermicity effect and on the value of isothermal heat
transfer coefficient. Explain physically why these facts indicate that there is another,
nonuniform optimal distribution of temperature head. Hint: take into account that the
rate of heat transfer depends on two components as it is explained at the beginning of
this section.

2.68* Derive relation for local heat flux qw and expression (2.61) for total removed heat Qw.
Hint: to obtain derivative of temperature head (2.55) with respect to Görtler variable use
chain rule d𝜃w

dΦ = d𝜃w

dx
dx
dΦ (see calculus), where the last derivative is found applying the

Görtler variable specified for the stagnation point. Follow explanations from the text.

2.69 Perform the following text analysis of trinomial (2.61) leading to relations (2.62) to
understand why the same total removed heat is obtained at any value of coefficient a2.

2.70 Find coordinates in which all curves of temperature head (2.62) coincide and estimate
the coordinate of the maximum of the unified curve.

2.71 Estimate the sum of two last terms in equation (2.56) to show that this sum is close
to zero and explain the derivation of equations (2.63). Calculate the ratio h∕h∗ for
a∕𝜃w.max = 1 using these relations to see that the heat transfer coefficients on the part of
surface with increased temperature head are significantly higher than those on another
surface part with decreasing temperature head. Show that the average heat transfer coef-
ficient is greater than isothermal one and explain why this is the reason of reducing
the surface temperature. Hint: use relation h = qw∕𝜃w and calculate the average heat
transfer coefficient by integrating this relation.

2.72 Perform the same calculation for some value of parameter a∕𝜃w.max from a range 1.5 <
a∕𝜃w.max < 4. You will see that on surface with decreasing temperature head the heat
transfer coefficient is negative at one or more points. Draw the graph h∕h∗ vs x to
see that the curves close to these points (exactly at x where h∕h∗ = 0 and this ratio
changes the sign) become discontinuous. Explain these effects physically. Also calcu-
late the average heat transfer coefficient as in the previous example to show that despite
there being negative coefficients, the average heat transfer coefficient is greater than an
isothermal one. Moreover, the average value of ratio h∕h∗ significantly grows as the
parameter a∕𝜃w.max increases. Hint: for physical considerations, recall what is heat flux
inversion (S. 2.4).
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2.73 Explain how the equations (2.64) and (2.65) are obtained, and what values of parame-
ters in formula (2.50) should be used for estimating three integrals in this case.

2.74 Obtain equations (2.66) and (2.68) and inequality (2.67). Repeat an analysis of the
case (i) when there is no root of equation (2.66) to understand that the temperature
head maximum in this case is located at x = L.

2.75 Explain why two facts that (i) the sign of expression (2.66) does not change at 0 <
x∕L < 1 and (ii) the sign of this expression is positive at x = 0 are enough to conclude
that the temperature head maximum is located at the end of a plate. Hint: analyze the
change of some monotonic function f (x) with growing the coordinate x.

2.76 Derive equation (2.68) following the directions from the text. Hint: on the derivation of
expression for 𝜃w.max.un, consider that in this case: i = 1, heat flux qw is constant, and
temperature head may be presented as 𝜃w.max.un = qw∕h∗.

2.77 Obtain equation (2.69) by differentiating equation (2.68). Hint: present equation (2.68)
in the form 1 + f (a1∕a2)∕(qw.un∕a2) where f (a1∕a2) is the expression in the brackets in
equation (2.68).

2.78 Find the expression for qw.un∕a2 as it described in the text and deduce the derivative of
this term with respect to a1∕a2. Use these results to get equation (2.70) determining the
optimum values of a1∕a2. Obtain some optimal values of a1∕a2 by solving quadratic
equation (2.70). Take required numerical data of integrals from Table 2.3. Compare
your results for optimal a1∕a2 with corresponding data from Table 2.3.

2.79* Think of Comment 2.22 to understand the validation of the equation obtained from
inequality (2.67). Compute using relations (2.65) and (2.64) the temperature head 𝜃w
as a function of coordinate x∕L and draw corresponding graph to see that the maxi-
mum temperature head indeed is located at the end of the plate. Hint: (i) find a0 from
equation (2.64) and substitute the result in (2.65), (ii) present heat transfer coefficient in
the form h∗ = h(1)x−n and draw the graph in coordinates 𝜃wh(1)∕a2I1 vs x∕L. Compare
the calculated value at the plate end with according data from Table 2.3.

2.80 Obtain equation (2.71) from two equations (2.64) using the second equation for
eliminating a0 from the first equation. Calculate distributions described by obtained
equation (2.71) applying the data given in Table 2.3. Draw corresponding curves in
coordinates qw∕qw.un vs x∕L to compare the heat flux distributions providing the same
removed total heat in different cases. Explain why curves intersect.

2.81 Explain what fact is proved in the case (ii) and why this proof is needed. Deduce
inequality (2.72). Hint: to obtain inequality (2.72) present trinomial in the form of the
first equation (2.64).
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2.82 Obtain inequality (2.73) as described in the text. Explain why it is clear that this inequal-
ity is not satisfied for positive values of a1∕a2 and x∕L > 0. Calculate the left part
of inequality (2.73) for some negative values of a1∕a2 using data for integrals from
Table 2.3 to see that this inequality is positive in interval 0 < x∕L < 1. Explain why
it follows from these results that there are no roots of equation (2.66) for problem in
question, and because of that the starting initial assumption in the case (ii) is false. Hint:
study carefully the discussion about the last question.



�

� �

�

3
Application of Conjugate Heat
Transfer Models in External and
Internal Flows

In the next two chapters, the applications of conjugate heat transfer problems are considered.
First in Chapter 3, generally, without concrete usage, the flows past plates, around the bod-
ies (external flows), and inside the channels and tubes (internal flows) are analyzed. Then
in Chapter 4, the specific applications of conjugate heat transfer problems in industrial and
technology areas are discussed. Analysis of examples include problem formulation and mod-
els as a basis of equations, short description of solution, and the most important results. An
interested reader may get more detailed information using cited original papers. Besides ana-
lyzing examples, other related publications are shortly reviewed to give the reader extended
knowledge of specific literature.

Comment 3.1 Although the choosing examples present different methods of solution and sub-
jects of applications, it is clear that: (i) the most of relevant published solutions are outside of
introduced here survey, and (ii) the choice of examples is random and depends at least on pref-
erences and background of a reviewer. Nevertheless, author hopes that the considered results
give a reader a primary understanding of the situation in modern applications in conjugate heat
transfer.

3.1 External Flows

3.1.1 Conjugate Heat Transfer in Flows Past Thin Plates

In this section, the conjugate heat transfer in flows past thin plates at different situations is
investigated. The majority problems are considered for thermally thin plates when the second
conduction equation (1.3) is valid. Such simplification is justified because as we will see results

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine,
First Edition. Abram S. Dorfman.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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obtained in this way are qualitatively representative for exact solutions and in many cases are
acceptable even quantitatively for the most part of the plate, except relatively small regions at
the leading edge (S. 4.1.2). On the basis of these facts, we developed the charts for a simple
solution for the conjugate problems of flows past thermally thin plates. Examples show the
wide applicability of this approach and physically comprehensible results.

3.1.1.1 Temperature Singularities on the Solid-Fluid Interface

In the early works [246, 361], it was shown that in the case of laminar flow past thermally thin
plate, the wall temperature distribution is not an analytic function near the leading edge rather
it is presented at x = 0 as a series of variable x1∕2. Indeed, as it shown in [105] the temperature
distribution on a thermally thin plate at x = 0 is in general not an analytic function of coordinate
x. Analysis reveals that the temperature of a thermally thin plate at x = 0 is a singular function
presented in series of variable x1∕s where s is the denominator of exponent in relation for an
isothermal heat transfer coefficient in the form (index L denotes the plate end) (Exer. 3.1)

h∗ = h∗L(x∕L)−r∕s
(3.1)

Comment 3.2 An analytic function at some point x0 may be presented in a neighborhood
of this point by Taylor series in powers of variable x. Otherwise, it is said that the function
is singular at this point (S. 7.1.2.5). Most functions encountered in applications are analytic
at all x or are singular at some specific points. One example of such function is analyzed in
considering the boundary layer equation in Prandtl-Mises form (S.7.4.4.2).

Basic Equations
Consider a thermally thin plate of finite length with given boundary conditions at the edges.
For generality, it is assumed that the plate is streamlined past both sides by laminar or tur-
bulent, gradient or zero pressure gradient flows of Newtonian or power law non-Newtonian
fluids. The flow may be symmetrical or asymmetrical as two streams with different charac-
teristics. Examine first the case when exponents r∕s in equation (3.1) for both sides are the
same (e.g., both streams are laminar or turbulent), but the temperatures of flow far away from
a body and the isothermal heat transfer coefficients at the plate end h∗L(see equation (3.1)) are
different. For such a case, substitution of universal function (1.38) defining heat fluxes for both
streams into second equation (1.3) yields the following dimensionless equation for the plate
temperature (Exer. 3.2)

∞∑

k=0

Dk𝜁
k dk𝜃

d𝜁 k
− 𝜁 r∕s d2𝜃

d𝜁2
− Bi∗L2 − 𝜁 r∕sqv = 0

𝜃 =
Tw − T∞1

T∞2 − T∞1
, Bi∗L =

h∗LL2

𝜆wΔ
= Bi∗

(L
Δ

)2
, qv =

qv.avL2

𝜆w(T∞2 − T∞1)
(3.2)

Here, 𝜃 is the average across plate thickness temperature head (Com. 1.1), coefficients of sum
Dk = gk1Bi∗L1 + gk2Bi∗L2 and D0 = Bi∗L1 + Bi∗L2 depend on Biot numbers and on coefficients
gk, where k denotes the number a term of universal function (1.38), indices 1 and 2 denote plate
sides, and 𝜁 = x∕L is dimensionless coordinate. Equation (3.2) is valid for the case of equal
fluid temperatures as well if the scale in definition of 𝜃 is changed to T∞ for both sides, and
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Bi∗L2 in equation (3.2) is omitted. For a symmetric streamlined plate, one should set in addition
Bi∗L1 = Bi∗L2 and gk1 = gk2.

If the heat sources qv near the origin is an analytic function of x, the solution of equation (3.2)
at x = 0 is given as a series in the variable x1∕s

qv =
∞∑

i=0

bi𝜁
i, 𝜃 =

∞∑

i=0

ai𝜁
i∕s (3.3)

This follows from the fact that substituting series (3.3) into equation (3.2) yields the relations
determining the series coefficients ai under knowing coefficients bi

∞∑

i=0

[D0 + D1(i∕s) + D2(i∕s)(i∕s − 1) + … + Dk(i∕s)(i∕s − 1) … (i∕s − k + 1) + … ] ai𝜁
i
s

−
∞∑

i=0

(i∕s)(i∕s − 1)ai 𝜁
i+r
s
−2−Bi∗L2 −

∞∑

i=0

bi 𝜁
i+ r

s = 0 (3.4)

Here, the first, second, and the last sums are obtained from corresponding terms of
equation (3.2) as follows: (i) the first sum by differentiating the second series (3.3) to find the
k derivatives of temperature 𝜃, (ii) the second sum by using the second derivative of the same
temperature 𝜃 to get the second term of equation (3.2), and (iii) the last sum by differentiating
the first series (3.3) to find the derivatives of source qv (Exer. 3.3).

The sums in equation (3.4) contain variable 𝜁 with different exponents. To collect the terms
with the same exponents from these sums, we change the indices from i to i − (2s − r) in the
first and to (i∕s) − 2 in the last sums, respectively. That transforms indices in the first and the
third sums to the same index (i + r)∕s − 2 as in the second sum. Then, because indices must be
positive integers, it follows from the new indices in the first sum that the inequality: i > 2s − r
should be satisfied (otherwise, i becomes negative). Hence, the first 2s − r coefficients ai are
zero except coefficients a0 and as, which are free because the terms in the second sum in
equation (3.4) at i = 0 and i = s vanish independent of the values of those coefficients. With
regard to these reason, the collection of terms with new indices in equation (3.4) leads to the
following equations for coefficients ai of series (3.3) (Exer. 3.4).

D0a0 − (r∕s − 1)(r∕s − 2)a2s−r − Bi∗L2 = 0, for i = 2s − r

[D0 + D1(j − 1) + D2(j − 1)(j − 2) + … + Dk(j − 1)(j − 2) … (j − k) + … ] as(j−1)

−(i∕s)(i∕s − 1)ai − b(i∕s)−2 = 0, j = (i + r − s)∕s, for i > 2s − r (3.5)

It is seen that coefficients ai are calculated one after another in terms of a0 and as starting
from the first one a2s−r, which is defined by the first equation (3.5). Then, the second coef-
ficient is defined through the first one, the third though the second and so on, whereas the
coefficients a0 and as are determined from the given boundary conditions at the plate ends
(see examples in next section). The coefficients bi (i = 0, 1, 2 …) from the first equation (3.3)
are taken into account only when the exponents of variable 𝜁 in terms of second series (3.3) are
the same integers 0, 1, 2 … as in corresponding terms with bi in the first equation (3.3). This
happens when in the second series (3.3) indices are i = 0, s, 2s, 3s … , and the corresponding
coefficients are a0, as, a2s … .
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In the case of asymmetric flow, the exponents s∕r might be different on two sides. This
happened, for instance, when the flow on one side is laminar and on another side turbulent,
or when the pressure gradients or the exponents in the power law non-Newtonian fluids are
different on two sides. For this case, basic equation (3.2) becomes

d2𝜃

d𝜁2
− Bi∗L1𝜁

− r1
s1

∞∑

k=0

g1k𝜁
k dk𝜃

d𝜁 k
− Bi∗L2𝜁

− r2
s2

( ∞∑

k=0

g2k𝜁
k dk𝜃

d𝜁 k
− 1

)

+ qv = 0 (3.6)

The temperature head near 𝜁 = 0 is presented by the same series (3.3) in integer power of
variable 𝜁1∕s1s2 instead of 𝜁1∕s. If the liquids are numbered so that r1s2 < r2s1, then the first
(2s1s2 − r2s1) coefficients ai are zero, except a0 and aS1S2

, which are found from the boundary
conditions. The rest of the coefficients are obtained analogously from equation, which is like
equation (3.5) (Exer. 3.5 and 3.6).

(r2∕s2 − 1)(r2∕s2 − 2)a(2s1s2−r2s1) + (1 − a0)Bi∗L2 = 0, for i = 2s1s2 − r2s1

Bi∗L1[1 + g11(j1 − 1) + g21(j1 − 1)(j1 − 2) + … + gk1(j1 − 1) … (j1 − k) + … ] as1s2(j1−1)

+B.i∗L2[1 + g12(j2 − 1) + g22(j2 − 1)(j2 − 2) + … + gk2(j2 − 1) … (j2 − k) + … ] as1s2(j2−1)

−(i∕s1s2)[(i∕s1s2) − 1] ai − b(i∕s1s2)−2 = 0, j1 = (i + r1s2 − s1s2)∕s1s2,

j2 = (i + r2s1 − s1s2)∕s1s2, for i > 2s1s2 − r2s1 (3.7)

Examples of Singular Series
• Laminar flow at zero pressure gradient. In this case s = 2, and the wall temperature is pre-

sented as a series (3.3) in powers of variable x1∕2. The first three (2s − r = 3) coefficients are
zero except a0 and as. Therefore, a1 = 0, a0 and as = a2 are determined from the boundary
conditions. The coefficient a3 is found from the first equation (3.5) in terms of a0. The rest
coefficients are obtained from the second equation (3.5) starting from a4 = 0 because j =
(i + r − s)∕s = 3∕2 and as(j−1) = a1 = 0. Then, a5 is determined through as(j−1) = a2 = as
since the next j = 2. These three coefficients establish three groups with spacing 2s − r = 3:
a0, a3, a6 … , a1, a4, a7 … , a2, a5, a8 … in which following coefficients are defined one
after another in terms of knowing a0, a1 = 0, and a2 = as, respectively. The coefficients bi
are taken into account only when indices of ai are proportional to s = 2, which means for
all even indices: 0, 2, 4 … Finally, the resulting series (3.3) contains only terms a3i𝜁

(3∕2)i

and a3i+2𝜁
(3∕2)i+1(i = 0, 1, 2 …) because coefficients of the second group are zero due to

a1 = 0.
• Laminar flow at the stagnation point. It follows from equation (3.1) that the wall temperature

at x = 0 is an analytic function of the longitudinal coordinate only when the exponent in this
equation is an integer. This occurs, in particular, for laminar flow at the stagnation point for
which the external velocity is proportional to x, and an isothermal heat transfer coefficient
is independent of coordinate (r∕s = 0). In this case, there is no singularity, and the wall
temperature is presented as a series in powers of x in form (3.3) by terms ai𝜁

i.
• Turbulent flow at zero pressure gradient. In this case, r∕s = 1∕5, hence, the temperature

head is presented as a series in power of 𝜁1∕5. The first nine coefficients are zero except a0
and a5. Therefore, seven group starting by these seven coefficients from a1 to a8 (except
a5) with spacing 2s − r = 9 (for example, a1, a10, a19 … ) are zero. So, two groups of terms
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a9i𝜁
(9∕5)i and a9i+5𝜁

(9∕5)i+1(i = 0, 1, 2 …) construct the final series (3.3) in this case. The
coefficients bi should be counted only when indices of ai are proportional to s = 5, which
means for indices: 0, 5, 10, 15… but these according to above analysis are zero except a0
and a5 (Exer. 3.7).

• Laminar gradient self-similar flow with external velocity U = cxm. The heat transfer coef-
ficient for isothermal surface is defined as h∗ = h∗L(x∕L)(m−1)∕2. This relation follows from
formula (2.33) for laminar flow Nux = c1Re1∕2

x after substituting U. The values of s and r are
determined after simplifying the fraction (1 − m)∕2. For example, if m = 1∕5 or m = 1∕3,
one gets s = 5, r = 2 or s = 3, r = 1. In the latter case, the first five (2s − r) coefficients
a1, a2 and a4 (except a0 and a3) are zero. Analogously, these five coefficients establish five
groups with spacing 2s − r = 5 (e.g., a0, a5, a11, a16, a21) three of which are zero. There-
fore, only two groups of terms a5i𝜁

(5∕3)i and a5i+3𝜁
(5∕3)i+1 make up the solution series. The

coefficients bi should be regarded only when indices of ai are proportional to s = 3, which
means for indices: 0, 3, 6, 9…

• Zero pressure gradient flow of power law non-Newtonian fluid. According to equation
(1.54), isothermal heat transfer coefficient is defined as h∗ = h∗L(x∕L)−n∕(n+1). If n is an
integer, then s = n + 1 and r = n. If n is a fraction as n = n1∕n2, then s = n1 + n2 and
r = n1. So, if for example, n = 2, then s = 3, r = 2, whereas in the case of n = 3∕5, one
obtains s = 8, r = 3. It is easy to estimate in the same way as in above examples that the
solution in the last case is formed by terms a13i𝜁

(13∕8)i and a13i+8𝜁
(13∕8)i+1(Exer. 3.8).

• Asymmetric laminar-turbulent flow. Consider the case when the flow is laminar (r2∕s2 =
1∕2) on one side and is turbulent (r1∕s1 = 1∕5) on another side. Then, 1∕s1s2 = 1/10, and
the temperature head distribution is described by series in power of 𝜁1∕10. Since r1s2 =
2 < r2s1 = 5, the first 13 coefficients are zero because 2s1s2 − r2s1 = 15, and a0 and a10,
are determined from the boundary conditions. Correspondingly, the final series includes two
terms a15i𝜁

(3∕2)i and a15i+10𝜁
(3∕2)i+1. The exponents consist of fraction 3∕2 instead of 15∕10

(Exer. 3.9–3.12).
Below the second series (3.3) and technique of analyzing its structure are used for conjugate

problems solution.

3.1.1.2 Conjugate Problems Solution by Charts

Series (3.3) determines the temperature head close to the leading edge up to some value 𝜁 > 0.
Then, the numerical integrating of equation (3.2) or (3.6) gives the solution for the rest part
of a plate. Because usually these equations are used with only several first derivatives, the
numerical integration could be performed by standard methods, for example, by Runge-Kutta
method. In some cases, the basic equations (3.2) or (3.6) might be integrated analytically using
well-investigated equations. One such case we employed to create charts for solving conjugate
heat transfer problems for flows past thin plates.

Chart Creating
Equation (3.2) with two first derivatives can be transformed to a hypergeometric equation, of
which the solution is presented in the following form

𝜃 = C1xF(𝛼, 𝛽, 𝛾, D2x2−r∕s) + C2F(𝛼 − 𝛾 + 1, 𝛽 − 𝛾 + 1, 2 − 𝛾, D2x2−r∕s) + 𝜎Bi + 𝜗q (3.8)
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𝛼 + 𝛽 =
D1 + D2

D2(2 − r∕s)
, 𝛼𝛽 =

D1 + D0

D2(2 − r∕s)2
𝛾 =

3 − r∕s

2 − r∕s
, 𝜎Bi =

Bi∗L2

Bi∗L1 + Bi∗L2
(3.9)

Here, two hypergeometric functions F are solutions of a homogeneous (S. 9.2.1) equation (3.2)
for the case when 𝛾 is not integer (as in (3.9)), 𝛼 and 𝛽 are roots of the quadratic equation,
𝜎Bi is a ratio of thermal resistances of the two coolants and 𝜗q is a particular solution of an
inhomogeneous equation (3.2) with source qv (Exer. 3.13).

Equation (3.8) takes into account the singularity of the temperature distribution at the lead-
ing edge at x = 0 studied above. To see this, note that two hypergeometric functions (3.8)
depend on variables x2−r∕s ⋅ x and x2−r∕s, respectively. It is easy to check that the correspond-
ing Taylor series created by these two functions is actually the same second series (3.3).
For example, in the case of r∕s = 1∕2 for the laminar flow at zero pressure gradient, one
finds that the Taylor series of solution (3.8) is formed by two terms with the same variables
x(2−1∕2)i = x(3∕2)i and x(2−1∕2)i+1 = x(3∕2)i+1(i = 0, 1, 2 …) as the second series (3.3). Analo-
gously, one gets that the Taylor series of solution (3.8) is in line with series (3.3) in other cases
(Exer. 3.14).

Functions F in relation (3.8) are independent on boundary conditions, whereas the constants
C1 and C2 are determined by boundary conditions specifying the particular problem. There-
fore, the hypergeometric functions F are universal in that respect and hence, can be tabulated.
We consider the case when coefficients gk for both flows around a plate are the same. In this
case, equation (3.2) is transformed to the following

∞∑

k=0

gk zk dk𝜃

dzk
− zr∕s d2𝜃

dz2
− 𝜎Bi − zr∕s qv

z2
L

= 0 (3.10)

z = (Bi∗L1 + Bi∗L2)1∕(2−r∕s)(x∕L) zL = (Bi∗L1 + Bi∗L2)1∕(2−r∕s) (3.11)

According to this equation, the temperature head 𝜃 in the dimensionless form (3.2) for ther-
mally thin plate depends only of single variable z. Due to that, the charts can be created in the
form of two hypergeometric function (3.8) (Exer. 3.15)

𝜗1 = F
(
𝛼 − 𝛾 + 1, 𝛽 − 𝛾 + 1, 2 − 𝛾, g2z2−r∕s

)
𝜗2 = z F

(
𝛼, 𝛽, 𝛾, g2z2−r∕s

)
(3.12)

For laminar and turbulent flows at zero pressure gradient these functions and their first two
derivatives are calculated using simple initial conditions

𝜗1(0) = 1, 𝜗′1(0) = 0, 𝜗2(0) = 0, 𝜗′2(0) = 1 (3.13)

The results plotted in Figures 3.1 and 3.2 construct the basic part of charts for solving homo-
geneous equation (3.10). The other part of these charts consisting of functions 𝜗3 and 𝜗4 gives
the particular solutions of inhomogeneous equation (3.10) for linear source qv = A + B(x∕L)
in the form (Exer. 3.16)

𝜗q == AL2

𝜆w

(
T∞2 − T∞1

)
z2

L

𝜗3 +
BL3

𝜆w

(
T∞2 − T∞1

)
z3

L

𝜗4 = A𝜗3 + B𝜗4 (3.14)

In a more general case, when there is no closed form of solution, the data for chart can be
computed by series (3.3) for starting values of coordinate at x = 0 and subsequent numerical
solution of equation (3.2) for the rest part of a plate. In some cases, the series (3.3) is applicable
for the whole problem domain, like in Example 3.4, which is considered below.
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Figure 3.1 Chart functions 𝜗1 and 𝜗2 for laminar flow, Pr > 0.5, ------𝜗1, - - - - 𝜗2, 1 − 𝜗∕ exp z, 2 −
𝜗′∕ exp z, exp z∕𝜗′′, 𝜗′′∕ exp z
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Figure 3.2 Chart functions 𝜗1 and 𝜗2 for turbulent flow, Pr = 0.7, Re = 106...107, ------𝜗1, - - - -𝜗2,
1 − 𝜗∕ exp(3z∕4), 2 − 𝜗′∕ exp(3z∕4), 3------exp(3z∕4)∕𝜗′′1 , - - - - -𝜗′′2 ∕ exp(3z∕4)

Examples of Using Charts
Here, we consider in details several conjugate problem solutions [111] by using charts to show
the applicability and simplicity of this procedure. The solution starts from defining constants
in equation (3.8) applying chart functions (3.12) in the form

𝜃 = C1𝜗1 + C2𝜗2 + 𝜎Bi + 𝜗q (3.15)
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Figure 3.4 Chart functions 𝜗3 and 𝜗4 for turbulent flow. Pr = 0.7, Re = 106...107, ----- 𝜗3, − − −𝜗4,,
1 − 𝜗3∕2, 2 − 𝜗′3, 3 − 𝜗′′3 , 4 − [−𝜗4∕ exp(3z∕4)], 5 − [−𝜗′4∕ exp(3z∕4)], 6 − [−𝜗′′4 ∕ exp(3z∕4)]

In this relation, 𝜃 is the temperature head in the form (3.2) applicable for the case of different
flow temperatures on both sides of a plate. For symmetrical flow, the scale Tw2 − Tw1 in this
definition should be changed to the temperature head Tw0 − T∞ at the leading edge at x = 0.
Two last terms 𝜎Bi and 𝜗q in equation (3.15) are the same as in equation (3.8) specifying the
inhomogeneous part of equation (3.2). Two other basic characteristics: the dimensionless local
heat flux qw from a plate and heat flux along the plate qx are determined through derivatives
of temperature head 𝜃′ and 𝜃′′ with respect to coordinate x (or z). The heat flux qw from a
plate is determined by the steady-state second equation (1.3) and according this equation is
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proportional to second derivative, whereas the heat flux along the plate qx is proportional to the
first derivative. For the symmetrical flow with temperature head scale Tw0 − T∞, both relations
are (Exer. 3.17)

qw =
qwL2

𝜆wΔ
(
Tw0 − T∞

)
z2

L

= 𝜃′′

2𝜃0
, qx = −

qxL

𝜆w

(
Tw0 − T∞

)
zL

= 𝜃′

𝜃0
(3.16)

◾Example 3.1: A Steel Plate of a Length L = 0.25 m and Thickness Δ = 0.01 m Is In the Air
Flow of Velocity 3 m∕s. The left end of the plate is isolated, the temperature of another end is
TwL. The air temperature is 300 K. Obtain the heat transfer characteristics.

In this case, it is convenient to use the dimensionless temperature head in the form 𝜃 =
(Tw − T∞)∕(TwL − T∞), based on the given temperature TwL instead of leading edge temper-
ature Tw0. The reason of this is that in this case, the variable domain becomes simple: from
zero (Tw0 = T∞) at the leading to one at trailing edge, respectively. Then, applying the homo-
geneous equation (3.15) with tabulated functions 𝜗1, 𝜗2 and given boundary condition at left
qx(0) = 0 (isolated end) and at right 𝜃(zL) = 1 (known temperature), one gets two equations

qx = C1𝜗
′
1(0) + C2𝜗

′
2(0) = 0, 𝜃(zL) = C1𝜗1(zL) + C2𝜗2(zL) = 1 (3.17)

The problem solution is obtained from these relations taking into account that: (i) from initial
conditions (3.13) it is known that 𝜗′1(0) = 0, (ii) then, it follows from the first relation (3.17)
that C2 = 0, and (iii) therefore, from second equation (3.17) that C1 = 1∕𝜗1(zL). Finally, rela-
tion (3.15) gives the solution 𝜃 = 𝜗1(z)∕𝜗1(zL).

Estimation of Reynolds number Re ≈ 5 ⋅ 104 shows that the flow is laminar. Hence, the
Nusselt number for isothermal plate is (see (2.33)) Nu∗L = 0.332 ⋅ 0.71∕3

√
ReL = 66. The cor-

responding Biot number (3.2) and variable (3.11) at the plate end are obtained as

Bi∗L =
h∗LL2

𝜆wΔ
=

Nu∗L𝜆L

𝜆wΔ
= 66 ⋅ 2.58 ⋅ 10−2 ⋅ 0.25

65 ⋅ 10−2
= 0.656, zL = (2Bi∗L)

1
2−r∕s = 1.2

(3.18)
According to equations (3.16) one gets: local heat flux from a plate qw = 𝜗′′1 (z)∕2𝜗1(zL), and
along the plate qx = −𝜗′1(z)∕𝜗1(zL). These relations are obtained proceeding from the solu-
tion 𝜃 = 𝜗1(z)∕𝜗1(zL) and taking into account that the temperature at the leading edge is 𝜃0 =
1∕𝜗1(zL) because 𝜗1(0) = 1 (see (3.13)). The numerical results are presented in the Table 3.1
(Exer. 3.18).

Comment 3.3 We considered this problem in Chapter 2 (Exam. 2.12) when estimated the
errors caused by boundary condition of the third kind. For estimating the error, we used solu-
tion of this problem with boundary condition of the third kind. Now, we compare the result
of this approximate common solution with just obtained data of conjugate solution. A maxi-
mal difference between both results occurs at the starting section of a plate where according
to the common solution (2.35) the temperature head is 𝜃w = 1∕ch

√
2Bi∗av = 1∕ch

√
4Bi∗L =

1∕ch
√

4.0.656 = 0.381, whereas the conjugate solution gives the value 𝜃w = 0.278 (Table 3),
which is 0.73 times less showing that the error estimated in Example 2.12 is in line with this
result.



�

� �

�

Application of Conjugate Heat Transfer Models 111

Table 3.1 Heat transfer characteristic of a plate heated from one end
(Example 3.1)

z x∕L 𝜗1(z) 𝜗′1(z) 𝜗′′1 (z) 𝜃 −qx qw

0 0 1 0 ∞ 0.278 0 ∞
0.2 0.167 1.12 0.949 2.75 0.311 0.264 0.382
0.4 0.334 1.37 1.48 2.66 0.388 0.411 0.369
0.6 0.501 1.72 2.04 3.02 0.478 0.567 0.419
0.8 0.668 2.19 2.70 3.62 0.608 0.750 0.503
1.0 0.835 2.81 3.50 4.42 0.780 0.969 0.614
1.2 1 3.60 4.48 5.12 1 1.244 0.753

◾Example 3.2: A Copper Plate of Length 0.5 m and 0.02 m in Thickness Is Streamlined
On One Side By Air at Temperature 313 K with Velocity 30 m∕s. Another side of the plate is
isolated. The temperatures of the plate edges are maintained at Tw0 = 593 K and TwL = 293 K.
Find the local temperature and heat flux distributions.

If the dimensionless temperature is used in the form based of the leading edge tempera-
ture 𝜃 = (Tw − T∞)∕(Tw0 − T∞), the boundary conditions are: 𝜃(0) = 1 and 𝜃(L) = 𝜃L. Then,
according to conditions (3.13), the equation C1𝜗1(0) + C2𝜗2(0) = 1 for leading edge gives
C1 = 1, and after that, the similar condition for another edge 𝜗1(zL) + C2𝜗2(zL) = 𝜃L yields
C2 = [𝜃L − 𝜗1(zL)]∕𝜗2(zL). The Reynolds number Re = 0.88 ⋅ 106 shows that the flow is tur-
bulent. Therefore, Nu∗L = 0.0255Re4∕5 = 1453,Bi∗L = 2.53, and zL = 2.535∕9 = 1.67. Taken
from the charts the values of 𝜗1(zL) and 𝜗2(zL), one finds C2 = −1.22 and the solution 𝜃 =
C1𝜗1(z) + C2𝜗2(z) = 𝜗1(z) − 1.22𝜗2(z).

The calculation results are plotted in Figure 3.5. It is seen that the heat transfer coefficient h
obtained in conjugate solution significantly differs from the isothermal coefficient h∗ (dotted
line). Whereas the former sharply decreases and reaches zero at x ≈ 0.4 m, the latter remains
almost constant at this part of the plate. This happened because in this example the temperature
head decreases in the flow direction (Exer. 3.19).

◾Example 3.3: Consider a Similar Problem For Aluminum Plate of Length 0.3 m and
0.002 m in Thickness Past a Flow of Air of a Velocity 250 m∕s On an Altitude of 20 km.
The air temperature is T∞ = 223 K, kinematic viscosity is 𝜈 = 1.65 ⋅ 104m2∕s. The trailing
isolated edge is at stagnation flow temperature T∞L = Tad.L = 223 + (2502∕2000) = 254 K,
and the leading edge temperature is mentioned at Tw0 = 323 K.

Because the Mach number is M = U∕Usd = 250∕(20.1 ⋅
√

223) = 0.833 (Usd is a speed
of sound) is close to unity, the compressibility effect should be taken into account. This is
achieved by using the adiabatic enthalpy difference instead of the temperature head (S. 1.8),
or the adiabatic temperature difference (ignoring the dependence cp(T)) if the Mach number
is not very close to the unity. In the last case, the dimensionless temperature head is used in
usual form 𝜃 = (Tw − Tad.L)∕(Tw0 − Tad.L), in which the fluid temperature T∞ is substituted by
adiabatic flow temperature at the trailing edge Tad.L (Exer. 3.20).
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Figure 3.5 Heat transfer characteristics for a plate streamlined on one side by turbulent flow

The boundary conditions at the plate ends 𝜃(0) = 1 and 𝜃(L) = 0 along with initially rela-
tions (3.13) give the constants C1 = 1 and C2 = −𝜗1(zL)∕𝜗2(zL). Then, the solution is obtained
according to (3.15) 𝜃 = 𝜗1(z) − 𝜗2(z)𝜗1(zL)∕𝜗2(zL). To find a value of the parameter zL, a Biot
number should be multiplied by Cx∕

√
C. This becomes clear if one writes a steady-state

equation (1.3) for thermally thin plate past compressible flow using relation (1.49) for heat
flux to get an equation similar to relation (3.6) (Exer. 3.21)

d2𝜃

d𝜁2
−

Cx√
C

Bi∗L1𝜁
− r1

s1

∞∑

k=0

g1k𝜁
k dk𝜃

d𝜁 k
−

Cx√
C

Bi∗L2𝜁
− r2

s2

( ∞∑

k=0

g2k𝜁
k dk𝜃

d𝜁 k
− 1

)

+ qv = 0

(3.19)
From this equation is clear that the ratio Cx∕

√
C may be considered as a factor of a Biot num-

ber. To estimate this ratio, the Chapman-Rubesin formula (1.49) for coefficient C in viscosity
law 𝜇∕𝜇∞ = C (T∕T∞) is used. Calculation shows that for the case in question, the values of
both coefficients are close so that Cx∕

√
C ≈

√
C = 0.975.

Reynolds value Re = 4.55 ⋅ 105 tells us that the flow is laminar, and corrected (multiplied
by

√
C) Biot number is Bi∗L = 2.91, and hence, zL = 2.04. Knowing zL, we estimate the

ratio 𝜗1(zL)∕𝜗2(zL) by charts and after that get the solution for temperature head employ-
ing gained above formula 𝜃 = 𝜗1(z) − 1.69𝜗2(z). The relations for heat fluxes are found from
equations (3.16) after substituting the difference Tad − TwL for the scale Tw − T∞. The results
are summarized in Table 3.2. Observe that in this case as well as in the former example, the
local heat flux becomes zero (here at x∕L ≈ 0.64) and heat flux inversion (S. 2.4) occurs.
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Table 3.2 Heat transfer characterizes of the plate streamlined by compressible flow (Example 3.3)

z x∕L 𝜗1(z) 𝜗′1(z) 𝜗′′1 (z) 𝜗2(z) 𝜗′2(z) 𝜗′′2 (z) 𝜃 qx qw

0 0 1 0 ∞ 0 1 0 1 1.6 ∞
0.4 0.196 1.37 1.48 2.66. 0.446 1.29 1.18 0.656 0.584 0.772
0.8 0.392 2.19 2.70 3.62 1.08 1.94 2.10 0.462 0.404 0.260
1.2 0.588 3.60 4.48 5.42 2.06 3.02 3.37 0.304 0.352 0.028
1.6 0.784 5.89 7.16 8.14 3.58 4.71 5.17 0.152 0.376 −0.132
2.04 1 11.0 11.7 12.6 6.26 7.61 8.04 0 0.476 −0.264

It follows from Table 3.2 that the reason of this is the same- decreasing of temperature head
(Exer. 3.22).

◾Example 3.4: Air Flows (Re = 5 ⋅ 104) Over One Side of a Thin (Δ∕L = 1∕600) Radiating
Plate (𝜆∕𝜆w = 0.135 ⋅ 10−4) with Uniform Internal Heat Source (qv = 5.1). The front end is at
the free stream temperature T∞. Another side of the plate is isolated. The radiation is taken into
account by parameter N = 𝜎𝜀T4

∞∕𝜆wΔ = 0.07, where 𝜎 and 𝜀 are Stefan-Boltzmann constant
and emissivity.

This problem was solved by Sohal and Howell [360] using numerical integration of
integro-differential equation (see Exam. 3.14). We consider solution of this conjugate
problem as an example of applicability of series (3.3) in variable x1∕s for whole problem
domain. In the case of radiating plate, the proper form of dimensionless plate temperature is
𝜃 = Tw∕T∞ because according to Stefan-Boltzmann law the heat of radiation is proportional
to T4 rather than to the temperature head, as in the case of convective heat transfer. The
basic equation (3.19) for a plate streamlined on one side with additional radiating term and
assumption Cx∕

√
C ≈ 1 takes the following form

𝜁 r∕s d2𝜃

d𝜁2
− Bi∗L

(

𝜃 − 1 +
∞∑

k=1

gk𝜁
k dk𝜃

d𝜁 k

)

− 𝜁 r∕sN(𝜃4 − 1) + 𝜁 r∕sqv = 0 (3.20)

To solve this equation in series (3.3), the additional radiating term should be expanded in
similar series in terms di𝜁

i∕s. After multiplying this series by 𝜁 r∕s (in line with relation (3.20)),
we change the index i to i − 2s in the exponent (i + r)∕s of resulting variable. That transforms
the radiating terms to the form di−2s𝜁

(i+r)∕s−2 with the same variable exponent as in other
terms, like in equation (3.4). After adding terms Ndi−2s𝜁

(i+r)∕s−2 to the last equations (3.5) and
taking into account that the flow past one plate side is an asymmetric issue, the equations for
coefficients ai are obtained (Exer. 3.23)

(r∕s − 1)(r∕s − 2)a2s−r + (1 − a0)Bi∗L = 0, for i = 2s − r

Bi∗L[1 + g1( j − 1) + g2( j − 1)( j − 2) + … + gk( j − 1)( j − 2) … ( j − k) + … ]as( j−1)

−(i∕s)(i∕s − 1)ai + Ndi−2s − qv = 0, j = (i + r − s)∕s, for i > 2s − r (3.21)

Coefficients di are calculated applying the chine rule for differentiating function (𝜃4 − 1) with
respect to the variable 𝜁1∕s. The complicated expressions of this procedure are significantly
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simplified due to their dependency on the coefficients ai of series (3.3) several of which are
zero. The first coefficients di required for farther steady are: d0 = d1 = d3 = 0, d2 = 4a2, d4 =
(1∕2)a2

2 − (1∕6)qv (Exer. 3.24).
From foregoing discussion we know that the series coefficients ai are determined through

coefficients a0 and as, whereas the two last should be estimated from boundary conditions.
In the problem in question, the only one condition is given 𝜃(0) = 1 at the left edge because
the plate is considered as a semi-infinite. In such a case, when there is no real trailing edge,
another condition is obtained from the following reasoning. As the distance from the leading
edge increases, the heat transfer intensity diminishes due to growing boundary layer, and the
plate temperature head gradually decreases along the plate becoming asymptotically constant
far away from starting edge, theoretically at the infinity. This asymptotically constant value
𝜃as is found from algebraic equation

Bi∗L(𝜃as − 1) − N(𝜃4
as − 1) + qv = 0 (3.22)

which is deduced from equation (3.20) by setting to zero all temperature head derivatives.
Equation (3.22) may be solved graphically or by trial-and-error method. Because the flow is
laminar, the estimation of Biot number gives: Nu∗L𝜆L∕𝜆wΔ = 66 ⋅ 0.135 ⋅ 10−4 ⋅ 600 = 0.535.
Then, solution of equation (3.22) yields 𝜃as = 2.79 (Exer. 3.25).

At some point, where the temperature head becomes practically constant (with desired
accuracy, for example, with 1% changes), may be considered as an end of a plate at which
x∕L = 1 and where the asymptotic value 𝜃as = 2.79 is achieved. That may be done numeri-
cally using, for example, Runge-Kutta method. Retaining in the sum, as before, only two first
derivatives, one gets the differential equation (3.20) of the second order, which requires for
solution the initial values of 𝜃 and 𝜃′ at x = 0. The first one is known: 𝜃(0) = 1, whereas the
second is found by trial and error. This procedure starts by guessing some value of 𝜃′(0) and
solving equation (3.20) to get the value of 𝜃 at 𝜁 = 1. Repeating the solution of this equation
for different initial values of 𝜃′(0), one finds among gained data the correct value of 𝜃′(0), that
corresponds to 𝜃as = 2.79. Because of singularity of equation (3.20) at x = 0, the series (3.3)
with first several terms is used to find 𝜃 and 𝜃′ at 𝜁 > 0 close to x = 0. These values define the
coefficients a0 = 𝜃(0) and as = 𝜃′(0), which serve as initial data for numerical solution (see S.
3.1.1.1) (Exer. 3.26).

Much simpler such problem is solved using series (3.3) with several first terms for
entire domain in the case of acceptable series convergence. The trial-and-error approach
helps to estimate how many terms should be retained to obtain the desired accuracy.
We begin retaining the first terms up to a5. The flow is laminar (Re = 5 ⋅ 104), and
hence, r∕s = 1∕2, a0 = 𝜃(0) = 1, as = a2. The further coefficients of series are given by
equations (3.21). From the first one we get a3 = 0 since a0 = 1. Then, we have: j = 3∕2,
d0 = 0, as( j−1) = a1 = 0, and a4 = −qv∕2 = −2.55. The next is: j = 2, d3 = 0, as( j−1) = a2,
and a5 = 0.432Bi∗La2 = 0.231a2. So the series is: 𝜃 = 1 + a2 𝜁 − 2.55𝜁2 + 0.231a2 𝜁

5∕2.
Assuming that this expression describes the problem satisfactorily for the entire domain up
to 𝜁 = 1 where the asymptotic value 𝜃as = 2.79 is attained, we find a2 from the equation
2.79 = 1.231a2 − 1.55 to get a2 = 3.526. The second approximation is obtained by adding
the next term: i = 6, j = 5∕2, as( j−1) = a3 = 0, d2 = 4a2, and a6 = (2∕3)Na2. The series
becomes 𝜃 = 1 + a2𝜁 − 2.55𝜁2 + 0.231a2𝜁

5∕2 + 0.0467a2𝜁
3, which gives a new value of
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Table 3.3 Dimensionless temperature 𝜃 =Tw/T∞ along the radiating plate (Example 3.4)

𝜁 = x∕L 0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1.0

𝜃 1.00 1.31 1.58 1.82 2.01 2.18 2.31 2.45 2.57 2.68 2.79

unknown coefficient as a2 = 3.397. The relative difference between two results is about 4%.
We calculate two terms more arriving in the following final expression

𝜃 = 1 + a2𝜁 − 2.55𝜁2 + 0.231a2𝜁
5∕2 + 0.0467a2𝜁

3

− 0.314𝜁7∕2 + (0.0226a2 + 0.0351a2
2 − 0.0596)𝜁4 (3.23)

which yields a2 = 3.642 or a2 = 3.330 when one used the only first or both additional terms,
respectively. Comparing data for a2 shows that there are two pair of values close to each other:
the first 3.526 and the third 3.642, and the second 3.397 and fourth 3.330. The accuracy for
these pairs is about 3% or 2%, accordingly. Table 3.3 presents the data obtained with the last
value a2 = 3.330. These well agreed with results given in [360] on Figure 5 (Exer. 3.27 and
3.28).

3.1.1.3 Investigation of Conjugate Heat Transfer in Flows Past Plates

We continue using the charts for solving conjugate problems of flows past thin plate in order
to continue showing the basic features of conjugate heat transfer. Here, much less attention
is given to solution details considered above rather focusing the major interest in results of
investigation. The most of examples are adopted from the book [111], some are taken from
other publications indicated below.

◾Example 3.5: A Plate Heated From One End in a Symmetrical Flow

The book begins with the qualitative analysis of this problem as a typical example of con-
jugate problem, which gives a reader an understanding of the core of conjugation. Recall that
this example clearly demonstrates the role of the temperature head variation because the sur-
face temperature decreases in flow direction, if the plate is passed from the heated end, and
increases when the flow runs in opposite direction, starting from unheated edge, whereas in
both cases everything else remains the same.

To solve this conjugate problem, assume that the temperature head of heated end is 𝜃h and
the other edge is isolated. Determining the constants in the basic equation (3.15) applying
known conditions yields the temperature head in both cases

𝜃

𝜃h
= 𝜗1 −

𝜗′1(zL)
𝜗′2(zL)

𝜗2,
𝜃

𝜃h
=

𝜗1

𝜗1(zL)
(3.24)

The local heat fluxes from and along the plate are obtained from relations (3.16). The total heat
flux from a plate is found by integration of the first equation (3.16) for local heat flux. Using
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Figure 3.6 Heat transfer characteristics for the plate heated from one end. (a) Local characteristics
Bi∗L = 1.4, I ------ first case, II- - - - second case, 1 − 2qw, 2 − 𝜃∕𝜃h, 3 − 𝜒 t; (b) Ratio of total heat fluxes
removed from plate 1- turbulent flow and 2-laminar flow

this expression and taking into account that in the first case 𝜃′(zL) = 0 and in the second case
𝜃′(0) = 0, one obtains the ratio of total fluxes (Exer. 3.29)

Qw = 2L
𝜆w(Th − T∞)zLΔ

L

∫
0

qwdx =
𝜃′(zL) − 𝜃′(0)

𝜃h
,

Qw1

Qw2
=
𝜗1(zL)
𝜗′2(zL)

(3.25)

The results for laminar flow are plotted in Figure 3.6 (a). It is seen that heat transfer charac-
teristics in both cases differ substantially. In the first case when the temperature head decreases,
the heat transfer coefficients are significantly less than the isothermal coefficients (small non-
isothermicity coefficients 𝜒 t, curve 3), and the heat flux sharply decreases along the plate
(curve 1), so that the situation is close to inversion at the plate end. In that case at the end, the
heat transfer coefficient is 4.5 time less than an isothermal one. In another case, the temperature
head increases (dashed curve 2), and according to this, the heat transfer coefficients are greater
than an isothermal coefficients, but not more than 1.8 times (dashed curve 3). Nevertheless, the
total heat flux in this case is less than that in the first case where the local heat transfer coeffi-
cients are much lower (curves 3). To physically understand this result, note that: (i) in the first
case, the large temperature heads at the beginning of the plate coincide with high isothermal
heat transfer coefficients at this part of the plate resulting in high local and total heat fluxes,
despite the small nonisothermicity coefficients, whereas (ii) in the second case, the high start-
ing values of isothermal coefficients at the beginning are accompanied with small temperature
heads and vice versa, which leads to partly decreasing local heat fluxes (dashed curve 1) and
finally to relatively smaller total heat flux from a plate (Exer. 3.30).

The ratio of total heat fluxes Qw1∕Qw2 presented in Figure 3.6 (b) depends on Biot number
and in the case of laminar flow riches significant values. For instance, for a steel plate with
Δ∕L = 1∕10 past air (Bi∗L = 0.8) or water (Bi∗L = 4.5) this ratio is 1.2 and 1.65, respectively.
In the case of turbulent flow, the difference between total flaxes is smaller, not more than
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1.2. However, the distributions of the local heat fluxes along the plate in two opposite flow
directions differ in essence similar to pattern for laminar flow given in Figure 3.6(a).

Comment 3.4 Problems of such type with significantly variable surface temperature cannot be
analyzed via a common approach based on proportionality between heat flux and temperature
head because the distribution of heat transfer coefficient is unknown a priori.

◾Example 3.6: A Plate Streamlined on One Side and Isolated on Another

Actually, this is the problem from example 3.5 with negligible radiation effects. Due to
radiation absence, this problem can be solved using charts. Such solution shows that employing
charts significantly simplifies the conjugate heat transfer investigation.

We consider this problem assuming that the temperature 𝜃0 and dimensionless heat flux
qx = q0 are given at the starting end of a plate. These boundary conditions along with the
basic equation (3.15) and second equation (3.16) yield constants C1 = 𝜃0 and C2 = 𝜃0q0. The
solution of this problem given below (first equation (3.26)) is valid for some other similar
problems with different boundary conditions if the corresponding value of q0 at the starting
end is first properly specified. In particular, in the case when the temperature 𝜃L or heat flux
qx = qL at the trailing edge (instead of temperature head 𝜃0) is given, the proper value of q0 is
defined by second or third expression (3.26) (Exer. 3.31).

𝜃

𝜃0
= 𝜗1 + q0𝜗2, q0 =

𝜃L∕𝜃0 − 𝜗1(zL)
𝜗2(zL)

, q0 =
qL − 𝜗′1(zL)
𝜗′2(zL)

(3.26)

Figure 3.7 shows the variation of the nonisothemicity coefficient and of the temperature
head for laminar (a) and turbulent (b) flows in three cases: q0 = 10, 0, and (−2). In the
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first two cases, the temperature head increases along the plate. In the third case, it first
decreases, reaches zero, and then its absolute value increases. The same character of the
heat transfer rate variation as in other examples is seen. For an increasing temperature
head, the heat transfer coefficients are greater than those for an isothermal surface but not
more than 75% to 80% in the case of laminar flow and not more than 20% to 25% for
turbulent flow. In the third case, in which the temperature head partly decreases, these
coefficients are so much smaller that in the points where the temperature head turns to zero,
the heat transfer coefficient becomes meaningless, and corresponding curve 𝜒 t(z) undergoes
discontinuity.

◾Example 3.7: A Plate Streamlined by Turbulent Flow on Both Sides at Different Tem-
peratures and Heated Leading Edge

In this case, the scales in relations (3.16) should be substituted by T∞2 − T∞1. Assuming
that both initial values of temperature head 𝜃0 and heat flux q0 are given at leading edge as well
as in previous example, we have the same constants C1 = 𝜃0 and C2 = 𝜃0q0, and hence, the
same solution (3.26) for temperature head with proper scale 𝜃 = 𝜃0[(Tw − T∞)∕(T∞2 − T∞1)].
For heat fluxes from the plate we need the new equations because relation (3.16) for qw is
obtained for symmetrical flow. From equation (3.10) we find that in this case (when qv = 0),
the sum of derivatives equals d2𝜃∕dz2 + z−r∕s𝜎Bi. This gives an expression for heat flux on one
side of the plate, since a sum of derivatives determines the heat flux. Then, after transforming
equation (3.6), which is valid for asymmetrical flow over a plate, to variable z, one obtains
an equation similar to (3.10) and finds the heat flux on the other side of a streamlined plate
(Exer. 3.31)

qw1 =
∞∑

k=0

gkzk dk𝜃1

dzk
=

d2𝜃1

dz2
+ z−r∕s𝜎Bi, qw2 = qw1 − z−r∕s (3.27)

In Figure 3.8, the computed results are plotted for the case of the equal thermal resis-
tances of both flows (𝜎Bi = 1∕2), 𝜃0 = 1 and q0 = −2. The same pattern is observed. On
the side on which the temperature head increases (its absolute value, dashed curve 2),
the nonisothermicity coefficient 𝜒 t is a little greater than unity, whereas on the other side
where there is a section with decreasing temperature head, the value of 𝜒 t sharply falls,
becomes zero and then goes to ±∞ resulting in discontinuous curve 𝜒 t(z) (Exer. 3.33
and 3.34).

◾Example 3.8: A Plate with Inner Heat Source [355]

The problem with sources is an inhomogeneous problem of which a solution is presented
as a sum of general homogeneous solution and particular solution of inhomogeneous
equations (S. 9.2.1). The former is found similar to other solutions using function
𝜗1 and 𝜗2. For the case of uniform or linear distributed sources, the particular solu-
tion in the form (3.14) can be obtained using functions 𝜗3 and 𝜗4 (Figs. 3.3 and 3.4).
Figure 3.9 shows the results for turbulent flow over a plate with conditions at leading edge
𝜃0 = 1, q0 = 0 and inner linear heat source defined by relations (3.14) with A = 1 and
B = 2.
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Again we see that the values and variation of heat transfer coefficients strongly depend
on temperature head distribution. For the plate streamlined from one side (curves 3) and for
the side with temperature 𝜃1(curves 1) of the plate’s past two sides, for which curves 𝜃(z)
have decreasing sections, the heat transfer coefficient distributions h(z) essentially differs from
variations h∗(z) for isothermal coefficients, leading to discontinued curve 𝜒 t(z). At the same
time, for another side of two sides streamlined plate where the absolute value of temperature
head increases in flow direction, the ratio 𝜒 t = h∕h∗ of heat transfer coefficients differs not
much from unity (curve 2) (Exer. 3.35).

3.1.1.4 Applicability of Charts and Thermally Thin Assumption

Refining the Chart Data
In developing charts, the universal function was used with only three first terms of series.
Although above (S. 2.1.1.1) it was shown that the other terms are small, the error arising
by such simplification can be estimated by refining the data obtained using the charts. This
is achieved applying the integral universal function (1.26), which accounts for the terms of
equation (1.38) neglecting in charts creation. A first derivative d𝜃w∕dx required for integral
(1.26) is computed via known chart data, which is considered as a first approximation. This pro-
cedure gives both a second approximation and the accuracy of the chart results by comparing
these with the second approximation. The next approximation may be found by estimating the
difference 𝜀(x) = (1∕h∗)(qint

w − qdiff
w ) between the second qint

w and the first qdiff
w results obtained

using the integral and restricted differential universal function, respectively. Incorporating this
error in the restricted universal function leads to equation (2.37) or (2.38), which solution
yields the third approximation qdiff

w . Then, the integral formula (1.26) provides the next approx-
imation qint

w and so on. This approach is developed in Section 2.2.2 and realized in examples
4.12 and 4.14.

Accuracy of Thin and Thermally Thin Assumptions
Another error occurs as the body is considered as a thermally thin object. We estimate the
inaccuracy of such simplifications by integral method (S. 7.6) using polynomial T∕Tav = a0 +
a1𝜂 + a2𝜂

2 for describing the temperature distributions across the body thickness, where Tav
is a cross-section average temperature and 𝜂 = y∕Δ. To find the coefficients an, it is assumed
that the heat fluxes on the body surfaces are known: qw1 at y = 0 and qw2 at y = Δ. These data
give two conditions. The third one is obtained knowing that integral of ratio T∕Tav across a
body thickness equals unity. From the first two condition and the Fourier law, one gets that at
𝜂 = 0 , qw1 = −𝜆wa0 and at 𝜂 = 1, qw2 = −𝜆w(a0 + a1 + a2). The last two equations together
with the third relation a0 + a1∕2 + a2∕3 = 1, which follows from the integral of temperature
across the boy thickness, built up a system determining the coefficients an and as a result, the
temperature distribution across a plate

T∕Tav = 1 − (𝜔1∕3) + (𝜔2∕6) + 𝜔1𝜂 − (𝜔1 + 𝜔2)(𝜂2∕2), 𝜔 =
qwΔ
𝜆wTav

=
Bi𝜃w

Tav
(3.28)

Setting 𝜂 = 0 and 𝜂 = 1, we obtain both surfaces temperatures

1 − 𝜔1∕3 + 𝜔2∕6, 1 + 𝜔1∕6 − 𝜔2∕3 (3.29)
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for the plate top and bottom, respectively. The last two terms in these relations show how much
the ratio T∕Tav at the surfaces differs from unity, and hence, these terms can be used for esti-
mating the accuracy of replacing some object by a thin or thermally thin body. It follows from
the last relation (3.28) that the thin (Bi ≥ 1) and thermally thin (Bi < 1) bodies correspond to
𝜔 > 1 and 𝜔 < 1, respectively. Therefore, in the case of a thin body, when 𝜔 is large, the two
terms with 𝜔 in relations (3.29) identify how much these two terms, defining the major part of
the surfaces temperatures, are greater than average body value of unity, giving an understand-
ing whether the unity may be neglected comparing to that part of surface temperatures. In the
case of thermally thin body, when 𝜔 is small, these two terms with 𝜔 in relations (3.29) iden-
tify how less these two terms, defining the small part of surface temperatures, are lesser than
average body value of unity, showing whether a neglecting of that small part of two terms in
comparison with unity is acceptable. Mathematically, these conditions are expressed by double
inequalities

1 ≪
||||

Bi𝜃w2

3Tav
−

Bi𝜃w1

6Tav

||||
≪ 1 1 ≪

Bi𝜃w

6Tav
≪ 1 (3.30)

where the left- and right-hand symbols pertain to thin and thermally thin assumptions, respec-
tively, and the last inequality is related to a symmetrical streamlined body.

Physically, the right-hand symbol provides conditions at which a thin plate or body thermal
resistance is small and due to that the cross-section temperatures are so close to each other that
practically may be considered as constant. The conditions provided by the left-hand symbol
physically mean that a large thermal resistance of a thin plate yields a linear temperature distri-
bution across the plate thickness. The first physical interpretation of the constant cross-section
temperature simple follows from definition of thermally thin plate (Com. 1.1). Although the
linear temperature distribution across a thin plate or body could not be seen as simple as in the
case of thermally thin body, it also follows from thin body definition given in Comment 1.1.
To see that, compute the second derivative of the ratio T∕Tav defined by (3.28), that according
to the first equation (1.3) should be zero for the thin body in the case of qv = 0. Such simple
procedure gives: 𝜔1 = −𝜔2 or qw1 = −qw2, which shows that the temperature distribution is
linear (Exer. 3.36 and 337).

Inequalities (3.30) differ from usual more simple relations Bi ≪ 1 and Bi ≫ 1 in three ways:
(i) they are less strong, which results in widening of admissible parameters, (ii) according
to these the result depends not only on Biot number, but rather on product of the Biot and
temperature head ratio 𝜃w∕Tav so that the greater is the Bi the smaller is possible temperature
head, and (iii) for the case of asymmetric flow, the result depends on difference of parameters
Bi𝜃w∕Tav for both surfaces of a plate.

Comment 3.5 For pairs of thin metallic plate/nonmetallic coolant and of thin nonmetallic
plate/liquid metal coolant, the inequalities (3.30) usually are satisfied with right (thermally
thin assumption) and left (thin assumption) symbols, respectively, due to high and low plate
conductivities in the first and second cases.

Comment 3.6 We approximate the temperature distribution by polynomial. Such simple pro-
cedure is applicable only to cases when the heat transfer characteristics are regular without
specific features as, for example, for systems with near constant or increasing in flow direction
or in time temperature heads. However, the parameter distributions in flows with decreas-
ing temperature heads are usually complicated and could not be satisfactory described by
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polynomials. We discuss this question more detailed in Section 7.6, analyzing applicability
of the Karman-Pohlhausen method. Nevertheless, the even less accurate course estimations
by conditions (3.30) provide the order of errors and give an understanding whether or not the
thin or thermally thin assumption is applicable.

3.1.1.5 Validation of Quasi-Steady Approximation

The methods outlined above for steady heat transfer processes are applicable for some classes
of unsteady thermal processes. This holds in cases when unsteadiness is caused by variable
thermal regime under the unchanged steady-state hydrodynamics. In particular, the hydrody-
namic characteristics of the incompressible flows in the forced heat transfer systems are not
affected by thermal unsteadiness. Consequently, in such cases, the methods of solving steady
heat transfer problems are applicable to the similar unsteady problems if the quasi-steady state
situation takes place. Physically, this means that the unsteady thermal effects in fluid are neg-
ligible small in comparison with that for a body, so that transport processes in fluid may be
considered using steady state relations.

In the early work [311], Pomeranzev showed by qualitatively analysis that an unsteady
conjugate convective problem may be considered as a quasi-state problem if the thermal
capacity of a fluid is small in comparison with that for a wall as, for example, for a pair
nonmetallic fluid/metal wall. Later, Perelman at al. [307] suggested a parameter that follows
from the same reasoning by comparison between the times of a propagation of a heat impulse
in the wall and in a fluid. Here, we present analysis of the quasi-steady approximation
[117] based on exact solution of the unsteady thermal boundary layer equation outlined in
Section 1.11.

Let the thermally thin plate with variable surface temperature Tw(t). is flowing around sym-
metrically by incompressible flow. As we know from former discussion, the average across
thickness temperature of such plate is given by the equation (1.3) as

1
𝛼w

𝜕Tav

𝜕t
−
𝜕2Tav

𝜕x2
+

qw

𝜆wΔ
= 0 (3.31)

In the first chapter (S. 1.11) is shown that the thermal unsteadiness effect is basically deter-
mined by the term with the first time derivative-containing coefficient g01, which is four times
greater than coefficient g1 of the term with the space derivative. Taking this into account and
substituting in equation (3.31) for heat flux the series (1.55) restrained to only this term with
the time derivative, we arrive at the following equation

1
𝛼w

𝜕Tav

𝜕t
−
𝜕2Tav

𝜕x2
+

h∗
𝜆wΔ

(
Tw − T∞ + g01

x
U

𝜕Tw

𝜕t
+ …

)
= 0 (3.32)

The quasi-steady approximation is applicable when the term with the derivative of fluid tem-
perature 𝜕Tw∕𝜕t is negligible in comparison with the term containing a derivative of solid
temperature 𝜕Tav∕𝜕t. Thus, the quasi-steady regime existence requires satisfaction of the fol-
lowing inequality (Exer. 3.38)

1
𝛼w

𝜕Tav

𝜕t
≫ g01

h∗x

𝜆wUΔ
𝜕Tw

𝜕t
or

𝜕Tav

𝜕t
≫

L
Δ

Nux∗ Lu

Pe

𝜕Tw

𝜕t
(3.33)
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where Lu = 𝜌cp∕𝜌wcpw is Luikov number suggested by author in his book [119] in honor of
Russian scholar A. V. Luikov who was a head of a group of scientists coined the term con-
jugate heat transfer and obtained among some others researchers’ first solutions of conjugate
problems.

For the boundary layer heat transfer problems, the inequality (3.33) usually is satisfied due
to high Peclet numbers, especially if the body is thin and the Luikov number is not less that
one. However, in an opposite case, when the body is thick (Δ∕L ≈ 1) and Peclet number is
relatively small, the result largely depends on the value of the Luikov number defined as a
ratio of fluid/body capacities 𝜌cp∕𝜌wcpw. In this case, the validity of quasi-steady regime is not
obvious, and hence, the satisfaction of inequality (3.33) should be checked. The importance
of capacity ratio (Luikov number) follows, in particular, from solved unsteady problems in
which this parameter is often used as a criterion of the problem conjugation rate (see Exam.
3.17, 3.19, and 3.23).

Exercises

3.1 What is the reason to use relation for heat transfer coefficient in form (3.1)? What is
the basic difference between two parts of this product? Hint: draw graphs taking, for
example, r∕s = 1∕2 to see how these parts change along the plate.

3.2 Obtain equation (3.2) using the second equation (1.3) for thermally thin plate and uni-
versal function (1.38) together with equation (3.1) defining the heat fluxes for both
streams. Follow directions from the text.

3.3 Obtain equation (3.4) by substitution of series (3.3) in equation (3.2). Perform
required differentiating of both equations (3.3) and use the results as described in
the text.

3.4 Recall or study in Advanced Engineering Mathematics the solution of differential
equations in power series and method of undetermined coefficients to understand the
procedure of collection terms with equal exponents. Repeat the change of indices
in sums of equation (3.4) and perform the described in-text analysis leading to
equations (3.5) for series coefficients. Explain why coefficient a0 and as are free,
where they come from, and how those two affect the other coefficients,

3.5 Derive equation (3.6) using the second equation (1.3) for thermally thin plate and uni-
versal function (1.38) together with equation (3.1) defining the heat fluxes for both
streams. Follow the similar development of equation (3.2) in the exercise 3.2.

3.6* Perform the same analysis as in exercise (3.4) for the case of asymmetric flow to
obtain equation (3.7) determining series coefficients in this case. Hint: change the expo-
nent in the second equation (3.3) from 1∕s to 1∕s1s2 and substitute this equation into
equation (3.6). Then, change the indices in the obtained equation and collect terms with
equal power of variable 𝜁 as it was done in exercise (3.4).

3.7 Repeat the first and third examples of estimation of structure of solutions (3.3) for
laminar and turbulent flows to understand in details this procedure requires for the next
exercises.
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3.8 Show that in the case of non-Newtonian fluid considered in text, the two indicated terms
a13i𝜁

(13∕8)i and a13i+8𝜁
(13∕8)i+1 actually construct the series solution.

3.9 Obtain the structure of series (3.3) for the case of asymmetric laminar-turbulent flow
to show that two terms s a15i𝜁

(3∕2)i and a15i+10𝜁
(3∕2)i+1 designated in the text composed

the solution in that case.

3.10 Determine the series structure for flow with exponent (−0.4) in relation (3.1) for an
isothermal heat transfer coefficient.

3.11 Obtain the series structure for non-Newtonian fluid with n = 0.25. Hint: consider
example 3.8.

3.12 Consider similarly to example 3.9 the asymmetric flow with values r1∕s1 = 1∕3 and
r2∕s2 = 1∕2.

3.13* Study the property of hypergeometric differential equation and corresponding Taylor
series, for example, on Wikipedia, in order: (i) to show that a new variable z = D2x2−r∕s

transforms homogeneous equation (3.2) with first two derivatives to hypergeometric
differential equation of the form z(z − 1)𝜃′′z + (b1z + b2)𝜃′z + b3𝜃 = 0, where b are con-
stants and index z indicates the variable of differentiating, and (ii) to understand that
the solution of the transformed equation is presentable as a sum of two hypergeometric
functions in the form of relation (3.8).

3.14 Compare the Taylor series produced by two hypergeometric functions (3.8) with the
second series (3.3) for turbulent flow, like is done for laminar flow in the text. Consider
also other cases.

3.15 Obtain equations (3.10) from equation (3.2) for the case when coefficients gk on both
plate sides are the same. Explain why this form of equation is preferable for charts
creation.

3.16 Obtain relation (3.14) for linear heat source qv presented in equation (3.10). Why is
such form of source presentation convenient for charts?

3.17* Derive expressions (3.16) for dimensionless heat fluxes from and along the plate.
Think: why the second formula consists of minus. Hint: follow the way described
in the text, and note that for symmetrical flow the temperature head is presented as
(Tw − T∞)∕(Tw0 − T∞) = 𝜃∕𝜃0. To answer the second question, compare the direction
of heat flow along a plate and sign of derivative of temperature in respect to coordinate.

3.18 Solve the problem from example 3.1 for the case of the given leading edge tempera-
ture Tw0 and an isolated right edge. Compare results obtained in both cases. What are
physical reasons of such results? Hint: think about effect of flow direction.

3.19 Solve the problem from example 3.2 for the case when the leading edge temperature
Tw0 and the value of heat flux qx at the trailing end are given. Hint: use the second
expression (3.16) and the values of C1 and zL, which can be determined due to the
knowing temperature of leading edge and the flow regime (turbulent).

3.20 Explain why under assumption that specific capacity cp does not depend on tempera-
ture, the stagnation point enthalpy can be substituted by adiabatic temperature.
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3.21* Show that in the case of compressible flow, the Biot number in the formula (3.6)
should be multiplied by ratio Cx∕

√
C. Hint: write an equation using the steady-state

equation (1.3) for a thermally thin plate and equation (1.49) for heat flux in the case of
compressible flow to obtain equation (3.19), and compare this equation with similar
equation (3.6) for incompressible flow.

3.22 Solve the problem from example 3.3 for the case of a given right edge temperature TwL
and heat flux at the leading edge qx. Hint: use the second formula (3.16) qx = 𝜃′∕𝜃0
and two relations (3.15) for 𝜃0 and 𝜃′0. Compare the way of solution to that of problem
from Exercise 3.19.

3.23 Repeat the analysis showing that additional radiation terms in series (3.3) have the
form di−2s𝜁

(i+r)∕s−2. Explain why the terms Ndi−2s𝜁
(i+r)∕s−2 should be added to the last

equation (3.5), but not to the first one. Hint: compare indices of terms in equations (3.5)
with those of additional radiation terms. Compare equations (3.21) with equations (3.7)
to seize why equations (3.21) differ from equations (3.5) not only by radiating terms,
and why they are similar to equations (3.7).

3.24* Obtain several first coefficients di of expansion of function (𝜃4 − 1) in series using the
chine rule for differentiation with respect to of variable 𝜁1∕s. Simplify obtained relations
applying coefficients ai of series (3.3) for laminar flow.

3.25 Obtain equation (3.22) from equation (3.20) and solve it graphically or by trial and error
approach. Hint: (i) for graphical solution find interaction point of two functions: f1 =
Bi∗L(𝜃 − 1) and f2 = qv − N(𝜃4 − 1), (ii) for trial and error, substitute some guessing
values of 𝜃 in equation (3.22) and analyze the results obtained for the right-hand part of
this equation; choose the next value of 𝜃, which is between the more and less than zero
and see how close to zero is the right-hand part. Continue this process to try to satisfy
this equation.

3.26 Recall or study in Advanced Engineering Mathematics what initial and boundary
value conditions for solving ordinary differential equations are in order to understand
a numerical solution of equation (3.20) described in the text.

3.27 Repeat the estimation of the first coefficients ai performed in example 3.4 and compute
the two last coefficients of series (3.23). This will improve your expertise required for a
solution the next two problems. Solve the problem from example 3.4 using first 6 and 7
coefficients. Compare results with that obtained in text employing 8 coefficients. Esti-
mate yourself the accuracy of data by comparing results gained with different numbers
of terms.

3.28 Solve the same problem 3.4 for radiating plate past one side by turbulent flow
taking Re = 2 ⋅ 106. Compare the solution by series with numerical integration of
integro-differential equation from [360] to see the relatively simplicity of series
approach.

3.29 Derive equation (3.25) for total heat flux by integrating the first equation (3.16), and
obtain the second equation (3.25) determining the ratio of total fluxes from plate in two
cases. Hint: note that derivatives in expressions (3.16) are taken with respect to variable
z defined by equation 3.11.
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3.30 Think of and discuss with colleague the physical analysis of heat transfer character of
two different flows in example 3.5 to understand the important role of temperature head
variation in conjugate problems.

3.31 Show that two last relations (3.26) give proper values for q0 if the temperature head
or heat flux is given at the trailing edge. Hint: find solutions of two problems similar
to problem 3.6 with boundary conditions in the form of the second and third rela-
tion (3.26), respectively, and compare the results with the first expressions (3.26), know-
ing that all three solutions should be the same.

3.32 Derive expressions (3.27) from equation (3.10) following directions from the text. Hint:
(i) take into account the dimensionless heat flux definition (3.26) and universal function
(1.38), (ii) to transform equation (3.6) to variable z, present it as z = zL𝜁 , where zL is a
constant (see (3.11)).

3.33 Recall about function continuity to explain why the curve 𝜒 t(z) for nonisothrmicity
coefficient in Figure 3.7 becomes discontinuous. Hint: see Sec.2.4

3.34 Solve the problem from example 3.7 for laminar flow and parameters indicated on
Figure 3.8. Compare both results. Hint: first solve the problem for turbulent flow to
size the procedure of solution.

3.35 Solve the problem from example 3.8 for laminar flow and the same parameters as
indicated in the text for turbulent flow. Compare both results. Hint: follow directions
described for the turbulent flow case.

3.36 Obtain equation (3.28) and inequalities (3.30) following directions from the text.

3.37 Show that temperature distribution across the thin plate with relatively large thermal
resistance is linear, and explain why from equality qw1 = −qw2 it follows that the tem-
perature distribution across the plate thickness is linear. Hint: use the Fourier law for
the heat fluxes qw1 and qw2 at the plate top and bottom. See also text and Comment 1.1.

3.38 Repeat the deriving of inequality (3.33) and explain what quasi-steady approach means
physically.

3.1.2 Conjugate Heat Transfer in Flows Past Bodies

As it indicated at the beginning of this chapter, the analysis of examples in this and next
chapters includes problem formulation in its original form, model as basics equations, short
description of solution, and most important results. Unlike the previous text, here, the discus-
sion goes forward without detailed comments (offering only the most necessary short notices)
and without exercises, referring a reader for further information to the cited original publica-
tions. To provide better reader orientation, examples are marketed by letters a (analytical) or
n (numerical) showing at once what type of solution is employed.

◾Example 3.9∗ n/a: Flow Past Rectangular Slab [412]

A slab of finite dimensions with given bottom temperature Tbt is streamlined by incom-
pressible flow. Because the slab is of finite length and height, the problem is governed by
Navier-Stokes and energy equations for fluid, Laplace equation for a body (index s denotes
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solid) and following boundary conditions (S. 1.1)

∇2𝜓 = −𝜔, u
𝜕𝜔

𝜕x
+ v

𝜕𝜔

𝜕y
= 1

Re
∇2𝜔, u

𝜕𝜃

𝜕x
+ v

𝜕𝜃

𝜕y
= 1

Re
∇2𝜃, ∇2𝜃s = 0

y = 0, |x| > 1
2
,

𝜕𝜃

𝜕y
= 0, x = ±1

2
, −H ≤ y ≤ 0,

𝜕𝜃s

𝜕x
= 0

y = −H, |x| ≤ 1
2
, 𝜃bt = 1, y → ∞, |x| → ∞, 𝜔→ 0 (3.34)

Here,𝜓 and𝜔 are the stream function and vorticity (S. 7.1.2.3), all variables are dimensionless
and scaled by: a slab length L for x, a slab aspect H = Ĥ∕L for y(Ĥ is a slab height) U∞ for u
and v, LU∞ for𝜓, U∞∕L for𝜔 and 𝜃 = (T − T∞)∕(Tbt − T∞). The boundary conditions (3.34)
stand for the first for uniform temperature (similar condition for uniform velocity 𝜕2𝜓∕𝜕y2 =
0) before and behind the slab, the second for insulated surfaces of the slab, the third for the
given temperature 𝜃bt of the bottom slab surface, and the fourth for the flow far from a body,
specifying that this flow is irrorational (S. 7.1. 2.5). Other conditions (not given here) are usual
boundary and conjugate conditions on slab-fluid interface and far away from the body for a
fluid (S. 7.2, Exam. 7.5).

The problem is solved by finite-difference method (S. 9.6). Because all equations (3.34)
are elliptic, the boundary conditions at infinity before and behind the slab should be speci-
fied. The estimations conditions for 𝜓 and 𝜔 are adopted from [325], whereas for 𝜃 these are
derived employing the balance between the heat loss at the slab surface and that transported
downstream by the flow. As a result, the following conditions are used:

for infinity before a slab∶ x = −x∞, 0 ≤ y ≤ y∞ and y = y∞, −x∞ ≤ x ≤ 0

𝜃 = 𝜔 = 0, 𝜓 ∼ y + Cd[−1 + 1∕𝜋 tan(y∕x)]

for infinity behind a slab∶ x = x∞, 0 ≤ y ≤ y∞ and y = y∞, 0 ≤ x ≤ x∞

𝜃 ∼ Cx−1∕2 exp[−Pe(y2∕4x)], 𝜓 ∼ y + Cd[1∕𝜋 tan(y∕x) − erf (yRe1∕2∕2x1∕2)

𝜔 ∼ −Cd[yRe3∕2∕2(𝜋x)1∕2] exp(−Rey2∕4x)

Cd = − 1
Re

1∕2

∫
−1∕2

𝜔(x, 0)dx, C = − 1
(𝜋 Pe)1∕2

1∕2

∫
−1∕2

𝜕𝜃

𝜕y
(x , 0)dx (3.35)

Computations are performed for 102 ≤ Re ≤ 104, Pr = 10−2, 102, 𝜆w∕𝜆 = 1, 2, 5, 20, and
two values of aspect ratio H = 0.25 and 1. The basic results are:

• The isotherms show that at lower Prandtl number Pr = 10−2 and lower ratio 𝜆w∕𝜆, the tem-
perature drop across the slab is greater than that in the case of higher 𝜆w∕𝜆. The isotherms
indicate also that there is a kink at the boundary between the fluid and slab, which occurs
due to a high slab conductivity. In the case of high Prandtl 102, the temperature drop across
slab exists for both extreme values of ratio 𝜆w∕𝜆,= 1 and 20.

• The solutions of Navier-Stokes equation for low Prandtl and Reynolds numbers Pr = 10−2,
Re = 5 ⋅ 102, 104, both aspect ratio H = 0.25, 1, and all values of 𝜆w∕𝜆 show that the high
value of local Nusselt number at the left-hand end of the boundary domain, first decreases
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monotonically along most of the slab length and than increases remarkably reaching the
other end of the slab. At the large Prandtl number 102 and the same values of the other
parameters, the computations indicate that Nusselt number is approximately constant along
the slab surface and increases as it approaches the right-hand end of a slab.

• It is seen from the results obtained for the low and large Prandtl numbers that increasing in
Peclet number Pe = Re Pr or in aspect ratio H decreases the boundary temperature, whereas
an increase in conductivity ratio 𝜆w∕𝜆 leads to increase of boundary temperature.

• The dependences Nu(Re) indicate that average Nusselt number (Nu) increases as usual with
increasing Reynolds and Prandtl numbers and increases also as the aspect ratio and thermal
conductivity ratio grow.

• The numerical results are compared for Re ≫ 1 with data of two analytical approximate
methods, and the range of applicability of both approaches is determined.

◾Example 3.10∗ a: A Flush-Mounted Source on an Infinite Slab [377]

The source is located at some distance from the leading edge of a slab. Therefore, the thermal
boundary layer develops inside the dynamic boundary layer starting from the front edge of a
heated strip. It is known (S. 7.7) that in such a case, the velocity distribution across the thermal
boundary layer is close to linear u = Cy, where C is a constant. Because the axial conduction in
fluid and in body is taken into account, the governing system consists of two elliptic equations
and relevant boundary conditions

Cy
𝜕T
𝜕x

= 𝛼

(
𝜕2T
𝜕x2

+ 𝜕2T
𝜕y2

)
,

𝜕2Ts

𝜕x2
+
𝜕2Ts

𝜕y2
= 0

Ts → 0, |xs| → ∞, T → 0, x2 + y2 → ∞, 𝜆
𝜕T
𝜕y

||||y=0
= 𝜆w

𝜕Ts

𝜕y

||||y=0
, |x| > L

2
,

𝜕Ts

𝜕y

||||y=−Δ
(3.36)

Here, L is the source length, the first condition relates to slab, the second pertains to fluid, the
third is a conjugate condition for heated strip, and the last one denotes that the bottom slab is
insulated.

The Fourier integral (S. 9.3.1) transforms the problem in the upper half-plane resulting in
following subsidiary equations and boundary conditions

d2T̂s

dy2
− 𝜔2T̂s = 0, i𝜔CyT̂ = 𝛼

(
d2T̂
dy2

− 𝜔2T̂

)

dT̂s

dy
(𝜔,−Δ) = 0, T̂s(𝜔, 0) = T̂(𝜔, 0) = T̂w(𝜔) (3.37)

The solution of the first equation is a simple task (Exam. 9. 9). The second equation (3.37)
is transformed to Airy equation 𝜕2T̂∕𝜕𝜁2 − 𝜁2T̂ = 0 by introducing a new variable
𝜁 = (iP𝜔)1∕3y + (iP)−2∕3𝜔4∕3 instead of y, where P = Pe∕L2 and Pe = CL2∕𝛼. Then,
solutions of the first and the second equations (3.37) are

T̂s(𝜔, y) = T̂w(𝜔)
cosh[𝜔(y + Δ)]

cosh(𝜔Δ)
, T̂(𝜔, 𝜁 ) = C1(𝜔)Ai(𝜁 ) + C2(𝜉)Bi(𝜁 ) (3.38)
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where Ai(𝜁 ) and Bi(𝜁 ) are Airy functions. Analysis [377] shows that C2(𝜔) = 0 leading after
returning back to variable y and applying the last conditions (3.37) to solution

T̂(𝜔, y) = T̂w
Ai[(iP𝜔)1∕3y + (iP)−2∕3𝜔4∕3]

Ai[(iP)−2∕3𝜔4∕3]
(3.39)

Both solutions for a body T̂s(𝜔, y) and a fluid T̂(𝜔, y) contain unknown interface temperature
T̂w(𝜔), which is defined by conjugate condition (3.36). Using this condition, authors obtain an
equation for heat source distribution and straightforward transforms it in Fourier field as the
first relation (3.40)

− q̂(𝜔) = 𝜆
dT̂
dy

|||||y=0

− 𝜆w
dT̂s

dy

|||||y=0

, T̂w =
−𝜆(i𝜔LPe)−1∕3q̂(𝜔)LAi

Ai′[(iPe)−2∕3(𝜔L)4∕3]
Ai[(iPe)−2∕3(𝜔L)4∕3]

− 𝜔L𝜆w tanh(𝜔Δ)
(3.40)

Substituting equations (3.38) for body temperature T̂s(𝜔, y) and (3.39) for fluid temperature
T̂(𝜔, y) in that transformed condition for heat source, and solving the resulting equation for
T̂w(𝜔) yields expression (3.40) for the interface temperature (Ai′ is a derivative of the Airy
function).

Comment 3.7 Airy functions (see Com. 3.13) are defined as follows:

Ai(x) = 1
𝜋

∞

∫
0

cos

(
𝜉3

3
+ x𝜉

)
d𝜉, Bi(x) = 1

𝜋

∞

∫
0

cos

(
−𝜉

3

3
+ x𝜉

)
+ sin

(
𝜉3

3
+ x𝜉

)
d𝜉

(3.41)

Because there is no known technique to inverse transformed expression (3.40), authors used
the asymptotic series for large x (see a review of asymptotic solutions after example 3.19) and
found the leading term of solution in physical field in the form

Tw(x) ≅
31∕6Γ(1∕3)

2𝜋(x𝜆)2∕3(C𝜌cp)1∕3

(
Q − 2

3

Qm1

x

)
+ O

(
x−2∕3) (3.42)

where Q and Qm1 are the total and the first moment amounts of heat released by the heat
source. It is shown that this leading term can be physically classified into contribution from
pure convection, from the interaction of convection and the conduction in solid, and from
the interaction of convection and conduction in the fluid. It is also found that downstream of
the heat source, the two leading terms come from pure convection. Some other characteristics
of asymptotic solution are investigated. The asymptotic results are in good agreement with the
author’s numerical solution.

Comment 3.8 Signs O(𝜀) and o(𝜀)with letter “oh” are used to indicate the order of magnitude.
For example, in series exp(−x) = 1 − x + x2∕2 − x3∕6 + … the order of magnitude of omitted
terms is o(x3) or O(x4) since the next series term is x4∕24. The small “oh” tell us that omitting
terms are not greater that the last one of retained terms, whereas the capital “oh” indicate that
they are of the order of the next term of series.
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◾Example 3.11a/n: Free Convection on Vertical and Horizontal Thin Plates [438]

The problem is governed by the following set of equations

u
𝜕u
𝜕x

+ v
𝜕u
𝜕y

= −1
𝜌

𝜕p

𝜕x
+ 𝜕2u
𝜕y2

+ g𝛽(T − T∞) sin𝜙

−
𝜕p

𝜕y
+ g𝛽(T − T∞) cos𝜙 = 0, u

𝜕T
𝜕x

+ v
𝜕T
𝜕y

= 𝜕2T
𝜕y2

(3.43)

supplemented by continuity equation (1.9), conjugate conditions (1.18), and usual conditions
for flow far away from the plate. The second equation (3.43) is the second boundary layer
equation (S. 7.4.4.1), which as well as the last term in the first equation takes into account
the natural convective effects (S. 7.8). For the horizontal plate 𝜙 = 0, whereas for vertical
plate 𝜙 = 𝜋∕2, and hence, in this case, the pressure gradient in both directions is zero. From
conjugate conditions at a linear temperature distribution across a thin plate (S. 3.1.1.4.2), the
Fourier law and scale analysis (7.4.4.1) show that the criterion 𝜁 of a rate of conjugation in
the case of free convection is given by first equation (3.44)

− 𝜆
(
𝜕T
𝜕y

)

y=0

=
𝜆w(T0 − Tw)

Δ
,

T0 − Tw

Tw − T∞
∼ 𝜆Δ
𝜆w𝛿

= 𝜁 (3.44)

where T0 is the temperature of another plate surface and 𝛿 is the boundary layer thickness.
Since the heat transfer coefficient h ∼ 𝜆∕𝛿, it is seen from the last equation that this criterion,
like the others, in fact is the Biot number as it stated in Section 2.1.7.

It is assumed that the conjugate heat transfer may be investigated employing a combination
of two well-known limiting cases of constant wall temperature and constant heat flux along the
wall. Applying this idea and using formulae for boundary layer thickness in limiting cases on a
vertical plate 𝛿T ∼ x(𝜎RaT )−1∕4 and 𝛿q ∼ x(𝜎Raq)−1∕5, where 𝜎 = Pr ∕(1 + Pr), the thickness
for the conjugate free convection case is defined as

𝛿 ∼ [𝛿4
T + 𝛿4

q] ∼ x∕𝛾, 𝛾 = [(𝜎RaT )−1 + (𝜎Raq)−4∕5]−1∕4

RaT = g𝛽(Tq − T∞)x3∕𝛼𝜈, RaT∕Raq = 𝜆Δ∕𝜆wx (3.45)

Introducing the new dependent f , 𝜃 and independent 𝜉, 𝜂 similarity variables (S. 7.5.2)

f = 𝜓∕𝛼𝛾, 𝜃 = [(T − T∞)∕(T0 − T∞)]𝜉−1, 𝜉 = [1 + 𝜎RaT∕(𝜎Raq)4∕5]−1, 𝜂 = (y∕x)𝛾
(3.46)

transforms the system of governing equations into set of ordinary differential equation

Pr f ′′′ + 16 − 𝜉
20

f f ′′ − 6 − 𝜉
10

f ′2 + (1 + Pr)𝜃 = 1
5
𝜉(1 − 𝜉)

[
f ′
𝜕f ′

𝜕𝜉
− f ′′

𝜕f

𝜕𝜉

]

𝜃′′ + 16 − 𝜉
20

f 𝜃′ − 1 − 𝜉
5

f ′𝜃 = 1
5
𝜉(1 − 𝜉)

[
f ′
𝜕𝜃

𝜕𝜉
− 𝜃′

𝜕f

𝜕𝜉

]

f (𝜉, 0) = f ′(𝜉, 0) = f (𝜉,∞) = 0, 𝜉𝜃(𝜉, 0) − (1 − 𝜉)5∕4𝜃′(𝜉, 0) = 1, 𝜃(𝜉,∞) = 0
(3.47)
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A similar consideration yields for horizontal plate an analogous system of equations with
additional dimensionless terms with pressure scaled by 𝜌𝛼𝜈 𝛾4∕𝜎x2

Pr f ′′′ + 10 − 𝜉
15

f f ′′ − 5 − 2𝜉
15

f ′2 + 1
15

(1 + Pr)[(5 + 𝜉)𝜂p′ − (10 − 4𝜉)p] = 1
3
𝜉(1 − 𝜉)

[
f ′
𝜕f ′

𝜕𝜉

− f ′′
𝜕f

𝜕𝜉
+ (1 + Pr)

𝜕p

𝜕𝜉

]
, 𝜃′′ + 10 − 𝜉

15
f 𝜃′ − 1 − 𝜉

3
f ′𝜃 = 1

3
𝜉(1 − 𝜉)

[
f ′
𝜕𝜃

𝜕𝜉
− 𝜃′

𝜕f

𝜕𝜉

]

(3.48)

Here, 𝜃 = p′ and the following correction in variables and boundary conditions are apt

𝛾 = [(𝜎RaT )−1 + (𝜎Raq)−5∕6]−1∕5, 𝜉 = [1 + 𝜎RaT∕(𝜎Raq)5∕6]−1

𝜉𝜃(𝜉, 0) − (1 − 𝜉)6∕5𝜃′(𝜉, 0) = 1, p(𝜉,∞) = 0 (3.49)

These two sets of ordinary equations are solved by Keller’s finite-difference method.

Comment 3.9 Keller’s finite-difference method is an implicit numerical method in which
initial second order differential equations are transformed by using new variables in the system
of the first order differential equations. This method is of second order accuracy and is stable.
More details may be found in [438] and [60].

The following results are formulated:

• The dimensionless velocity and interface temperature profiles for both vertical and horizon-
tal plates are typical and as usually develop from the profiles of the constant wall heat flux
at 𝜉 = 0 to those of the constant wall temperature at 𝜉 = 1.

• The interface temperature and friction increases as the conjugation criterion (3.44) 𝜁 (local
Biot number) decreases. Therewith, the interface temperature increases from T∞ at 𝜁 →
∞ (x = 0) to T0 at 𝜁 = 0 (x∕Δ → ∞).

• The heat transfer ratio qw∕qwq decreases from this asymptotical value of the constant wall
heat flux to another asymptotical value ratio qw∕qwT of the constant wall temperature. This
occurs due to the growing thermal boundary layer thickness.

• Comparison of the numerical data with well-known results for constant wall temperature
or heat flux shows that the ranges of conjugation criterion in which the problem should be
treated as conjugate depend on the Prandtl number. The analysis of such data reveals that this
dependence is slight. Thus, these ranges varies from 𝜁 = 0.087 − 25.5 to 𝜁 = 0.102 − 30.8
for vertical plate and from 𝜁 = 0.146 − 23.5 to 𝜁 = 0.159 − 30.8 for horizontal plate for
entire diapason of Pr = 0.001 −∞. The problems characterized by other values of criterion
𝜁 can be solved by usual simple approach with error less than 5%.

• The local Nusselt number on the interface in the form Nu∕𝛾 decreases almost linearly with
increasing 𝜉. This yields correlations for vertical Nu∕𝛾 = [1 − 𝜉𝜃]∕(1 − 𝜉)5∕4𝜃 and hori-
zontal Nu∕𝛾 = [1 − 𝜉𝜃]∕(1 − 𝜉)6∕5𝜃 plates from which local temperature of the interface
is simply obtained, and then, from relation qw = Nu(𝜆∕x)(T0 − T∞)𝜉𝜃, the local heat flux
distribution on the interface can be estimated.
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◾Example 3.12a: Elliptical Cylinder in Laminar Flow [108]

This problem is solved using the method of reducing a conjugate problem to a heat con-
duction problem. As explained in Section 2.2.2 in this case, the only conduction equation for
the body is needed to be solved because the solution for fluid is given by the universal func-
tion in differential or integral form. Because of that, the governing system consists only of the
two-dimensional Laplace equation (1.2) for cylinder with heat source qv and two boundary
conditions: the symmetry condition and the conjugate conditions (1.18) where qw is the heat
flux from the flow defined by universal function (1.40) and n is a normal to the cylinder surface
in Fourier law

𝜕2T
𝜕x2

+ 𝜕2T
𝜕x2

+
qv

𝜆w
= 0,

𝜕T
𝜕y

||||y=0
= 0, −𝜆 𝜕T

𝜕n

||||w
= qw (3.50)

This problem is convenient to consider in elliptic coordinates (u, v)

x = c chu cos v y = c shu sin v c =
√

a2 + b2 (3.51)

were a and b are major and minor semi-axis. In coordinates (3.51), a half ellipse is mapped
into a rectangle, one side of which corresponds to the surface of the semi-ellipse and three
others pertain to the axes of symmetry. Then, relations (3.50) become

𝜕2T
𝜕u2

+ 𝜕2T
𝜕v2

= Qv

(
sn2u + sin2v

)
,

𝜕𝜃

𝜕v

||||u=l
=

√

1 − c2

a2
cos2v

qwa

𝜆wT∞

𝜕𝜃

𝜕u

||||u=0
= 𝜕𝜃

𝜕v

||||v=0
= 𝜕𝜃

𝜕v

||||u=𝜋
= 0 (3.52)

Here, 𝜃 = (T − T∞)∕T∞, Qv = −qvc2∕𝜆wT∞, and (𝜕𝜃∕𝜕v)u−l at l = ln[(a + b)∕(a − b)]∕2 is
the derivative (𝜕T∕𝜕n)w from the last equation (3.50) in elliptical coordinates.

The solution of equation (3.52) subjected to the last three boundary conditions is found by
separation of variables (S. 9.2)

𝜃 =
Qv

8
(ch2u + cos 2v) + N0 +

∞∑

k=1

Nkchk u cos k v (3.53)

The constants N must be determined from the first boundary condition (3.52). Because the
pressure gradient in flow around cylinder is variable, the integral universal function (1.40)
depending on Görtler variable Φ (scaled by U∞a) in elliptical coordinates is used

qw =
𝜆Nu∗T∞

a

⎧
⎪
⎨
⎪
⎩

v

∫
0

f

[
𝜉 (𝜀)
Φ(v)

]
d𝜃w

d𝜀
d𝜀 + 𝜃w(0)

⎫
⎪
⎬
⎪
⎭

Φ =
(

1 + b
a

)
(1 − cos v), 𝜉 =

(
1 + b

a

)
(1 − cos 𝜀) (3.54)

Here, 𝜉 and 𝜀 are two dummy variables for Φ and v, respectively, (Exer. 1.17). The temperature
head derivative with respect to variable v (or 𝜀 ) containing in the relation (3.54) is determined
by differentiating equation (3.53) and following setting u = 1 in order to eliminate the variable
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u. Substituting this result into equation (3.54) and denoting the integrals appear in the final
outcome as Jk yield the expression for heat flux

d𝜃w

d𝜀
= −

Qv

4
sin 2𝜀 −

∞∑

k=1

kNkch kl sin k𝜀 Jk =

v

∫
0

[
1 −

(1 − cos 𝜀
1 − cos v

)C1
]−C2

sin k𝜀 d𝜀

qw =
𝜆Nu∗T∞

a

[
Qv

4

(
ch2l − J2

)
+ N0 +

∞∑

k=1

Nkchkl (1 − kJk)

]

(3.55)

Since exponent C2 does not exceed 1, the integrals Jk, having the singularity at 𝜀 = v, converge.
The equation for qw determines the right-hand part of the first condition (3.52). The left-hand
part of this condition is found from relation (3.53) by setting u = l

𝜕𝜃

𝜕v

||||u=l
=

Qv

4
sh 2l +

∞∑

k=1

kNkshkl cos kv (3.56)

Substituting this equation and equation (3.55) for qw into the first condition (3.52), and com-
bining the terms containing the same unknown coefficients Nk give an expression

sh 2 l
4

+
Nu∗∗Bi

4
√

Re

(
ch2l − J2

)
= −

Nu∗∗Bi
√

Re
n0

−
∞∑

k=1

nk

[
Nu∗∗Bi
√

Re
ch k l

(
1 − kJk

)
+ k sh k l cos kv

]

Bi =
𝜆
√

Re

𝜆w
nk =

Nk

Qv
Nu∗∗ = Nu∗

√

1 − c2

a2
cos2v (3.57)

which is used for the unknown coefficients nk and Nk estimation. The Nusselt number Nu∗ for
isothermal surface containing in equation (3.57) was calculated by integral method (S. 7.6).
Writing series (3.57) with the first (k + 1) terms for (k + 1) points in the interval (0, 𝜋), one
gets a system of linear algebraic equations defining the coefficients nk and Nk required to calcu-
late temperature head and heat flux distributions by equations (3.53) and (3.55), respectively.
Calculations are performed with k = 20. Details may be found also in [119]. The following
basic results are deduced:

• The Biot number mainly effects the distribution of the heat flux along the cylinder. Thus, at
Bi = 1, the heat flux is maximal in the region of the stagnation point, whereas at Bi = 10,
the maximum shifts to the central section of cylinder. This occurs because the disposition
of minimal total thermal resistance depends on the Biot number.

• The temperature distributions along the cylinder obtained with and without conjugate effects
differ significantly, especially at large Biot numbers when in some points the disagreement
reaches 50%. At the same time, the heat flux distribution is less affected by the effect of
conjugation which also increases as the Biot number grows.

• For Bi < 0.1, the nonisothermicity coefficient is close to unity. For larger Biot numbers, the
distribution of nonisothermicity coefficient along the cylinder becomes more complicated.
Near the stagnation point, the values of 𝜒 t is also close to unity. Then, when the distance
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from stagnation point becomes larger, the nonisothrmicity coefficient grows, reaches the
maximum and then falls steadily.

• Over the major part of the surface, with the exception of the end region, the larger Biot num-
bers correspond to the bigger nonisothermicity coefficients. In the end region, the situation
is reversed: the values of 𝜒 t decrease more rapidly for larger Biot numbers than for small
Bi and finally becomes less than unity.

• The temperature head increases over the most of the surface, and because of that the effect
of the nonisotermicity distribution is regular without features typical for decreasing tem-
perature heads. Nevertheless, the maximum of the heat flux is 40–45% greater than that for
isothermal surface. This maximum value takes place not as usually for Bi close to unity, but
about Bi = 10. The reason of that is a special form of Biot number (3.57) used in this study.

◾Example 3.13n: A Translating Fluid Sphere at Moderate Reynolds number [290]

A fluid sphere of radius a and initial temperature T0 falls at constant velocity U∞ in infinite
surrounding of another immiscible fluid at the same temperature. At the moment t = 0, the
surrounding temperature changes stepwise from T0 to T∞.

In this study, the transient heat transfer between such sphere and its ambient fluid is consid-
ered under the following basic assumptions: (i) The sphere shape and size are invariable, and
both flows outside and inside are steady and fully developed; (ii) The physical properties are
constant and dissipation and buoyancy effects are neglected; (iii) There are no surface active
forces and no rotation and oscillation of the sphere; (iv) The Reynolds numbers are moderate
no higher than 50.

In contrast to boundary layer case at high (Re ≫ 1) Reynolds numbers, when the inertia
terms are the most important, and viscous terms may be neglected, at low (Re ≪ 1) and mod-
erate Reynolds numbers, the viscous terms play the dominant role, whereas inertia terms can
be or omitted for the case of low Reynolds number or can be taken partly into account at mod-
erate Reynolds numbers (S. 7.4). The mathematical model, which is formulated in spherical
coordinates, consists of restricted equation similar to equation for creeping flow (S. 7.4.1) in
terms of stream function

∇4𝜓 = Re sin𝜙
2

[
𝜕𝜓

𝜕r
𝜕

𝜕𝜙

(
E2𝜓

r2sin2𝜙

)
− 𝜕𝜓

𝜕𝜙

𝜕

𝜕r

(
E2𝜓

r2sin2𝜙

)]
= 0

∇2𝜓 = 𝜕2𝜓

𝜕r2
+ sin𝜙

r2

𝜕

𝜕𝜙

(
1

sin𝜙
𝜕𝜓

𝜕𝜙

)
(3.58)

Equations (3.58) are used for both flows inside and outside of sphere. The velocities compo-
nents and boundary conditions are defined as

u = 1
r2 sin𝜙

𝜕𝜓

𝜕𝜙
, v = 1

r2 sin𝜙

𝜕𝜓

𝜕r
,

𝜕𝜓

𝜕𝜙
= 0,

𝜕𝜓1

𝜕r
=
𝜕𝜓2

𝜕r
, 𝜏r𝜙1

= 𝜏r𝜙2
, 𝜓2 = r2sin2𝜙

2
(3.59)

These conditions should be satisfied: the first at the sphere axis symmetry (𝜙 = 0, 𝜋) along
with condition 𝜓1 = 0, the second and the third together with condition 𝜓1 = 𝜓2 = 0, which
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are conjugate conditions at the sphere /ambience interface (r = 1), and the last one far away
from sphere (r → ∞). The variables are scaled by U∞a for 𝜓 , a for r, and Reynolds num-
bers are defined for sphere and surrounding as Re1 = 2𝜌∞U∞a∕𝜇1 and Re2 = 2𝜌∞U∞a∕𝜇∞,
respectively.

Equation (3.58) is solved using the series-truncation method [405]. The basic idea of his
method is to determine the stream function and then the velocity components as a series of
Legendre polynomials Pn in combination with so called radial functions Fn(r)

𝜓 =
∞∑

n=1

Fn(r)

1

∫
cos𝜙

Pn(t)dt, u =
∞∑

n=1

Fn(r)
r2

Pn(cos𝜙), v = −
∞∑

n=1

F′
n

r

P′
n(cos𝜙)

n(n + 1)
(3.60)

These relations transform equation (3.58) into an infinite series of ordinary differential
equations, which are truncated. The remaining ordinary equations are solved by the cubic
finite-element method (S. 9.6). Details for 0.5 < Re2 < 50 can be found in paper [289].

The energy equations for the sphere and for the surrounding with the initial, boundary, and
conjugate conditions are used as well in a special form introducing new variables 𝜑 = 𝜃r for
sphere and 𝜂 = 1∕r for surrounding instead of 𝜃 and r, respectively

𝛼2

𝛼1

[
𝜕𝜑

𝜕t2
+

Pe2

2

(
u
𝜕𝜑

𝜕r
+ 𝜑

r

)]
= 𝜕2𝜑

𝜕r2
+ cos𝜙

r2

𝜕𝜑

𝜕𝜙
+ 1

r2

𝜕2𝜑

𝜕𝜙2

t = 0, 0 < r < 1, 𝜃 = 1, r = 0, 𝜑 = 0, 𝜙 = 0, 𝜙 = 𝜋, 𝜕𝜑∕𝜕𝜙 = 0 (3.61)

𝜕𝜃

𝜕t2
+

Pe2

2

(
−𝜂2u

𝜕𝜃

𝜕r
+ 𝜂v

𝜕𝜃

𝜕𝜙

)
= 𝜂2

(
𝜂2 𝜕

2𝜃

𝜕𝜂2
+ cos𝜙

𝜕𝜃

𝜕𝜙
+ 𝜕2𝜃

𝜕𝜙2

)

t = 0, 0 < 𝜂 < 1, 𝜃 = 0, r → ∞, 𝜃 = 0 (3.62)

r = 1, 𝜃1 = 𝜃2,
𝜆1

𝜆2

(
𝜕𝜑

𝜕r
− 𝜑

r

)
+ 𝜕𝜃

𝜕𝜂
= 0 (3.63)

In equation (3.61), the variable 𝜑 is used because 𝜃 is undefined at the droplet center, whereas
it is clear that 𝜑 = 0 when r = 0, 𝜃 = (T − T∞)∕(T1,0 − T∞) is the temperature scaled by it
initial value T1,0, in contrast to time in equation (3.60), t2 is time scaled by a2∕𝛼2, and Pe2 =
2aU∞∕𝛼2 is the Peclet number. The second new variable 𝜂 applied in relation (3.62) provides
high density of nodes for numerical grid near the interface (S. 9.5). It is also seen that both types
of variables the initial 𝜃, r and the new 𝜙, 𝜂 are applied to formulate the conjugate conditions
(3.63).

The system of equations (3.61)–(3.63) was solved numerically by alternating direction
implicit method (ADI) [322].

Comment 3.10 Alternating direction method is a finite-difference approach for solving partial
differential equations. The idea of ADI method is to split the finite differential equation into
two others, with the x-derivative and y-derivative only, respectively. These simple equations
may be solved, for example, using tridiagonal matrix algorithm (Com. 3.15).
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The results listed below are obtained numerically for a range of Reynolds number Re2 =
2aU∞∕𝜈∞ from 0 to 50, for both the viscosity 𝜇1∕𝜇2 and conductivity 𝜆1∕𝜆2 ratios from 0.333
to 3.0, the thermal diffusivity ratio 𝛼1∕𝛼2 = 1, and for Pe2 = 300.

• The Nusselt number dependence from time at fixed other parameters shows that: (i) As
Reynolds number increases the intensity of heat transfer considerable grows; this increasing
is a result of strengthened circulation in both flows inside and outside of the sphere; (ii) The
Nusselt number increases, and simultaneously, the fluctuating amplitudes decrease when
the thermal conductivity ratio grows; both the increasing Nusselt number and decreasing
the fluctuating amplitudes inside the droplet occur due to increased heat transfer from the
surface to the center of the sphere; (iii) The increase of viscosity ratio 𝜇1∕𝜇2 leads to the
lower Nusselt numbers since a higher viscosity causes the weaker internal circulation and
yields a longer cycle of oscillation.

• In the limiting case of solid sphere (𝜇1 → ∞), the dependence of heat transfer on Reynolds
number is less strong than that in the case of a fluid sphere. The reasons of that are the
zero velocity at the surface and absence of internal circulation for sphere. For another
limiting case of a gas bubble (𝜇1 ≈ 0), the internal circulation is maximal at the given con-
ditions; in this case, the steady-state Nusselt number is almost independent on the Reynolds
number.

• The results show that formula 1∕Nu = ⌊(𝜆2∕𝜆1)(1∕Nuin) + (1∕Nuext)⌋ obtained in [289]
and in [360] reasonable predicts the asymptotic steady-state conjugate Nusselt number for
a solid sphere at moderate Reynolds number in the case of 𝛼1 = 𝛼2.

Two other similar studies of unsteady heat transfer from solid and liquid spheres for low
Reynolds number are published. The case of identical thermal properties in both inside and
outside flows of sphere is investigated in [5]. The effect of variable ratio of volumetric heat
capacities at equal thermal diffusivities is studied in [289].

◾Example 3.14a: Radiating Plate with Heat Source in Laminar or Turbulent Flow [360]

The heat flux on thin isolate at the bottom plate is determined by a sum of contributions of
conduction (first term), heat source (second), and radiation (third)

qw =
(
𝜆

d2Tw

dx2
+ qv

)
Δ − 𝜀𝜎

(
T4

w − T4
∞
)

(3.64)

Applying the Duhamel integral in form (1.23) and influence function (1.24), the authors
derived a formula for temperature head–like known relation (1.69), which we used instead
of their formula. Substituting heat flux qw into relation (1.69) and applying dimensionless
variables, leads to an expression defining the temperature head

𝜃 = 1 + C
𝜆w

𝜆
x−r

x

∫
0

[

1 −
(
𝜉

x

)C1
]1−C2 (

Δd2𝜃

d𝜉2
− 𝜃4

Λ
+

1 + q

Λ

)
d𝜉

C = K Pr−n Re−m, x = x
L
, Δ = Δ

L
, 𝜃 = T

T∞
, Λ =

𝜆w

𝜀𝜎T3
∞L

, q =
qvΔ
𝜀𝜎T4

∞
(3.65)



�

� �

�

Application of Conjugate Heat Transfer Models 137

Expending the influence function in binominal series and using corresponding constants: K =
0.623, 3.32, n = 1∕3, 3∕5, m = 1∕2, 4∕5, r = 1∕2, 4∕5, C1 = 3∕4, 9∕10, and C2 = 1∕3, 1∕9
for laminar and turbulent flows, respectively, gives computational expressions

𝜃 = 1 + C
𝜆w

𝜆
x1∕2

{

3.53

(
1 + q

Λ

)
+

j∑

i=1

(

Δ
d2𝜃i

d𝜉2
−
𝜃4

i

Λ

)[
1

j − 1
+ 8

21
i7∕4 − (i − 1)7∕4

( j − 1)7∕4

+2i5∕2 − i5∕2

9( j − 1)5∕2
+ …

]}
(3.66)

𝜃 = 1 + C
𝜆w

𝜆
x1∕5

{

9.83

(
1 + q

Λ

)
+

j∑

i=1

(

Δ
d2𝜃i

d𝜉2
−
𝜃4

i

Λ

)[
1

j − 1
+ 80

171
i19∕10 − (i − 1)19∕10

( j − 1)19∕10

+160i14∕3 − i14∕3

567( j − 1)5∕2
+ …

]}

(3.67)

Solution of these equations is obtained by broken the interval of independent variable in
small subintervals where the temperature head is considered as practically constant (see S.
1.3.1). Such procedure leads to system of linear algebraic equations for which there are stan-
dard methods of solution (Com. 3.15). Some basic conclusions are:

• The high value of plate conductivity (parameter Λ) results in an appreciable decrease of the
plate temperature at small x, but with increasing of x this effect reduces.

• Increasing internal heat generation or the plate thickness enlarging at low conductivity as
well as reducing of the radiation part of heat (parameter q) yields increasing of the plate
temperature.

• Neglecting radiation in the case of turbulent flow does not cause as severe errors. The max-
imum error in plate temperature caused by neglecting radiation is about 45.5 % for laminar
flow, whereas the corresponding error for turbulent flow is only 5.5%.

A similar problem was considered in [122] using linearization of integro-diffrential equation
obtained from relation (3.64) after defining heat flux by Duhamel integral.

◾Example 3.15n: Radiative Thin Plate in Laminar Compressible Boundary Layer [330]

Unsteady heat transfer between a thin plate with insulated outer surface and back end and
flowing over it a gray, absorbing, and scattering airflow is investigated. The plate is considered
as thermally thin using equation (1.3), and the heat transport in airflow is treated as quasi-steady
(S. 3.1.1.5) applying relevant energy equation. Thus, the model contains a system of equation
for a radiative thin plate and a steady-state energy equation

𝜕Tw

𝜕t
=
𝜕2Tw

𝜕x2
− 1
𝜆wΔ

[
−𝜆𝜕T

𝜕y
+ E

]

y=0

,

𝜌cp

(
u
𝜕T
𝜕x

+ v
𝜕T
𝜕y

)
= 𝜕

𝜕y

(
𝜆
𝜕T
𝜕y

)
− 𝜕E
𝜕y

+ 𝜇
(
𝜕u
𝜕y

)2

(3.68)
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This system is solved under usual no-slip on the plate and the asymptotic far away from the
plate conditions. The conjugate conditions and radiation flux are defined as

− 𝜆w
𝜕Ts

𝜕y

||||y=0
= 𝜆

𝜕T
𝜕y

||||y=0
+ E, E = 2𝜋

1

∫
−1

I(y, 𝛾)𝛾d𝛾 (3.69)

where I is integral radiation intensity. The energy equations (3.68) for compressible flow is
transformed to the incompressible form employing Dorodnizin’s type variable 𝜂 (S. 1.8), and
then, the Blasius velocity profile (S.7.5.1.1) for incompressible fluid in terms of this variable
f (𝜂) is used. The further simplification is achieved by applying the dimensionless variables
presenting the governing equations and boundary conditions as:

𝜕2𝜃

𝜕𝜂2
+

f

2
𝜕𝜃

𝜕𝜂
− Pr 𝜉

𝜕f

𝜕𝜂

𝜕𝜃

𝜕𝜉
− Sk

Re
𝜏L𝜉 (1 − 𝜔) (𝜃4 − 𝜙I) + Pr Ec

(
𝜕2f

𝜕𝜂2

)2

= 0

𝜕𝜃w

𝜕t
=
𝜕2𝜃w

𝜕𝜉2
− 𝜆L
𝜆wΔ

SkQw, 𝜙I(𝜏) = 2𝜋

1

∫
−1

I(𝜏, 𝛾)
4𝜎 T4

∞
d𝛾, 𝜙(𝜏) = E(𝜏)

4𝜎 T4
∞

= 2𝜋

1

∫
0

I(𝜏, 𝛾)
4𝜎 T4

∞
𝛾 d𝛾

𝜂 =
(
𝜌∞U∞
𝜇∞x

)1∕2
y

∫
0

𝜌

𝜌∞
dy, Sk =

4𝜎 T4
∞L

𝜆∞
, Ec =

U2
∞

cpT∞
, Qw = Re1∕2

Sk 𝜉1∕2

𝜕𝜃

𝜕𝜂

||||𝜂=0
+ 𝜙(0)

t = 0, 𝜉 = 𝜉0, 𝜃w = 𝜃w0, 𝜉 = 𝜉L, 𝜕𝜃∕𝜕𝜉 = 0 (3.70)

Here, t is time scaled by L2∕𝛼w (Fourier number), 𝜃 = T∕T∞, 𝜉 = x∕L, Qw is the total heat flux
at the wall, Ec, Sk are Eckert and Starks numbers, 𝜙(𝜏) and 𝜙I(𝜏) are the radiation flux and
radiant energy density, 𝜏 = 𝜏L(𝜉∕Re)1∕2𝜂 and 𝜏L = bL are the optical depth of boundary layer
in section 𝜉L, and the characteristic optical thickness, where b is the extinction coefficient and
index L denotes the end of the plate section. The other notation are: 𝜔 is the single scattering
albedo, 𝜎 is the Stefan-Boltzmann constant, 𝜃0(𝜂) is the self-similar temperature profile for
radiation free heat transfer case, and 𝜉0 is the origin coordinate. To avoid the singularity at
𝜉 = 0, a small part of a heated plate is assumed to be at ambient temperature.

Radiation flux𝜙(𝜏) and radiant energy density𝜑I(𝜏) are determined employing the equation
of radiative transfer for emitting, absorbed, and scattering medium. The modified mean flux
method [329] is applied to reduce the integro-differential equation for radiative heat transfer
to a system of two ordinary nonlinear differential equations

d(𝜑+ − 𝜑−)
d𝜏

+ (1 − 𝜔)(m+𝜑+ − m−𝜑−) = (1 − 𝜔) 𝜃4,

d(m+𝛿+𝜑+ − m−𝛿−𝜑−)
d𝜏

+ (1 − 𝜔𝜁)(𝜑+ − 𝜑−) = 0

𝜏 = 0, 𝜑+ = 𝜀𝜃4
w∕4𝜃 + r𝜑− 𝜏 = 𝜏∞, 𝜑− = 𝜃4

∞∕4

m(𝜏) =

1

∫
0

I(𝜏, 𝛾)d𝛾∕

1

∫
0

I(𝜏, 𝛾)𝛾 d𝛾, 𝛿(𝜏) =

1

∫
0

I(𝜏, 𝛾)𝛾2d𝛾∕

1

∫
0

I(𝜏, 𝛾)d𝛾,
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𝜁 = 1
2

1

∫
−1

z (𝜁 )𝜁d𝜁 (3.71)

Here, 𝜏∞ = 𝜏L(𝜉∕Re)1∕2𝜂∞, 𝜂∞ is the value of the external boundary layer edge, r and 𝜀 =
1 − r are the reflectivity and the emissivity of the plate surface, 𝜁 is the mean cosine of the
scattering angle, z(𝜁 ) is the scattering indicatrix, and 𝜁 is the cosine of the angle between
incident and scattering beams. Expressions for 𝜙,m and 𝛿 contained in relations (3.70) and
(3.71) are denoted as 𝜙+,m+ and 𝛿+, whereas the similar expressions for 𝜙−,m− and 𝛿− differ
from those only by integral limits, which are (−1 and 0) instead of (0 and 1). The radiation
flux and radiant energy density contained in (3.70) are determined as 𝜙 = 𝜙+ − 𝜙− and 𝜙I =
m+𝜙+ − m−𝜙−, where m and 𝛿 are the transfer coefficients.

Comment 3.11 Albedo is a ratio of reflected radiation from the surface to incident radia-
tion upon it. Scattering indicatrix is an imaginary ellipsoidal surface representing the spatial
distribution of scattering.

The system of equations (3.70) and (3.71) is solved iteratively applying the finite- difference
approach. The energy equation (3.70) for fluid is solved jointly with system (3.71) assuming
the value of 𝜃w to use the boundary conditions. Then, the total heat flux Qw is calculated to
solve the energy equation (3.71) for plate and to obtain the new value of 𝜃w. Usually three
to five iterations are required to achieve the converging results. Details of numerical scheme
and authors’ mean flux method are given in [330] and more completely in the original article
[329]. The calculations are performed for plate of length L = 1 m and thickness Δ = 0.01 m.
The conjugate parameter K = 𝜆∞L∕𝜆wΔ is varied from 0.01 to 10. The following basic results
are formulated:

• In the case of transparent medium (𝜏L = 0), the spatial-temporal plate temperature dis-
tribution considerable depends on the conjugate parameter. The greater K, the faster the
steady-state is achieved. Thermal radiation yields in higher level of temperature than that
for a nonradiated plate, and as a result, the steady-state situation is achieved faster.

• The conjugate effects are more noticeable at small values of conjugation parameter. The
results for different values of Reynolds and Starks numbers compare the intensity of the con-
vective and radiative heating. In particular, it follows from these data that when Re1∕2∕.Sk <
0.1, the convection heating component may be neglected.

Comment 3.12 The parameter K does not taken into account the flow thermal resistance
(except 𝜆∞). Therefore, the lesser is that parameter, the greater is the influence of fluid resis-
tance, which results in more noticeable conjugate effects. The more proper parameter is the
Biot number, which takes into account both body and fluid thermal resistances (S. 2.1.7).

• The results for absorbing, emitting, and scattering medium for three values of optical
thickness 𝜏L = 1, 10 and 100 indicate that the time required for achieving the steady state
increases as the optical thickness grows. The reason of this is the radiation flux diminution
in the boundary layer. The effect of scattering is also more considerable at the small values
of K. In the case of anisotropic scattering and a black wall, the maximum increase in plate
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temperature is noticed, whereas the minimum is obtained for a reflective surface and an
isotropic scattering

• The viscous dissipation significantly affects the temperature distribution on a plate and influ-
ences the behavior of radiation component in the total heat flux. In the case of Ec = 0 when
the viscous dissipation is ignored, the radiation flux monotonically decreases along the plate.
In contrast, at the significant dissipation (Ec > 1), the behavior of radiation flux is compli-
cated. When the Eckert numbers are appreciable, there are two cases with the maximum in
radiation flux distribution along the plate, namely, at moderate thickness (𝜏∞ ≈ 1) and thick
(𝜏∞ > 4) optical regions. On the other hand, at the small optical thickness, the local radi-
ation flux is almost constant. The described behavior at 𝜏∞ ≈ 1 should be most significant
in the absorbing media (𝜔 ≈ 0), whereas in a scattering media (𝜔→ 1), this phenomenon
seems to be only moderate.

• The data of this study indicate that the conjugate approach should be used in the
radiative-convective heat transfer studies, especially in the cases of complex temperature
distribution.

OTHER WORKS. A comprehensive review of studies of radiative-convective heat trans-
fer from early works in the 1960s of the last century to current results, but basically without
conduction effects is given in [418]. The review of early works considered coupling of free
convection with conduction on the plate until the 1990s of the last century may be found in
[438], analysis of results of interaction between a natural convection, radiation and conduc-
tion in enclosures obtained in the last 20–25 years is presented in [347], and a survey of forced
heat transfer from flat plate starting from early studies to the end of the last century is given in
[412].

Problems similar to those considered above are solved in [78, 156, 281]. In the first arti-
cle, the problem of a heated small strip similar to the one reviewed in example 3.10 is solved
using Green’s function method (S. 9.4), in paper [281], the translating liquid drop (similar
to that considered in Example 3.13) under electric field influence at low Peclet number is
investigated analytically. More complicated problem for a plate of finite thickness, taking into
account the temperature-dependent conductivity is solved semi-analytically and numerically
in the paper [156] published in the last year. This study shows that the variable temperature
distribution on the interface significantly affects the final results. The opposite situation is con-
sidered in another recently published article [235] that presents examples where the conjugate
effects are negligible, and a common simple approach with isothermal heat transfer coefficient
leads to satisfactory accurate solutions. Both results are in line with the general idea formu-
lated in Section 2.2.1 and that is frequently underlined in this text that not each heat transfer
problem should be considered as the conjugate one. Moreover, it is shown, as suggested in
Section 2.2.1, that the approach of approximate estimation of error caused by a common sim-
ple method helps to understand whether or not the conjugate solution is required. Finally, the
results of discussion of this topic including some recommendations are summarized at the end
of Part I.

We close the review of other works by mentioning several studies of conjugate problems
of the same type, which take into account additional effects or other specific conditions such
as the rising of bubbles [211], the heat transfer between a jet and a slab [190], the unsteady
heat transfer from blunt bodies in supersonic flow [320], an analytical analysis of heat transfer
from rods by Galerkin’s method (S. 9.6) [168], the heat transfer from cylinder at low Reynolds
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numbers [381], the heat transfer from a sphere heated by X-ray or laser [263], the turbulent free
convection in rectangular enclosure [347], and unsteady free convection in vertical cylinder
filled with a porous medium [349].

3.2 Internal Flows-Conjugate Heat Transfer in Pipes and Channels
Flows

◾Example 3.16n: Fully Developed Laminar Flow in a Pipe Heated at the Outer Surface
[31]

The governing system includes energy equations for the fluid, conduction equation for body,
boundary, and conjugate conditions in cylindrical coordinates

u
𝜕𝜃

𝜕x
= 4

(
𝜕2𝜃

𝜕r2
+ 1

r
𝜕𝜃

𝜕r

)
, 𝜃(0, r) = 𝜕𝜃

𝜕r
(x, 0) = 0

4

(
𝜕2𝜃s

𝜕r2
+ 1

r

𝜕2𝜃s

𝜕r2

)
= 1

Pe2

𝜕2𝜃s

𝜕x2
,

𝜕𝜃s

𝜕x
(0, r) =

𝜕𝜃s

𝜕x
(L, r) = 0

𝜕𝜃s

𝜕r
(x + 2Δ) = 𝜆

𝜆w(1 + 2Δ)
, 𝜃s(x, 1) = 𝜃(x, 1), qw =

𝜆w

𝜆

𝜕𝜃

𝜕r
(x, 1) (3.72)

Dimensionless variables are scaled using the pipe radius R, mean velocity U, initial Tem-
perature Te, and outer uniform hat flux q0. Peclet number and temperatures are defined as:
Pe = 2RU𝜌c∕𝜆, 𝜃 = (T − Te)𝜆∕q0R, 𝜃s = (Ts − Te)𝜆w∕q0R. The energy equation for fluid is
solved employing Duhamel integral in the form similar to (1.69)

𝜃w − 𝜃bl =
2qw(0)
Nuxq(x)

+ 2

x

∫
0

dqw(𝜉)
d𝜉

d𝜉
Nuxq(x − 𝜉)

𝜃bl = 8

x

∫
0

qw(𝜉)d𝜉, 2
𝜕𝜃w

𝜕r
(x, 1) = 𝜆

𝜆w
(𝜃w − 𝜃bl)Nux, (3.73)

whereas the conduction equation for the body is solved using finite-element method (S. 9.6).
In relations (3.73), 𝜃bl is the bulk temperature, and Nuxq is the Nusselt numbers for the case
qw = const for the flows in the ducts given in the book [343].

The system (3.72) is solved by iterations starting from guessing the temperature distribution
and computing the left part of last equation (3.73), which is an auxiliary equation using to
improve the iterations convergence. This gives the derivative (𝜕𝜃w∕𝜕r)r=1 on the fluid-body
interface. Then, the procedure proceeds by: (i) solving the second equation (3.72) for body
applying the finite-element approach and knowing the boundary condition for this equation to
get the body temperature, (ii) computing the heat flux and the bulk temperature using the last
equation (3.72) and the second equation (3.73), respectively, (iii) solving equation (3.73) for
fluid to get the temperature on the interface in the second approximation. These results give
data for the next iteration using again the last equation (3.72). The following basic results are
formulated:

• An isothermal region is observed on the interface at the nearness of the inlet. Here,
the wall-to-fluid temperature difference is such that the heat is transferred from the fluid to
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the wall. This is similar to what is indicated in other studies for the case of uniform qw =
const. heating. An almost isothermal temperature exists also along the heated section in
the case of higher conductivities, wall thicknesses, and for the lower lengths of the heated
section and Peclet numbers. The plots for the same heated section length have a common
point of intersection in the second part of this section that is shifted to the end of the pipe
with increasing pipe length.

• In the initial part of the heated section, the heat flux decreases from very high values to nom-
inal magnitude qw = 1. Then, it varies in two ways. The first is when it reaches the minimum
and then goes up back to the nominal value but dose not reach it. In this case, the wall tem-
perature distribution is close to the one-dimensional, and the wall may be considered as
thermally thin. In the other case, the heat flux decreases along the heated section mono-
tonically so that the axial component of the temperature gradient decreases sharply from
the outer to the inner wall surface. In that case, the wall should be seen as thermally thick
because disregarding the wall conduction leads to large errors.

• The dependence of difference Nux − Nux∗ = f (x) starts from zero near the inlet and close
to the end decreases sharply, reaching the curve Nuxq = f (x) in such a way that Nux always
remains lower than Nuxq

• The increasing Peclet number reduces the effect of axial conduction much more than the
corresponding decreasing wall-to-fluid conductivity ratio or the wall thickness. The other
way to reduce the effect of axial wall conductivity is to increase a pipe length.

◾Example 3.17a: Turbulent Flow in a Parallel Plates Duct at Periodical Inlet
Temperature

The thermal development of hydrodynamically developed turbulent flow inside a chan-
nel at periodically variable inlet temperature is investigated. The original complex system of
equations and boundary conditions is transformed using quasi-steady approach (S. 3.1.1.5)
and assumption of thermally thin walls to simplify this periodic problem [155]

u(r)𝜕𝜃(r, x)
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[
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(
r
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𝛼
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Δ u2
𝜆w

Pe2𝜆
, 𝜀 = 1 +

𝜈tb

𝛼
, (3.74)

Here, r1 and r2 are distances of the inner and outer wall surfaces from the centerline, De =
4r1 is equivalent diameter, h∞ is ambient heat transfer coefficient, uav is the average channel
velocity, 𝜈tb is the eddy viscosity for turbulent flow (S. 8.3.3), Lu is Luikov number (S. 3.1.1.5),
and ΔT is amplitude of inlet temperature.
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In deriving the system (3.74) some additional simplifications are used: (i) It is assumed that
the solution has the same periodic exponential form as the variable inlet temperature and is
presented by the second equation (3.74); (ii) The amplitude 𝜃(r, x) of this periodic solution
is determined by quasi-steady simplified initial energy equation (3.74) for fluid subjected to
usual boundary conditions given by the third and fourth equations (3.74); (iii) The conduction
equation for walls from initial system is replaced by the last equation (3.74) derived under
thermally thin walls assumption, which is used as the boundary condition on the outer chan-
nel surface for the simplified energy equation (3.74) . As the result of these assumptions, the
initial system of unsteady energy equation for fluid and conduction equation for channel walls
with periodic inlet temperature is substituted by system (3.74) consisting of simplified energy
equation for fluid with the usual boundary conditions for walls and a boundary condition on
the outer surface of the channel.

The solution of this simplified problem strongly depends on the evaluation of the complex
eigenvalues and eigenfunctions of the corresponding nonclassical Sturm-Liouville problem in
the complex domain (S. 9.2.3). For such a problem, no known solution is available. To find an
approximate solution, the generalized integral transform (Com. 9.2) is used by considering a
subsidiary problem, which is related to the classical steady Graetz problem (Com. 3.14)

d
dr

[
𝜀
(
r
) d𝜓(𝜇i, r)

dr

]
+ 𝜇2

i u(r) 𝜓(𝜇i,r) = 0

d𝜓(𝜇i, r)
dr

= 0, r = 0,
d𝜓(𝜇i, r)

dr
+ Bi𝜓(𝜇i, r) = 0, r = 1 (3.75)

The eigenfunctions set of this system yields the pair of integral transform and inversion

𝜃(x) =

1

∫
0

u(r)
𝜓(𝜇i, r)

N1∕2
i

𝜃(r, x)dr, 𝜃(r, x) =
∞∑

i=1

𝜓(𝜇i, r)

N1∕2
i

𝜃(r), Ni =

1

∫
0

u(r)𝜓2(𝜇i, r)dr

(3.76)
where 𝜃 is transformed function (S. 9. 3). Transforming system (3.74) using equations (3.76)
and performing tedious mathematical manipulations given in [155], authors present final
results in the complex form in terms of amplitude Aw(x) and phase 𝜑w(x)

Θw(x) =
T(x, r, t) − T∞

ΔT
= Aw(x) exp[−i𝜙w(x)],

Aw(x) = {[ReΘw(x)]2 + [ImΘw(x)]2}1∕2, 𝜙w(x) = tan−1 ImΘw(x)
ReΘw(x)

(3.77)

Numerical results show the effects of Biot and Luikov numbers and the wall conduction
parameter b defined by notation (3.74):

• For the smallest values of Luikov number Lu ≈ 5 ⋅ 10−4, the oscillations in the fluid tem-
perature are dampened within a short distance from the duct inlet because of the larger
thermal capacitance of the walls in comparison with that of the fluid. For the larger val-
ues of Lu ≈ 5 ⋅ 10−3, the thermal wave penetrates further downstream due to the relatively
smaller thermal capacitance of the walls and, consequently, a longer length required for
storing the heat.
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• The amplitudes of the wall temperature flattened when parameter b increases. This occurs
due to improved heat diffusion along the wall, which becomes more intensive close to the
inlet where the thermal gradients are larger. The amplitudes decay slower when the Reynolds
number increases from 104 to 105. In the case of b = 0, the wall temperature amplitudes
decay faster as the value of Luikov number Lu decreases. The similar effect of Lu on the
amplitude of the bulk fluid temperature is observed, whereas the effect of axial wall con-
duction on bulk fluid temperature turns out to be little.

• Similar trends are found with increasing the Biot number, which yields decreases of the
wall amplitudes as well because the external thermal resistance becomes smaller at larger
Biot number. In this case, the smaller values of Lu lead to the larger heat flux amplitudes.
This occurs due to significant attenuation in the wall temperature. On the other hand, at the
larger Lu, the axial wall conduction yields increasing heat flux amplitudes. This effect is
more pronounced at the inlet and is negligible for smaller Lu.

• These results are obtained in the case of fixed dimensionless frequency 𝜔 = 0.1 and
indicates, in particular, that for systems of gases flowing inside metal walls, the effect of
conjugation cannot be neglected in the regions close to inlet.

◾Example 3.18n: Laminar Flow in a Thick-Walled Parallel-Plate Channel with Moving
Wall

The model contains of the system of equations: (i) the steady boundary layer energy equation
(1.11) with the fully developed Poiseuille-Couette velocity profile u (S. 7.3.2) and the boundary
conditions at the channel inlet (x = 0) and outlet (x = L), (ii) the two-dimensional Laplace
equation (1.2) for the walls (here not shown), (iii) the thermal conditions at the walls as the
constant temperature and heat flux at the upper (y = H) and lower (y = −Δ)walls, respectively,
and (iv) usual conjugate conditions (1.18) as equalities of temperatures and heat fluxes at the
fluid/walls interfaces [164]

𝜌cpu
𝜕T
𝜕x

= 𝜆
𝜕2T
𝜕y2

+ 𝜇
(
𝜕u
𝜕y

)2

, x = 0, T = Te,
𝜕Ts

𝜕x
= 0,

x = L,
𝜕

𝜕x

(
Tw − T

Tw − Tm

)
= 0,

𝜕Ts

𝜕x
= 0

u = [6Um − 2U − (6Um − 3U)(y∕H)](y∕H) y = H, T = Te, y = −Δ, qs = q0 (3.78)

Here, Te is the entrance temperature, H is the channel height, Tm and Um are the fluid mean
temperature and velocity and T and U are the temperature and velocity of the moving surface.
The fluid temperature field is computed using finite-difference method, whereas for the walls
the Laplace equation is solved applying boundary-element approach. The advantages of such
technique are discussed in Section 9.6. The energy equation for fluid is modified so as to cluster
the grid points close to the both moving and fixed walls.

To conjugate both solutions, the iterative procedure is used. The calculation is started by
guessing of the heat flux distribution on the interface and solving the Laplace equation to find
the temperature distribution on the interface. Then, using these data, the energy equation for
fluid is solved. The new heat flux distribution is estimated using the approximate equation
qn+1 = (𝜔sq

n
s + 𝜔qn)∕(𝜔s + 𝜔), where 𝜔 is a weighting functions (S. 9.6). By numerical
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experiments it is found that for relatively rapid convergence of interactions, the weighting
functions ratio should satisfy the inequality 𝜔∕𝜔s < 0.03.

The numerical calculations give the following results:

• As the conductivity ratio of the body/fluid increases from 80.6 to 8060, the interfacial
temperature at the leading edge becomes higher and changes of the interfacial temper-
ature become smaller. As this ratio becomes small, the wall temperature at the entrance
approaches the entrance flow temperature and results in a greater change in the interfacial
temperature. At the same time, the conductivity ratio very little affects the Nusselt number
distribution.

• At the changes of dimensionless wall thickness from 0.0042 to 0.21, the observed effect is
similar. When the wall thickness increases, the interfacial temperature becomes closer to
the entrance fluid temperature, similar to that in the case of smaller conductivity ratio. In
contrast, when the wall thickness decreases, the conjugate problem get closer to the case of
constant heat flux with only difference in the temperature at the entrance region. The thin
wall case shows a higher dimensionless temperature, which is caused by the heat storage in
the wall despite the fact that it is thin.

• Both the interfacial temperature and heat flux are strongly influenced by the channel aspect
ratio, which increases from 0.001 to 0.127. When this ratio is small, the fluid flow rate
reduces, and the temperature increases more rapidly. In the case of large aspect ratio, the
temperature changes slightly, but the Nusselt number varies greatly.

• The effect of the ratio of the free surface to the fluid mean velocities was studied for the
values from 0.075 to 2.03. When the mean fluid velocity increases with unchanged free
surface velocity, the changes in interfacial temperature are small. This is because in this
case the free surface temperature is low. When the mean fluid velocity is low, the convective
heat transfer in the cross-channel direction is high, but in the opposite case, this part of heat
transfer is greatly reduced, and this causes the temperature to increase down the channel.
This is confirmed by Nusselt number distribution because at the high velocity ratio, the low
Nusselt number is observed.

◾Example 3.19∗ a: Hydrodynamically and Thermally Developed Flow in a Thick-
Walled Pipe

This problem is solved using asymptotic series in eigenfunctions. This method is employed
for solution of many problems that we have briefly reviewed below. In this case, the unsteady
problem is considered for the beginning time period tmax < x∕2um. This is very short period
during which the first portion of flow passes only small entrance part of the channel or tube.
Nevertheless, transient processes at this short time are important for startup, shutdown, or
other off-normal surge of the thermal systems operations. Because in this case the longitudinal
derivative can be neglected, the unsteady energy equation for fluid and conduction equation
for a tube wall consist of only radials derivatives [288]

𝜕T
𝜕t

= 𝛼
1
r
𝜕

𝜕r

(
r
𝜕T
𝜕r

)
− 𝜇

(
𝜕v
𝜕r

)2
, 0 < t < tmax, 0 < r < R

𝜕Ts

𝜕t
= 𝛼w

1
r
𝜕

𝜕r

(
r
𝜕Ts

𝜕r

)
, R < r < R0
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t = 0, T = Ts = Ti, t > 0, r = 0,
𝜕T
𝜕r

= 0 , r = R, T = Ts, 𝜆
𝜕T
𝜕r

= 𝜆w
𝜕Ts

𝜕r

r = R0, q = −𝜆w
𝜕Ts

𝜕r
or Ts = Tw (3.79)

In this system, R and R0 are internal and external pipe radiuses, Ti is initial temperature defining
the initial conditions, the next two conditions at t > 0 specified the boundary condition at
the symmetry axis (r = 0) and the conjugate condition (r = R), and the last two conditions
determine the heat flux or temperature imposed on the tube at r = R0.

Using dimensionless variables, this system of equations is transformed into one equation
with a single domain with discontinuous thermophisical properties and sources

𝜕𝜃

𝜕t
= f (r)1

r
𝜕

𝜕r

(
r
𝜕𝜃

𝜕r

)
+ 𝜎(r), f (r) =

(
𝛼

𝛼w

)
, 𝜎(r) =

(
cr2

0

)
0 ≤ r ≤ 1

1 ≤ r ≤ R0

t = 0, 𝜃 = 0, t > 0, r⃗ = 0,
𝜕𝜃

𝜕r
= 0, r = 1, 𝜃− = 𝜃+,

(
𝜕𝜃

𝜕r

)−
=
𝜆w

𝜆

(
𝜕𝜃

𝜕r

)+

r = R0,
𝜕𝜃

𝜕r
= − 𝜆

𝜆w
, (a) 𝜃 =

T − Ti

Tw − TR
, c =

16𝜇um

𝜆(Tw − TR)
,

(b) 𝜃 =
𝜆(T − Ti)

qR
, c =

16𝜇um

qR
(3.80)

In equations (3.80), r = r∕R, t = 𝛼t∕R2 (Fourier number), and TR is a reference temperature.
The third equation (3.80) determines the heat source 𝜎(r), which takes into account dissipation
energy equals cr2 in fluid (0 ≤ r ≤ 1) and zero in wall (1 ≤ r ≤ R0). The constant c is defined
by velocity of developed flow u = 2um(1 − r2∕R2), and the different values of 𝜃 related to the
last boundary conditions (3.79) on the outer wall when is prescribed a) temperature or b) heat
flux. The second line in (3.80) presents in dimensionless variables conditions (3.79) given by
third line of this system.

The eigenvalue problem (S. 9.2.3) associated with equation (3.80) is expressed by Bessel
equation, which solutions G1 for fluid (0 ≤ r ≤ 1) and G2 for wall (1 ≤ r ≤ R0) are given using
the Bessel functions J0 and Y0:

f (r)1
r
𝜕

𝜕r

(
r
𝜕G
𝜕r

)
= −g2G, r⃗ = 0,

𝜕G
𝜕r

= 0

r = 1, G− = G+,
(
𝜕G
𝜕r

)−
=
𝜆w

𝜆

(
𝜕G
𝜕r

)+
, r = R0,

𝜕G
𝜕r

= 0 or G = 0

G1 = C1J0(gr⃗) + C2Y0(gr), G2 = C3J0(gr⃗∕
√
𝛼w∕𝛼) + C4Y0(gr∕

√
𝛼w∕𝛼) (3.81)

where G is eigenfunction and −g2 is a separation constant (like −𝜇2 in equations (9.7).

Comment 3.13 Special functions that give solutions of particular differential equations usu-
ally are called by scholars first consider these equations. We encountered with Airy functions
in Example 3.10. Bessel functions J0 and Y0 using in this example satisfied the considered here
Bessel equation (3.81). Special functions are determined by series or integrals because they
could not be expressed through elementary functions.
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To satisfy the condition (3.81) for r = 0, it must be C2 = 0 in solution G1, and the remaining
three conditions (3.81) for r = 1 and r = R0 should be met to specify three other constants. To
achieve this, the Sturm-Liouville problem (9.3.2) is investigated. The details of this complex
procedure may be found in the paper [288]. As the result, the two temperature distribution
𝜃(r, t) along the interface are obtained for two boundary conditions (3.80) imposed at the outer
wall (a) and (b)

𝜃 = 𝜃w +
∞∑

n=1

Gn(r)
[

cn exp
(
−g2

nt
)
+

Vn

g2
n

]

𝜃 = W0t − 𝜆

𝜆wR0

(
r2

2
− 1

4

)
+

∞∑

n=1

Gn(r)
[

cn exp
(
−g2

nt
)
+

Wn

g2
n

]

Vn =

c

1

∫
0

G1n(r)r
3dr

1

∫
0

G1n(r)rdr + 1
Lu

R0

∫
0

G2
2n(r)rdr

,

Wn =

1

∫
0

(

cr2 + 2𝜆

𝜆wR0

)

G1n(r)rdr + 1
Lu

R0

∫
0

2Lu

R0

G2n(r)rdr

1

∫
0

G2
1n(r)rdr + 1

Lu

R0

∫
0

G2
2n(r)rdr

(3.82)

In two equations for temperature, cn are coefficients of generalized Fourier series (S. 9.2. 3)
defined by formulae resulting from Sturm-Liouville analysis (like equation (9.24)).

The numerical examples are obtained using 50 terms of asymptotic series in eigenfunctions,
which was enough to get data with four accurate digits.

The following basic results are obtained:

• The temperature decreases with increasing values of the conjugation parameter√
𝛼w∕𝛼∕(𝜆w∕𝜆) =

√
Lu, where Lu is Luikov number. In the case (a), the tempera-

ture reaches the steady state; in the case (b), the temperature decreases with increasing the
conjugation parameter and time as well, but does not reach the steady state.

• The greater the conjugation parameter is, the greater the effect of fluid properties, so that at
a given time, the interface temperature becomes to be closer to the initial condition 𝜃 = 0.

• The fluid temperature increases along the radial coordinate and with increasing the viscous
dissipation.

• Despite the dissipation, in the case of heat extraction from the outer wall and of high value
of conjugation parameter, the heat flux reversal occurs at the interface.

OTHER SOLUTION IN ASYMPTOTIC SERIES: Asymptotic solutions are obtained
for small and large axial coordinates in various conjugate heat transfer problems. Luikov
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et al. in their early work [247] gave the solution of heat transfer problems for a plate in
a compressible fluid and for flows in the channel and tube. They used the Fourier sine
transform, reducing the system of governing equations to an integral equation of which
a solution was presented by asymptotic series. Stein et al. [377] presented an asymptotic
analysis of conjugate heat transfer from a flush-mounted source in an incompressible fluid
flow with linear velocity distribution across the boundary layer (Example 3.10). Wang et al.
[416] obtained an asymptotic solution of conjugate heat transfer between a laminar impinging
jet and a disk with given temperature or heat flux distribution on its surface. The asymptotic
conjugate analysis of drying process on a continuously moving porous plate was given by
Grechannyy at al. [151, 152] who studied the effect of the temperature and concentration
heads distribution on heat and mass transfer between the porous plate and flow entrained
due to it moving (S.1.10). Several authors published asymptotic solutions of conjugate heat
transfer in the channels and tubes. David and Gill [86] considered heat transfer between the
Poiseuille-Couette flow and walls of parallel plates channel analyzing the effects of axial
conduction by eigenfunctions series. The method of eigenfunction series is also used by
Hickman [167] who obtained an asymptotic solution for the Nusselt-Graetz problem taken
into account the effect of the wall but neglecting the axial conduction effects. Lee and Ju [222]
solved a conjugate problem for a duct in the case of high Prandtl number, and Papoutsakis
and Ramkrishna [302] presented a solution of a more complicated case of a low Prandtl
number when the axial conduction in a fluid should be taken into account (see review in
Exam. 4.9).

Comment 3.14 The solutions in asymptotic eigenfunctions series based on the expansion of
Graetz method are efficient for high abscissas but converge slowly for small values of coordi-
nate x. (Leo Graetz first considered such problem). In the next example, we present a solution
of a conjugate heat transfer problem for a duct given by Pozzi and Lupo [313], which is efficient
for small values of x.

◾Example 3.20a: Fully Developed Laminar Flow in the Entrance of a Plane Duct [313]

The goal of considering this article is to show a way of construction a solution that requires
only few terms of the eigenfunctions series to get a satisfactory accuracy for small abscissas.
The model contains two simplified equations for temperatures of thin walls of a duct and of
fluid for fully developed flow with velocity profile u = 1 − y2

Ts = Tw + (T0 − Tw)
y − 1

Δ
, (1 − y2)𝜕𝜃

𝜕x
= 𝜕2𝜃

𝜕y2

𝜃(0, y) = 𝜕𝜃

𝜕y

||||y=0
= 0, 𝜃w − 1 = −Λ 𝜕𝜃

𝜕y

||||y=1
(3.83)

where 𝜃 = (T − Ti)∕(T0 − Ti),T0 and Ti are outer wall and fluid inlet temperatures, R is the
half-height of the duct, the reference lengths for dimensionless x and y are RPe and R, respec-
tively, Pe = umaxR∕𝛼, and Λ = 𝜆Δ∕𝜆wR is a conjugate parameter. The first relation is written
assuming the linear temperature distribution across the walls, and the second one, the energy
equation, does not consist of the second inertia term because the flow is parallel. The first
boundary condition (3.83) specifies the uniform temperature at the entrance, and the second
formula presents the conjugate condition.
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The Laplace transform (S. 9.3.2) of the set of equation (3.83) yields

𝜕2𝜃

𝜕y2
− s(1 − y2)𝜃 = 0,

𝜕𝜃

𝜕y

||||y=0
= 0, 𝜃(s, 1) − 1

s
= −Λ 𝜕𝜃

𝜕y

||||y=1
(3.84)

The solution in Laplace field for temperature of fluid and then for interface at y = 1 are:

𝜃(s, y) = exp

[(
1 − y2

)
i
√

s

2

]
F1(s, y)
F1(s, 1)

𝜃(s, 1)

𝜃(s, 1) =
F1(s, 1)

s

[(
1 − i

√
sΛ

)
F1(s, 1) + Λ

(
s + i

√
s
)

F2(s, 1)
]

(3.85)

where the two confluent hypergeometric functions F(𝛾, 𝛿, x) are defined as (Com. 3.13)

F1(s, y) = F

(
1 − i

√
s

4
,

1
2
, i

√
sy2

)

, F2(s, y) = F

(
5 − i

√
s

4
,

3
2
, i

√
sy2

)

(3.86)
After series of mathematical transformations and simplifications described in the paper [313],
authors present the final interface temperature in physical space by two relations

𝜃w =
a1

b1

[
1 − Λx−1∕3

a1Γ (2∕3)
+ Λ2x−2∕3

a2
1Γ(1∕3)

]

, 𝜃w = 1
Λ

∞∑

n=0

cn
x(1+n)∕3

Γ[(4 + n)∕3]
(3.87)

The first relation is obtained using the asymptotic formula for hypergeometric function, and
the second is a result of the inversion of series given solution in Laplace space in physical
variables. Expressions (3.87) are valid for Λ ≤ 0.01 and Λ ≥ 1, respectively, with coefficients
a., b., cn given in [313]. The fluid bulk temperature and the local Nusselt number are defined as:

𝜃bl(x) =
3

2Λ

x

∫
0

[1 − 𝜃w(𝜁 )]d𝜁, Nu =
4(𝜕𝜃∕𝜕y)y=1

𝜃w − 𝜃bl
(3.88)

The accuracy of equations (3.87) for small and large Λ in a range of small dimensionless
abscissa 0 ≤ x ≤ 0.001 is shown in [313] by comparison of Nusselt numbers with the data
adopted from [343], which was calculated using 120 terms of the asymptotic series.

◾Example 3.21n: Fully Developed Laminar Flow in a Horizontal Channel of Finite
Length Heated From Below by Constant Heat Flux [71]

Because the channel is of finite length, the mathematical model consists of full
two-dimensional continuity (1.4), Navier-Stokes (1.5), (1.6), and energy (1.8) (not sim-
plified) equations. To take into account effects of pressure gradient and buoyancy forces
(S. 7.8) arising due to heating from below, the additional terms in the form of sources
are used: S(x, y) = −dP∕dx and S(x, y) = −dP∕dy + (Gr∕Re2)𝜃 for equations (1.5) and
(1.6), respectively. Here, 𝜃 = (T − T∞)𝜆∕qwH and H is a channel height. For the walls, the
two-dimensional Laplace equation (1.2) is considered.

The conjugate boundary conditions are formulated in conformity with the model, which
authors used for experimental study. This setup has been insulated by the fiberglass and plex-
iglass on the top wall and two sections at the inlet and outlet of the bottom wall, whereas the
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heated section is located between these two insulated sections. The heat loss through insulated
channel parts to the ambience is included in conjugate conditions by Biot number so that these
conditions for top wall and bottom isolated and heated sections are:

(𝜕𝜃∕𝜕y)tp = −Bitp𝜃 (𝜕𝜃∕𝜕y)is = Biis𝜃∕(𝜆is∕𝜆) (𝜕𝜃∕𝜕y)ht = −𝜆∕𝜆w (3.89)

where Bitp = 1.27 and Biis = 1.22 are Biot numbers estimated by taken into account the total
resistance of insulations and of natural convection from the walls to the surrounding.

The velocity and temperature conditions at the entrance and exit sections should be defined
also since the channel length is finite (S. 7.2). It is assumed that the flow enters with parabolic
velocity profile (S. 7.3.2) and with uniform ambient temperature. These assumptions are ver-
ified by measurements. The flow at the exit is quite complex due to recirculation and entrain-
ment of ambient air. According to some known data, it is accepted that 𝜕u∕𝜕x = v = 0, 𝜃 = 0
if u ≤ 0 (inflow) and 𝜕𝜃∕𝜕x = 0 if u ≥ 0 (outflow).

A finite-volume technique with a uniform staggered grids (S. 9.7.1.1) and different mesh
size for body and flow was employed. The successive over-relaxation code was used for com-
puting the pressure (S. 9.7.1.1) and Tridiagonal matrix algorithm was applied for the solution
of nonlinear coupled system of momentum, energy, and continuity equations. The grid density
was increased until the two successive solutions of flow and thermal fields becoming different
by less than 1%.

Comment 3.15 Tridiagonal matrix algorithm (TDMA) and successive over-relaxation
method are approaches for solving linear systems of algebraic equations. The first is based
on a tridiagonal matrix that has only three nonzero elements in main diagonal and in two first
diagonals above and below it. A second approach is a variant of Gauss-Seidel method with
relaxation factor improving the convergence of iterations (Com. 4.12).

The numerical results are in agreement with author’s experiments. The basic conclusions
are as follows:

• In the case of low Reynolds number (Re = 9.48), the buoyancy causes two rolls with axis
of rotation perpendicular to the flow direction. The upstream roll produces a recirculation
zone, whereas the downstream roll entrains flow from outside. As the Reynolds number
increases to Re = 29.7, these rolls become smaller, and flow entrainment is reduced. It
is observed that the intensity of these and transverse rolls as well as oscillatory motion
and turbulence depend on the channel cross-section aspect ratio, flow, and heating
rates. The study shows that the effect of the wall conductivity on the rolls location is
small.

• The horizontal asymmetry of temperature profiles is caused by bulk flow through the
channel. The heated region temperature is higher than that of insulation, which results in
generation of thermal plume above the surface. In the case of aluminum heated region,
the temperature distribution is highly uniform, which differs significantly from the case
of ceramic heated region when the temperature uniformity is reduced due to poor thermal
material diffusivity and to an increased heat transfer to the insulation.

• The comparison of the results obtained for conjugate and nonconjugante approaches demon-
strates a significance of the conjugate modeling. This comparison is made for different
heated region conductivities in the range corresponding to the materials such as plexiglass,
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ceramics, stainless steel, and aluminum. In the case of uniform heated surface, the noncon-
jugate model predicts a highly nonuniform temperature profile. In contrast, the conjugate
model gives the highly uniform temperature profile. This occurs not only due to the redis-
tribution of the thermal energy by itself, but also to the increase of the thermal energy loss
to the insulation. These results are confirmed by analysis of the effect of the conductivity of
the heated and insulation regions on their average temperature predicted by nonconjugate
and conjugate models.

• The numerical and experimental results show that the conjugate effects are significant and
usually should be taken into account, except two cases: (i) for the thin walls, low insulation
or high thermal conductivity of the heated regions, the surface can be considered as an
isothermal one, and (ii) at a low heated region thermal conductivity, the heat transfer may
be modeled as qw = const. process.

◾Example 3.22: Unsteady Heat Transfer in a Duct with Laminar Flow and Outside
Heating

A fluid flowing inside the duct with a steady laminar, fully developed velocity profile is at
initial temperature Ti when suddenly the outside of the duct wall is exposed to an ambient fluid
at temperature T0 and constant surface coefficient h0. Under usual assumption, the governing
equation for fluid and for a thin wall are [378]

𝜕𝜃

𝜕t
+ 3

(
y −

y3

2

)
𝜕𝜃

𝜕x
= 𝜕2𝜃

𝜕y2
,

h0R

𝜆0
(1 − 𝜃) = −𝜕𝜃

𝜕y
+ Δ

Lu
𝜕𝜃

𝜕t

t = 0, x ≥ 0, 𝜃 = 0, y = 1,
𝜕𝜃

𝜕y
= 0 (3.90)

All variables are dimensionless and are scaled by: half channel height R for y and Δ, R2um∕𝛼
for x, R2∕𝛼 for t, 𝜃 = (T − Ti)∕(T0 − Ti), and Lu = 𝜌cp∕𝜌wcw is the Luikov number. The first
equation (3.90) is the unsteady boundary layer energy equation for flow in a parallel plate
duct with fully developed parabolic velocity profile, and the second one is the usual equation
for thin plate with an additional last term taking into account the unsteady effects. At the
same time, the last equation is the conjugate conditions, which becomes clear from dimension
form of this equation (we use the same notations for dimension and dimensionless Δ and t)
h0(T0 − T) = −𝜆(𝜕T∕𝜕y)y=0 + 𝜌wcpwΔ(𝜕T∕𝜕t).

The boundary conditions (3.90) stand for initial temperature at t = 0 and for symmetry con-
dition on the central channel line at y = 1, respectively.

The problem is solved by using the finite-difference method. Details of numerical scheme
and proof of consistency of the corresponding set of finite-difference equations are present
in [378]. The accuracy of numerical results is checked by comparisons with some analytical
solutions of similar problems.

The following results are obtained:

• The comparison of the results obtained for the limiting case Lu → ∞ and for a large, but
finite value of Luikov number shows that the agreement between these two results at fixed
magnitude of Lu depends on the value of parameter h0R∕𝜆0, which determines the value
of the minimum time when the approximation Lu → ∞ is acceptable. As the parameter
h0R∕𝜆0 increases, the values of the minimum time become smaller. Thus, for h0R∕𝜆0 = 10,
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the approximation is acceptable for t > 0.2, whereas for h0R∕𝜆0 = 2, it becomes acceptable
only for times t > 0.5.

• Both wall and fluid temperatures increase monotonically to their state distribution in x for all
values of Lu and h0R∕𝜆0. The greater the Luikov number is, the shorter is the time required
to reach the steady-state condition. For fixed value of Lu, this time is shorter for the larger
values of parameter h0R∕𝜆0.

• The behavior of the surface heat flux is strongly dependent on the value of Lu and is signifi-
cantly different for Lu → ∞ and for other finite values of Luikov number. For Lu → ∞, the
surface heat flux increases stepwise to its maximum value right at t = 0 and then monotoni-
cally decreases to its steady-state distribution. In contrast, for the finite values of Lu, the heat
flux is zero at the beginning and then exhibits a quite complicated behavior. At some values
of Lu, h0R∕𝜆0 and x, the heat flux increases from initial zero value to its maximum and
then decreases below the steady-state condition approaching it from below. Such behavior
occurs in the second time domain after transient period of time tmax < x∕2um (see Example
3.19). Similar effect was observed in the earlier works, from which the results are compared
with the data obtained in this study.

• Higher values of parameter h0R∕𝜆0 lead to higher values of both wall and bulk fluid tem-
peratures for all Lu, t and x. The heat flux is greater at higher values of Luikov number and
at lower values of time. For the larger values of time, heat flux is greater for lower x but is
lower at the larger x.

• The comparison between data obtained for conjugate model for Lu → ∞ and simple usual
nonconjugate approach with isothermal heat transfer coefficient shows that the large errors
could result in such simple calculations. The analysis indicates that the results of simple
approach and conjugate solution data would get closer as the parameter h0R∕𝜆0 or the
Luikov number become smaller, as time gets larger in the first time domain or as x gets
larger in the second time domain.

◾Example 3.23n: Transient Heat Transfer in a Pipe with Surface Constant Temperature
[219]

The unsteady conjugate heat transfer in a circular tube with fully developed flow and
imposed from outside constant temperature is studied. The heated section is located on
the wall between two insulated parts at the entrance and exit of the tube, similar to that
in Example 3.21. Both full two-dimensional equations for fluid and wall are used in the
cylindrical coordinates with zero circumferential components (axisymmetric flow) as:

𝜕𝜃

𝜕t
+ Pe(1 − y2)𝜕𝜃

𝜕x
= 1

y
𝜕

𝜕y

(
y
𝜕𝜃

𝜕y

)
+ 𝜕2𝜃

𝜕x2
,

𝛼

𝛼w

𝜕𝜃s

𝜕t
= 1

y
𝜕

𝜕y

(
y
𝜕𝜃s

𝜕y

)
+
𝜕2𝜃s

𝜕x2

𝜃s(x, R0, t) = 1,
𝜕𝜃s

𝜕y
(x, R0, t) = 0 (3.91)

Here, the first boundary condition specifies the heated section temperature, whereas the second
one determines the condition on the insulated sections. The dimensionless variables are scaled
as: Ri for x and y,R2

i ∕𝛼 for t, and 𝜃 = (T − Te)∕(T0 − Te), where Ri and R0 are inside and
outside radii, Te is initial and inlet flow temperature, and T0 is the external surface temperature.
The other conditions are common: the conjugate conditions, uniform velocity and temperature
inlet profiles, and the symmetry condition.
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Equations (3.91) are solved using the finite-difference scheme of Patankar [306] computing
procedure through one domain including both subdomains for fluid and wall, conjugate con-
ditions on interface, and outer boundary conditions (S. 1.2.1 and 9.7.1.1). Detailed description
of mesh discredization, and employing grids are given in [219].

The analysis of results yields the following conclusions:

• The basic characteristics: the bulk temperature, the interfacial heat flux, and the Nusselt
number are calculated by following expressions

𝜃bl =

1

∫
0

(y − y3)𝜃 dy∕

1

∫
0

(y − y3)dy, qw = − 𝜕𝜃

𝜕y

||||y=1
, Nu =

2qw

𝜃w − 𝜃bl
(3.92)

These characteristics depend on four dimensionless parameters: the ratio of the wall-fluid
conductivities 𝜆w∕𝜆, the ratio of radii R0∕Ri, Peclet number Pe = 2Riue∕𝛼 and ratio of the
wall-fluid diffusivity 𝛼w∕𝛼. During the initial transient time (t < 0.016), the interfacial heat
flux increases stepwise from zero to the maximum value and then monotonically decreases
to its steady-state value. Since at this period the heat is basically transported by radial
conduction in the wall, the fluid temperature increases less than interfacial temperature.
Therefore, the large wall-fluid temperature difference forms that result in a rapid increase in
fluid temperature. For t < 0.016, qw is relatively uniform across the heated section, but near
the entrance and the exit of the heated section, the interfacial heat flux peaks are observed.
After reaching the maximum, qw decreases until it becomes steady-state conditions. Analy-
sis shows that steady state is reached more quickly near the exit end than at other positions
of the heated section. The negative values of qw appear in the downstream region close the
heated section and in the upstream region also close to the heated section but for the smaller
value of 𝛼w∕𝛼.

• A decrease in thermal resistance in the wall that corresponds to large values of 𝜆w∕𝜆 leads
to higher interfacial temperatures. In the upstream region of the heated section, both the
interfacial heat and preheating increase as the conductivity ratio grows.

• Thinner wall thicknesses correspond to smaller resistances and energy storage of the walls,
and due to that the energy from the outside surface to the fluid becomes easier to transport.
This causes a rapid response of the interfacial heat flux and shorter time for reaching the
steady state. The time to reach the steady state becomes shorter also for decreasing the
conductivity ratio. For the small thickness after early period, the convective effect becomes
dominant, whereas for a thicker wall, the conduction remains dominant. The reverse heat
transfer is observed downstream of the heated section.

• A lower thermal diffusivity ratio corresponds to a greater wall capacity and, hence, delays
the increase of interfacial temperature, causing the increase of the time required to reach the
steady state. In the early time period, the response of qw is faster for the larger diffusivity
ratio. Later, the convective heat transfer becomes dominant, and its effect increases with
decreasing 𝛼w∕𝛼.

• At larger Pe, the greater convection results in faster heat transportation from the wall to the
fluid, and a decrease in Pe decreases the interfacial heat flux. According to the computation
results, the preheating length in the upstream region decreases with an increase of the Peclet
number. Conversely, the postheated length downstream of the directly heated portion is
increased with Pe. The results show also that reverse heat transfer takes place earlier for
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larger values of Pe. The time required to reach the steady state is shorter for increasing
Peclet numbers.

OTHER WORKS: The same as in the last example conjugate problem with different condi-
tions at the outer surface of the pipe or channel is considered in three other papers. In [234]
the uniform heat flux is applied to the outer pipe surface instead of the uniform temperature
imposed on the surface in [428]. In [429], the two cases of stepwise changes of temperature are
considered: of the imposed temperature on the outer pipe surface in the first case and of ambi-
ent temperature at the outer channel wall in the second one. The mathematical models, solution
approaches and basic conclusions in these papers are almost the same as in [219]. The reviews
of heat transfer studies in pipes and channels including the solutions of conjugate problems
one may find in [31] for relatively early results, in paper [429] for studies published until the
end of the last century, and in [96] for more recent publications. Some conjugate heat transfer
problems different from those discussed above may be mentioned. The conjugate heat transfer
in compressible flows is investigated in [95], in thick-walled pipe of arbitrary cross-section
with the fully developed flow is considered in [73] applying boundary-element approach, and
the conjugate heat transfer in a rectangular channel at simultaneously developing velocity and
temperature fields is analyzed in [12]. The conjugate heat transfer from radiating fluid in a
rectangular channel is considered in [271]. The natural convective conjugate heat transfer in
enclosures with openings and in square cavity is studied in [426] and [417] respectively, and the
experimental results of conjugate heat transfer of water flow boiling in a channel are presented
in [46]. Finally, we mention some examples of the latest publications. The finite element mod-
eling is used in article [77] to investigate the heat transfer in flexible elastic tubes. The other
recently appeared articles present the following research results: the interaction of surface radi-
ation with mixed convection from vertical channel with heat sources [240] and with natural
convection in enclosure with energy source [253], the influence of natural convection on the
conjugate heat transfer characteristics in the minichannel of thermal storage system during the
liquid material melting [252], the effect of axially varying or periodic heat transfer subjected
at the outer wall of a duct on conjugate heat transfer characteristics [22], and the conjugate
heat transfer from a sudden expansion investigated using nanofluid in [192].
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Specific Applications of Conjugate
Heat Transfer Models

In this chapter, the examples are considered shortly as well as the conjugate solutions are
discussed in the second part of third chapter, beginning from Section 3.2. Some of the examples
might demand additional physical and mathematical information that one could get from
the third part of the textbook. The author hopes that this knowledge is enough to understand the
majority of presented solutions, otherwise, any course of Advanced Engineering Mathematics
that consists of extra theory and exercises will do. For additional information of fluid flow and
heat transfer, a reader is referred to Schlichting’s book “Boundary Layer Theory” [338] and for
more specific knowledge of turbulent flow to Wilcox’s monograph “Turbulence Modeling for
CFD” [422].

4.1 Heat Exchangers and Finned Surfaces

4.1.1 Heat Exchange Between Two Fluids Separated by a Wall
(Overall Heat Transfer Coefficient)

We begin from simple classical model of heat transfer between two fluids separated by thin
plate. Recall that we analyzed this model in Example 2.11 when the errors arising by using
the third kind boundary conditions are estimated. Here, we consider six conjugate solutions
of this classical problem that simulate different real situations. All six models analyzed heat
transfer between two fluids but differ from each other by separated wall-applying horizontal
or vertical plates or a vertical tube with inside and outside flows. They differ also by regime
and type (con- or counter-) of flows, mathematical models, and methods of solutions. The data
obtained show how much the conjugate solutions are more reliable and physically grounded
than a simple formula for overall heat transfer coefficient. In the next section, we compare
data obtained for thin separated walls with the exact solution of the same problem with a thick
separated wall to understand where the approximate results are acceptable and in what cases
the correction should be done.

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine,
First Edition. Abram S. Dorfman.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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◾Example 4.1a: Two Concurrent Laminar Flows Separated by a Thin Plate [100, 103]

For a thin plate (Δ∕L << 1) with thermal resistance greater than that of both liquids, the
longitudinal conductivity of the plate is negligible (S. 3.1.1.4). In this case, the temperature
distribution across the plate thickness is practically linear, and hence, the heat fluxes on both
sides of the plate are equal resulting in two simple equations for heat fluxes (Fig. 4.1). These
equations after using for heat fluxes the universal function (1.38) with two first derivatives only
(S. 2.1.1.1) gives the following system of equations

−qw1 = qw2 = (𝜆w∕Δ)(Tw1 − Tw2)

Tw2 − Tw1 =
h∗1Δ
𝜆w

(
Tw1 − T∞1 + g11x

dTw1

dx
+ g21x2 d2Tw1

dx2

)
(4.1)

− h∗1

(
Tw1 − T∞1 + g11x

dTw1

dx
+ g21x2 d2Tw1

dx2

)

= h∗2

(
Tw2 − T2∞ + g12x

dTw2

dx
+ g22x2 d2Tw2

dx2

)

The second and the third equations (4.1) are found after substitution (1.38) into equations
−qw1 = (𝜆w∕Δ)(Tw1 − Tw2) and −qw1 = qw2, respectively, which follow from the first one.

U∞2; T∞2

λw

U∞1; T∞1

Tw2

Tw1

y

x

Figure 4.1 Scheme of heat transfer between two flows through a thin plate

To complete the model, the boundary conditions should be specified. Since equations (4.1)
are of the second order, two conditions are needed. The first we get knowing that at the leading
edge, the temperature of each side of the wall is equal to corresponding initial fluid tempera-
ture. The second condition is obtained taking into account that as the distance from the leading
edge increases, the heat flux between fluids decreases due to growing boundary layer so that at
x → ∞, the heat flux reaches asymptotically zero. This leads to asymptotically decreasing tem-
perature derivatives finally resulting in a constant temperature Tw∞ of both fluids and the plate.
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Setting temperature derivatives to zero in the second equation (4.1) yields the limiting value
of this temperature, which we use to form dimensionless variables and boundary conditions

Tw∞ =
Bi∗1T∞1 + Bi∗2T∞2

Bi∗1 + Bi∗2
, Bi∗ =

h∗Δ
𝜆w

, 𝜃 =
Tw − T∞

Tw∞ − T∞
(4.2)

x = 0, Bi∗ → ∞, 𝜃1 = 𝜃2 = 0

x → ∞, Bi∗ → 0, 𝜃1 = 𝜃2 = 1, 𝜃′1 = 𝜃′2 = 𝜃′′1 = 𝜃′′2 = 0

Analysis shows [103] that the system (4.1) in variables (4.2) for the case of equal coefficients
for both fluids gk1 = gk2 can be transformed into one equation containing only one parameter
BiΣ that is a combination of Biot numbers Bi∗1 and Bi∗2.

𝜃(1 + BiΣ) + ĝ1Bi2Σ
d𝜃

dBiΣ
+ ĝ2Bi3Σ

d2𝜃

dBi2Σ
= 1 (4.3)

BiΣ = 1
1∕Bi∗1 + 1∕Bi∗2

, Bi =
qwΔ

𝜆w(T∞2 − T∞1)
= 1 − 𝜃

In this case, the dimensionless fluid temperatures are equal 𝜃1 = 𝜃2 = 𝜃, and the total heat
flux across the plate Bi (the overall heat transfer coefficient) is simple determined through the
dimensionless temperature by the last equation (4.3).

The coefficients ĝk appear in this equation depend on coefficient gk of universal function
(1.38) given in Figures 1.3 and 1.4. Calculations indicate that first coefficient ĝ1 ≈ −0.53 is
practically the same for Pr > 0.5 and changes almost linearly to ĝ1 ≈ −0.7 in the range of
Prandtl number 0.5 > Pr > 0.001. The second one is ĝ2 = −0.11 for whole diapason of Prandtl
numbers [100, 119]. Therefore, equations (4.3) derived for equal coefficients ĝk are valid if
both fluids are the same, or their Prandtl numbers both are in the range Pr > 0.5. When both
streams or one of them have Pr < 0.5, equations (4.3) and the results presented below are
valid with small inaccuracy caused due to substitution coefficients ĝ1 in the range 0.53 ÷ 0.7
by their average value. More accurate solutions (4.3) for different coefficients ĝk one may
found in [100] or [103].

The ordinary differential equation (4.3) was solved in three approximations: the first one
with only the first term in the left-hand side (boundary condition of the third kind), the second
with the two first terms, and the third using equation with both derivatives. Equation (4.3) in the
first approximation is a simple algebraic equation. The second approximation of that equation
is an ordinary differential equation of the first order solved by standard method. These both
solutions are as follows:

𝜃 = 1
1 + BiΣ

, 𝜃 =
(
− 1

ĝ1BiΣ

)1∕ĝ1

exp

(
1

ĝ1BiΣ

) −1∕ĝ1BiΣ

∫
0

𝜉−1∕ĝ1 exp(𝜉)d𝜉 (4.4)

For the limiting cases Pr → 0 (ĝ1 = −1) and Pr → ∞ (ĝ1 = −1∕2) relation (4.4) simplifies to
𝜃 = 1 − BiΣ[1 − exp(−1∕BiΣ)] and 𝜃 = 1 − 0.5 Bi2Σ[1 − exp(−2∕BiΣ)]. The solution of a full
equation (4.3) reveals that the second approximation (4.4) is satisfactory accurate [103].

As it should be, the first equation (4.4) along with last relation (4.3) for total heat flux yields
the formula for overall heat transfer coefficient 1∕Bi = 1 + 1∕Bi∗1 + 1∕Bi∗2, whereas the sec-
ond conjugate solution (4.4) presents the refined data. These conjugate results are plotted in
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Figure 4.2 Effect of conjugation in heat exchange between two fluids through thin wall in laminar flow,
1 − Pr = 0, 2 − 0.01, 3 − 0.1, 4 − Pr → ∞, points-the third approximation

Figure 4.2 as function Δqw∕qw∗ = f (BiΣ), where Δqw is the difference between heat fluxes qw
and qw∗ calculated with and without effects of conjugation, and where BiΣ is defined by the
second formula (4.3).

It is seen that the maximal effect of conjugation: (i) is 15–25% for the medium to large
(gases and liquids) and small (liquid metals) Prandtl numbers, respectively, (ii) takes place
close to the case of equal thermal resistances of both fluids, at the range BiΣ = 0.5 − 0.7, and
(iii) is in line with approximate estimations of error caused by boundary conditions of the third
kind obtained in Example 2.11 where it was noted that the effect of conjugation is moderate
because the temperature head increases in flow direction on both sides of a plate. It was also
estimated that the error of overall heat transfer coefficient for turbulent flow is about 10% for
low Prandtl and Reynolds numbers and becomes smaller as Pr or Re increases.

◾Example 4.2a: Two Concurrent Laminar and Turbulent Flows Separated by a Thin
Plate

The same problem was solved in [408] using Duhamel integral (1.23). The approach is
similar to that applied in solving the heat transfer problem for radiation plate (Example 3.14)
when the limits of integrals are broken up in small intervals assuming the constant temperature
derivatives within each small interval (S.1.3.1). In this case, the substitution of equation (1.23)
for heat fluxes into temperature distribution (4.1) across a plate as in Example 4.1 and using
relation for an isothermal heat transfer coefficient h∗ = KRem

x Prn leads to equations similar to
two relations (4.1) in the form

−

x1

∫
0

f

(
𝜉

x1

)
d𝜃1

d𝜉
d𝜉 = H

x1−m1
1

x1−m2
2

x2

∫
0

f

(
𝜉

x2

)
d𝜃2

d𝜉
d𝜉, 𝜃2(x2) − 𝜃1(x1) =

G

x1−m1
1

x1

∫
0

f

(
𝜉

x1

)
d𝜃1

d𝜉
d𝜉

𝜃 =
T − T∞2

T∞1 − T∞2
, x = Ux

𝜈
= Rex, H =

K2𝜆2 Prn2
2 (U2𝜈1)m2

K1𝜆1 Prn1
1 (U1𝜈2)m1

, G =
K1𝜆1Um1

1 Prn1
1

𝜆w𝜈
m1
1

(4.5)
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In these equations, the coordinates on both sides of a plate are considered as x2 = x1 for
concurrent flows and x2 = ReL1 − x1 for countercurrent flows, where ReL1 is the Reynolds
number at the end of a plate on the side one. The influence function in integrals (4.5) is defined
in standard form (1.24) with exponents 3/4 and (−1/3) and 9/10 and (−1/9) for laminar and
turbulent flows, respectively.

If the interval 0 < x < ReL1 is divided into N small subintervals Δi,j assuming constant
values of d𝜃∕dx = si,k on each of k subintervals, the temperature on this space is defined as
Δ𝜃k = si,kΔk, and the sums of these products yield the temperatures 𝜃1 and 𝜃2 of both streams.
Then, the equations (4.5) for the concurrent flows become

−
j∑

k=1

s1,k

x1,k

∫
x1,k−Δk

f

(
𝜉

x1,j+1

)

d𝜉 = H
x1−m1

1,j

x1−m2
2,j+1

j+1∑

1

s2,k

x2,k

∫
x2,k−Δk

f

(
𝜉

x2.j+1

)

d𝜉 𝜃1(x1,j) = 1 +
j∑

k=1

s1.kΔk

−
j+1∑

k=1

s2,kΔk−
j∑

1

s1,kΔk − 1 = G

x1−m1
1

x2,k

∫
x2,k−Δk

f

(
𝜉

x1.j

)

d𝜉, 𝜃2(x2.j+1) =
j+1∑

k=1

s2,kΔk (4.6)

The first and third equations (4.6) present a system of 2N linear algebraic equations specifying
values of s1,k and s2,k required to calculate the flow temperatures by second equations (4.6).
Calculations using standard approaches for solving systems of algebraic equations (Com. 3.14)
are performed for laminar flow resulting in the following conclusions:

• The wall temperature distribution depends on the dimensionless parameters H (a measure
of the relative heat transfer conductance of the streams), G (a measure of the conductance
of the plate relative to that of the one of the streams), and coordinate x.

• For any values of H, a decrease in G and/or an increase in x = Rex results in a limit of wall
temperature 𝜃w = 1∕(1 + H).

• For fixed values of H and G, the heat flux decreases as Rex1 increases because the boundary
layer becomes thicker. As Rex → 0, the heat flux approaches unity, which is a result of
neglecting conduction in fluids.

• For given values of G and Rex, an increase in H results in an increased heat flux. However,
for large values of H this effect becomes significantly smaller.

• The neglecting of the actual wall temperature variation (conjugation effect) leads to 20–25%
errors of order in comparison to that obtained for uniform wall temperature or uniform heat
flux, which authors count as a serious inaccuracy.

• The slug approximation velocity profile (S. 7.7) may be used with reasonable accuracy when
the dynamic boundary layer is relatively thin, that is, in the vicinity of the leading edge and
for the large Biot numbers.

Comment 4.1 The heat transfer characteristics in this study are determined by three parame-
ters (H,G, x1), which in fact are defined by only two Biot numbers, as follows: H = Bi2∕Bi1
and x1G = Bi1. That might be expected because the Biot number is a general criteria for esti-
mating resistances ratio of thermally interacting objects (S. 2.1.7).
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◾Example 4.3n: Two Countercurrent Laminar Flows Separated by a Thin Plate [354]

This problem is considered assuming that the thermal resistance of a plate is negligible
in comparison with that of both fluids. This assumption simplifies the problem that is more
complicated than similar concurrent conjugate problems. At the same time, such a simplified
problem retains the basic qualities of the same problem for the plate with finite resistance. If
𝜁 = x∕L is the dimensionless coordinate, the equality of heat fluxes at the positions 𝜁 and 1 − 𝜁
for one and for another counter-flowing streams, respectively, leads to equation determining
the interface temperature. In the case of laminar flow, when the universal function (1.38) with
only two first derivatives is employed for heat fluxes, such equation is present in the following
form [354]

[g22𝜁
3∕2 + g12𝜎(1 − 𝜁 )3∕2]𝜃′′ + [g12𝜁

1∕2 − g11𝜎(1 − 𝜁 )1∕2]𝜃′

+ [𝜁−1∕2 + 𝜎(1 − 𝜁 )−1∕2] 𝜃 − 𝜁−1∕2 = 0 (4.7)

Here, 𝜃 = (Tw − T∞1)∕(T∞2 − T∞1) and 𝜎 = h∗1∕h∗2. is a ratio of the streams resistances,
which may be viewed as a ratio of Biot numbers characterizing the conjugate effects. The
indices 1 and 2 denote the streams for which the ending (x = L) and starting (x = 0) sections
of a plate are, respectively, the initial in the countercurrent flows. Boundary conditions 𝜃(0) =
1 (Tw = T∞2) and 𝜃(1) = 0 (Tw = T∞1) one gets, knowing that at each end the plate tempera-
ture is equal to temperature of the fluid for which this end is an initial.

A linear differential equation (4.7) was integrated numerically for different values of 𝜎
starting from some small value 𝜁i > 0 by using two solutions satisfying the simple bound-
ary conditions: 𝜗1(0) = 𝜗′1(0) = 𝜗2(0) = 1 and 𝜗′2(0) = 0 (similar to procedure in (S. 3.1.1.2)
employed for chart creation) and presenting the final result satisfying the boundary condition
for 𝜃 in terms of functions 𝜗 as:

𝜃 =
𝜗2(1)𝜗1(𝜁 ) − 𝜗1(1)𝜗2(𝜁 )

𝜗2(1) − 𝜗1(1)
(4.8)

The initial values of 𝜃 for 𝜁 ≤ 𝜁i are calculated by series (3.3) using first six coefficients:
a0 = 1, a1 = a3 = 0, a2 = 𝜗′(0), a4 = (a2g11 − 1)∕2g21, and a5 = −4a2(1 + g12)∕g21𝜎.

Calculation data obtained for Pr > 0.5, for which coefficients gk are almost independent of
Prandtl number, are plotted in Figure 4.3. These indicate that in the case of countercurrent
flows:

• The temperature along the interface changes significantly (Fig. 4.3a). In the case of equal
thermal resistances (𝜎 = 1) when the effect of conjugation is maximal, the heat flux is about
30% bigger than that calculated by ignoring the temperature variation along the interface
obtained in conjugate solution.

• The temperature head grows in flow direction, and therefore, the distributions of heat trans-
fer coefficient does not have singularities and differs not as much from an isothermal one
(Fig. 4.3b) as in the case of decreasing temperature head.

• Nevertheless, the effect of conjugation in this case is more significant than that in the
case of concurrent flows when a zero resistance plate is isothermal (see Equation (4.3) at
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Figure 4.3 Variation of the heat transfer characteristics for two countercurrent flows: a) temperature
head, b) heat transfer coefficient, - - - - for the case of isothermal plate

Bi∗ = 0). Therefore, the effect of conjugation in the countercurrent flows should be taken
into account.

• The results at the ends of streams interaction obtained in the conjugate and in traditional
approaches differ in essence because (Fig. 4.4): (i) In the traditional analysis, the interface
is isothermal, and due to that, the resistance of the stream that starts at each end is zero
(h∗|x=0 → ∞). Therefore, the heat transfer coefficient at the beginning point is equal to that
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Figure 4.4 Scheme of the temperature profiles deformation in countercurrent heat transfer

of another interacting stream, and hence, the heat fluxes at the ends in this analysis are
finite. (ii) In contrast to that, the conjugate procedure shows that the heat fluxes at the ends
of both contacting streams due to conjugation equals each other and both are zero because
the temperature head of starting stream according to the first series coefficient (a1 = 1) goes
to zero as x, whereas an isothermal coefficient at this point tends to infinity x1∕2 resulting in
heat flux qw = 𝜃h∗ which goes to zero as x1∕2 as x → 0.

• The stream on the other side of interface reaches at the end the insulated plate or inac-
tive flows interface, and its temperature profile deforms in the same way as in the case when
flow impinges on an adiabatic wall. The scheme of such deformation is plotted in Figure 4.4
where one sees the gradually changes of streams temperature profiles. We considered this
phenomenon in Section 2.1.4.3 showing that physically this process occurs because the
heat flux drops abruptly to zero as flow reaches an insulated surface, whereas the tempera-
ture head decreases gradually, becoming practically zero only at certain distance from the
entrance point.

Comment 4.2 In reality, the heat fluxes at the ends are not zero, due to finite boundary layer
thickness. In consequence, the described deformation process starts not at the edges rather on
some small distance from them.

◾Example 4.4a/n: Two Quiescent Fluids Separated by a Vertical Thin Plate [409]

It is considered a reservoir with warm and cold water separated by a thin vertical wall.
Because in such system the density gradients are directed down and up at both sides of a wall,
the two different oriented natural convection flows arose (like in countercurrent streams). This
model simulates processes in the real systems including heat exchange equipment, cooling of
electronic devises, and others containing the fluid-filled containers.

Although the heat transfer between such two boundary layers streams is similar to others
considered above, the analysis in the case of natural convection is more complex due to non-
linearity associated with coupled dynamic and energy equations (S. 7.8). In particular, the
Duhamel integral is not applicable for nonlinear systems (S. 1.3.1).
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In the reviewed study, the heat fluxes are estimated by formula derived in [316]

qw =
qw𝜆w

(T∞1 − T∞2)Δ
= C(Pr) 𝜆Δ

𝜆wL
Ra1∕4𝜃

5∕3
w (x)

⎡
⎢
⎢
⎢
⎣

x

∫
0

𝜃
5∕3
w (𝜉) d𝜉

⎤
⎥
⎥
⎥
⎦

−1∕4

(4.9)

where 𝜃w = (Tw − T∞)∕(T∞1 − T∞2) and C(Pr) is a tabulated function. Using this formula and
the first equation (4.1) for the temperature distribution across thin plate as in former examples
yields a system of two relations similar to second and third equations (4.1)

C1
𝜆1

𝜆w
Ra1∕4

1 𝜃
5∕3
w1 (x1)

⎡
⎢
⎢
⎢
⎣

x1

∫
0

𝜃
5∕3
w1 (𝜉) d𝜉

⎤
⎥
⎥
⎥
⎦

−1∕4

= C2
𝜆2

𝜆w
Ra1∕4

2 𝜃
5∕3
w2 (x2)

⎡
⎢
⎢
⎢
⎣

x2

∫
0

𝜃
5∕3
w2 (𝜉) d𝜉

⎤
⎥
⎥
⎥
⎦

−1∕4

1 − 𝜃w1(x1) + 𝜃w2(x2) = C(Pr1)
𝜆1Δ
𝜆wL

Ra1∕4
1 𝜃

5∕3
w1 (x1)

⎡
⎢
⎢
⎢
⎣

x1

∫
0

𝜃
5∕3
w1 (𝜉) d𝜉

⎤
⎥
⎥
⎥
⎦

−1∕4
(4.10)

Here, x = x∕L, x2 = 1 − x1 (like in countercurrent flows).

Comment 4.3 The formula (4.9) is a result gained in [316] as approximation of a typical for
natural convection temperature distributions curve by two straight lines presenting a linear and
constant temperature variations at its initial and terminal parts, respectively.

Equations (4.10) are solved numerically by iterations using 40 intervals for x between 0
and 1. Results computed are in reasonable agreement with author’s data obtained experimen-
tally and show that:

• The plate temperatures depend on two parameters H = (𝜆1∕𝜆w)(Δ∕L)Ra1∕4
1 and

G = (𝜆1∕𝜆2)(Δ∕L)(Ra1∕Ra2)1∕4 determining ratios of thermal resistances of one fluid and
wall and of both fluids, respectively.

• When the thermal resistances of both fluids are equal, the sharp temperature variations are
observed near the top and bottom of the plate. In this case the heat flux is symmetrical about
the midpoint of a plate and practically constant over about 80% of it.

• The more the parameter G departs from unity, the greater is the asymmetry of the heat fluxes
due to increasing difference of both fluid thermal resistances.

• The effect of conjugation of two natural streams is moderate. The heat transfer coefficients
are about 12% higher than obtained using a constant wall temperature.

◾Example 4.5a/n: Two Flows Separated by a Vertical Thin Plate [239]

This problem is similar to the previous one, but the flowing fluids along the plate with zero
resistance are considered instead of quiescent fluids in former example. The governing sys-
tem contains: continuity (1.9), dynamic (1.10), and thermal (1.11) boundary layer steady-state
equations without pressure gradient and dissipation terms and with additional term taking into
account the natural convection effects (S. 7.8). The problem is solved using so called local
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similarity approach when the system of equations is modified using similar variables (S. 7.5.2)
to the following form

Pr F′′′ + FF′′ − 2
3

F′2 + (1 + Pr)Θ = 4
3
𝜉

(
F′ 𝜕F
𝜕𝜉

− F′′ 𝜕F
𝜕𝜉

)
, F(𝜉, 𝜂) =

𝜓(1 + 1∕Pr)1∕4

(4𝜉∕3)3∕4

Θ′′ + FΘ′ = 4
3
𝜉

(
F′ 𝜕Θ
𝜕𝜉

− Θ′ 𝜕F
𝜕𝜉

)
, Θ(𝜉, 𝜁 ) =

|T − T∞|
T∞1 − T∞2

(4.11)

These equations in similar variables 𝜉 = x, 𝜁 = y∕(4x∕3)1∕4, 𝜂 = 𝜁 (1 + 1∕Pr)1∕4 refer to both
fluids, for which T∞1 > T∞2 and x2 = 1 − x1. The boundary conditions are simple: 𝜂 = 0, F =
F′ = 0, 𝜂 = ∞, F′ = Θ = 0, whereas conjugate conditions are more complicated

Θ′
1(𝜉1, 0)

(4𝜉1∕3)1∕4
=
𝜆2

𝜆1

[
Ra2Pr2

(
1 + Pr1

)

Ra1Pr1(1 + Pr2)

]1∕4 Θ′
2(𝜉2, 0)

(4𝜉2∕3)1∕4

Θ1(𝜉1, 0) + Θ2(𝜉2, 0) − 1 =
Θ′

2(𝜉2, 0)
(4𝜉2∕3)

𝜆2Δ
𝜆1L

(
Ra2Pr2

1 + Pr2

)1∕4
(4.12)

Comment 4.4 The variable 𝜉, which equals x, in fact, is a dummy variable. Such a variable
is applied instead of x in order to avoid confusing situations (as in the case of integration
discussed in Comment 1.3). In particular, such a problem occurs when we use the chain rule
defining derivatives with respect to new variables. In this case, without introducing variable
𝜉, we arrive at situation when the confusing derivative of x with respect to x is necessary to
compute. Introducing the variable 𝜉 = x solves this problem leading to usual derivative 𝜕𝜉∕𝜕x.
instead of a puzzle 𝜕x.∕𝜕x.

Comment 4.5 The idea of local similarity approach is based on presenting governing
equations in the form (4.11) so that the left-hand parts consist of only ordinary derivatives as
it should be for similarity equations, and the right-hand parts include other terms that do not
satisfy these conditions and depends on partial derivatives. When the defining functions F and
Θ are independent of coordinate 𝜉, the right-hand parts becomes zero, and these equations
take a self-similar form. Therefore, the right-hand parts of equations in such form may be
viewed as a measure of the local deviation from similarity.

Equations (4.11) are solved numerically using consecutive approximations. The first
approximation is obtained assuming that the right-hand parts of equations (4.11) are zero.
Each of the following approximations is performed calculating these parts and satisfying
conjugate conditions using the data of previous step. The details may be found in [163] and
[239]. The one merit of local similarity approach is that the equations remain ordinary in any
approximation. However, the convergence of iterations depends on the right hand parts of
equations and is satisfactory only when those are relatively small.

The conclusions obtained in this study basically agree with those formulated in article [409]
reviewed in the previous example, except the following:

• The temperatures near the ends of the plate change more gradually, and the temperatures at
the top of the cool sides and at the bottom of the warm sides are higher.
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• The temperature distributions have sigmoidal form showing that the greatest variations of
temperatures occur on about 20% of the surface length at each end so that even neglecting
small differences over central region results in overall departures from isothermal conditions
of about 40% of the plate.

◾Example 4.6n: A Vertical Pipe with Forced Flow Inside and Natural Flow Outside
[371]

It is assumed that the flow enters the pipe with the zero thermal resistance wall at uniform
temperature Te > T∞ and a fully developed velocity profile. The governing system in
cylindrical coordinates consist of the continuity, momentum, and energy equations with
additional buoyancy term for external natural convection flow and only energy equation (the
last one) for internal forced flow since the velocity profile for inside flow is assumed to be
known and fully developed

𝜕(ru)
𝜕x

+ 𝜕(rv)
𝜕r

= 0, u
𝜕u
𝜕x

+ v
𝜕u
𝜕r

=
(Ra∕Pe)𝜃

8Pro
+ 1

r
𝜕

𝜕r

(
r
𝜕u
𝜕r

)

u
𝜕𝜃

𝜕x
+ v

𝜕𝜃

𝜕r
= 1

r
𝜕

𝜕r

(
r
𝜕𝜃

𝜕r

)
, (1 − r2)𝜕𝜃

𝜕x
= 1

r
𝜕

𝜕r

(
r
𝜕𝜃

𝜕r

)
(4.13)

r → ∞, x → 0, 𝜃, u → 0 x = 0, 𝜃 = 1, r = 0 x = 1, 𝜃i = 𝜃o,

(
𝜕𝜃

𝜕r

)

i
=
𝜆o

𝜆i

(
𝜕𝜃

𝜕r

)

o

The system (4.13) is written in dimensionless variables scaled using R for r, R Pe for x, R Pe∕𝜈o
for u, R∕𝜈o for v, 𝜃 = (T − T∞)∕(Te − T∞), Ra = g𝛽o(Te − T∞)D3 Pro∕𝜈2

o , Pe = uavD∕𝛼i,
and subscripts o and i denote outer and inner flows. Because the wall is considered as a thin
with no thermal resistance, the dimensionless variable r is less than one (r ≤ 1) and more than
one (r ≥ 1) for inside and outside of pipe, respectively. The boundary conditions (4.13) are zero
velocity and temperature for external flow far away from a tube (r → ∞) and at the entrance
(x = 0), initial temperature at x = 0 for internal flow and conjugate relations at the wall (x = 1).

Comment 4.6 Compare energy equations (4.13) and (3.72), which both are used for fully
developed flow in a tube. Although they look different, in fact, both equations are alike because
the second equation may be obtained from the first one by differentiating the right-hand part
and taking into account different definition of dimensionless coordinates.

Numerical solutions of both the energy equation inside flow and the full system of equations
for outside flow are performed in [371] using the Patankar-Spalding approach [305], which
is similar to the SIMPLE described in [306] and discussed in Section 9.7.1. The iterative
procedure is applied to conjugate both the inside and outside solutions. The procedure starts
from solving external problem using the boundary condition of uniform wall temperature. To
improve the convergence of iterations, the local heat transfer coefficient distribution on the
interface is used. The authors claim that due to using the heat transfer coefficient distribu-
tion (instead of usual applying the temperature or heat flux distribution), the convergence of
iterations is achieved during three to five iterations.

The following results are obtained

• The Nusselt number of the inside flow is insensitive to the thermal boundary conditions.
Values of conjugate Nusselt number for different parameters 𝜆o∕𝜆i, Pro and Ra∕Pe are
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bounded between those for uniform wall temperature and uniform heat flux. Near the inlet,
the Nusselt number values are closer to uniform wall temperature, whereas for the larger
distance from the inlet, Nusselt values become closer to uniform heat flux.

• The Nusselt number for the external flow is compared with the results for isothermal vertical
cylinder Nucy. Analyzing the ratio Nuo∕Nucy shows that the values obtained in conjugate
problem are always lower than those in the case of uniform temperature. Increasing both
ratios 𝜆o∕𝜆i and Ra∕Pe leads to rapid decreasing of the temperature head (Tw − T∞) along
the pipe, and results in a decreasing of the Nusselt number. At the fixed values of these
parameters, the variations of Pro from 0.7 (air) to 5 (water) do not practically affect the
values of the Nusselt number,

• The wall temperature decreases along the pipe. This effect intensifies at large values of
𝜆o∕𝜆i and Ra∕Pe. It is clear that this occurs due to the small resistance of external air flow
in comparison with that of internal water flow. The results obtained for Pro = 0.7 and Pro = 5
indicate that this parameter does not play a significant role.

• The dimensionless bulk temperature ratio (Tbl − T∞)∕(Te − T∞) determines the heat trans-
fer effectiveness because it compares the heat transfer rate for the length of pipe from
entrance to certain location and that for infinitely long pipe at the same mass flow. It is
found that bulk temperature decreases with x as heat is transferred from the inside flow to
external flow. Higher values of 𝜆o∕𝜆i and Ra∕Pe increase the heat transfer rate, and results
in more rapid decrease in the bulk temperature. The small effect of Pro is also confirmed by
variation of the bulk temperature along the pipe length.

4.1.2 Applicability of One-Dimensional Models and Two-Dimensional
Effects

We considered six conjugate solutions of heat transfer between two fluids separated by a thin
wall obtained by different mathematical models for diverse wall configuration. Two studies are
used universal function with only the first two derivatives and horizontal plates (Exam. 4.1 and
4.3), two others applied the Duhamel integral for horizontal (4.2) and approximate formula for
natural flow on vertical (4.4) plates, and the local similarity approach for vertical plate (4.5)
and numerical solution for both out and inside flows in vertical tube (4.6) are employed in the
two last examples. We have seen that conjugate results differ by 15–25% from data of common
overall heat transfer coefficient gained under assumption of isothermal walls. Effects of various
conditions are investigated indicating that differences are larger for small Prandtl numbers,
close each to other thermal resistances of fluids, countercurrently flows, flowing natural flows
in comparison with quiescent fluids, and in some other studied specific situations.

In this section we show when the conjugate heat transfer data obtained for thin walls are
applicable and where and how those results should be corrected. To realize this, we compare
the solution for thin plate from Example 4.1 with exact two-dimensional conjugate solution of
the same problem solved in [111] and translated in [115].

◾Example 4.7∗ a/n: Two Streams Separated by a Thick Plate [115]

Because the plate is not thin, the solution of Laplace equation (1.2) is needed instead of linear
temperature distribution (4.1). For further study, it is convenient to present such solution in the
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form of sum and difference of variables 𝜗1 and 𝜗2

𝜗1 + 𝜗2 = 1
𝜋

∞

∫
0

(Bi1 + Bi2) ln[4sh|z − 𝜁 |𝜋 sh(z + 𝜁 )𝜋]dz 𝜗 =
Tw − Tw∞
T∞1 − T∞2

𝜗1 − 𝜗2 = 1
𝜋

∞

∫
0

(Bi2 − Bi1) ln

[
cth
|z − 𝜁 |

2
𝜋 cth

z + 𝜁
2

𝜋

]
dz Bi =

qwΔ
𝜆w(T∞1 − T∞2)

,

(4.14)

where 𝜁 = x∕Δ and asymptotic temperature Tw∞ is determined by the first equation (4.2). The
heat fluxes from fluids on both sides of a plate are obtained as well as in Example 4.1 by
universal function (1.38), which in variables (4.14) become

Bi1 = BiΔ∗1 𝜁
−1∕2
(
𝜗1 −

1
𝜎 + 1

+ g11𝜁𝜗
′
1 + g21𝜁

2𝜗′′1 + …
)

Bi2 = BiΔ∗2 𝜁
−1∕2
(
𝜗2 +

𝜎

𝜎 + 1
+ g12𝜁𝜗

′
2 + g22𝜁

2𝜗′′2 + …
) (4.15)

Here, BiΔ∗ = hΔ∗Δ∕𝜆w, 𝜎 = BiΔ∗1∕BiΔ∗2 = hΔ∗1∕hΔ∗2 and hΔ∗ is an isothermal heat transfer
coefficient defined through the plate thickness (which means using Re = uΔ∕𝜈).

The set of equations (4.14) and (4.15) presents an exact solution of the conjugate problem
of heat transfer between two streams separated by a plate. In [115], this system is solved by
successive approximations. As a first one, the solution for a thin plate from Example 4.1 is
used. Equations (4.3) indicate that in this case the dimensionless heat fluxes and temperatures
for both streams are equal. Substitution of first approximation results (4.3) into relations (4.14)
gives the second approximation for temperatures

− Bi(1)1 = Bi(1)2 = 1 − 𝜃(1), 𝜗
(2)
1 = −𝜗(2)2 = 1

𝜋

∞

∫
0

Bi(1) ln

[
cth
|z − 𝜁 |

2
𝜋 cth

z + 𝜁
2

𝜋

]
dz

(4.16)
The corresponding heat fluxes Bi(2)1 and Bi(2)2 are found by substituting 𝜗

(2)
1 and 𝜗

(2)
2 into

equations (4.15). Then, returning to relations (4.14) yields 𝜗(3)1 and 𝜗(3)2 , and so on.
Details of solution and analysis of results of this complex problem one may find in [111]

and [115]. Here, we present the basic conclusions obtained in this study:

• The temperature distributions along the plate in the first and the second approximations
computed for the case 𝜎 = 1 and Pr → 0 by second equation (4.4) and relation (4.16),
respectively, show that starting from a small length 𝜁0, the second and the first approxi-
mations virtually coincide (Fig. 4.5). This means that for 𝜁 > 𝜁0 a semi-infinite plate can be
considered as a thin one, and heat transfer for this part may be defined as for thin plate. This
result obtained for the case of maximal conjugation effect (𝜎 = 1, Pr → 0) is qualitatively
valid in general.

• Analogous calculations are performed for turbulent boundary layer. In this case, the calcu-
lations are made for Pr = 0.01 and Re𝛿1

= 103 under which the influence of conjugation is
also close to the maximal.
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Figure 4.5 Comparison of one- and two-dimensional solutions for the heat exchange between two
fluids separated by a plate: 1-thin plate, 2-second approximation for thick plate according to equation
(4.16), 3-final two-dimensional results for thick plate according to equation (4.21)
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Figure 4.6 Initial length of the plate as a function of a ratio of thermal resistances of the plate and
fluids: 1-turbulent flow and 2-laminar flow

• Figure 4.6 shows the values of initial length 𝜁0 as a function of the ratio BiΣ of resistances
of fluids and isothermal plate (see relation (4.3)). It is seen that in turbulent flows the initial
length is smaller than in laminar flow.

• At the domain 𝜁 < 𝜁0, the plate could not be considered as a thermally thin or as a thin
because all sizes of this domain are comparable so that neither the longitudinal nor trans-
verse thermal resistance may be neglected in comparison with others (Com. 1.1).

• It follows from the solution of the Laplace equation considered above that in the case of
equal fluids resistances (𝜎 = 1), the heat transfer behavior in the vicinity of the leading
edge is governed by two equations

𝜃 = 1 − 2
𝜋

∞

∫
0

Bi ln

[
cth

z − 𝜁
2

𝜋 cth
z + 𝜁

2
𝜋

]
dz,

Bi = 1
2

BiΔ∗𝜁
−1∕2(𝜃 + g1𝜁𝜃

′ + g2𝜁
2𝜃′′ + … ) (4.17)
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These equations are obtained from system (4.14)–(4.16) for the case of 𝜎 = 1 by taking
into account the following chain of conclusions: (i) equalities 𝜃1 = 𝜃2 and −Bi1 = Bi2 are
accurate irrespectively of whether the plate is considered as a thick or as a thin because these
equalities follow from facts that are valid for both semi-infinite configurations (thick and
thin) plate: the correctness of the first equality follows from the definition of dimension-
less temperatures (which is easy to check by substitution of asymptotic temperature Tw∞
into formula (4.2) for 𝜃), and then, the correctness of the second equality of Biot numbers
becomes evident from universal function (1.38) since 𝜃1 = 𝜃2 and 𝜎 = 1 (h•1 = h•2), (ii) it
is seen from the first equation (4.14) that the condition −Bi1 = Bi2 leads to another equality
𝜗1 = −𝜗2 of dimensionless temperatures defined by (4.14), (iii) under condition 𝜎 = 1, both
dimensionless temperatures are coupled by formulae 𝜃1 = 1 − 2𝜗1 and 𝜃2 = 1 + 2𝜗2, which
gave the relation ±2𝜗 = (1 − 𝜃), and (iv) substitution of this result in the second equations
(4.16) and both equations (4.15) yield relations (4.17).

• It is shown in [115] that in the vicinity of 𝜁 = 0, the solution of system (4.17) can be pre-
sented by the series in variable 𝜁1∕2 similar to (3.3) for a thermally thin plate

𝜃 =
∞∑

n=0

an𝜁
n∕2 Bi =

∞∑

n=−1

an+1dn𝜁
n∕2 (4.18)

The coefficients an and dn are found by substitution of series (4.18) in equations (4.17).
This complicated procedure performed in [115] reveals that the first and the second approx-
imations computed using four and eight series coefficients differ insignificantly. Therefore,
to determine heat transfer characteristics at initial domain, it is possible to use series (4.18)
with first four coefficients, three of which are a1 = 4a0d(−1), a2 = a3 = 0, where coefficient
a1 is specified by first one a0 and coefficient d(−1) defined as follows

a0 = 1 −

∞

∫
0

Bi ln cth
z𝜋
2

dz, dn =
BiΔ∗

2

[

1 +
∞∑

k=1

gk
(n + 1) (n − 1) … (n − 2k + 3)

2k

]

(4.19)
It is seen that coefficient a0 depends on the integral with semi-infinite limits. That occurs
because the considered two-dimensional problem is of elliptic type, for which the solution
requires the information of whole computation domain (Com. 1.5 and 1.6). To perform such
integration, we divide the interval (0,∞) into two parts: the first part for limits (0, 𝜀) in which
the series (4.18) are valid, and the second one within the limits (𝜀,∞) in which the results
for thin plate can be used. Then, the first coefficient (4.19) becomes

a0 =
𝜋 − 4I∞

𝜋 + 4d(−1)[I(−1) + 4d0I0]
, In =

𝜀

∫
0

zn∕2 ln cth
z𝜋
2

dz, I∞ =

∞

∫
𝜀

Bi ln cth
z𝜋
2

dz

(4.20)
• Thus, in the case of equal thermal resistances of both streams, the temperature and heat flux

on the initial domain can be computed by the series (418) with four terms

𝜃 = a0(1 + 2BiΔ∗𝜁
1∕2), Bi = (1∕2)a0BiΔ∗(𝜁−1∕2 + 4d0), (4.21)

where 𝜃 and Bi are defined by formulae (4.2) and (4.14), respectively, BiΔ∗ = hΔ∗Δ∕𝜆w,
and 𝜁 = x∕Δ. The values of a0 computed using equations (4.20) are given in Figure 4.7.
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Figure 4.7 Dependence of the coefficient a0 in equations (4.21) on the ratio of thermal resistances of
the plate and fluids (Biot number): 1-turbulent flow, 2-laminar flow

• The heat fluxes on the initial domain defined according to (4.21) differ also significantly
from that on a thin plate given for the same case of equal thermal resistances (𝜎 = 1) by the
last simple formula (4.3) and formula for 𝜃 in the limiting case Pr → 0 (see relations after
(4.4)) resulting in expression Bi = (Bi∗∕2)[1 − exp(−2∕Bi∗)]. However, at the leading edge
(x = 0), the usual singularity h → ∞ associated with the use of boundary layer model for
fluids persists in both cases.

• Due to the small length of the initial segment in a turbulent flow (Fig. 4.6), the only first
terms of the formulae (4.21) may be used: 𝜃 = a0, Bi = 1∕2a0BiΔ∗𝜁

−1∕5, where the values
of a0 are defined by Figure 4.7.

In the next several sections we present examples of more specific models of conjugate heat
transfer including the most recent publications.

4.1.3 Heat Exchanger Models

◾Example 4.8a/n: Double-Pipe Heat Exchanger Model with Laminar Flow [297]

Two flows in steady state with the fully developed velocity profiles inside a double pipe
are considered. The double pipe consists of inner central tube and outer annual channel. The
thermal conduction in the fluids and viscose dissipation are neglected. The governing system
in cylindrical coordinates includes energy equations (4.22) (compare with equations (4.13))
for the inner and outer streams (T01 < T02), the Laplace equation (4.23) for separating wall,
boundary, and conjugate (4.24) conditions

u1
𝜕𝜃1

𝜕x
= 4

(
1
r

𝜕𝜃1

𝜕r
+
𝜕2𝜃1

𝜕r2

)
, 𝜃1(0, r) = 𝜃01,

𝜕𝜃1

𝜕r
(x, 0) = 0

u2
𝜕𝜃2

𝜕x
= 4

𝜆2

(mcp)2
[R2

i − (1 + Δ)2]
(

1
r

𝜕𝜃2

𝜕r
+
𝜕2𝜃2

𝜕r2

) (4.22)
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𝜃2(0, r) = 𝜃20, 𝜃2(L, r) = 𝜃20,
𝜕𝜃2

𝜕r
(x,Ri) = 0

Pe2
1

(
1
r

𝜕𝜃s

𝜕r
+
𝜕2𝜃s

𝜕r2

)
+
𝜕2𝜃s

𝜕x2
= 0

𝜕𝜃s

𝜕x
(0, r) =

𝜕𝜃s

𝜕r
(L, r) = 0

(4.23)

𝜃1(x, 1) = 𝜃w(x, 1),
𝜕𝜃1

𝜕r
(x, 1) = 𝜆w

𝜕𝜃w

𝜕r
(x, 1)

𝜃2(x, 1 + Δ) = 𝜃w(x, 1 + Δ),
𝜕𝜃2

𝜕r
(x, 1 + Δ) =

𝜆w

𝜆

𝜕𝜃w

𝜕r
(x, 1 + Δ)

(4.24)

The dimensionless variables are scaled as follows: linear sizes by radius Ri of the inner duct,
the velocities by mean axial velocity U, and temperatures by inlet temperature T01 of the inner
fluid, thermal conductivity by 𝜆2, and capacity (mcp)2 by corresponding values of the inner
flow. The first and the second boundary conditions (4.22) for outer fluid pertain to con-and
countercurrent cases, respectively (see Example 4.3).

The concurrent and countercurrent cases have been studied, however, the only concurrent
case is presented in detail. The Duhamel’s integral (1.23) in the form

𝜃w − 𝜃b1 =
2q1(0)
Nuq

+

x

∫
0

2
Nuq(x − 𝜉)

dq1

d𝜉
d𝜉 (4.25)

is used to solve the energy equations (4.22). In equation (4.25), Nuq and 𝜃bl are Nusselt num-
ber for the uniform heat flux and bulk temperature. The equation (4.23) for the wall is solved
numerically applying the finite element method (S. 9.6). The iterative procedure starts with
guessing of the distributions of the bulk temperature and Nusselt number, which are used as
boundary condition for the wall equation. As a result, new distributions of the wall tempera-
ture and Nusselt number are obtained. Then, the updated values of the Nusselt numbers and the
bulk temperatures are calculated from conjugate conditions (4.24) and the refined wall tem-
perature distribution is obtained, again using equation (4.25). The convergence is achieved
in less than 14 iterations. The numerical results are obtained for: L = 10 and 100, Δ = 5
and 2, Ri = 3and6, 𝜆w = 1, 10, 100, 1000 and 10, 000, 𝜆2 = 0.1, 1 and 5,Pe1 = 500, 1000 and
10,000, (mcp)2 = 0.5, 1 and 2. The following results are formulated:

• The conjugate effect is studied by comparing results obtained with and without [296] the
thermal wall conduction. In contrast to the latter case, two isothermal zones are created at
the interface, and the wall temperatures do not coincide with temperature of inlet fluid. The
length of these zones, as well as the wall-to-fluid temperature difference, increases due to
axial wall conduction. With increasing wall conductivity, the wall temperature becomes
more uniform, and the outlet temperature of the internal stream decreases, whereas the
outlet temperature of the external stream increases correspondingly. For the relatively
small wall conductivities up to 𝜆w = 100, the two streams are uncoupled and a central zone
with uniform and equal heat fluxes for both sides exist. This is similar to the case without
wall conduction effect. For high wall conductivities, the situation completely changes,
and the heat fluxes monotonically decreases from the inlet to the outlet with one crossing
point. Near the inlet, the Nusselt number values coincide with those for the isothermal
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condition. Downstream, both the Nusselt number and heat flux reach the asymptotic values
corresponding to isothermal or to uniform heat flux conditions.

• Distribution of the local entropy production in the wall and streams calculated as sug-
gested in [39] are sensitive to wall conductivity. For 𝜆w = 10,000, the entropy production
monotonically decreases downstream from the maximum at the inlet. For reducing wall
conductivities, the entropy production decreases progressively at the inlet, increasing in the
outlet regions. Analyzing the distribution of entropy generation rate in the fluids indicates
that the maxima in entropy production correspond to high values of heat flux or wall-to-fluid
temperature difference. Distribution of entropy production in the wall shows that the wall
radial thermal resistance is dominant when the conductivity of the wall is low. For 𝜆w = 1,
the entropy production distribution is similar to that for the wall with zero conductivity. For
the high conductivities, the maximum is found at the middle of the wall instead of minimum
existence here in the case of low conductivities.

• The dependence of the heat exchanger effectiveness on the wall conductivity changes
according to the wall conduction effects. Instead of monotonically increased effectiveness
with growing wall conductivity, for the intermediate 𝜆w, the maximum effectiveness exists.
For low wall conductivities, the entropy production is concentrated in the wall. In the
short device, the increasing 𝜆w leads to monotonically decreasing the wall contribution. In
a long exchanger, the minimum of the entropy production is observed. The reduction of
effectiveness due to wall conduction effect increases for increasing wall thickness, but it is
slightly affected by variation of the pipe diameter ratio. The effectiveness reduces also with
increasing Peclet number. Increasing the fluids conductivity ratio has strong and positive
effect on effectiveness.

• The proper choice of the wall material is needed for optimization. For example, in the
case of countercurrent water streams separated by copper wall, the conductivity of the wall
yields a small reduction in effectiveness. The optimum can be achieved by using a steel wall
with 𝜆w ≈ 100. For the glass wall, the order of magnitude drops to 1, and the effectiveness
decreases due to the high radial resistance. For gaseous fluids, the wall conduction effect
is more pronounced indicting, for instance, that corresponding value of 𝜆w becomes higher
than 10,000 for two streams of air separated by copper wall.

◾Example 4.9a: Double Pipe with Concurrent or Countercurrent Flow (Conjugate
Graetz Problem)

A similar model of two fully developed streams one (1) in a tubular space of the double pipe,
and the other (2) in annual space is used in [302]. The axial conduction in fluids and in a wall is
taken into account. The one energy equation for both fluids, the conjugate boundary conditions,
the symmetry condition, the developed velocity profiles for flows, and two boundary conditions
of the third kind for walls build up the model:

−1
r
𝜕

𝜕r

[
𝜆r
𝜕T
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]
− 𝜆𝜕
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𝜕r2
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(
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]
(4.26)

−𝜆2
𝜕T
𝜕r

||||r=R
= he[T(x,R) − T0], −𝜆1

𝜕T
𝜕r

||||r1

= h[T(x, r1) − T(x, r1 + Δ)]
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This model is more complicated then the similar previous one due to taken into account con-
duction in fluids and in the walls. To simplify the problem, the two conditions of the third kind
(4.26) are included in the model specifying the thermal resistances in the walls. Actually, such
simplified problem is intended to investigate the conjugate heat transfer between two fluids,
which may be considered as conjugate Craetz problem (Com. 4.7).

In relations (4.26), U is the characteristic velocity, h and he are heat transfer coefficients
for the resistance of separated and outer walls, respectively, Δ , r1, r2, R are the width of the
annulus, the inner and outer radii of inner tube, the radius of outer tube and Δ = (r1 + Δ)∕R.
The plus and minus at ux2, are for the concurrent and for countercurrent problems, respectively.
To decompose energy equation (to get separated equations for each fluid) two functions Ŝ1 (0 <
r < r1) and Ŝ2 (r1 + Δ < r < R) are used resulting in solution of the same problem for both
fluids as follows

Ŝ1 =

r

∫
0

(
−𝜆1

𝜕T
𝜕x

+ 𝜌1cp1ux1T
)

2𝜋𝜁d𝜁, Ŝ2 = Ŝ1 +

r

∫
r1+Δ

(
−𝜆2

𝜕T
𝜕r

+ 𝜌cpux2T
)

2𝜋𝜁d𝜁

𝜕Ŝ
𝜕x

= −2𝜋r
(
−𝜆𝜕T

𝜕r

)
,

𝜕Ŝ
𝜕r

= 2𝜋r
(
−𝜆𝜕T

𝜕x
+ 𝜌cpuxT

)
(4.27)

The numerical results are obtained for the flow in an annual space around a solid cylinder
with uniform heat source. Two versions are considered: with heat transfer through the outer
wall and with insulated outer wall. Solutions are presented in the usual Graetz form of asymp-
totic series of the eigenfunctions. It is known that such series are efficient for high abscissas but
converge slowly for small values of x (Com. 3.14). Authors claimed that in their examples the
series converge unusually fast at Pe = 5, but did not point out the reason of this. They found
that unlike the single-stream Graetz problem the effect of axial heat conduction in the fluid
cannot be ignored, even for Peclet numbers larger than 40–50, and only for Peclet numbers
considerable higher than 100, the axial conduction in the fluid becomes insignificant.

Comment 4.7 The conjugate Graetz heat transfer problem in the complete formulation includ-
ing the conduction effects is a complex task. The analysis of difficulties arising in solution of
such problem is given in [302] and in earlier publications of these authors. As it mentioned in
Chapter 3 (see “other solutions in asymptotic series”), some asymptotic solutions of simpli-
fied (without effects of conduction) conjugate Graetz problem were published. The previous
Example 4.8 actually presents the numerical solution of the conjugate Graets problem of this
type, whereas the Example 4.9 is an attempt to take into account the conduction effects in
conjugate Graetz problem.

◾Example 4.10n: Microchannel Heat Sink as an Element of Heat Exchanger [135]

The microchannel heat sink model applied in this work is an element of a modern
microchannel heat exchanger. The heat transfer characteristics of such exchanger should
be significantly better due to great reduction of the thickness of thermal boundary layer
and overall notable capacity based on large surface/volume ratio. The studied model is a
rectangular silicon channel with hydraulic diameter Dh ≈ 100 μm that is a basic element of
experimentally investigated model in [200].
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Comment 4.8 The surface/volume ratio is an important characteristic for small objects
because it determines the value of surface per unit volume. This ratio increases as the body
size decreases since the surface is proportional to second power of an object size, whereas
the volume changes as third power of it. Therefore, for sphere, this parameter is inversely
proportional to radius. In many cases, the value of surface/volume ratio helps to understand
the basic features of phenomenon. In particular, it is clear that heat exchanger efficiency
should significantly grow with the size decreasing.

The following assumptions in the reviewed study are used: (i) a range of Knudsen number
Kn = l/Dh (Com. 7.5) lies in continuum flow regime, and hence, the Navier-Stokes equations
are appropriate, (ii) the flow is incompressible, laminar, and steady state; the thermophysi-
cal properties are temperature dependent, (iii) the largest temperature gradients and thermal
stresses are expected to occur at the inlet of the channel; therefore, the development of the flow
and temperature at the inlet should be carefully resolved, (iv) thermal radiation is negligible
since the typical operation temperature should be below 100∘C.

The tree-dimensional continuity, Navier-Stokes, and energy equations for fluid plus the
Laplace equation (1.1) for walls with depending on temperature properties are used in the
vector form (S. 7.1.2.1)

∇(𝜌V) = 0, V ⋅ ∇(𝜌V) = −∇p + ∇ ⋅ (𝜇∇V)

V ⋅ ∇(𝜌cpT) = ∇ ⋅ (𝜆∇T), ∇(𝜆w∇TS) = 0
(4.28)

A uniform heat flux is imposed at one of the channel walls, whereas the others are isolated. The
entering flow velocity and temperature are given, and gradients of velocity and temperature
at the exit are taken to be zero. The no-slip condition at the walls and conjugate conditions
at the fluid-solid interface should be satisfied. Patankar’s technique of discretization [306]
and SIMPLER algorithm (S. 9.7) are used to solve the system of governing equations (4.28).
The predicted here calculations are in agreement with the experimental data from [200]. The
following results and conclusions are deduced:

• The local temperature distribution shows that the walls are isothermal, but the temperature
field in fluid is essentially nonuniform. Initially, the high temperature gradient zone forms at
the inlet of the channel and then increasing fluid core temperature is observed. Three basic
conclusions can be stated: (i) the maximum heat fluxes occur at the inlet of channel, (ii) the
heat flux imposed at the wall is spread out by conduction within walls and finally is trans-
ferred to fluid, and (iii) due to effect of conjugation, the thermal development occupies the
entire channel; the temperature distributions at the inner and outer wall surfaces show a very
complex pattern which occurs because of convective heat transfer and three-dimensional
conduction.

• The distribution of the local heat fluxes on the inner walls, which are the fluid-walls inter-
face, confirms the observation deduced by the temperature distribution analysis in the first
conclusion. In particular, the local heat fluxes are the greatest at the inlet of the channel
where the temperature gradients are high. The local heat flux inside the channel is distributed
high nonuniformly so that magnitude variation in the heat fluxes reaches several orders. The
reason of this is the difference in spacing between channel walls. The channel cross-section
is a stretched rectangle such that the distance between two walls in one direction is about
three times smaller than that between two other walls. As a result, the boundary layer
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between small spacing walls is much thinner, and therefore, the convective heat transfer
rate is much larger. In the corners, the complicated heat flow structure is observed. Here,
the negative heat fluxes directed from the fluid to walls exist, which occurs due to interac-
tion of both boundary layers developed along adjacent walls. In such a case, the heat transfer
coefficients are also negative (S. 2.4) when the traditional methods are not applicable, and
only conjugate solutions give the realistic results.

• The average characteristics in general conform to local distribution quantities. The average
wall temperature increases significantly in the entering portion due to high local tempera-
tures in this area. In contrast to this, the fluid bulk temperature grows gradually along the
channel approaching the wall temperature at the exit. Large temperature gradients in the
inlet channel portion may result in significant thermal stresses, which is important to take
into account during design. The average heat fluxes and average heat transfer coefficient
gradually decrease along the channel. The average heat flux of all walls is smaller than
initially imposed heat flux everywhere except inlet portion, where the average heat flux is
greater than imposed one. This occurs because the area where the heat flux imposed is mach
smaller than that of the inside wall surfaces.

4.1.4 Finned Surfaces

◾Example 4.11∗ n: Fin Array on a Horizontal Base [319]

The configuration studied consists of two adjacent long vertical fins setting up on a hori-
zontal base. The temperature Tw0 is higher than ambient air temperature T∞, and hence, heat
is transferred from the fins to ambient air by convection and radiation. The problem is formu-
lated as for a closure composed by fins and base, and is governed by the momentum equation
in vorticity-stream (𝜔 − 𝜓) variables (4.29) (S. 7.1.2.3 and 7.1.2.4), energy equation (4.30)
and two one-dimensional equations (4.31) for fins

𝜕𝜔
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𝜕𝜔
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𝜕𝜔
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(4.29)
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𝜕y

||||y=Gr1∕4
(4.31)

The radiation heat fluxes from the fins and base are included in equation (4.30) as sources

qR 1 =
𝜀1

1 − 𝜀1
[S13(J1 − J3) + (S14 + 2S15)(J1 − Eb4)], J1 =

a22b1 + S11b2

a11a22 − 2S13S34
(4.32)

qR 3 =
𝜀3

1 − 𝜀3
[2S31(J3 − J1) + (S14 + 2S15)(J3 − Eb4)], J3 =

2S31b1 + a11b2

a11a22 − 2S13S31
(4.33)

These expressions take into account that the radiation exchange occurs between the
left (subscript 1) and right (2) fins surfaces, the base (3), and the walls of the room
through the open top (4), front side (5), and rear side (6) of closure. The open top and
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sides are considered as imaginary surfaces. The black body irradiations of the fins and
base are Eb1 = Eb2 = 𝜎T4

w and Eb3 = 𝜎T4
w0, Eb4 = Eb5 = Eb6 = J4 = J5 = J6 = 𝜎T4

∞,
whereas Eb4 = Eb5 = Eb6 = J4 = J5 = J6 = 𝜎T4

∞, Sij = Fiji
(1 − 𝜀i)∕𝜀i, a11 = 1 + S13 + S14,

a22 = 1 + 2S31 + S34, b1 = Eb1 + S14Eb4, b2 = Eb3 + S34Eb4, where J is radiosity, 𝜀 is
emissivity, S is a spacing between fins, i = 1, 3 and j = 1 − 6. The shape factors Fij are
taken from [172]. The following scales are used to form the dimensionless variables in
equations (4.29)–(4.31): S, S∕Gr1/4, S2∕𝜈Gr1//2, 𝜈Gr1//2∕S, 𝜈Gr1//4∕S, Tw0 − T∞, 𝜈Gr1//4,
𝜈Gr3/4 ∕S2, 𝛼, 𝜆(Tw,0 − T∞)Gr1/4∕S and 𝜎T4

∞ for x, y, t, u, v, T − T∞, 𝜓, 𝜔, 𝛼w, qR, Eb,
respectively, and Grashof number is defined as Gr = g𝛽(Tw,0 − T∞)S3∕𝜈.

The boundary conditions include: T = Tw0, no slip condition for the fins and the base and
𝜕T∕𝜕x = 0 for the fin tips. For open top, the following boundary conditions are adopted:
v = 𝜕u∕𝜕x = 𝜕𝜓∕𝜕x = 𝜔 = 0 and 𝜕T∕𝜕x = 0. The results for various fin arrays are presented
applying the conduction-convection Λ, radiation NR, parameters, and the aspect AR, and tem-
perature 𝛾 ratios

Λ = 𝜆PS
𝜆wAw

Gr1∕4, NR =
S𝜎T4

∞

𝜆Gr1∕4(Tw0 − T∞)
, AR = H

S
, 𝛾 =

Tw0 − T∞
T∞

(4.34)

Here, P = Δ + W,Aw = WΔ∕2,Δ,H and W are the half perimeter, the half section area, the
thickness, height, and width of the fin.

The alternating direction method (Com. 3.10) is used to solve numerically system
(4.29)–(4.31). The temperature distributions are obtained in the fluid from the first and in the
fins from the fourth and fifth equations, respectively. The vorticity and stream function are
calculated using the first and the second equations (4.29), and the components of velocity are
obtained knowing the stream function. The procedure is continued until steady state fields for
all variables are obtained. The following results are formulated:

• Average Nusselt numbers for a four-fin array for low and high emissivities agree with known
experimental data. Analysis shows that the contributions of the fins, base and end fins to total
heat transfer are 36, 13.5 and 50.5%, which agrees with data from [318]. The effect of fins
spacing on heat fluxes is studied for arrays with different number of fins over a fixed base.
As the number of fins increases from 4 to 16, and the value of spacing S decreases from 20
to 2.8 mm, the heat fluxes from fin and from base decrease from 149 to 44 W/m2 and from
379 to 148 W/m2. Despite increased numbers of fins, the heat transfer rate and effectiveness
remain almost the same, but the average heat transfer coefficient decreases remarkable from
5.29 to 1.48 W/m2 K. The effect of the base temperature is studied for the case investigated
experimentally in [376]. Both results are in reasonable agreement and indicate that the total
heat transfer rate increases as the base temperature grows for any studied values of spacing
and heights. The effectiveness increases as well for all heights, but for small values of S,
effectiveness decreases as the base temperature grows. The results for different fin thick-
nesses indicate that in the case of low heights and high thermal conductivities, the heat flux
from fin practically does not depend on thickness. It is found that the conductivity decreas-
ing leads to reduction of the fin heat flux, and increasing in emissivity yields growing heat
flux due to increasing radiation.

• The temperature profiles obtained for two different spacing show that the temperature far
away from the fins is lower for higher spacing than that for smaller spacing. At the same
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time, the velocity profiles indicate that there is a recirculation zone at larger S, resulting in
higher velocities near the wall and lower velocities at the distance S∕2. The isotherms and
streamlines for the same two enclosures indicate that the air temperature is high in the middle
of the enclosure with smaller spacing, whereas in the enclosure with the larger spacing, the
heating is confined to the air near the fins and the base. The streamline distribution shows
that the streamlines travel upward along the fins, where the temperature is high compared
to that of the air in the enclosure.

◾Example 4.12∗ a/n: Transverse Flow Over Finned Surface [149]

A fluid flows along a finned surface transversely to the fins. Since the flow is normal to the
fins, the eddy forms in the each interfin space (Fig. 4.8). On the side 1 of the fin, the temper-
ature gradient increases, whereas on the side 2 it decreases in the flow direction. On the base
3, the temperature gradient may be considered as constant. It is assumed that at intersections,
the surfaces are rounded, owing to which stagnant zones or secondary eddy flows do not form
in the corners. The boundary layer develops on the finned surface from the end face to the
base on the front (in the direction of the flow) fin surface 1 and increases from the base to
the end on the back fin surface 2 (Fig. 4.8). The pattern presented here of the dynamic bound-
ary layer development on the walls of the cavern with eddy flow inside it was proposed by
Batchelor [63].
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Figure 4.8 Scheme of a transverse flow over a finned surface

Assuming that the conditions in all cells are identical, the model of the problem of heat
transfer in fins is formulated as bilateral flow over the body schematically shown below in
Figure 4.8. Here, the body surface represents the surface of the fin and of two adjacent cells.
The upper body surface represent the right cell surface, the ends of the model body corresponds
to the ends of the two adjacent fins, and the lower body surface represent the surface of the
left cell. The numbers in the model correspond to these in the scheme of the finned surface.
Thus, the numbers 1, 2, and 3 correspond to sections with increasing, decreasing and constant
temperature gradients, respectively, and the model represents the case of countercurrent flows
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with complicated velocity and temperature distributions. The distances h and s on the model
correspond to the fins height H and to the length between the fins HB.

For thermally thin fins, the governing equation is the steady-state equation (1.3). The bound-
ary conditions are the zero temperature gradient at the entrance (x = 0) and prescribed base
temperature T0 at the point x = H(or at x = h)

𝜆wΔ
d2Tw

dx2
= q1(x) + q2(x),

dT
dx

||||x=0
= 0, T|x=H = T0 (4.35)

The heat fluxes q1(x) and q2(x) from surfaces of fin are calculate by equation (1.26)

q1(x) = h∗(x)
⎡
⎢
⎢
⎣
TE − TD +

x

∫
0

f

(
𝜉

x

)
dTw

d𝜉
d𝜉
⎤
⎥
⎥
⎦
, q2(x) = h∗(x)(2H + HB − x) [TE − TD

+

H+HB

∫
2H+HB

f

(
2H + HB − 𝜉
2H + HB − x

)
dTw

dx
d𝜉+

x

∫
HB

f

(
2H + HB − 𝜉
2H + HB − x

)
dTw

d𝜉
d𝜉
⎤
⎥
⎥
⎦

(4.36)

Here, TE and TD are temperatures of the fin end and the eddy flow inside interfin space that
plays the role of the temperature of the external flow for the boundary layer on the fin. The
expression for heat flux on the back surface q2(x) takes into account that the boundary layer in
this case develops starting from the end point c (Fig. 4.8) of the front surface. Therefore, the
heat transfer on the back surface depends on the temperature distribution on the front surface
(section bc) and the length HB of the interfin section. This fact takes into account the first
integral in the equation for q2(x), whereas the second integral in this relation determines the
effect of the section (ed) on the back surface.

Substituting expressions (4.36) into equations (4.35) yields the intego-differential equation
and boundary conditions determining the temperature over the height of the fin

d2𝜃w

d𝜂2
= N2{𝜙(𝜂)

⎡
⎢
⎢
⎣
𝜃E +

𝜂

∫
0

f

(
𝜁

𝜂

)
d𝜃w

d𝜁
d𝜁
⎤
⎥
⎥
⎦
+ 𝜙(𝜂0 − 𝜂) [𝜃E +

1

∫
0

f

(
𝜁

𝜂0 − 𝜂

)
d𝜃w

d𝜁
d𝜁

−

1

∫
𝜂

f

(
𝜁

𝜂0 − 𝜂

)
d𝜃w

d𝜁
d𝜁
⎤
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

d𝜃
d𝜂

||||𝜂=0
= 0, 𝜃|𝜂=1 = 1 (4.37)

𝜃w =
Tw − TD

T0 − TD
, N2 =

h∗H2

𝜆wΔ
, 𝜙(𝜂) =

h∗(𝜂)

h∗
, h∗ =

1
H

HB

∫
0

[h∗(𝜁 ) + h∗(2H + HB − 𝜁 )]d𝜁

Here, 𝜂 = x∕H, 𝜂0 = 2 + HB∕H, h∗ is the average heat transfer coefficient of an isothermal
fin and the parameter N2 is the Biot number (note that H2∕Δ is a linear characteristic) deter-
mining the conjugation effect. Intego-differential equation (4.37) is solved by reduction of
conjugate problem to an equivalent conduction problem (S. 2.2. 2). According to this approach,
equation (4.37) is reduced to the system of ordinary differential equation and to the equation
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for error

d2𝜃w

d𝜂2
= N2

{
𝜙 (𝜂)
[
𝜃w + g1𝜂

d𝜃w

d𝜂
+ g2𝜂

2 d2𝜃w

d𝜂2

]
+ 𝜙(𝜂0 − 𝜂)

[
𝜃w − g1

(
𝜂0 − 𝜂

) d𝜃w

d𝜂
+

g2

(
𝜂0 − 𝜂

)2 d2𝜃w

d𝜂2

]}
+ 𝜀(𝜂) 𝜀(𝜂) = 𝜃int

w − 𝜃diff
w (4.38)

A first approximation is obtained assuming 𝜀(𝜂) = 0 and solving the ordinary differential
equation. Using the first approximation results in 𝜃w(𝜂), the next approximation is obtained
by integrating the right hand part of intego-differential equation (4.37), which gives 𝜃int

w and
calculating 𝜀(𝜂) by applying the first approximation 𝜃w(𝜂) as 𝜃diff

w . Then, including 𝜀(𝜂) in dif-
ferential equation (4.38) gives the next approximation for 𝜃w(𝜂). The procedure is continued
until a desired accuracy is achieved.

Numerical results are obtained for laminar flow: C1 = 3∕4, C2 = 1∕3, g1 = 0.63,
g2 = −0.14 (S. 1.6). The following conclusions are formulated:

• The solutions of the conjugate problem are compared with the results obtained by approx-
imate calculations using local and average isothermal heat transfer coefficients. It is found
that in the range 0 ≤ N2 ≤ 2, the results of the conjugate and both simplified methods are in
agreement. For N2 > 2, the deference between results attained in the conjugate and simpli-
fied problems becomes more significant. The simplified values of the fin efficiency and the
total heat flux removed by the fin are too low, and the errors grow as the conjugate parame-
ter N2 increases, reaching for large N2 the values of 60–70%. The distributions of the heat
transfer coefficient and heat flux over the fin height obtained by conjugate approach are
substantially nonuniform with maximum values at the fin end.

• On the back side of the fin, for N2 ≥ 1.9, the heat flux inversion is observed when the heat
flux is directed toward the fin despite the temperature head is still positive (S. 2.4). As the
value of N2 increases, the absolute magnitude of the inversed heat flux and the length of
the heated end section (Fig. 4.8) increase. Since the inversion effect cannot be explained by
the simplified approach based on heat transfer coefficient, neglecting the conjugation of the
problem in this case not only yields quantitative errors, but also leads to qualitative incorrect
results. The reason for this is that on the back side of the fin, the temperature head decreases
in flow direction. In such a case, the conjugate effect should always be taken into account
(S. 3.1.1.3, Com. 3.4).

• It is found that for large values of conjugate parameter N2 > 2, the heat flux removed by fin
is maximal for fins with 1 < HB∕H < 1.5. This result is a consequence of nonisothermicity
of the finned surface and also cannot be obtained by simple methods.

OTHER WORKS: The similar double-pipe heat exchanger model considered in example
4.8 is investigated in [363] for countercurrent flows. The system of governing equations is
solved numerically using Galerkin’s method (S. 9.6). The heat exchanger model in the form
of tube-fin is considered in [80]. Heat transfer in a microchannel similar to the one analyzed
in [135] (Exam. 4.10) is studied in papers [188]. Other examples of fins are considered in
articles [407] and [237]. Both works investigate the fins embedded in porous medium. In the
first one, the vertical fin with rounded tip is considered using finite-difference solution, and
in the second paper, a mixed convection along a cylindrical fin is analyzed employing local
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similarity method (Com. 4.5). In the recent study [171], the effect of micropolar fluid on the
heat exchange is examined by considering the flow in concentric annulus. The construction
and the results of the experimental verification of a new compact heat exchanger are presented
in the other recently published article [176].

4.2 Thermal Treatment and Cooling Systems

4.2.1 Treatment of Continuous Materials

In Section 1.10 we obtained the universal functions for the continuously moving sheet model
schematically showing in Figure 1.12. It was explained that such model simulates the systems
of the production of different materials in which a tape or a thread extruded from a slot is
cooled by pulling though a surrounding. There, we consider the features of the boundary layer
growing on continuously moving materials, which differs from usual boundary layers formed
on streamlined or flying bodies. Here, some solutions of conjugate heat transfer problems for
continuously moving plates are reviewed.

◾Example 4.13a: Continuous Plate Moving Through Surrounding [69]

An infinite flat plate or circular cylinder is moving out of a slot with constant velocity Uw into
a viscous medium at temperature T0 and is cooled pulling through it. The governing system
for fluid consists of the boundary layer equations: continuity (1.9), momentum (1.10) for zero
pressure gradient and energy (1.11) without dissipation term. The equation for the moving
plate and relevant boundary conditions are as follows

Uw
𝜕T
𝜕x

= 𝛼w
𝜕2T
𝜕y2

, y = 0, Δ u = Uw, T = Tw(x), y → ∞, u → 0, T → T∞ (4.39)

Comment 4.9 The first boundary condition specifies velocity and temperature on both sur-
faces of a plate, and the second one indicates that far from the plate, the surrounding at
temperature T∞ is unmoving. The problem for continuously moving plate with such boundary
conditions in the fixed coordinates is described by usual boundary layer equations (1.9)–(1.11),
but as it is seen from relations (4.39), the boundary conditions are opposite to those for stream-
lined plate. In contrast to that, in coordinate system attached to a moving surface, the boundary
conditions are identical with usual ones, but boundary layer equations are unsteady, and thus,
they differ from usual system for a plate (S. 1.10).

Dimensionless variables transform system (4.39) to the form similar to well investigated
classical Blasius-Pohlhausen’s equations (S. 7.5.1)

d3f

d𝜂3
+

f

2
d2f

d𝜂2
= 0,

𝜕2𝜃

𝜕𝜂2
+ Pr

f

2
𝜕𝜃

𝜕𝜂
= Pr

df

d𝜂
𝜉
𝜕𝜃

𝜕𝜉
, 𝛾

𝜕𝜃

𝜕𝜉
= 𝜕2𝜃

𝜕𝜁2
(4.40)

𝜂 = 0, f = 0,
df

d𝜂
= 1, 𝜂 → ∞,

df

d𝜂
= 0, 𝜉 = 0, 𝜃w = 1, 𝜃 = 𝜃0
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𝜂 = 𝜉 = 0, 𝜃 = 𝜃w − 𝜕𝜃

𝜕𝜂
= (Pr 𝜉)1∕2

𝛾

𝜕𝜃

𝜕𝜁
𝛾 = 𝜆

𝜆w
Lu

f = 𝜓

(𝜈xUw)1∕2
, 𝜉 = x𝜆Lu

UwΔ2(𝜌c)w
, 𝜁 =

y

Δ
, 𝜃 = T − T∞, 𝜂 = y

√
Uw∕𝜈x

Because in this case, the conjugate problem is considered, the conjugate condition (the sec-
ond and third equations in the third line) is included in a set of boundary conditions. The
first equation (4.39) has been solved numerically by Sakiadis [333]. In the system (4.40), this
equation is presented as third equation. Other equations are solved using analogous technique
in reviewed paper [69]. The details may be found in this work.

The experiments are performed by pulling steel and plastic endless belts through the air and
water leading to the following basic conclusion: the calculation data for the plate temperature
distributions well agree with the experimental results and both show that the conjugate param-
eter 𝛾 = (𝜆∕𝜆w) Lu and dimensionless coordinate 𝜉 (4.40) are the proper variables governed
the conjugate heat transfer in the case of moving plate.

Comment 4.10 It was shown that Biot number is a measure of conjugate rate of steady-state
problems (S. 2.1.7) and Luikov number plays similar role in the case of unsteady heat transfer
(S. 3.1.1.5). The conjugate parameter for the moving plate 𝛾 = (𝜆∕𝜆w) Lu, which follows from
third equation of system (4.40), in fact is a combination of Biot and Luikov numbers. This
becomes clear if one takes into account that dimensionalities of 𝜆 and hΔ are equal (𝜆 ∼ hΔ),
so that 𝛾 = (𝜆∕𝜆w) Lu ∼ Bi ⋅ Lu.

◾Example 4.14a/n: Continuous Plate Moving Through Surrounding (Two Parts
Solution)

Here, the same problem for moving through surrounding continuous plate is solved using
the reduction of conjugate problem to the equivalent conduction problem (S. 2.2.2) [110]. The
initial governing system is the same as in previous example. The solution of this problem
consists of two parts. The first part presents the solution for initial section of a plate from
x = 0 to x = xcr where the thermal boundary layers growing along the plate joined (Fig. 1.12).
It is shown [110] that for this part equation (4.39) for continuously moving plate in variables
x∕L and 𝜑 = y

√
Uw∕2𝜈x coincides with equation defining coefficient gk for universal function

(1.38) in the case Pr → 0. Thus, the heat on the moving plate is determined by same series
(1.38) with coefficients (1.42)

qw =
𝜆w

√
Re

𝜃w

√
Pr
x𝜋

(

Tw − T0 +
∞∑

k=1

gkxk dkTw

dxk

)

, gk =
(−1)k+1

k!(2k + 1)
(4.41)

At the same time, the heat flux from fluid for moving plate is given as well as for fixed plate by
series (1.38) with coefficient gk obtained in Section 1.6. Substituting both series in conjugate
condition qw1 = qw2 yields the equation

K(Tw − T∞) + (Tw − T0) +
∞∑

k=1

(Kgk1 + gk2)xk 𝜕
kTw

𝜕xk
= 0,

Tw − T∞
T0 − T∞

= 1
1 + K

, (4.42)



�

� �

�

182 Applications in Conjugate Heat Transfer

from whence it follows that the plate temperature at the initial section at a die is constant and is
defined by the second equation (4.42). That is because the first equation may be satisfied only
assuming that each term is zero 𝜕kTw∕𝜕xk = 0 resulting in dimensionless temperature (4.42)
with K = g0Pr1∕2

√
𝜋∕𝛾 and the same 𝛾 = (𝜆∕𝜆w)Lu(Exam. (4.13)).

Comment 4.11 The physical reason of the plate temperature constancy is the similarity of
temperature distributions in the fluid and in the solid leading to the proportional grows of the
thermal boundary layer in the moving plate and in flow entrained by it.

For the second part of the plate for x > xcr where the boundary layers on the inner plate
surfaces interact, the conjugate problem is solved by reduction to the conduction problem
similar to solution of equation (4.37) in example 4.12. In this case, the system of boundary layer
equations (1.9)–(1.11) and equation (4.39) for the moving plate is solved numerically using
two last relations (4.39) as boundary conditions. Three iterations provide acceptable accurate
solution. Details are given in [110]. The results for the symmetric flow around plate for various
Pr, 𝛾 and 𝜙 = U∞∕Uw are plotted in Figure 4.9. The curve 7 for 𝜙 = 0 and g1 = 0 represents
solution obtained with boundary condition of the third kind. The dashed curve pertains to the
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Figure 4.9 Temperature of the moving plate surface in symmetrical flow: I)𝛾 = 0.042, Pr = 5.5;
1) 𝜙 = 0. 2) 𝜙 = 0.8, 3) 𝜙 = 0, g1 = 0, 𝜀 = 0, II) 𝛾 = 8.51, Pr = 6.1;4) 𝜙 = 0, 5) 𝜙 = 0, 𝜀 = 0,6) 𝜙 =
0.8, 7) 𝜙 = 0, 𝜀 = 0, g1 = 0
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first iteration when only the first derivative is taken into account and 𝜀 = 0. It is seen that the
result obtained after correction (curves 1 and 4) well agree with experimental data from [69]
showing by crosses, whereas the significant deviation of the temperature distribution calculated
using boundary condition of the third kind (curve 7) implies that the problem of heat transfer
between a moving plate and the surrounding must be solved as a conjugate problem.

◾Example 4.15n: Horizontal and Vertical Moving Continuous Plates [189]

The same problem as in two previous examples is considered for both horizontal and vertical
moving plates with additional effects of unsteady natural convection and two-dimensional
aspects near the slot. Solution of such problem requires more complex governing equations,
which are used in the following vector form (S.7.1.2.1)

∇ ⋅ v = 0,
𝜕v
𝜕t

+ v ⋅ ∇v = −
∇p

𝜌
+ 𝜈∇2v − g𝛽(T − T∞), v = iu + jv

𝜕T
𝜕t

+ v ⋅ ∇T = 𝛼∇2T , (𝜌cp)w
𝜕T
𝜕t

+ (𝜌cpU)w
𝜕T
𝜕x

= 𝜆w∇2T

(4.43)

Here, the first and second equations are continuity and Navier-Stokes equations, the fourth
one is the energy equation and the last is unsteady equation for solid. The boundary condition
are as usual no-slip at the moving plate and on the slot walls, zero velocity far away from the
plate, conjugate conditions on the interface, and the symmetry condition on the x axis. The last
condition is not valid if the buoyancy effect is taken into account, except the cases of vertical
plate or when the surface with x axis is insulated. The special condition −xin < x < 0, T = T0
is used to simulate the proper initial condition implying that at time t = 0, the very long plate
at temperature T∞ starts also moving with constant velocity, when the heat input upstream at
x = 0 is turned on.

Equations (4.43) are transformed in the stream function-vorticity (𝜓 − 𝜔) form (S. 7.1.2.3
and 7.1.2.4) using dimensionless variables scaled by: Δ∕2 for x and y, Uw for u and v, Δ∕2Uw
for t, 2Uw∕Δ for 𝜓 and 𝜔. Re= UwΔ∕2𝜈, Gr = g𝛽(T0 − T∞)Δ3∕8𝜈2, Pe = UwΔ∕2𝛼w and
𝜃 = (T − T∞)∕(T0 − T∞). For the plate moving vertically upward, the transformed equations
(4.43) are

∇2𝜓 = −𝜔, 𝜕𝜔

𝜕t
+ v ⋅ ∇ ⋅ 𝜔 = ∇2𝜔

Re
− Gr

Re2

𝜕𝜃

𝜕y
,
𝜕𝜃

𝜕t
+ v ⋅ ∇𝜃 = ∇2𝜃

Re Pr
,
𝜕𝜃

𝜕t
+ 𝜕𝜃

𝜕x
= ∇2𝜃

Pe
(4.44)

For a plate moving vertically downward, the sign of the buoyancy term is reversed. For a
horizontal plate, the buoyancy gives rise to a pressure gradient normal to plate. Because of
that, the last negative derivative with respect to y in the second equation should be changed to
the positive derivative with respect to x.

The computation domain is divided in two regions. For the first region, starting from the slot,
the Navier-Stokes and full energy equations are solved because here the nonboundary layer
effects are important. These two equations of system (4.44) and the third one, the conduction
equation for the plate (the system (4.44) except first equation), are solved applying alternate
direction implicit (ADI) method (Com. 3.10). The first equation of this system, the Poisson’s
equation (S. 1.1) for stream function, is solved using overrelaxation method (Com. 4.12). For
the second region downstream from the slot, the boundary layer equations are employed. The
boundary conditions at the interface between two regions obtained numerically are used to
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join both solutions. The procedure of iterations and other details are described in the reviewed
paper [189].

Comment 4.12 The relaxation means are used to improve the convergence of Gauss-Seidel
method by choosing the proper value of relaxation factor 𝜂, which relates the successive iter-
ations; the method is known as underrelaxation and overrelaxtion depending on using factors
from ranges 0 < 𝜂 < 1 and 1 < 𝜂 < 2, respectively.

The basic results for different Pe, Gr, Pr, 𝜆∕𝜆w and Re are listed below:

• Streamlines and isotherms for an aluminum plate moving vertically upward show that flow
starts close to the moving plate. Then, a recirculating flow appears near the slot and moves
away downstream. At first, heat is conducted along the plate and afterwards is going to
ambient fluid. Finally, the transient process approaches the steady state. When the plate
is started heating after the fully flow is developed, no recirculating flow arises, and the
entrained fluid comes from ambience. Although the transient process is different from a
steady state, the velocity and temperature distributions are identical.

• The buoyancy affects the corresponding transient velocity and temperature distribution only
in time after beginning of the transient process, and the velocity maxima occurs during this
process but not at the steady state. The Nusselt number decreases with the distance and
after approaching minimum value increases. The minimum value of the Nusselt occurs in
the recirculation zone mentioned above.

• As the same aluminum plate moves horizontally, the steady state is reached later than in the
case of a vertically moving plate. The reason of this is the different directions of buoyancy
forces, which aid the flow in the case of vertical plate but are normal to flow direction for
the horizontal plate. The temperatures of a horizontal plate are higher than those for vertical
plate. This occurs due to higher velocities near the vertical plate, which results in a higher
amount of removal heat from the plate.

• In a transient process, the maximum of relatively velocity u∕Uw monotonically increases
near the slot. As the distance from the slot increases, an overshoot phenomenon arises, and
due to buoyancy forces increasing, it becomes larger with distance.

• Although in the steady state the flow patterns are similar for different values of parameters,
the flow in the case of air (Pr = 0.7) is stronger than that in the case of water (Pr = 7)
because the buoyancy effects are larger in the air. The temperature on the aluminum plate is
almost uniform, which is because of a high thermal conductivity. Near the slot, the strong
cooling is observed. This effect is not always desirable because it may result in residual
thermal stresses. For the case of air and Teflon with low thermal conductivity, the plate is
not cooling much.

• As Grashof number increases, the flow becomes stronger, and the heat transfer rate from
the plate to the fluid as well as the Nusselt number grows. The plate velocity affects the
induced flow and finally changes the plate temperatures and Nusselt number. Therefore,
when the plate velocity is higher, these quantities are also higher. However, a certain region
is observed where despite the higher Nusselt number in the case of higher plate speed, the
greater distance is required to cool the plate to a given level.

• The data obtained for different ratio 𝜆∕𝜆w show that heat transfer coefficient near the slot
basically is determined by plate thermal conductivity so that the aluminum plate has the
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highest Nu in this region. The comparison of these data with results for stationary isothermal
or with uniform heat flux plate indicates that the temperature distributions in the transverse
direction in both cases are similar. At the same time, the velocity distributions are different,
and the Nusselt number is higher on the moving plate.

4.2.2 Cooling Systems

4.2.2.1 Electronic Packages

Miniaturization of contemporary electronic systems leads to increasing the amount of heat flux
per unit volume, which must be removed to provide stable and reliable operation conditions.
This requires high accuracy predictions of the heat transfer characteristics and appropriate
efficient cooling systems.

◾Example 4.16n: Protruding Heat Sources on the Wall of the Horizontal Channel [314]

Four volumetric sources are mounted on the bottom wall of a horizontal channel. The
heat transfer occurs by mixed convection and radiation. The air is considered as cooling
agent. The flow is laminar and hydrodynamically and thermally developed. The system of
two-dimensional continuity (1.4), Navier-Stokes (1.5) and (1.6) and energy (1.8) (without
dissipation) equations is used for fluid. To take into account the natural convection, the
term (Gr∕Re)𝜃 for buoyancy force (S. 7.8) is added in equation (1.6). The following
two-dimensional Laplace equations are employed for determining the temperatures of the
walls and streamlined sources

Pe
Luw

𝜕𝜃

𝜕t
=
𝜆w

𝜆

(
𝜕2𝜃

𝜕x2
+ 𝜕2𝜃

𝜕y2

)
,

Pe
Luh

𝜕𝜃

𝜕t
=
𝜆h

𝜆

(
𝜕2𝜃

𝜕x2
+ 𝜕2𝜃

𝜕y2

)
+ R2

LΔ
(4.45)

The scales for dimensionless variables are: R for x and y, U for u and v and 𝜌U2 for p, R is
the channel height, Δ and L are height and width of sources, Luw = 𝜌c∕(𝜌c)w, Luh = 𝜌c∕(𝜌c)h
are Luikov numbers for channel walls and for sources, respectively, subscript h denotes
the heat source, Re = UR∕𝜈, and Pe = UR∕𝛼. The temperature and the Grashof number
are defined in terms of the volumetric heat generation qv as follows: 𝜃 = (T − T∞)∕ΔTref
and Gr = g𝛽 qvLΔR3∕𝜆𝜈2 where ΔTref = qvLΔ∕𝜆. The source term qv∕𝜆 in energy
equation (4.45) (the last one) defined in terms of these scales is presented only through
geometric parameters.

The uniform inlet conditions for fluid and no-slip boundary conditions at the walls are
applied. The outer wall surfaces are assumed to be adiabatic. At the outlet of the channel
an extended domain is used to avoid the influence of large recirculation occurs at the last
source. It is assumed that the boundary conditions: 𝜕u∕𝜕y = v = 𝜕𝜃∕𝜕y = 0 and 𝜕2u∕𝜕x2 =
𝜕2v∕𝜕x2 = 𝜕2𝜃∕𝜕x2 = 0 are appropriate for top and bottom of extended domain and of it out-
let, respectively.

Comment 4.13 The extended domain and boundary conditions are adopted to provide uni-
form velocity profile at the channel outlet for Dirichlet problem formulation (S. 1.1).

Radiative heat transfer is calculated using the radiocity-irradiation approach [172] as in
Example 4.11. The surfaces are considered as opaque, diffuse, and gray, and the inlet and
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outlet of the channel are treated as black surfaces at ambient temperature. A radiative heat flux
qRi from a discrete surface and radiocity Ji = 𝜎 T4

∞ are determined as

qRi =
𝜀i

1 − 𝜀i

[(
Ti

T∞

)4

−
Ji

𝜎T4
∞

]

,
Ji

𝜎T4
∞

= 𝜀i

(
Ti

T∞

)4

+ (1 − 𝜀i)
n∑

j=1

Ji

𝜎T4
∞

Fij (4.46)

where 𝜀 and Fij are emissivity and shape factor. Temperatures at the channel walls/fluid inter-
face and at source/fluid interface are determined from energy balance equations

−
𝜆w

𝜆

(
𝜕𝜃

𝜕y

)

w

= −𝜕𝜃
𝜕y

+ qRNRC NRC =
𝜎T4

∞
𝜆

R
ΔTref

(4.47)

𝜆h

𝜆

(
𝜕𝜃

𝜕x

)

w
Δy −

[
𝜆h

𝜆

(
𝜕𝜃

𝜕y

)

w

+
(
𝜕𝜃

𝜕y

)

n

+
𝜆h

𝜆

(
𝜕𝜃

𝜕x

)

e
+ R2

LΔ
Δy − qRNRC

]
Δx = Pe

𝜕𝜃

𝜕t
ΔxΔy

where Δx and Δy are dimensionless width and height (scaled by R) of an element chosen for
the energy balance and subscripts e and n refer to extended domain and nodal points.

The SIMPLE algorithm (S. 9.7) and the point-by-point Gauss-Siedel iteration method are
used to solve the governing equations for velocity components, pressure, temperature, and
radiosity. The following basic results and conclusions are obtained:

• The temperature of the first chip is lower than others due to contact with fresh air. The
maximum temperature of the last chip is lower than that of others due to high recirculation
at the last chip. The radiation heat transfer from the first and the last chips is higher than
from the others, because these are exposed to the atmosphere. The radiation effect and the
maximum temperature become smaller as the Reynolds number grows.

• The buoyancy effect was studied using different Grashof numbers obtained by changing the
value of the volumetric heat generation qv. The results show that with increasing Grashof
number, the dimensionless temperature decreases linearly. It follows from this data that
effect of buoyancy is negligible for the range of parameters studied. Despite the dimen-
sionless temperature decreases, the actual dimension temperature increases as the Grashof
number increases, as is expected.

• The dimensionless temperature decreases as the emissivity of heat sources and of the walls
increase if all Reynolds numbers are analyzed. The effect of the wall emissivity is more
significant than that of the heat sources. The temperature decreases also when the emis-
sivity of the substrate grows. As the emissivity of substrate changes from 0.02 to 0.85, the
maximum temperature decreases by 11∘C, whereas the same change of emissivity of heat
sources gives only 4∘C drops in maximum temperature.

• The dimensionless temperature decreases as the thermal conductivities of the heat sources
and substrate increase. At 𝜆h∕𝜆w = 500, heat sources become isothermal. When the thermal
conductivity ratio of heat sources and fluid 𝜆h∕𝜆 changes from 50 to 500, the calculation
shows a 20% drop in the maximum temperature. Similar behavior of dimensionless temper-
ature is observed when the wall/fluid conductivity ratio is varied.

• As the emissivity of substrate and top wall increases, the contribution by radiation decreases,
whereas the convective contribution increases. Increasing of the heat sources emissivity
leads to increasing radiation contribution. At Re = 250, the radiation contribution increases
from 10.5% at emisivity of heat sources at 𝜀h = 0.02 to 19% at 𝜀h = 0.85. As the Reynolds
number increases, the radiation fraction becomes less.
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◾Example 4.17n: Closed Unit with Electronic Heat-Emitting Elements [210]

Unsteady heat transfer in a small hermetically sealed unit of an electronic system with a
heat source is considered. The heat sources have a core of constant power. It is assumed that
the housing walls are thermally insulated. A computing domain consists of four walls formed
an air filled cavity with a heat-emitting element (e.g., a transistor), which generates a constant
heat flux.

The mathematical model similar to that in previous example consists of two-dimensional
unsteady Navier-Stokes equation in 𝜔 − 𝜓 variables with additional term for natural convec-
tion, energy equation for temperature, and conduction equation with source of generation for
walls. Relations 𝜓 = 𝜔 = 0 and T = T0 are initial conditions; no-slip and thermal insulation
are conditions for walls. The conjugate conditions are used in the form of equalities of temper-
atures and heat fluxes for gas and walls and for heat sources and gas. The problem is solved by
finite-difference method. The calculations are carry out for square steel and fiberglass boxes
with 0.1 m of length and 0.005 m walls thickness containing the heat source of 0.02 m length
and 0.015 m height with volumetric heat generation in interval 105 − 107 W∕m3. Other model
characteristics are given in [210].

The following conclusions are formulated:

• For heat generation qv = 105W∕m3, two convective cells with smaller secondary flows in
the corners are formed in the cavity. Immediately above the heat source, ascending flow
occupies a domain, whereas the descending flows exist near the walls. The energy is trans-
mitted from the source to the gas-giving rise to a thermal plume, whose position is deter-
mined by the ascending flows. In this case, the conductivity heat transfer plays a dominant
role, whereas the convective heat transfer contribution is small.

• As the power of volumetric generation increases, the flow velocities in convective cells grow
and the size of these vortices decreases. In this case, the size of secondary vortices and the
gas temperature increase as well leading to more clear shape of thermal plume. Inside the
heat source, the temperature inhomogeneity is observed.

• Similar investigations for different wall material and conditions of operation show that: (i)
increase in the thermal diffusivity of the wall material leads to significant decreasing in
the temperature of the air inside the cavity and of the temperature of heat source itself, (ii)
increase in the heat emission capacity results in a growing the cavity gas temperature close to
the heat source, (iii) as it was expected, the temperature of the fiberglass wall is higher than
that of the steel wall, (iv) the extension of time of unsteady operation significantly modifies
the velocity and temperature fields leading, in particular, to much smaller secondary flows of
different form moving to the upper part of the cavity, (v) the power of heat source generation
plays critical role in formation the thermo-hydrodynamic regimes, and (vi) using the heat
transfer coefficient, especially for unsteady regimes is unreasonable.

4.2.2.2 Turbine Blades and Vanes Cooling

◾Example 4.18n: Film Cooled System For Blades and Vanes [197]

Film cooling is used to protect turbine blades and vanes of the first and second rows from
direct contact with streams of hot gas. Injected cold air covers the surface of the blade or vane
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and produces a layer of cold air between protected object and hot gas. The reviewed article
presents the temperature field of the model of the real engine with film cooled vanes [165]
obtained by numerical solution of relevant conjugate heat transfer problem. The NASA explicit
finite volume code Glenn-HT is used to solve Navier-Stokes equations for fluid domain, and
boundary element method (BEM) is employed for solving the Laplace equation for the body.
Such combination approach as applied to conjugate problem provides two advantages arising
from the fact that BEM requires only body surfaces discretization (S. 9.6). The first bene-
fit of that is the reducing of computing time and storage saving, since there is no need to
involve in calculation the whole body domain. This feature of BEM is especially impor-
tant for the conjugate problems, whose solution is associated with iterations when the tem-
perature distribution on the interface obtained by Laplace equation is used as a boundary
condition for Naver-Stokes equation, and Navier-Stokes solution data gives the boundary
condition for the Laplace equation. Because in such iteration procedure, only the surface
temperature under Laplace equation solution is required, using BEM results in eliminating
the rest part of solid descretization, which in this case is not needed. Another merit of using
BEM in conjugate problem follows from the fact that in BEM the temperature and heat fluxes
on the interface are directly obtained satisfying the conjugate conditions, and thus there is
no need in the solid temperature differentiating usually employed to get heat fluxes on the
interface.

The kinetic energy turbulence and the specific dissipation rate are determined by
two-equations k − 𝜔 turbulence model (S. 8.4.3.1). For turbulence viscosity and turbulence
thermal conductivity, the Boussinesq formulae with Prtb ≈ 0.9 are used. The Kirchhoff
transform is employed to convert the equation for body with conductivity dependent on
temperature 𝜆s(T) to usual form of the Laplace equation.

Comment 4.14 The Kirchhoff transform is defined as integral of conductivity 𝜆s(T) with 𝜆0
and T0 as reference parameters in the form of the first equation

𝜆kf (T) =
1
𝜆0

T

∫
T0

𝜆s(𝜉)d𝜉,
𝜕

𝜕x

[
𝜆s (T)

𝜕T
𝜕x

]
= 𝜕

𝜕x

(
𝜕𝜆kf

𝜕T
𝜕T
𝜕x

)
=
𝜕2𝜆kf

𝜕x2
, ∇ ⋅ [𝜆s(T)∇T] = 0

(4.48)
It follows from the first equation that 𝜆s = 𝜕𝜆kf∕𝜕T . Then, from the second equation one may
see that using this relation and chain rule transform the Laplace equation (1.1) with variable
conductivity in usual form of a second derivative but of Kirchhoff variable 𝜆kf instead of
temperature. The third relation (4.48) is the Laplace equation with dependent on temperature
conductivity in the general vector form.

A system of three-dimensional governing equations in integral form and other details
of solution are given in [197]. The numerical calculations are performed under conditions
that match the planning experiment at NASA Glenn Research Centre. The geometry of the
model vane is based on the scaled factor 2.943 to mach the exit Mach number M = 0.876 and
Reynolds number Re = 2.9 ⋅ 106 computed on real chord 0.206 m. The vane has two plena
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that feed 12 rows of film-cooling holes. A special program is adopted to model this complex
geometry. The basic results are as follows:

• The comparison of the temperature distribution along the vane obtained from conjugate
problem with that calculated by standard two-temperature method shows a significant
difference between those results indicating that conjugate prediction for the minimum
temperature is lower and for the maximum temperature is higher.

• These two temperature distributions differ not only in separate values or at discrete points,
but are entirely different. In particular, according to conjugate data the trailing part of the
blade is much hotter; whereas the forward blade section as it follows from the conjugate
solution is considerable cooler.

• It is evident that such temperature changes are important for stresses analysis and design of
the highly loaded turbine blades.

◾Example 4.19n: System with Radial Channels For Blades Cooling [82]

The other type of cooling system for turbine blades is performed using radial channels with
flowing cold air. Such channels are made through whole blade in radial direction perpendicular
to a blade cross-section. The set of governing equations is similar to that employed in the pre-
vious example. The two-dimensional Navier-Stokes equations are used for the fluid domain as
well as the Laplace equation is applied to compute the heat conduction in solid. In this model,
the Navier- Stokes equations are written in curvilinear coordinates. The finite-volume method
(S. 9.6) is applied for numerical solution of both the Navier-Stokes and Laplace equations.
The turbulence is taken into account by Baldwin-Lomax model (S. 8.3.5). To calculate the
heat fluxes from the blade to cooling air in the radial channels, the heat transfer coefficient is
prescribed.

To conjugate solutions of different domains, the iteration procedure is employed. As usual,
the Dirichlet problem is considered for fluid, and the Neumann problem formulation is used
for heat conduction equation (S. 1.1). It is noted that such approach gives the stable solutions,
but in the case of vice versa, when the heat fluxes are used as a boundary conditions for the
Navier-Stokes equations, and the surface temperature distribution is employed to solve the
Laplace equation, unstable results may be obtained.

Three blade configurations with different size and location of cooling channels at two exit
Mach numbers M = 0.59 and M = .0.95 have been investigated. Distribution of parameters
around blades with different cooling systems are calculated showing that:

• Cooling duct configurations have a little effect on pressure distribution around the blade,
but the temperature distribution strongly depends on size and location of the cooling ducts.

• The blades with small channels and relatively uniform positions show better cooling effects
and smaller mass flow rate. This effect is more pronounced on the pressure blade side.

• On both blade sides, the temperature decreases approaching the minimum close to stagna-
tion point and then rapidly increases to its maximum.

• Mach number gradually increases on the suction side of the blade, but on the pressure side,
Mach number increases almost until the exit and then goes down. For higher Mach number
at the exit (M = 0.95), this behavior is more pronounced and leads to the supersonic values
at the maximum.
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• Accordingly, the gauge pressure on the suction side starting from stagnation point is almost
constant except small area close to the exit where it drops to zero. At the same time, on the
other side in conformity with Mach number behavior, the pressure decreases, approaches
the negative values of gauge pressure at the minimum, and then grows to zero at the exit.

4.2.2.3 Thermal System Protection in Rockets and Nuclear Reactors

◾Example 4.20∗ n: Charring Protection of Rocket and Reentry Vehicle [24]

A charring materials exposed to high temperature is a process of decomposition and loss
of surface material by ablating to absorbing the heat. Such processes are used, for instance,
for internal thermal protection of rocket combustion chambers or for thermal shield of reentry
vehicles. This article studies the charring material process using the three-dimensional model
composed of three zones: the virgin zone, the decomposition zone, and the char zone. These
zones are disposed one over another so that on the top, the chair zone appears along with the
working fluid flows. In the first zone, the material changes are negligible; in the second zone,
the material undergoes chemical and physical changes and energy is absorbed by decompo-
sition; and in the third zone, composed mainly of char, the heat is transferred by conduction
and convection. The changes in the material proceed by two ways: by the free material surface
recession and by its decomposition, when the surface does not move, but the material proper-
ties are changed. During this process due to heating, the material releases pyrolysis gas, which
passes through the solid into fluid that flows along the upper chair zone.

To simplify the mathematical model, two basic assumptions are used: (i) the pyrolysis gas
velocity is approximately orthogonal to receding surface, and (ii) the surface regression is
locally uniform and occurs along the normal direction to the surface. The governing equations
for such simplified model for the fluid consist of conservation laws of mass, momentum, and
energy equations in the vector form

D𝜌
Dt

+ 𝜌∇ ⋅ v = 0, 𝜌
Dv
Dt

= 𝜌g − ∇p + 𝜇∇2v + 𝜇

3
∇(∇ ⋅ v)

𝜌cp
DT
Dt

=
Dp

Dt
+ ∇ ⋅ (𝜆∇T) + 𝜇S

(4.49)

The energy equation for the decomposing charring material and it derivation on the base of
the Arrhenius decomposition law are given in [24] as follows

𝜌cp

(
𝜕T
𝜕t

)

𝜉
= ∇ ⋅ (𝜆∇T) + 𝜌cpv ⋅ ∇T + (Jg − Ĵ)

(
𝜕𝜌

𝜕t

)

x

+ 𝜌gvg ⋅ ∇Jg (4.50)

Ĵ =
𝜌vJv − 𝜌cJc

𝜌v − 𝜌c
, Jc(T) = Jc(Tr) +

T

∫
Tr

cpc(t)dt, Jv(T) = Jv(Tr) +

T

∫
Tr

cpv(t)dt

𝜆 = x𝜆v + (1 − x)𝜆c, cp = xcpv + (1 − x)cpc, x =
𝜌v

𝜌v − 𝜌c

(
1 −

𝜌c

𝜌

)

Here, v is the thermal protection recession velocity vector, S is a dissipation function in energy
equation, J is solid enthalpy, Ĵ is weighted solid enthalpy, Tr is the reference temperature
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for enthalpy estimation, x is a fraction of virgin and subscripts g, c, v denote: pyrolysis gas,
charred, and virgin values, whereas subscripts x and 𝜉 refer to derivatives at constant x in a
fixed frame and at constant 𝜉 in a moving frame.

Comment 4.15 The Arrhenius equation determines the chemical reaction constant k as a func-
tion of the temperature and activating energy E in the form k = A exp(−E∕RT), where A is so
called pre-factor (the experimentally determined constant) and R is gas constant. It is shown
that equation (4.50) follows from the conservation equations (4.49) and two other basic rela-
tions determining the density and its variation inside the decomposing material

𝜌 = Γ(𝜌1 + 𝜌2) + (1 − Γ)𝜌3,

(
𝜕𝜌

𝜕t

)

i

= −A exp(−E∕RT)𝜌oi

(
𝜌i − 𝜌ri

𝜌oi

)mi

i = 1, 2, 3

(4.51)
The first equation (4.51) estimates the density and corresponding derivative with respect to
time (after differentiation) as a combination of three component densities, with i = 1 and i = 2
components of resin, the reinforcing material (i = 3), and weighting coefficient Γ(S. 9. 6).
The second equation (4.51) defines the derivatives of those three components as a function
of temperature according to Arrhenius equation with apt correction, where 𝜌i, 𝜌0i, 𝜌ri are the
density of component i, the original and residual (S.9.6) densities of component i.

In equation (4.50) the term on the left-hand side is sensible energy accumulation, the first
term on the right-hand side is the conduction term, the second term is the energy removed by
the motion of reference frame, the third term is the difference between the energy removed
away by pyrolysis gas and the chemical energy, and the fourth one is the energy removed
by pyrolysis gases passing through the solid. The turbulence is taken into account using the
k − 𝜔 turbulence model (S. 8.4.3.1). The governing equations are solved numerically applying
three-dimensional code Phoenics. This software uses a finite volume element approach and, as
well as other similar programs, like SIMPLE or SIMPLER, can be used for solving the energy
equation of both the fluid and solid by accounting for corresponding boundary and velocity
conditions (S. 9.7). The details of numerical performance are given in [24]. The predicted
results for some problems are compared with known experimental data or with analytical or
numerical solutions:

• Results of simulation of heat transfer in a blast tube with thermal protection are compared
with data obtained by CMA program [8]. The initial temperature is 300 K. The laminar
flow of combustion gas in the tube is at temperature 3600 K. The density and temperature
profiles in the fluid and solid obtained in both studies are in agreement.

• The process in Material Test Motor (MTM) for testing new ablative materials with protec-
tion is simulated for the charring material ES59A with a low-density thermal protection
ESA-ESTEC developed for space rockets [47]. The dimensions of the model cross-section
have been extrapolated from test section in MTM and the curvilinear mesh is used. The
velocity and pressure as well as turbulent viscosity and conductivity show low numerical
errors, which indicates that these are computed correctly. The results indicate that assump-
tions of negligible propellant reduction and constant pressure in chamber during burning
are possible. The temperature profiles obtained in this case are similar to these in the blast
tube with a typical sudden derivative variation arising due to passage through the different
computation domains. The density changes suddenly between charred and virgin zones at
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approximately one half of the solid thickness. The comparison of Material Affected Depths
(MAD) obtained experimentally and predicted by three different approaches shows a rea-
sonable agreement, indicating that after 25.3 seconds burning time, the MAD is about 4 mm.
The mass flow rate and heat fluxes predicted by conjugate heat transfer approach are slightly
underestimated, whereas the MAD predictions are basically overestimated.

• The heat exchange analysis of igniter of solid propellant rocket during the turbulent com-
bustion is performed. Some approximations are employed to simplify the problem model.
The pressure at rocket exit is assumed to be constant, the external thermal protection of the
igniter is considered as nondecomposing, and the igniter switching time is assumed to be
negligible. Two thermal protections are considered: one from aramidic fiber and another by
using silica phenolic with reduction erosion rate. The adiabatic combustion gas temperature
3424 K is uniformly kept everywhere except for the solid parts which are at 300 K. The
velocities in the chamber are slow after a short transient period, and therefore, the buoyancy
convection is taken into account, whereas the radiation is assumed to be negligible. The
MAD and the thermal fields in gas and solid are calculated. The results indicate that the
steel interface temperature is between 350 and 400 K under the initial temperature of 300
K. The temperature profiles in the internal thermal protection of the igniter are calculated
as well as are the profiles of the solid density in the thermal protection.

◾Example 4.21a: Emergency Cooling in Nuclear Reactor [118]

One of the ways of reducing the fuel temperature during emergency situation in nuclear
water reactors consists of using the rewetting process for cooling the hot surface by adjacent
liquid film. The model here reviewed, in contrast to other knowing studies of heat transfer
between a hot surface and liquid moving film, takes into account a transient character of the real
rewetting process. The essential specialty of this approach is that instead of usual assumption
of infinite long surface, in this case, a semi-infinite object should be considered. As a result,
the length of the wet portion covered by film and the surface temperature at the moving film
front become unknown functions of time leading to considerable complicated problem. The
following assumptions are used to simplify the model: (i) the lower plate surface is adiabatic,
(ii) the heat transfer coefficient between the plate and the film is constant and known, (iii) the
film is supplied at constant velocity U, and (iv) the heat losses to surrounding are negligible.

Comment 4.16 This problem is an intrinsic conjugate even at a known heat transfer coefficient
between a plate and film because the rewetting process divides the plate in two parts with time
variable lengths: the wet (covered by film) and dry portions, which should be conjugated.

The one-dimensional conduction equation in the moving frame with the origin at the film
front and initial and boundary conditions for wet and dry plate portions are:

𝜆w
𝜕2T
𝜕x2

− h
Δ
(T − Tf ) = 𝜌wcw

𝜕T
𝜕t

(4.52)

wet ∶ T(x, t = 0) = Ti, T(x = 0, t > 0) = Tw(t),
𝜕T
𝜕x

(x = −Uwt, t > 0) = 0

dry ∶ T(x, t = 0) = Ti, T(x = 0, t > 0) = Tw(t), T(x → ∞, t > 0) = Ti

Here T , Ti, Tf , Tw are temperatures, subscripts i, f , w refer to the initial values, to the film
properties and to the plate characteristics at the moving front, the product Uwt in the last
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condition of the second line is the length of the wet portion at time t, Δ is the plate thickness,
and Uw is the front velocity, which is less than constant supplied velocity U due to the evapo-
ration.

The dimensionless variables

𝜂 = x∕Uwt, z = th∕cw𝜌wΔ, 𝜃 = (T − Tf )∕(Ti − Tf ), 𝜃w = (Tw − Tf )∕(Ti − Tf ) (4.53)

transform system (4.52) with the time-dependent wet portion of length x = −Uwt to the system
with an independent of time length of wet portion, which is equal 𝜂 = −1

Ls
𝜕2𝜃

𝜕𝜂2
+ z𝜂

𝜕𝜃

𝜕𝜂
− z2 𝜕𝜃

𝜕z
− z2𝜃 = 0 Ls =

𝜆wh

𝜌2
wc2

wU2
wΔ

= Bi
Pe2

, (4.54)

𝜃(𝜂, z = 0) = 1, 𝜃(𝜂 = 0, z > 0) = 𝜃w(z),
𝜕𝜃

𝜕𝜂
(𝜂 = −1, z > 0) = 0

where Pe = UwΔ∕𝛼w and Bi = hΔ∕𝜆w. System (4.54), unlike the initial set of equations (4.52),
depends on only one parameter Bi∕Pe2. As shown below, this ratio controls the rate of the
transient cooling process. The greater this ratio, the shorter is a dimensionless time z required to
cool the plate to a given dimensionless temperature 𝜃. Because cooling by a thin film proceeds
in boiling transitional state, it is suggested in [118] to name a ratio Bi∕Pe2 the Leidehfrost
number, Ls, similar to the Leidenfrost point.

For the dry region we use different variables

𝜕2𝜗

𝜕𝜉2
− 𝜕𝜗

𝜕z
= 0, 𝜉 = x

√
h
𝜆Δ

, 𝜗 =
T − Ti

Tf − Ti
𝜗w =

Tw − Ti

Tf − Ti

𝜗(𝜉, z = 0) = 0, 𝜗(𝜉 = 0, z > 0) = 𝜗w(z), 𝜗(𝜉 → ∞, z > 0) = 0

(4.55)

Here, h is the same heat transfer coefficient for wet portion, whereas the dry portion is consid-
ered under zero heat transfer.

As it mentioned above, the plate temperature at the moving film front is unknown. This is
a typical situation when the temperature of the interface of two domains of some conjugate
problem is not known a priori. Therefore, the conjugation procedure requires special numer-
ical or analytic methods as it explained in Section 1.2. In this case, to conjugate solutions of
equations (4.54) and (4.55) for the wet and dry portions, we use series of derivatives similar
to universal function (1.38)

𝜃 =
∞∑

n=0

Gn(𝜂, z)
𝜕n𝜃w

𝜕zn
, 𝜗 =

∞∑

n=0

Hn(𝜂, z)
𝜕n𝜗w

𝜕zn
(4.56)

Substitution of these series into equations (4.54) and (4.55) leads to two infinite systems of
equations with constant initial and boundary conditions

Ls
𝜕2G
𝜕𝜂2

+ 𝜂z
𝜕Gn

𝜕𝜂
− z2 𝜕Gn

𝜕z
− z2Gn − z2Gn−1 = 0,

𝜕2Hn

𝜕𝜉2
−
𝜕Hn

𝜕z
− Hn−1 = 0 (4.57)

G−1 = 0, z = 0, G0 = 1,Gn = 0, 𝜂 = 0, G0 = 1,Gn = 0, 𝜂 = −1,
𝜕Gn

𝜕𝜂
= 0

H−1 = 0, z = 0, Hn = 0, 𝜉 = 0, H0 = 1, Hn = 0, 𝜉 → ∞, Hn = 0
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The exact solutions of equation (4.57) with constant coefficients for functions Hn are given by
the error functions (S. 9.1). The first two functions are

H0(𝜉, z) = 1 − erf
𝜉

2
√

z
, H1(𝜉, z) =

𝜉2

2
erfc

𝜉

2
√

z
− 𝜉
√

z
𝜋

exp

(
−𝜉

2

4z

)
(4.58)

Equations (4.57) for Gn with variable coefficients are solved by approximate method of
moments (S. 9.6, Com. 8.2). The results are obtained in the following form

Gn(𝜂, z) =
(
𝜂

2
+ 𝜂
)

An(z) +
(
𝜂3

3
+ 𝜂
)

Bn(z) + Cn C0 = 1, Cn = 0 for n = 1, 2, 3 …
(4.59)

The functions An and Bn are given by ordinary differential equations, which for n = 0 are

dA0

dz
= A0(z)

(
−28Ls

z2
+ 14

3z
− 1

)
+ B0(z)

16
3

(
Ls
z2

− 1
z

)
+ 28 A0(0) = 0

dB0

dz
= A0(z)10

(
−2Ls

z2
+ 1

3z

)
+ B0(z)

(
20Ls

z2
+ 11

3z
+ 1

)
+ 20 B0(0) = 0

(4.60)

Details of solutions and similar equations for An and Bn(n > 0) may be found in [118].
The temperature fields (4.56) in the wet and dry portions just obtained depend on the plate

temperature Tw at the moving film front, which is still undetermined. To find this temperature,
which is in fact the temperature of the wet/dry plate portions interface, the energy balance
at the moving film front is required. Physically, it is clear that the heat q+(t) conducted from
the hot dry region is slightly absorbed by evaporation and sputtering qw(t) at the moving film
front, whereas the majority of the heat q−(t) is transferred to the wet region. Consequently, the
balance equation is as follows

x = 𝜂 = 0 q+(t) = q−(t) + qw(t, ), qw(t) = hw(Tw − Twet) (4.61)

where hw and Twet are the heat transfer coefficient of evaporation and sputtering at moving film
front and the rewetting temperature.

Comment 4.17 This study simulates the initial transient part of the rewetting process when
the body temperature at the moving film front is higher than rewetting temperature. The devel-
oped model does not describe the second part of the rewetting process with practically constant
rewetting temperature. Therefore, formula (4.61) is applicable until Tw > Twet. As the Lei-
denfrost number increases, the temperature at the film front decreases and finally reaches the
minimum temperature Tmin at time zmin. Therefore, formula (4.61) and the model are applicable
until Tmin > Twet.

Heat fluxes at the moving front consisting in equation (4.61) are calculated according to
Fourier law by computing the derivatives of expressions (4.56) for the temperatures of both
plate parts at 𝜂 = 𝜉 = 0. This procedure gives two relations

q−(t) = −
𝜆(Ti − Tf )

Ut

∞∑

n=0

(
𝜕G
𝜕𝜂

)

𝜂=0

𝜕n𝜃w

𝜕zn
, q+(t) = (Ti − Tf )

√
𝜆h
Δ

∞∑

n=0

(
𝜕H
𝜕𝜂

)

𝜉=0

𝜕n𝜗w

𝜕zn

(4.62)



�

� �

�

Specific Applications of Conjugate Heat Transfer Models 195

Substituting these heat flux components into balance equation (4.61) leads to ordinary differ-
ential equation for the plate temperature at the moving film front

[z + (a1 − a0)
√

z𝜋Ls]
d𝜃w

dz
+ 𝜃w

[

1 + a0

√
𝜋Ls

z
+

hw

h

√
z𝜋Bi

]

−
[

1 +
hw

h

√
z𝜋Bi𝜃wet

]
= 0

(4.63)
and initial condition 𝜃w(z = 0) = 1. Functions a in this equation depend on functions (4.60):
a0(z) = A0(z) − B0(z) and a1(z) = [A1(z) − B1(z)]∕z. If the first term in equation (4.63) is
assumed to be relatively small, the first approximation result for 𝜃w can be easily obtained
solving the algebraic equation (4.63) without the first term

𝜃w =
1 + (hw∕h)

√
z𝜋Bi𝜃wet

1 + a0(z)
√
𝜋Ls∕z + (hw∕h)

√
z𝜋Bi

, 𝜃min = 1

1 + a0(zmin)
√
𝜋Ls∕zmin

(4.64)

Then, taken in account that in the limiting case we have 𝜃w = 𝜃wet = 𝜃min (Com. 4.17), we
substitute in the first expression (4.64) 𝜃min for both 𝜃w and 𝜃wet and get the relation between
the minimal temperature and time zmin required to reach this temperature at the moving film
front.

The analysis of final equations and calculation result in following conclusions:

• The first formula (4.64) indicates that at fixed dimensionless time z and parameters Bi, 𝜃wet,
and hw∕h, the plate temperature changes inversely to square root of Leidenfrost number

• In the case of negligible heat absorbed at the moving front (hw = 0), both relations (4.64)
coincide leading to the same conclusion of Leidenfrost number inversely proportionality for
the moving front temperature and it minimal value.

• From these results, it follows that the Leidenfrost number controls the cooling process so
that, in system with a greater Leidenfrost number, the plate temperature is lesser for the
same dimensionless time z, or vice versa, as it stated above, the greater Leidenfrost numbers,
the shorter is the dimensionless time z required to cool the plate to a given dimensionless
temperature.

• The calculation indicates that the plate temperature at the moving front sharply decreases at
the beginning of the cooling process. Then, the rate of cooling decreases and finally becomes
zero at the point of minimal moving front temperature.

• Correlation formulae for minimal temperature and time for reaching it are found

𝜃min = 0.036 zmin − 0.03 z > 2 zmin = 5 − 6 log(Ls) + 3 log2(Ls) (4.65)

These relations are applicable whether the heat absorbed by evaporation and sputtering is
taken into account or not because, as it follows from comparison of two equations (4.64),
the onset time does not depend, on heat absorbed by evaporation at the moving front (at
least in the first approximation).

An example of second approximation found in [118] by solving the differential equation
(4.63) shows that the differences of both results are small for small and large times and reaches
15% to 20% for middle values of time.

OTHER WORKS: A survey of results obtained for heat transfer from moving continuous
materials was published by Jaluria [179]. Three types of approaches are considered: the prob-
lems with a given heat transfer coefficient, the problems with isothermal or uniform heat flux
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moving surfaces, and the conjugate heat transfer problems. The thermal treatment of wood
is studied numerically and experimentally in [437]. Heat transfer in electronic packages is
investigated in articles [415, 436], and [439] considering flows with discrete heating elements.
In the first two articles, the channels with electronic packages are studied. In the third paper,
an analysis of heated packages mounted in-line on a printed circuit board is presented. The
backward-facing step and cube on the wall cooling by jet are investigated in [191] and [312],
respectively. Heat transfer in flow past sphere-blunted cone with a blowing-in of a gas is con-
sidered in [447]. Unsteady heat transfer around an ablating plate is investigated in [331]. The
cooling process in a nuclear reactor considered in the last example is also investigated in
[317] by numerical analyzing the dissipation fission heat of a nuclear fuel element into its
surrounding. Two recently published works present modern results of the improved cooling
systems of turbine blades. The utilizing a finely dispersed water-in-air mixture producing very
high cooling rates is suggested in [183]. Authors of a second paper [427] developed improved
method of design cooling systems for high performance turbine blades combining the network
fluid analysis with conjugate heat transfer approach.

4.3 Simulation of Industrial Processes

Comment 4.18 It is usually difficult to simulate complicated industrial processes in their
entirety. To simplify such problems, the real computation domain is divided in several sub-
domains with relatively simple processes, which could be easier to model. Solutions obtained
for the subdomains are then coupled using properly conjugate conditions to get the model of
the whole process. Thus, those problems are of conjugate type even if some other interaction
effects, for example, wall conduction influence are not taken into account.

◾Example 4.22∗ n: Twin-Screw Extruder [334]

The actual complicated flow domain as a circular region is divided into two subdomins
named translation and intermeshing regions. The translation domain is modeled similar to sin-
gle screw extruder as a channel with cross section H∕W << 1, where H and W are height
and width of the channel. For steady developing, the creeping type approximation (S.7.4.1) is
used for two-dimensional flow at low Reynolds number. In contrast to the boundary layer
approximation, in this case the inertia terms are neglected, whereas the viscose terms are
important. The momentum conservation equations are considered in y − z cross section, where
z is directed along the screw helix, y is normal to this direction, and x is normal to y − z
cross-section. The temperature dependence of physical properties and dissipation effect are
taken into account because the treatment materials are strongly viscous. Thus, the governing
system for the translating domain is

𝜕p

𝜕x
= 𝜕

𝜕y

(
𝜇
𝜕u
𝜕y

)
,

𝜕p

𝜕z
= 𝜕

𝜕y

(
𝜇
𝜕w
𝜕y

)
,

𝜕p

𝜕y
= 0

𝜌cpw
𝜕T
𝜕z

= 𝜕

𝜕y

(
𝜆
𝜕T
𝜕y

)
+ 𝜇
(
𝜕u
𝜕y

)2

+ 𝜇
(
𝜕w
𝜕y

)2 (4.66)
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The power law nonNewtonian fluid (S.1.9) is used for temperature dependent viscosity

𝜇 = 𝜇0

(
�̇�

�̇�0

)n−1

exp[−m(T − T0)], �̇� =

[(
𝜕u
𝜕y

)2

+
(
𝜕w
𝜕y

)2
]

(4.67)

where �̇� is the strain rate and m is the temperature coefficient. Equations (4.66) for adiabatic
screw under no-slip boundary conditions and specified barrel temperature are solved using
finite difference method (S. 9.6).

The flow in intermeshing domain is also simplified using steady creeping flow equations
for the case of completely filled with fluid screw channel. Because the axial length of most
extruders is much larger than others, the z velocity component, which is directed along the
extruder axis, is taken as a small compared with x and y components. The system of governing
equations consist of three equations

𝜕p

𝜕x
=
𝜕𝜏xx

𝜕x
+
𝜕𝜏xy

𝜕y
,

𝜕p

𝜕y
=
𝜕𝜏xy

𝜕x
+
𝜕𝜏yy

𝜕y
,

𝜕p

𝜕z
=
𝜕𝜏xz

𝜕x
+
𝜕𝜏yz

𝜕y
(4.68)

supplemented by continuity equation. In relations (4.68) 𝜏i,j = 𝜇(ui,j + uj,i) is the stress tensor
(Com. 1.9) presented in Einstein notations (S. 7.1.2.2). The energy equation and expression
for strain rate are similar to equations (4.66) and (4.67), but more complicated due to taken
into account dissipation (S. 1.14) using two-dimensional function S (1.8)

𝜕

𝜕x

(
𝜆
𝜕T
𝜕x

)
+ 𝜕

𝜕y

(
𝜆
𝜕T
𝜕y

)
+ 𝜌cp

(
u
𝜕T
𝜕x

+ v
𝜕T
𝜕y

+ w
𝜕T
𝜕z

)
+ 𝜇S = 0, �̇� = S1∕2 (4.69)

As in the previous domain, the no-slip boundary conditions, assumption of adiabatic screw,
and specified barrel temperature are applied. The first two equations (4.68) are solved by finite
element method, and the last one is solved by Galerkin method (S. 9.6).

It is found numerically by varying the location of the interface of two domains that inter-
meshing domain should occupy two-thirds of the total circular region. To modeling the flow
in screw extruder, two known approaches are used: by the screw moving and by moving the
barrel. The flow in the translating domain is simulated by the barrel approach, and the flow
in the intermeshing domain is modeled by the screw formulation. To change the type of flow
modeling, the profiles of temperature and velocity components are matched at the interface. An
iterative procedure is used. Starting with a guessed profile at the inlet, the iterations are contin-
ued until the profile at the outlet becomes close to the one obtained from the outlet of another
domain. The calculations are performed for a concrete screw with diameter of 23.3 mm, chan-
nel depth 4.77 mm, and barrel diameter 30.84 mm, resulting in the following conclusions:

• The flow temperature in for translating region increases above the barrel temperature, which
is 275∘C. The reason of this is the viscous dissipation. As a result, the heat goes from the
fluid to barrel. The temperature variations slightly affect the velocity field, which is defined
mainly by flow rate. Knowing the velocity and temperature distributions, one may calculate
the stress, strain, and other characteristics.
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• The flow and pressure are screw-symmetric in the intermeshing domain. At the centre of
this region, a significant pressure change is seen. The linear velocity profile at the outlet
yields a nonlinear pressure change along the annulus. The temperature at the root of the
screw is lower than that at the barrel, and the temperature rise in this domain is small in
comparison with that for translating domain. A portion of total flow in the screw channel
goes into the other channel, whereas the remaining flow is retained in the same channel.
The ratio of flow portion leaving the channel to the total flow decreases as the index n in the
power law (4.67) increases, but it increases when the throughput increases or the depth of
screw channel decreases.

• The velocity, temperature, shear, and pressure fields indicate that the region where the both
domain flows interact is relatively small. The pressure patterns show the different regions
with low, high, and uniform pressure. The pressure rise in the intermeshing region is small
as it is compared with that in the translating region, and the same conclusion is valid for
the bulk temperature. At the smaller die openings when the throughputs are smaller also,
the bulk temperature is higher, because in this case the velocity profiles are much steeper,
giving higher viscous dissipation.

◾Example 4.23∗ n: Optical Fiber Coating [433]

In the typical optical fiber coating system, a bare fiber is drown from a furnace where it
riches over 1, 600∘C. After cooling to a proper wetting temperature, fiber moves through a
coating applicator with a coating fluid, laser micrometer to control a diameter, and finally gets
through ultra-violet curing oven to a take-up a spool.

In this study, an axisymmetric two-dimensional process is considered in cylindrical coor-
dinates with the radial distance r measured from a centre of the fiber and the axial distance
z measured upward from a die exit. The coating material is a UV-curable acrylate with vis-
cosity that highly depends on the temperature. This yields the coupled momentum and energy
equations with nonlinear diffusion terms. The system of governing equations is used in the
general variable (S. 7.1.1)

1
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𝜕
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(4.70)
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The additional source term If in the first equation as well as the last term with function (1.8) S
in cylindrical coordinates in energy equation arise due to variable viscosity.
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The first equation (4.70) is valid for continuity equation at f = 1 and If = 0 as indicates the
first line of the second equation and for momentum equation at f = u, f = v and If defined
according to the second and third lines of second equation, respectively. The energy equation
for fiber (the third equation (4.70)) is simplified, taken into account that: (i) the Biot number
Bi = 2hrw∕𝜆w is small due to small fiber diameter 2rw = 125𝜇m, and hence, the radial tem-
perature component can be averaged, (ii) the axial conduction may be neglected because the
energy carried from fiber by convection is much higher than axial conduction, and (iii) the
buoyancy effects are negligible since Gr/Re2 ≪ 1. In this equation 𝜆in is a harmonic thermal
conductivity at the fiber/fluid interface. The last equation (4.70) is the energy equation for
coating fluid.

Comment 4.19 The term harmonic mean is referred to the reciprocal of the arithmetic mean
of the reciprocals of the items. For example, the harmonic mean of 1, 2 and 4 is: a recipro-
cal of arithmetic mean of thee reciprocal numbers 1∕[(1∕1) + (1∕2) + (1∕4)]∕3 = 7∕12 or in
general 1∕[(1∕x1) + (1∕x2) + (1∕x3) + … ]∕n. This is one of the average types that is used in
conformity with physical situation. As an example, consider a harmonic mean when the aver-
aging of observation data is performed under mitigating the influence of large and increasing
the effect of small values.

The boundary conditions are: (i) a shear free and adiabatic conditions at the top surface of
the pressurized applicator, (ii) at the fiber surface no slip radial condition, a given axial speed,
and conjugate thermal conditions, (iii) no slip condition at all walls, isothermal condition at
die wall, an adiabatic condition or a given heat transfer coefficient at the applicator wall, (iv)
uniform speed and temperature 298.15 K of coating material at the feed inlet, and (v) at the die
exit, a fully developed condition for the flow and thermal fields and the specified meniscus.
Details of free surface modeling are given in [434].

Comment 4.20 The meniscus is formed across the interface of two fluids due to surface ten-
sion. It creation is described by Young-Laplace equation that relates the pressure difference
across the fluids interface to the curvature of the surface or wall.

The new variables 𝜉 = (r − ri)∕(ro − ri) and 𝜂 = z∕L, where ri and ro are inner and outer
radii, are used to solve governing equations for velocity, pressure, and temperature. Highly
clustered grids are employed in the regions with large velocity and temperature gradients.
The second-order upwind scheme and an algorithm like SIMPLE (S. 9.7) are applied. For
validation, the final coating thicknesses at variable fiber speed in laminar flow in a circular
duct are calculated to compare with known data.

The basic results are as follows:

• The moving fiber creates the thermal field in which the cooler fluid removes the energy
from the fiber. Nevertheless, the fiber temperature increases with speed. The reason of this
is the extremely high viscous dissipation, which occurs with the growing fiber speed. As the
moving fiber first meets the fluid, it loses energy to the cooler fluid due to the high Nusselt
numbers. As the fluid heats up, the temperature gradient becomes smaller. When the speed
increases, the Nusselt number becomes negative, and the fluid heats the fiber. It is shown
that the smallest gap between die wall and fiber is responsible for the rise of Nusselt number
and the fall of the fiber temperature near the die exit.
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• The temperature gradient at the fiber is very sharp and temperature increase is the highest in
the die. This very large temperature at the high speed should be avoided since the polymer
may start to cross-link and degrade. As the fiber moves away from the dynamic contact
point to the die exit, the fiber temperature decreases due to removal heat at the fiber surface.
Then, after the speed increases, the temperature grows, and the Nusselt number reaches an
asymptotic value.

• The die exit diameter is one of the critical variables determining the quality of the coating
process. The numerical data show that the coating thickness increases linearly with the die
exit diameter at the different fixed speed values. The ratio of thermal conductivities of the
fiber and coating fluid affect the process significantly. At the fixed material properties, the
increase in coating fluid conductivity leads to an increasing in coating thickness. This effect
becomes unnoticeable when the fiber speed grows. If the fluid thermal conductivity is high,
the Nusselt number variation is strong as well. This and increasing the coating thickness
with the growing fluid conductivity is due to enhanced thermal diffusion in coating fluid.

• The effect of entrance temperature is high. As entrance temperature increases, the coating
thickness decreases linearly. The fiber speed affects this dependence only slightly. At the
lower entrance temperature, the viscous heating becomes a major factor. The condition on
the outer wall of applicator does not significantly affect the resulting coating thickness so
that practically, the conditions at the applicator wall can be flexible.

◾Example 4.24∗ n: Continuous Wires Casting [45]

The wires casting production directly from the melt has special benefits: (i) the near-net
shape formation of metallic materials in which plastic deformation or too great reduction in
cross-section area is unfeasible, accompanied by reduction of energy, time, and labour, (ii) the
development of new functional properties caused by structural modification, such as the forma-
tion of non-equilibrium phases, (iii) an increased control over the process through automation,
(iv) an improvement of mechanical properties caused by decreased segregation and the refine-
ment of grain size.

The simulated wire casting system involves a casting channel formed by a static component
and a rotating copper wheel. Liquid metal is fed into the cavity at the top of a shoe and drawn
into a gap of decreasing cross-section as the wheel rotates. To simplify the modeling, the
following assumptions are adapted: (i) steady state is achieved, (ii) fluid motion within the
melt is Newtonian, incompressible and laminar, (iii) equilibrium solidification with negligible
undercooling applies, and (iv) an instantaneous and complete filling of channel cavity.

Conjugate heat transfer is modeled through coupling of solid/fluid and solid/solid regions.
Mixed convection/radiation boundary conditions are assigned to the external walls. The Al-
4.5% Cu alloy is used as a model material, which detailed properties and other characteristics
are presented in [45]. The mathematical model consists of the equation governing the phase
changing process, and the energy equation for solid region

𝜕(𝜌J)
𝜕t

+ 𝜕(𝜌ΔI)
𝜕t

+
𝜕(𝜌uiJ)
𝜕xi

= 𝜕(𝜆∇T)
𝜕xi

+ Q,
𝜕(𝜌J)
𝜕t

+
𝜕(ui𝜌J)
𝜕xi

= 𝜕

xi

(
𝜆
𝜕T
xi

)
+ qv (4.71)

Here, J is enthalpy,ΔI is the latent heat content that during cooling varies between zero,∇ is the
Hamilton operator (S. 7.1.2.1), Q and qv are heat sources, xi and ui are coordinates and velocity
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components. The second term on the left-hand side of the second equation represents heat
transfer due to rotational or translational motion of solid. The heat flux through the external
wall is defined as a sum of convection and radiation parts qa = ha(Ta − Tw) + 𝜀a𝜎(Ta

4 − Tw
4),

where 𝜀 is emissivity and index a means ambience.
The phase change in the melt is modeled using software FLUENT based on the

enthalpy-porosity approach in which the mushy zone is represented by liquid fraction defined
through liquidus Tl and solidus Ts temperatures as follows:

fi =
ΔI
Λ

=
⎧
⎪
⎨
⎪
⎩

1(
T − Ts

)
∕(Tl − Ts)
0

T > Tl
Ts ≤ T ≤ Tl

T < Ts

(4.72)

where, Λ is the latent heat of solidification and ΔI is calculated applying the lever rule.

Comment 4.21 The enthalpy method is an approach applicable to problem with phase
changes, when it is necessary to take into account the latent heat, like, for example, in process
of solidification. The adventure of such approach is that in this case, the energy balance is
satisfied at the phase front explicitly tracking the required interface position.

Comment 4.22 Liquidus is the temperature above which a substance is as liquid and solidus
specifies the temperature below which a substance is solid.

Comment 4.23 The lever rule or binary phase diagram is used to determine the percent weight
of liquid and solid phases in binary composition at the temperature that is between the liquidus
and solidus.

The solution of three-dimensional system of equations (4.71) is performed using FLUENT
in several steps: (i) the temperature and fluid fraction are obtained by iterations applying aux-
iliary relation ΔIn+1 = ΔIn + 0.7cp[T − (Tl − Ts)Tl − Ts], where 0.7 is the underrelaxaction
factor (Com. 4.12), (ii) to satisfy the continuity equation when the velocity components ui are
computed, the special correction equation is derived (the difficulties arising in this process are
discussed in S. 9.7.1.1), (iii) heat flux through an external wall and heat transfer to the wall from
the solid fraction are estimated as a sum of convection and radiation heat similar to formula
for qa given above, (iv) the thickness of air gap arising between the melt and rotating drum is
estimated applying simple ratio d = 𝜆∕h. These iterations are continued until the convergence
criteria is met. Other details of computing procedure are given in the original article.

The basic results and conclusions are as follows:

• Three parameters are most influential on temperature, liquid fraction and velocity profiles
in the casting channel: the initial inlet melt velocity, the melt temperature at the inlet, and
the rotation speed of the wheel.

• The cast material must be sufficiently solidified on reaching the exit of the casting channel
because at too low temperature near the exit, the wire will fail due to a high deformation
resistance.
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• The relationship between the wheel (drum) speed and melt depth is the main factor determin-
ing strip thickness in metal melt spinning. The maximum achievable mass flow rate at the
inlet is 23 g s−1 (corresponding to a line speed of 0.78 m s−1). The inlet melt velocities below
this value cause excessive solidification throughout the channel so that the corresponding
wheel speed is fixed at 9.85 m s−1.

• The only thermal contact between shoe and the wheel should be through the melt. Simul-
taneous run with the thermal contact between the shoe and wheel caused complete solidifi-
cation of the melt within the channel.

• The liquid fraction profiles versus distance and in normal direction to melt flow as well
as temperature profiles parallel to flow show distribution of heat transfer characteristics
throughout the casting assembly.

• The velocity profiles within the melt as it travels through the casting channel give the under-
standing of the effects of solidification, casting geometry, and wheel speed on the behavior
of the melt within the channel.

• The model here presented is only an approximate because it does not take into account
the non-equilibrium solidification effects. The model also assumes that solidified melt is a
very viscous fluid and neglect the effects of velocity and ‘turbulence’ on the melt due to
solidification. Nevertheless, the heat transfer model is reasonably accurate.

OTHER WORKS: Several studies similar to what is considered in Example 4.22 for
twin-screw extruder were published by Jaluria with co-authors during the last decade of last
century. In papers [70, 196, 232], and [233], the processes in different types of extruders
and flows of melts through dies are investigated numerically. Extrusion flows at special slip
boundary conditions on the wall is investigated in [217]. In the recent paper [309], the fluid
flow and heat transfer of advanced U-M/Al and U-M/Mg fuels of research reactor fuels are
numerically investigated. A three-dimensional numerical study of the thermal behavior of
the building envelope is presented in [30], and the simulation of the process in solar energy
storage system is analyzed in [127], considering flow in channels with special phase-change
material. The erosion (often associated with heat transfer in industrial processes) in the hearth
of a blast furnace is studied in [62].

4.4 Technology Processes

4.4.1 Heat and Mass Transfer in Multiphase Processes

Problems of modeling multiphase processes are challenges associated with complex proce-
dures of taking into account moving boundaries, the exchange of the thermal energy between
phases, their different thermophysical properties, and latent heat of melting or solidification.
Modeling processes of this type have practical interest in metallurgy, purification of metals,
crystal grows, material production, etc.

◾Example 4.25a: Model of Wetted-Wall Absorber [88]

The model consists of a tube with gas flow and the tubular walls filled by flowing liquid.
Such a model simulates many chemical, metallurgical, and other systems involving absorp-
tion process. To simplify the problem, it is assumed that: (i) the gas flow rate is high, so that
influence of solute on the flow and mass transfer is negligible, (ii) the velocity profiles in both
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phases are fully developed, and (iii) the liquid film thickness is small versus the tube radius.
Under those assumptions, the problem is governed by two diffusion equations written by lower
letters and capitals for liquid and gas, respectively

u
𝜕c
𝜕z

= DL
𝜕2c
𝜕r2

+ k(c − ceq), R ≤ r ≤ Re, U
𝜕C
𝜕z

= DG
1
r
𝜕

𝜕r

(
r
𝜕c
𝜕r

)
, 0 ≤ r ≤ R (4.73)

Here, c and C are concentrations, R and Re are internal and external radii, k is the first order
reaction constant, and subscripts mean: L-liquid, G-gas, and eq- equilibrium value. For the case
of Δ∕Re << 1 (Δ is the thickness of tabular wall), the velocities containing in equations (4.73)
are obtained from Navier-Stokes equation and presented in the form

u = a − 𝜅
𝜇G

𝜇L

yRe

2
− uc

y2

R2
e

, U = a − 𝜅𝜙G
yRe

2
− Uc

y2

R2
e

uc =
R2

e

4

[
𝜙L + 𝜅

(2 − 𝜅)

(
𝜙L − 𝜙G

𝜇G

𝜇L

)]
, Uc =

𝜙LR2
e

4
𝜅 = 1 − Δ

Re
(4.74)

𝜙 = 1
𝜇

(
𝜌g −

Δp

L

)
a =

R2
e

4

[
𝜙L

(
1 − 𝜅2) − 𝜅(𝜅 − 1)(𝜅 − 3)

(2 − 𝜅)

(
𝜙L −

𝜇G𝜙G

𝜇L

)]

where y = r − R is the transverse coordinate with origin at gas-liquid interface. For
inlet are prescribed: concentrations c(y, 0) = c0, C(y, 0) = C0, no fluxes condi-
tions (𝜕c∕𝜕y)y=Δ = (𝜕C∕𝜕y)y=0 = 0 and conjugate conditions C(0.z) = Keqc(0, z) and
DG(𝜕C∕𝜕y)y=0 = DL(𝜕c∕𝜕y)y=0 (Keq is equilibrium constant).

A Green’s functions (S. 9.4) associated with equation (4.73) are:

GL(𝜂L, 𝜁L − 𝜁 ′L, 𝜂
′
L) =

∞∑

n=1

YnL(𝜂′L)YnL(𝜂L)
‖YnL‖2

exp[−𝛾2
nL(𝜁L − 𝜁 ′L)]

GG(𝜂G, 𝜁G − 𝜁 ′G, 𝜂
′
G) =

∞∑

n=1

YnG(𝜂′G)YnG(𝜂G)
‖YnG‖2

exp[−𝛾2
nG(𝜁G − 𝜁 ′G)] (4.75)

𝜂L =
y

Δ
, 𝜁L = z

PeLΔ
, 𝜂G =

R + y

R
, 𝜁G = z

RPeG
, PeL =

ucΔ
DL

, PeG =
RUc

DG

Comment 4.24 A sign ‖ ‖ is used for norm, which is a quantity employed to perform
expressions to standard structure (for normalization). In this case, the norm ‖YnG‖2 is used
to transform the Green’s functions to the orthogonal expressions (S. 9.2.3).

The solution of corresponding Sturm-Liouville equations (S. 9.2.3) presented in [87]
shows that eigenfunctions can be expressed in terms of the confluent hypergeometric function
F(A,B,X) (S. 3.1.1.2) with constants A,B, dn and eigenvalues 𝛾n given in [88]

YnL = exp(−X∕2)[dn F(A0,B0,X) + X1∕2F(A1,B1,X)]

YnG = exp(−𝛾nG𝜂
2
G∕2) F[(2 − 𝛾nGB̂)∕4, 1, 𝛾nG𝜂

2
G] X = 𝛾nL(𝜂L − b∕2)2 (4.76)

B̂ =
R2

e

4Uc
[𝜙L + 𝜅2(𝜙G − 𝜙L) + 𝜙L(1 − 𝜅2)] − a

Uc
b = −

𝜅R2
e𝜙L

2uc

𝜇G

𝜇L
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Applying these results yields solutions of equations (4.73) for concentrations

c(𝜂L, 𝜁L) = c0

1

∫
0

w(𝜂′)G(𝜂, 𝜁 , 𝜂′)d𝜂′ +

𝜁

∫
0

1

∫
0

cw(𝜁 ′)w(𝜂′)
𝜕

𝜕𝜁 ′
G(𝜂, 𝜁 − 𝜁 ′, 𝜂′)d𝜂′d𝜁 ′−

𝜎2

𝜁

∫
0

1

∫
0

cw(𝜁 ′)G(𝜂, 𝜁 − 𝜁 ′, 𝜂′)d𝜂′d𝜁 ′ + 𝜎2ceq

𝜁

∫
0

1

∫
0

G(𝜂, 𝜁 − 𝜁 ′, 𝜂′)d𝜂′d𝜁 ′ (4.77)

C(𝜂G, 𝜁G) = C0

1

∫
0

(B̂ − 𝜂′2)𝜂′G(𝜂, 𝜁 , 𝜂′)d𝜂′ +

𝜁

∫
0

1

∫
0

Cw(𝜁 ′)(B̂−𝜂′2)
𝜕

𝜕𝜁 ′
G(𝜂, 𝜁 − 𝜁 ′, 𝜂′)d𝜂′d𝜁 ′

Here 𝜎 = (𝜅R2
e∕DL)1∕2. These final equations contain unknown concentrations on the inter-

face cw and Cw. The one of conjugate conditions is used to express Cw via cw. The unknown
concentration cw is found from second conjugate condition employing an integral equation,
which is solved by Laplace transform (S. 9.3.2) resulting in expression

cw(𝜁L) =
∞∑

k=1

p(Zk)
q′(Zk)

exp(Zk𝜁L), Zk < 0 (4.78)

Detailed calculation and polynomials p(Zk) and q(Zk) are given in [88]. Numerical data are
obtained for carbon dioxide absorption in water leading to following conclusions:

• Interfacial concentration cw is determined by three parameters: 𝜎, 𝜔 = 𝜁G∕𝜁L,
𝜀 = DLkRe∕DGΔ, the initial concentrations, and equilibrium constant Keq. The solu-
tion for the case of absorption without chemical reaction is obtained by setting 𝜀 = 0. If the
parameter 𝜀 is small, the gas phase resistance is negligible, and for large 𝜀 the gas phase
basically determines the system behavior.

• Ten eigenvalues for each phase are calculated and listed. It is found that further eigenval-
ues did not affect the results. Series (4.78) rapidly converges so that only three or four
terms are needed to get satisfactory accuracy. However, near 𝜁 = 0 this series as well as the
eigenvalues expansions converge slowly as it usually does for Graetz series (Com. 3.14).

• Variations of mass fluxes of both phases as functions of Sherwood numbers

ShL = 1
cw − cav

𝜕c
𝜕𝜂L

(0) ShG = 1
Cw − Cav

𝜕C
𝜕𝜂G

(1) (4.79)

show that the inlet liquid concentration does not affect the gas phase Sherwood number,
but the liquid phase Sherwood number shows peculiar behavior. For values near zero, it
decreases sharply to a minimum for 𝜁L < 0.01 and then increases to an asymptotic value
of 2.89 for 𝜁L > 1. For the case of larger values of the inlet liquid concentration, the liquid
phase Sherwood number decreases monotonically to its asymptotic value, which is almost
independent of the Reynolds number ReL.

• At fixed chemical reaction constant k, the dimensionless liquid phase concentration rises
sharply along the channel from zero to a maximum value that depends on constant k. As the
reaction proceeds, the liquid concentration decreases.
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◾Example 4.26∗ n: Two Three-Dimensional Models of Concrete Structure [85, 387]

The solid skeleton of the hardened cement paste is porous hygroscopic material including
various chemical compounds and pores filled with liquid and vapor water and dry air. The
articles in question consider the heat and moisture transfer in concrete exposed to high tem-
perature of fire. On the condition of high temperature, heat changes the chemical compounds
and fluid content resulting in changes in physical structure that affects the mechanical and other
properties of the concrete. Both works used three-dimensional models taken into account the
basic phenomena, but additional effects of capillary pressure and adsorbed water are studied
in [85].

Three basic assumptions are used: (i) the equilibrium exists between phases, (ii) vapor and
air behave as ideal gases, and (iii) the temperature dependence of mass fluxes is negligible.
The conservation of mass and energy equations for dry air and moisture are

𝜕𝜀G�̃�A

𝜕t
= ∇ ⋅ JA,

𝜕𝜀G�̃�V

𝜕t
+
𝜕𝜀FW𝜌L

𝜕t
−
𝜕𝜀D𝜌L

𝜕t
= −∇ ⋅ (JV + JFW )

𝜌c
𝜕T
𝜕t

− ΛE
𝜕𝜀FW𝜌L

𝜕t
+ (ΛE + ΛD)

𝜕𝜀D𝜌L

𝜕t
= ∇ ⋅ (𝜆∇T) + ΛE∇ ⋅ JFW − (𝜌cv) ⋅ ∇T

(4.80)

Here 𝜀 and J are volume fraction and mass flux of phase, subscripts A, D, G, L, S, V and FW
denote: dry air, chemically bound water released by dehydration, gas, liquid, solid, vapor, and
free water (combined liquid and adsorbed), ΛE and ΛD are specific heat of evaporation and
dehydration. The mass fluxes of dry air, vapor, and free water are defined by Darcy’s and Fick’s
laws (S. 7.1.1) ignoring the diffusion of the surface adsorbed water

JA = 𝜀G�̃�A[vG − DAV∇(�̃�A∕�̃�G)], JV = 𝜀G�̃�A[vG − DVA∇(�̃�F∕�̃�G)], JFW = 𝜀FW𝜌LvG

vG = (KKG∕𝜇G)∇pG, vL = (KKL∕𝜇L)∇pG, 𝜀FW = (𝜀CM∕𝜌CM)f [(pV∕pST ), T]
(4.81)

Comment 4.25 Darcy’s law describes the flow of fluid through a porous medium. It states
that the flow flux is proportional to the permeability coefficient k and pressure gradient q =
−kΔp∕𝜇. The Darcy number is defined as Da = k∕L2.

In relations (4.81), DAV ≈ DVA are diffusion coefficients of dry air and water vapor, �̃� is mass
of a phase per unit volume, K, KG and KL are the permeability of dry concrete and the relative
permeabilities of the gas and the liquid. The pressure of air pA and of vapor pV are determined
using the state equation of ideal gas p = R�̃�T (R is the gas constant) as well as the pressure in a
gas and water pL ≈ pG = pA + pV . The volume fraction of free water 𝜀FW is determined from
the equation of sorption isotherms that relates the ratio of free water content to the cement
content 𝜀CM∕𝜌CM to the temperature and relative humidity pV∕pST , where pST is the saturation
pressure of the vapor. For temperatures above the critical point of water (374.14∘C), the free
water content is zero and the gas volume fraction can be defined from relation 𝜙 = 𝜀FW + 𝜀G,
where 𝜙 is the concrete porosity.

Comment 4.26 Desorption (opposite of sorption) is a phenomenon whereby a substance (usu-
ally water) is released from or through surface. Desorption (sorption) isotherm gives in a
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graphical or analytical form the equilibrium relation between water content in a material and
relative humidity (the amount of water vapor in air) at constant temperature.

Using basic relation (4.80), the system of differential equations is formulated which consists
of ten equations in [387] and an additional six equations in [85]. The boundary conditions that
are the same in both models include the following expressions:

𝜕T
𝜕n

=
hGR

𝜆
(T∞ − T), J ⋅ n = 𝛾(�̃�V − �̃�V∞),

𝜕�̃�V

𝜕n
+

KVThGR

KVV𝜆
(T∞ − T) + 𝛾

KVV
(�̃�V∞ − �̃�V )

(4.82)
where hGR and 𝛾 are coefficients of heat transfer and of vapor mass transfer on boundary. The
first and the second equations are the energy and gaseous mixture mass balances, and the third
expression determines the vapor content gradient on the boundary.

The following basic results are formulated:

• In both studies a steep drying front is observed. The vapor and liquid water content of the
phase mixture changes from high and low on the hot side to low and high on the cold side.
The water content increases ahead of drying front due to the recondensation in the cooler
zone, which is named the “moisture clog zone”. The maximum of peaks in a gas pressure and
vapor content obtained in the modified model [85] are lower than for the initial model [387].
This may be significant in analyzing potential spalling, because the internal pore pressure
is considered as cause of it. The modified model also predicts more extensive moisture clog
zones in which the liquid pressure gradient drives water away from the face exposed to
fire. These results show that ignoring the adsorbed water flux can significantly affect the
predicted values of free water flux, vapor content, and gas pressure.

• The values of liquid pressure predicted by two models are considerably different. The cap-
illary pressure is zero according the initial model, but it increases rapidly with a decrease in
relative humidity according to modified model. However, the overall results given by both
models are very similar, showing that the capillary pressure has a little or no effect on the
transport in concrete under intense heating.

• If both capillary pressure and adsorbed water are taken into account as in [85], the gas
pressure and vapor content are higher than shown by the initial or by the modified model,
including only capillary pressure. In this case, the results of modified model are physically
realistic in contrast to the unrealistic behavior of capillary pressure when the adsorbed water
is ignored.

◾Example 4.27∗ n: Simulation of the Crystal Growth Process [285]

The Czochralski process is used for growing semiconductios (e.g., silicon) crystals. The
process is performed in an apparatus with cylindrical crucible heated in a furnace above the
melting temperature of the melt. The crystal and the crucible are rotated in opposite directions.
The resulting crystal is vertically pulled from the crucible.

Since the temperature in this process is high, the radiative heat transfer in addition to con-
duction and convection should be taken into account. The three-dimensional heat transfer
model is studied. Due to axial symmetry, only the cross-section containing schematic liquid,
solid, and filling gas areas is considered. In addition to the usual assumptions, the following
are used: (i) the diameter of the crystal pulled from the crucible is constant, (ii) the stud-
ied region with liquid, solid and gas is an enclosure, (iii) the effect of rotation is negligible,
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and (iv) the crystal and liquid have the same radiative properties. The steady state momen-
tum with buoyancy 𝜌(v ⋅ ∇)v = −∇p + 𝜇∇2v + 𝜌g𝛽(T − T∞), the energy with radiative term
∇T(r) = (1∕𝛼)v ⋅ ∇ + (1∕𝜆)q(r), and continuity ∇ ⋅ v = 0 equations governed the problem
[286]. The radiative heat source is calculated considering the liquid and solid phases as semi-
transparent medium with constant absorption coefficients kL and kS, whereas the surrounding
gas is considered as transparent medium with k = 0. The radiative source qr is defined as
a radiant energy absorbed by infinitesimal surface within infinitesimal time. In 3-D case,
this amount of energy is determined by the system of complex coupled integral equations
[286, 418]

qr(p) + 𝜀(p)eb[T(p)] = 𝜀(p)∫
S

{
eb [T (r)] + 1 − 𝜀(r)

𝜀(r)
qr(r)
}

𝛕(r,p)K(r,p)dS(r)

+𝜀(p)∫
S

⎧
⎪
⎨
⎪
⎩
∫
Lrp

k
(
r′
)

eb[Tm(r′)𝛕(r′,p)]dL(r′)
⎫
⎪
⎬
⎪
⎭

K(r . p)dS(r)

qr
v(p) + 4k(p)eb[Tm(p)] = k(p)∫

S

{
eb [T (r)] + 1 − 𝜀(r)

𝜀(r)
qr(r)
}
𝛕(r,p)K(r,p)dS(r)

+k(p)∫
S

⎧
⎪
⎨
⎪
⎩
∫
Lrp

k
(
r′
)

eb[Tm(r′)𝛕(r′,p)]dL(r′)
⎫
⎪
⎬
⎪
⎭

Kr(r′ ⋅p)dS(r) (4.83)

Here, r and p refer to current and observed points, whereas point r′ is located on the line Lrp
connecting points r and p, the integration is performed over the surface of the computational
domain S and along the line Lrp., 𝜀 is the emissivity, eb(T) and eb(Tm) are the black-body emis-
sivities of the computational domain surface and of the semitransparent medium, respectively.
The kernel functions and transmissivity are

K(r,p) =
cos𝜙r cos𝜙p

𝜋|r − p|2
, Kr(r,p) =

cos𝜙p

𝜋|r − p|2
𝛕(r,p) = exp

⎡
⎢
⎢
⎢
⎣

−∫
Lrp

k
(
r′
)

dLrp(r′)
⎤
⎥
⎥
⎥
⎦

(4.84)

Derivation of these equations and other details one may find in [418].

The usual boundary conditions should be satisfied on the external surfaces of studied enclo-
sure. The conjugate condition on the phase-change front involves continuity of the melting
temperature, a jump in heat flux, and no-slip condition for a melt velocity

TL(r) = TS(r) = Tph, −𝜆L
𝜕TL

𝜕nph
+ 𝜆S

𝜕TS

𝜕nph
= −Λph𝜌S(v ⋅ nph), vL = vx (4.85)
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On the solid-gas and liquid-gas interfaces, the equalities of temperatures and heat fluxes includ-
ing the radiative component qr should be satisfied:

TL(r) = TG(r), 𝜆L
𝜕TL

𝜕n
= 𝜆G

𝜕TG

𝜕n
+ qrL, TS(r) = TG(r), 𝜆S

𝜕TS

𝜕n
= 𝜆G

𝜕TG

𝜕n
+ qrS

(4.86)
In conditions (4.85) and (4.86), Tph,nph and Λph are the phase-change temperature, vector
normal to phase-change surface, and the latent heat.

Numerical solution is performed using commercial package FLUENT, which is based on
finite-volume approach (S. 9.6) and software based on boundary element method (BEM) (S.
9.6). The FLUENT is applied for determining velocity, pressure, and temperature fields under
known distribution of the radiative heat source. The domain is divided into liquid, solid, and gas
subdomains that are numerically analyzed separately. To calculate the radiative heat fluxes and
source, the BEM code is used. The iterative procedure is employed to couple both numerical
results. More details are given in [418]. As an example, the velocity and temperature profiles in
liquid phase and radiative heat source in a typical 3-D Czochralski process are given in [286].

4.4.2 Drying and Food Processing

◾Example 4.28a/n: Drying of a Pulled Continuous Material [99, 150]

The present work is concerned with the conjugate problem of heat and mass exchange
between a heat transfer agent (air) and a continuous material pulled through it. The model
is schematically presented in Figure 1.12. In the flow domain, the problem is governed by
boundary layer equations for velocity and temperature (steady-state equations (1.9)–(1.11) for
zero pressure gradient and without dissipation) and additional equation for vapor density 𝜌10
similar to the energy equation (1.11)

u
𝜕𝜌10

𝜕x
+ v

𝜕𝜌10

𝜕y
= D

𝜕2𝜌10

𝜕y2
(4.87)

This system of boundary layer equations is solved under following boundary conditions

y = Δ∕2, u = Ux, v = Uy = − D
1 − 𝜌10,w

𝜕𝜌10

𝜕y

||||w
, 𝜌10 = 𝜌10,w, T = Tw

y → ∞, u = v → 0, 𝜌10 → 𝜌10,∞, T → T∞

(4.88)

The boundary layer equations are used for steady-state regime because the problem is
considered as a quasi-steady for the coolant (S. 3.1.1.5). The heat and mass transfer in
capillary-porous body is defined by equations of Luikov theory [244, 245]

cM𝜌3
𝜕T
𝜕t

= 𝜕

𝜕x

(
𝜆M

𝜕T
𝜕x

)
+ 𝜕

𝜕y

(
𝜆M

𝜕T
𝜕y

)
+ 𝜌3𝜀Λ

𝜕M
𝜕t

𝜌3
𝜕M
𝜕t

= 𝜕

𝜕x

[
𝜌3𝛼M

(
𝜕M
𝜕x

+ 𝛾 𝜕T
𝜕x

)]
+ 𝜕

𝜕y

[
𝜌3𝛼M

(
𝜕M
𝜕y

+ 𝛾 𝜕T
𝜕y

)] (4.89)

In equations (4.87)–(4.89), the subscripts 0, 1, 2, 3 refer to air, vapor, liquid, and dry material,
respectively, so that subscript 10 means “vapor in the air”, D is a diffusion coefficient, subscript
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M denotes the moist material, and hence, cM , 𝜆M , and 𝛼M are the specific heat, the thermal
conductivity and diffusivity coefficients of the moist substance, Ux is the velocity of the pulled
material, Uy is the transverse velocity on the surface, 𝛾 is the thermal diffusion coefficient, 𝜀
is a phase change coefficient defining the part of the vapor in the moisture content M, and Λ
is a heat of evaporation.

The first and second equations (4.89) present the balance of heat and mass (moisture) trans-
fer, respectively, for porous body. The left-hand side of these equations defines the quantity of
heat or mass of the body element that changes during the unit of time. This change occurs due
to conduction in x and y direction of heat introduced by two first terms in the right-hand side
of the first equation and due to mass diffusion represented by the terms containing the deriva-
tives 𝜕M∕𝜕x and 𝜕M∕𝜕y in the right-hand part of the second equation. The additional terms
determine: the heat associated with evaporation caused by changing the moisture content (the
last term in the first equation) and the mass change induced by thermal diffusion (two terms
with derivatives 𝜕T∕𝜕x and 𝜕T∕𝜕y in the second equation). Estimation of the magnitude of
terms in equations (4.89) shows that the terms determining the heat and mass transfer in the
x direction are relatively small and these may be neglected. Then, the previous equations and
the usual initial and symmetry conditions take the form

cM𝜌3
𝜕T
𝜕t

= 𝜕

𝜕y

(
𝜆M

𝜕T
𝜕y

)
+ 𝜌3𝜀Λ

𝜕M
𝜕t
, 𝜌3

𝜕M
𝜕t

= 𝜕

𝜕y

[
𝜌3𝛼M

(
𝜕M
𝜕y

+ 𝛾 𝜕T
𝜕y

)]

t = 0, T = T(0), M = M(0), y = 0, 𝜕T∕𝜕y = 0, 𝜕M∕𝜕y = 0

(4.90)

The conjugate conditions consist of four equations. Three of these are equalities of tempera-
tures, vapor densities and mass fluxes I(x) defined on the interface from coolant (+) and body
(−) sides. The forth condition is the balance on the interface: the difference between heats
incoming from coolant and absorbing by material (two terms on the left-hand side) is used for
evaporation (the right-hand side part)

T+
w (x) = T−

w (x), 𝜌+10,w(x) = 𝜌−10,w(x), I+w (x) = I−w (x), −q+w + q−w = (1 − 𝜀w)I−wΛ (4.91)

The temperatures T+
w and T−

w are determined from the boundary layer energy equation (1.11)
and system (4.90), respectively. The vapor density at the material surface from coolant side
𝜌+1,w is defined from equation for vapor concentration at the surface 𝜌+10,w = 𝜌+1,w∕(𝜌

+
1,w + 𝜌0,w)

and two relations 𝜌0,w = (p∞ − p+1,w)∕R0Tw and p+1,w = 𝜌+1,wR1Tw gained by considering the air
and vapor as ideal gases. Since these three equations consist of three unknown 𝜌0,w, 𝜌+1,w, and
p+1,w, simple algebra yields a relation for desired density

𝜌+1,w =
p∞

R0Tw[(1∕𝜌+10,w) − 1 + R1∕R0]
,

1
𝜙(Tw,Mw)

=
pst(Tw)

p∞

[
1 +

R0

R1

(
1

𝜌10,w
− 1

)]

(4.92)
To determine the vapor density at the surface from body side, the equation of desorption
isotherm (Com. 4.26) 𝜌−1,w∕𝜌st(Tw) = 𝜙(Tw,Mw) should be used, where 𝜌st(Tw) is the saturated
vapor density. Substituting 𝜌+1,w from the first equation (4.92) and 𝜌−1,w from the equation of
desorption isotherm gives the conjugate condition in the form of the second expression (4.92)
that relates the temperature Tw and moisture content Mw at the material surface to relative
density of vapor at the surface 𝜌10,w.



�

� �

�

210 Applications in Conjugate Heat Transfer

The heat flux at the surface from coolant side q+w is defined as a difference between the
incoming coolant heat (the first term) and the heat being carrying away by transverse vapor
flux I+w that is found as a sum of diffusion and convective 𝜌1,wUy fluxes

q+w = −𝜆 𝜕T
𝜕y

||||

+

w
− I+w i1,w, I+w = −𝜌∞D

𝜕𝜌10

𝜕y

||||w
+ 𝜌1,wUy = −

𝜌∞D

1 − 𝜌10,w

𝜕𝜌10

𝜕y

||||w
, (4.93)

where i1,w is the vapor enthalpy at the surface. The last result (4.93) is obtained after substitu-
tion of expression (4.88) for the transverse velocity Uy and taken into account that 𝜌∞𝜌10,w =
𝜌1,w. Similarly defined is the heat flux at the surface from a body side that is also found as a
sum of the conductive heat and heat taken by flux I−w of vapor. The last one that comes across
a body consists of the diffusion and thermal diffusion fluxes

q−w = −𝜆M
𝜕T
𝜕y

||||

−

w
− I−w i1,w, I−w = −𝜌3𝛼M

𝜕M
𝜕y

||||w
− 𝜌3𝛼M𝛾

𝜕T
𝜕y

||||w
(4.94)

Substituting vapor fluxes I+w and I−w and heats q+w and q−w into two last equations (4.91) yields
two other conjugate conditions

𝜌∞D

1 − 𝜌10,w

𝜕𝜌10

𝜕y

||||w
= 𝜌3𝛼M

[
𝜕M
𝜕y

||||w
+ 𝛾 𝜕T

𝜕y

||||

−

w

]

𝜆
𝜕T
𝜕y

||||

+

w
− 𝜆M

𝜕T
𝜕y

||||

−

w
= −(1 − 𝜀w)Λ𝛼M𝜌3

[
𝜕M
𝜕y

||||w
+ 𝛾 𝜕T

𝜕y

||||w

] (4.95)

Thus, the conjugate problem under consideration is reduced to solving the system of: (i)
boundary layer equations (1.9)–(1.11) supplemented by equation (4.87) under the boundary
conditions (4.88) for coolant (ii) two equations (4.90) subjected to showing below them initial
and symmetry conditions for a body and (iii) to conjugating the results using the second con-
dition (4.92) and two conditions (4.95). Such a multiple conjugate problem usually is solved
numerically. In this study, another way is employed when the set of boundary layer equations
is solved applying the integral universal functions (1.40). Because the relation (1.40) is a
solution of boundary layer equation at arbitrary surface temperature distribution, the energy
equation (1.11) for temperature and equation (4.87) for vapor density are solved in two similar
expressions

qw = h∗

⎧
⎪
⎨
⎪
⎩

Tw (0) − T∞ +

x

∫
0

[

1 −
(
𝜉

x

)C1
]−C2

dTw

d𝜉
d𝜉

⎫
⎪
⎬
⎪
⎭

Iw = h∗m

⎧
⎪
⎨
⎪
⎩

𝜌10,w (0) − 𝜌10,∞ +

x

∫
0

[

1 −
(
𝜉

x

)C1
]−C2 d𝜌10,w

d𝜉
d𝜉

⎫
⎪
⎬
⎪
⎭

(4.96)

The second equation (4.96) that relates mass flux Iw to vapor density at the surface 𝜌10,w has
the same form as the first one for temperature because the energy and diffusion equations are
similar and differs only by dimensionless numbers Pe = UL∕𝛼 in the first case and Rem =
ReSc = UL∕D in the second case (S.7.1.1). The mass transfer coefficient h∗m in the second
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equation is connected with analogues heat transfer coefficient through Lewis number h∗m =
(h∗∕cp) Le1∕2, which equals practically unit for gases. The exponents C1 and C2 depend on
Schmidt number, and hence, in this case are the same as those in universal function (1.40) for
temperature because for air Sc ≈ Pr.

Comment 4.27 The drying process is usually considered as consisting of two parts: the initial
period with practically constant rate of drying, and the second period with falling rate of drying,
finally becoming zero when the moisture content of body reaches the equilibrium with the
drying agent. During the first period the drying surface remains saturated, and hence, the partial
pressure of the vapor and the surface temperature remain constant. This lasts until the material
moisture exceeds a maximum value Mm,s of sorptive isotherm.

For the initial period, when the partial pressure of the vapor above the surface and tempera-
ture equals the saturation values and are constant, the function in desorption isotherm in second
equation (4.92) 𝜙 = 1, and the phase coefficient 𝜀 = 0. In this case, Luikov equations (4.90)
and the corresponding initial and symmetry conditions simplifies to the following system in
dimensionless variables

cM

c3

𝜕𝜃

𝜕Fo
= 𝜕

𝜕𝜂

(
𝜆M

𝜆3

𝜕𝜃

𝜕𝜂

)
,

𝜕𝜗

𝜕Fo
= 𝜕

𝜕𝜂

[
𝛼M

𝛼3

(
𝜕𝜗

𝜕𝜂
+ 𝛾

T (0) − T∞
M(0) − Mm,s

𝜕𝜃

𝜕𝜂

)]
(4.97)

Fo = 0, 𝜃(0) = 1, 𝜗(0) = 1, 𝜂 = 0,
𝜕𝜃

𝜕𝜂
= 0,

𝜕𝜗

𝜕𝜂
= 0

Fo =
x𝛼3

UxΔ2
=

t𝛼3

Δ2
, 𝜂 =

y

Δ
, 𝜃 =

T − T∞
T(0) − T∞

, 𝜗 =
M − Mm,s

M(0) − Mm,s

Expressions (4.96) determine the parameters on the interface from the coolant side. To sim-
plify and convert the conjugate conditions (4.95) to new variables, the parameters on the
interface from body side are expressed in terms of knowing data of coolant side. This is
done in several steps: (i) the expression in the brackets on the right-hand side of second
equation (4.95) is replaced by the term of the left-hand side of the first equation (4.95), (ii)
the derivative 𝜕T∕𝜕y|−w is found from the same first equation (4.95) and then, (iii) the deriva-
tive 𝜕M∕𝜕y|w is obtained from the second equation (4.95) knowing that 𝜀 = 0 and applying
the result (ii), (iv) because in the first period the vapor density is equal to the saturation
density and function 𝜙 = 1, the derivative of vapor density from body side is expressed as
d𝜌10,w∕dx = (d𝜌st∕dTw)(dTw∕dx), where the derivative d𝜌st∕dTw of saturation vapor density
is known.

The first three steps present the derivatives 𝜕T∕𝜕y|+w and 𝜕M∕𝜕y|w from the body side as
functions of the heat qw = 𝜌∞D(𝜕𝜌10∕𝜕y)w and mass Iw = 𝜆(𝜕T∕𝜕y)+w fluxes from the coolant
side (see (4.93)) that are defined by two integral universal functions (4.96). Taken this into
account together with the note (iv), one obtains the conjugate conditions (4.95) as derivatives
𝜕T∕𝜕y|+w and 𝜕M∕𝜕y|w that in variables (4.97) get the following form

− 𝜕𝜃
𝜕𝜂

||||w
=

g0(Pr)𝜆3

𝜆M

(
𝜆Lu

𝜆3 Pr Fo

)1∕2
⎧
⎪
⎨
⎪
⎩

1 +

Fo

∫
0

[

1 −
(

F̂o
Fo

)C1
]−C2

d𝜃w

dF̂o
dF̂o

⎫
⎪
⎬
⎪
⎭

+ Λ
(1 − 𝜌10,w)cp
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×
⎧
⎪
⎨
⎪
⎩

𝜌10,w (0) − 𝜌10,∞

T(0) − T∞
+

Fo

∫
0

[

1 −
(

F̂o
Fo

)C1
]−C2 d𝜌10,w

dTw

d𝜃w

dF̂o
dF̂o

⎫
⎪
⎬
⎪
⎭

(4.98)

−𝜕𝜗
𝜕𝜂

||||w
=

g0(Pr)c3

(𝛼M∕𝛼3)(1 − 𝜌10,w)cp

(
𝜆Lu

𝜆3 Pr Fo

)1∕2{𝜌10,w (0) − 𝜌10,∞

M(0) − Mm,s
+

T(0) − T∞
M(0) − Mm,s

×

Fo

∫
0

[

1 −
(

F̂o
Fo

)C1
]−C2 d𝜌10,w

dTw

d𝜃w

dF̂o
dF̂o

⎫
⎪
⎬
⎪
⎭

+ 𝛾
T(0) − T∞

M(0) − Mm,s

𝜕𝜃

𝜕𝜂

||||w
(4.99)

Here, F̂o is dummy variable, g0(Pr) is a factor in formula for heat transfer coefficient on the
isothermal moving continuous plate (Fig. 1.15), Lu = cp𝜌∕(c𝜌)3 is Luikov number, physical
properties of moist air are calculated additively as, for example, specific heat cp = cp1𝜌10,w +
cp0(1 − 𝜌10,w), and vapor concentration is defined from second equation (4.92) that for initial
period at 𝜙 = 1 is solved for 1∕𝜌10,w = 1 + (R1∕R0)[(p∞∕pst) − 1]. System (4.97) under initial
and symmetry conditions (4.90) and conjugate conditions (4.98) and (4.99) are solved numer-
ically using the tridiagonal matrix algorithm (Com. 3.15) and implicit difference scheme (S.
9.6). The first equation (4.97) is solved with the condition (4.98), and thereafter, the second
equation (4.97) with the condition (4.99) that contained derivative (𝜕𝜃∕𝜕𝜂)w already obtained
by solving the first equation (4.97). Iterations are applied to get coefficients depending on
sought variables.

Calculations are performed for the following conditions: T∞ = 90∘C, 𝜌10,∞ = 0.125 and
M(0) = 0.25. Two cases with initial temperature of the material T(0) = 70 and 50∘C are con-
sidered. The first of them is higher, and the second is lower than the dew point temperature
corresponding to the assigned relative vapor concentration in the heat transfer agent 𝜌10,∞ =
0.125. Therefore, in the first case, drying proceeds from the beginning, whereas in the second
case, the material is first moistened, and drying begins after some time interval. The ther-
mophysical characteristics of the paper-type material are: 𝜌3 = 800 kg∕m3, c3 = 1500 J/kg
K, cM = c3 + cH2OM, the maximum absorptive moisture content at the dew point temperature
and the thermal conductivity of the moist material are taken as Mm,s = 0.19 and 𝜆M = 0.4 W/m
K. The conjugate parameter and dimensionless coefficient of moisture diffusion gained using
these data are: (𝜆∕𝜆M)Lu = 6 ⋅ 10−5 and 𝛼M(c𝜌)3∕𝜆M = 0.125.

Prediction leads to the following conclusions:

• The temperature and moisture content varies little across the material and their values on
the surface do not actually differ from those mean integrals over the thickness.

• The rate of heat and mass transfer predicted with conjugation effects is lower than that
resulting from the calculation with the third kind boundary conditions and the heat and
mass transfer coefficients for constant temperature and concentration heads. In the case of
drying, the material moisture content is higher, and in the case of moistening lower than
the corresponding values predicted by the third kind of boundary conditions. The reason of
this is that, as we seen above, in general, when the head grows, the heat and mass transfer
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coefficients are higher, and in the reverse case they are lower than the corresponding coef-
ficients for the constant heads.

• In the considered both cases, the concentration heads diminish, whereas the temperature
head increases in the drying process and decreases in the moistening process. In conformity
with this, the mass transfer coefficients in both cases are smaller then the isothermal coeffi-
cient hm∗(𝜒p < 1), and the heat transfer coefficients are smaller than h∗ for the moistening
(𝜒 t < 1) and larger than h∗ for the drying (𝜒 t > 1) processes. Despite in the considered
drying process h > h∗, the resulting heat transfer rate decreases because the mass transfer
coefficient decreases more than the heat transfer coefficient increases.

Comment 4.28 Here 𝜒p = hm∕hm∗ is the coefficient of nonisobaricity showing how much the
mass transfer coefficient in conjugate problem differs from that at constant concentration that
is similar to nonisotrmicity coefficient 𝜒 t = h∕h∗ (S. 2.1.1.1).

• Because the processes of the convective drying and moistening proceed under falling con-
centration head, the established here decrease in the rate will take place in any process of
this type. The quantitative results and the degree of this decrease will be determined by the
specific conditions, but qualitatively, the results will be the same.

• The analogy between heat and mass coefficients, frequently employed in predictions, is not
observed. This is because for such analogy, the coincidence is required not only of differ-
ential equations describing the heat and mass transfer, but also of the appropriate boundary
conditions determined the distribution of the temperature and concentration heads along the
surface or in time.

• The data show that the distributions of the temperature and concentration heads substantially
differ resulting in considerable different heat and mass transfer coefficients. While the heat
transfer coefficients are close to the isothermal coefficient h∗, the mass transfer coefficients
differ drastically from the isobaric one hm∗, especially in the moistening process when the
mass transfer coefficient even reduces to zero.

• In the course of moistening, there occurs the mass flow inversion—the phenomenon similar
to well-known heat flow inversion (Sec. 2.4). In this case, the mass flux reduces to zero
much earlier than the concentration head does, which is in contrast to nonconjugated solu-
tion showing that both zero points coincide. In the conjugate problem, at the point where the
mass flux reduces to zero, the concentration head is finite and, therefore, the mass transfer
coefficient becomes zero. After this point, the mass flux changes its sign, and the dry-
ing process begins even though the direction of the concentration head remains the same
(𝜌10,w < 𝜌10,∞). Thus, the mass transfer coefficient is negative in this section. Such a pat-
tern remains up to the point at which the head of concentration vanishes. Since at this point
the mass flux is finite, the zero concentration head results in the infinite mass transfer coef-
ficient that virtually looses meaning. This inversion situation is analogous to that in heat
transfer inversion detailed considered and physically explained in Section 2.4.

The same approach is applied in [150] for the second drying period investigation, when
the moisture content of the material Mw is less than maximum sorptive moisture content
Mm,s(Com. 4.27). In this case, the body is assumed to be thin, and due to that the parameters
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of the materials are averaged across the thickness. If in addition, the heat and mass fluxes
are defined by integral relations (4.96), the problem is reduced to a system of two ordinary
integro-differential equations

[1 + (c2∕∕c3)Mw]
d𝜃
dz

+ 1 +
⎧
⎪
⎨
⎪
⎩

1 +

z

∫
0

[

1 −
(
𝜉

z

)C1
]−C2

d𝜃
d𝜉

d𝜉

⎫
⎪
⎬
⎪
⎭

+

Λ
⎧
⎪
⎨
⎪
⎩

𝜌10 (0) − 𝜌10,∞ +

z

∫
0

[

1 −
(
𝜉

z

)C1
]−C2 d𝜌10,w

d𝜉
d𝜉

⎫
⎪
⎬
⎪
⎭

[T∞ − T(0)][cp1𝜌10,w + cp0(1 − 𝜌10,w)](1 − 𝜌10,w)

𝜕Mw

𝜕𝜙

||||w

[
𝜙2

wpst

(
Tw

)
R0

𝜌2
10,wp∞R1

d𝜌10,w

dz
−

𝜙w

pst(Tw)
𝜕pst

𝜕T

||||w

dTw

dz

]

+
𝜕Mw

𝜕𝜙

||||w

dTw

dz

+

c3

⎧
⎪
⎨
⎪
⎩

𝜌10 (0) − 𝜌10,∞ +

z

∫
0

[

1 −
(
𝜉

z

)C1
]−C2 d𝜌10,w

d𝜉
d𝜉

⎫
⎪
⎬
⎪
⎭

[cp1𝜌10,w + cp0(1 − 𝜌10,w)](1 − 𝜌10,w)
(4.100)

The first equations is written in dimensionless temperature and longitudinal coordinate

𝜃 =
T∞ − Tw

T∞ − T(0)
, z = 2

Ux𝜌3c3Δ

x

∫
0

h∗d𝜁 (4.101)

The same dimensionless coordinate z is used in the second equation, whereas the sought
function—the material moisture content Mw is considered as dimension variable. The des-
orption function 𝜙 in this equation is defined by second equation (4.92).

Comment 4.29 Despite the fact that relations (4.100) are ordinary equations, the second one
contains the partial derivative (𝜕Mw∕𝜕𝜙)w which should not be present in ordinary equation.
Indeed, this is not usual derivative as a function, rather that is a local value of a derivative on
the surface, which is considered as a constant parameter at fixed surface point.

Ordinary integro-differential equations (4.100) are solved by standard Runge-Kutta numer-
ical method using parameters at the end of the first drying period as initial conditions. The two
basic conclusions are deduced:

• The rates of heat and mass transfer in drying predicted by conjugate and common
approaches differ substantially. The heat and mass transfer coefficients obtained in conju-
gate solution are considerable less than corresponding coefficients for moving surface with
constant temperature and concentration heads. This difference grows as the distance from
die increases and for large distances reaches ten times. The reason of his is the significantly
decreasing temperature and concentration heads along the surface.
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• As well as in the first period, there is no analogy between heat and mass transfer coefficients.
In the case considered, the first one is greater than the second, and the ratio h∕hm increases
as the distance from a die grows becoming finally about 1.5.

We considered the Luikov drying theory in details because it is one of general concep-
tion among few others in this area that is often used in applications. Two such examples are
presented next.

◾Example 4.29n: Wood Board Drying [291]

A drying of a suspended rectangular wood board placed in air stream is studied using the
two-dimensional plane model. The basic assumption are: (i) equilibrium exist at each point and
time, (ii) a board is unsaturated and homogeneous (uniform), (iii) gravity effects are negligible,
(iv) the characteristic length of the drying medium is much smaller than that of the external
fluid, (v) the thickness of the interfacial surface is negligible.

The governing system of equations as well as in former example consist of the boundary
layer equations for a coolant, Luikov equations [244] for porous board, and the conjugate
conditions. All equations are presented in the vector form

∇ ⋅ u = 0, u ⋅ ∇u = −∇p + 1
Re

∇2u, u ⋅ ∇T = 1
Pe

∇2T , u ⋅ ∇𝜔 = 1
Re Sc

∇2𝜔

𝜆a∇T ⋅ n + Λ𝜌aD∇𝜔 ⋅ n = (𝜆a + 𝜀Λ𝛼M𝛾)∇T ⋅ n + 𝜀Λ𝛼M∇M ⋅ n (4.102)

T = Tw, 𝜔 = 0.62198 𝜙pst∕(p − 𝜙pst), 𝜌aD∇𝜔 ⋅ n = 𝛼M𝛾∇T ⋅ n + 𝛼M∇M ⋅ n

Here,𝜙 = 1 − exp(aMb) is an empirical function for the desorption isotherm (Com. 4.26) with
constant coefficients a and b adopted from [448],𝜔 is the water mass fraction (used here instead
of 𝜌10 in the former example). The variables in (4.102) are scaled by L, u∞, 𝜌u2

∞, L∕U∞, T∞
and 𝜔∞ for the coordinates, velocity, pressure, time, temperature, and vapor fraction, n is unit
vector, and the index a denotes air. The other notations are the same as in the former example.

The finite-element method (S.9.6) is used to solve the set of governing equations. The initial
conditions of the stream of air and solid are: T∞ = 60∘C, 𝜔∞ = 0.116 kg∕kg, Re = 200, Sc =
0.6, and T0 = 25∘C, M0 = 222∘M (40% moisture content), respectively. Two examples are
considered. In the first example, the drying of only upper surface of the board is studied,
whereas both vertical surfaces are adiabatic and impermeable. In the second example, drying
of the entire board is investigated. The results for both cases are:

• In the first example, the solid temperature and moisture content distributions at 3 h time dry-
ing show that both the heating and the drying of the board are nonuniform. The leading part
of the board heats much faster than the rest of it. As the air flows along surface, the temper-
ature gradient between the flow and solid decreases. Due to this, the heat fluxes decrease in
the flow direction. For the longer drying time due to evaporation, the heat fluxes increase in
the flow direction. A dry zone appears close to the leading edge, while the remainder remains
wet. In time, it becomes more saturated, and both the humidity gradients and moisture fluxes
of the surface decrease in flow direction.
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• In the second case, the results are close to those outlined for the first example. Only the
temperature and moisture content distribution are different due to the fact that the vertical
surfaces are also involved in the process. Both heat and mass transfer are less intensive on
the vertical surfaces because the air velocities at the leading and aft edges are significantly
reduced. The drying front near the aft edge is less penetrated than that in the area close to
leading edge. The average moisture content variations show that board drying in the second
example occurs faster than that in the first case. Despite the fact that the difference in final
moisture content is only about 1%, the variation in moisture distribution is considerable,
which can be important for the using the wood board.

◾Example 4.30n: Porous Material in Drying Air Flow [254]

The external air flow is flowing parallel to porous material that is assumed to be unsaturated,
homogeneous, and nondeformable. This relatively simple model is used to simulate various
situations studying the behavior of heat and mass transfer coefficients at the interface during
the drying process. The system of governing equations is almost the same as in the previous
example. For coolant, the set of boundary layer equations are used in the same form, and the
Luikov equations similar to equations (4.102) as well as in the former example are employed.
The same notations are also basically used for the porous medium and for conjugate conditions
of fluxes. However, for another conjugate equation, that relates the water content M of a body
and relative humidity c, expressions

c =
pvM

Ma(p − pv) + Mpv
, pv = pst exp

gM𝜓

RT
(4.103)

based on the Kelvin equation is used instead of the desorption isotherm (Com. 4.26). In rela-
tions (4.103), pv is vapor partial pressure, pst is the saturation pressure, and 𝜓 is the capillary
potential—the driving force that causes moisture to move in capillary.

Comment 4.30 The Kelvin equation describes the change in vapor pressure due to a curved
liquid/vapor interface (meniscus, Com. 4.20), which is higher than that of non-curved surface.
Here, this equation is used to estimate the vapor pressure in pores of porous material. The
finite element method is used to solve the problem. Both the first and the second periods are
considered. The main results are as follows:

• For the first period, the initial moisture content is assumed to be 8%. The results show
the thermal and mass leading edge effect, which leads to high heat and mass fluxes at the
interface. Intensive evaporation and mass transfer toward the interface occur.

• For the second period, the initial moisture content is assumed to be 3%. The obtained
temperature and moisture fields show a dry or sorption zone linked to recession of an evap-
oration front. In the dry zone, the basic moisture transport occurs by vapor. In a sorption
zone, the bound water exists. The leading edge effect is also seen in this case.

• The heat and mass transfer analogy is observed in the first drying period. This result can
be expected since the specific humidity at the interface depends only on the temperature.
However, depending on situation, this analogy may or may not be valid (see Example 4.28).
In the second period, the specific humidity on the interface depends on the temperature
and moisture content. Therefore, the boundary conditions at the interface for heat and mass
transfer may be different. Thus, in this case, the analogy between heat and mass transfer
may be not valid.
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• Because the temperature and the specific humidity at the interface are not uniform, the
obtained heat and mass transfer coefficients differ from the standard values correspond-
ing to the case of plate with constant temperature and moisture content. At the same time,
the variations from the reference values in this study are only about 10%. This result is in
conflict with much larger variations from standard values obtained by many authors (for
instance, [67] and [99]).

• Comparing two- and one-dimensional solutions of the same problem shows that
one-dimensional approach cannot generally give realistic results because in this case, the
effects of the boundary layer leading edge is ignored.

◾Example 4.31n: Freeze Drying of Slab-Shaped Food [280]

Unlike the conventional drying process, which is based on capillary motion and evaporation
of water, the freeze-drying process uses sublimation of ice to dry the object. The low temper-
ature and pressure below the triple point in freeze drying provide high- quality freeze-dried
products. Despite the high quality of those products, the conventional drying methods are basi-
cally used in food production due to the long drying time and the high cost of freeze-drying
process. Among many investigations of drying, most of them studied the alternative conven-
tional drying methods.

The reviewed model consists of planar and slab-shaped products that are divided by a subli-
mation interface into the dried and frozen parts. The moisture or ice in the products sublimate
under vacuum pressure and developed vapor mV diffuses through pores to exit. The energy for
sublimation comes from the bottom by conduction and by radiation from the upper heating
plate. As a result, the uniform sublimation interface below the top forms in the planar product.
In the slab-shaped product, the additional radiation energy comes through the lateral surface
opened to the drying chamber. Due to this, the sublimation interfaces formed below the top
and beside the lateral surface are nonuniform. Such a drying process in slab-shaped product
in contract to that in planar product requires more complicated analysis.

The problem is governed by the mass and energy conservation equations

𝜀
(1 − S)𝜌V − (1 − S0)𝜌0

V

Δt
ΔV +

∑

j=E, W,N, S

(mV )j ⋅ nj = −𝜀𝜌I
S − S0

Δt
ΔV

(𝜌cp)0
T − T0

Δt
ΔV +

∑

j=E, W,N, S

(−𝜆∇T)j ⋅ nj = −𝜀𝜌IΛS
S − S0

Δt
ΔV

(4.104)

Here, ΔV is the volume of grid cell, S = 𝜀I∕𝜀 is the ice saturation, 𝜀 and 𝜀I denote the porosity
and the fraction of the ice volume to the total volume, ΛS is heat of sublimation of ice, indices
V and I indicate water and ice, nj is outward normal vector, the subscript j denotes the control
surface of a cell with East, West, North, and South faces, and superscript 0 refers to initial
values. The vapor flux is determined by summing the rates of diffusion and of flow through
porous products

mV = −(1 − S)
mM

RT

[
D + pV

K
𝜇V

]
∇pV (4.105)

where mM , D and K are molecular mass, the effective diffusivity and permeability.
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The first term of the mass conservation in the first equation (4.104) represents the change
in the vapor containing in a particular cell, and the second term determines the vapor flow
out of this cell. These changes yield the reduction of the rate of ice saturation S defined by
right term of this mass conservation equation. Similarly, the first and second terms of the
energy conservation equation (4.104) represent the change of energy inside the cell and heat
flux through the control surface. The sum of these two terms is equal to the last term in this
equation that defines the latent heat arising due to the ice sublimation.

The temperature boundary conditions for the top, bottom and lateral surface are

qT = 𝜎FT (T4
H − T4

T ), qB = h(TH − TB), qS = 𝜎FS(T4
H − T4

S ) (4.106)

where subscripts T, B, S and H denote top, bottom, side surfaces of product and heating plates,
respectively, F is the radiation shape factor, and h is the overall heat transfer coefficient for
the bottom. The pressure boundary condition for surfaces opened to drying chamber (sub-
script C) is pV = pVC.. As the initial condition at t = 0, the uniform temperature, pressure
and rate of ice saturation are used. The numerical procedure starts from computing the tem-
perature distribution by solving the second equation (4.104). Then, the distribution of vapor
pressure is obtained from the first equation (4.104) only for dried cells with S = 0. To calculate
the pressure in the frozen and sublimation cells, those are treated using Dirichlet formulation
(S.1.1) assuming the local thermodynamic equilibrium for saturated vapor when its pressure
is defined as pV = pst(T). The evolution of ice saturation S in the frozen and sublimation cells
is performed by solving the mass conservation equation (the first equation (4.104)). Iterative
calculations are carried out. The numerical results are obtained using the beef as a product

• The average sublimation temperature of the slab-shaped product is 5–10% lower than that of
planar product. The reason of this is that curved sublimation interfaces in slab-shaped prod-
uct caused by literal surface opened to the drying chamber. As a result, the diffusion length
is decreased and interfacial area is increased. These two effects enabled the shorter drying
time with a lower sublimation temperature, and the primary direction of drying changes
from vertical from top to bottom in planar product to radial in slab-shaped product from
lateral surface to inner core.

• The distribution of ice saturation, temperature, and vapor pressure in planar product show
the existence of the second sublimation interface near the bottom. The vapor from the sec-
ondary interface is transported out of a product by diffusion or is deposited in the frozen
region as ice. The maximum temperature and vapor pressure increase in time. The ice satura-
tion in the slab-shaped product in the frozen region remains relatively constant at about 0.7.
The distribution of the temperature and vapor pressure in the slab-shaped product show that
the heat and mass transfer during the frozen drying in this case is fully multi-dimensional
process. Despite the fact that spatial temperature gradients in the dried area are larger than
those in the frozen region, the heat transfer through this area is small due to low thermal
conductivity. The spatial vapor pressure gradients in the frozen region caused by the tem-
perature gradients according to dependence for saturated pressure pst(T) are also relatively
small because of a small pore space in the frozen area.

• The main source of energy is the conduction from bottom, whereas the radiation from the top
and lateral surface supplies also about 40% of total energy. Since a dried region is developed
near the bottom, the heat flow from the bottom decreases from the initial 2.86 to the final
0.93 J/s. The initial vapor flow through the lateral surfaces is about two times larger than that
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through the top surface. At the end of drying process, almost 80% of vapor flows through
the lateral surface.

• The results obtained for product of heights 5, 10, 15, and 20 mm indicate the relatively
constant drying rate for planar product. The slab-shape product shows more nonlinear
behavior. The high drying rate at the beginning changes to lower drying rate in the latter
parts of the drying process. The reason for this is that the insulating dried region surrounded
the frozen area. For the height 5 mm both planar and slab-shaped products exhibit almost
the same drying time, but the difference increases with time because the drying time of the
slab-shaped product is less sensitive to the product height than that of the planar product.
The configuration of the sublimation interfaces of the slab-shaped product with different
heights indicates that the primary drying direction is the radial one from the lateral surface
to the inner core.

• The lateral surface of the slab-shaped product is favorable for the reduction of both the
drying time and the sublimation temperature by increasing the vapor diffusion and the inter-
facial area for sublimation.

OTHER WORKS: Solutions of two other conjugate problems using similar technique are
given in the work [88] reviewed in example 4.25. The heat transfer from a thick-walled tube
is considered in the first one, and the falling film reactor is simulated in the second problem.
Simulation of solidification processes in enclosed regions by studying the systems with moving
boundaries between different phases is presented in articles [410] and [411]. Solidification
process during the continuous casting (we considered continuous wires casting in example
4.24) is analyzed in [15]. A special kind of problem with moving boundaries, known as Stefan
problem, is investigated in article [72]. Melting and solidification of paraffin is considered in
paper [393]. Drying and food processing reviewed in the last paragraph are also simulated in
several other works including some results recently published. In four papers published in the
last five years, the drying of porous bodies is investigated. In the first article [212], the drying
of a rectangular body streamlined by parallel flow confined in the channel is studied using
Luikov theory [244], the heat and mass transfer coefficients of a porous plate at low Reynolds
numbers are analyzed using conjugate modeling in the second work [93], the drying of porous
materials of building envelope is considered in the third one [401], and an original approach of
biosubstrates drying by providing an exposure to air jet impingement of a blunt body is outlined
in the fourth study [89]. The results of food processing studies are presented in articles [53]
and [356]. The three-dimensional turbulent model for freezing food is used for predictions and
comparing the results with experimental data in the first article, and crystallization from the
food solutions is studied in another. The microwave freeze-drying of cylindrical porous media
with dielectric cores is numerically simulated in [385].

Summary of Part I

Effect of Conjugation

The general physical analysis and a number of examples considered in this part show that the
basic characteristics and intensity of conjugate heat transfer depend on:
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Table 4.1 Conjugation effect of different factors

Decreasing temperature head Increasing temperature head
Comparable thermal resistances Incomparable thermal resistances
Counter-current flows Concurrent flows
Unfavorable pressure gradients Zero gradient flows Favorable pressure gradients
Laminar flows Transition flows Turbulent flows
Small Reynolds numbers Mean Reynolds numbers High Reynolds numbers
Unsteady heat transfer Steady heat transfer
Non-Newtonian fluids with n > 1 Newtonian fluids Non-Newtonian fluids with n < 1
Small surface curvature Large surface curvature
Porous surface with injection Nonporous surface Porous surface with suction
Continuously moving surface Streamlined surface

• Temperature head distribution on the body/fluid interface that mainly specifies the effect of
a problem conjugation so that an increasing in time or in flow direction temperature head
leads to moderate growing heat transfer coefficient, whereas the decreasing temperature
head results in a dramatic falling in heat transfer intensity in comparison with the case of
isothermal surface.

• At the given temperature head distribution, the Biot number, which is a ratio of body/fluid
thermal resistances, is the second parameter basically determining the effect of conjugation
showing that the maximum effect of conjugation is observed in the systems with compa-
rable thermal resistances, and the opposite case of small conjugation effects is typical for
structures where one of thermal resistances is negligible in comparison with another.

• Different factors affecting more or less a problem conjugation are listed in the Table 4.1
where they are arranged so that next to the right issue, each represents a subject with a
lower effect of conjugation. For instance, because the turbulent flow is located to the right
of laminar flow, this means that conjugation effect in the problems with turbulent flows is
less than that in corresponding problems with laminar flows.

• The data of conjugation effects except of interest of itself is useful in making a decision
whether the conjugate solution is needed in a particular problem, or the common simple
approach is enough to solve it with satisfactory accuracy. Although such decision depends
on the aim of specific problem, on desired accuracy of solution, and on some other condi-
tions, the summarized comparative effects of conjugation are handy, at least for preliminary
analysis. For example, some problem is likely to be solved by common method without con-
jugation if the temperature head increases in flow direction and Biot number for isothermal
conditions is small or large, but the accurate solution of a problem with opposite charac-
teristics with decreasing temperature head and Biot number close to unity may be obtained
only applying the conjugate approach.

• The more reliable way to answer this key question of a proper method of solution of a par-
ticular problem is described in Section 2.2.1. In this approach, one starts with the common
solution using boundary conditions of the third kind. Then, the error arising by using this
traditional approach may be approximately estimated by computing the second term of uni-
versal function applying the knowing data of traditional solution. Examples show that such
estimations are in reasonable agreement with corresponding conjugate solutions giving the
understanding of necessity of conjugate solution.
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• Besides approximate estimations of conjugation effects, some general results are obtained
indicating that in two cases the role of conjugation is known a priori:

Statement 1 Convective heat transfer problems containing temperature head decreasing
in flow direction or in time should be considered as a conjugate because in this case, the
effect of conjugation is usually significant.

Statement 2 For the turbulent flow of the fluids with high (say higher than 100) Prandtl
numbers, the convective heat transfer problems may be solved using traditional approach
with boundary condition of the third kind, because for such fluids, the conjugation effect is
negligible.
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Part II
Applications in
Fluid Flow

Here, the term “fluid flow” is used instead of incompressible fluid flow that is a relatively
simple type of flows in fluid mechanics. At the same time, as it will be clear soon, the new
methods and corresponding applications in fluid flow considered in this part are much compli-
cated than the modern conjugate heat transfer problems, including the applications outlined in
the previous part of the textbook. That is one of the reasons why the Part II is somewhat shorter
than Part I despite the fact that both problems—the peristaltic flows and modern simulation
of turbulence—comprising this part are highly important. The other cause of that shortness is
the relatively late beginning of the mathematical modeling in these specific portions of hydro-
dynamics. Nevertheless, the theoretical principles and basic features of peristaltic flows and
of direct turbulence simulation together with examples of application presented in Chapters 5
and 6, respectively, show the contemporary situation in two involved areas of knowledge.

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine,
First Edition. Abram S. Dorfman.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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5
Two Advanced Methods

The both advanced methods considering in this chapter are developed and intensively used
during the last fifty years. The two phenomena—the turbulent flow and flow in flexible chan-
nels underlying the physical grounds of those methods—came from nature. The first one is
most often flow regime in different occurrences in the world, and the second is the basic mech-
anism of human and primate organs transporting physiological fluids such as blood or urine.
Due to that, the development of both methods was practically important, especially in a view
of the possible wide applications. However, in the 1960s of the last century when the advent
of the computer made possible the development of new methods, the initial scientific situa-
tion in two considered areas was completely different. At that time, the status of turbulence
theory was close to the contemporary situation consisting of the Reynolds average equations
(RANS) and even k − 𝜀 and k − 𝜔 turbulence models (S. 8.4.3). In contrast to that, the knowl-
edge of flows in flexible channels of human organs at the same time correspond to the situation
in biology that in the middle of the last century was basically a descriptive science consist-
ing only verbal and illustrative information. This decisive distinction in starting conditions
gives an understanding why the considered below new methods in turbulence are the top of
the contemporary resources, whereas the modern means and results in the other topic studied
here, the peristaltic motion in human organs, are only at the beginning level of present-day
possibilities.

This part as well as previous text consists of theory with examples, detailed explanations,
comments, and exercises (Chapter 5) and the applications (Chapter 6) presented more
shortly, similar to applications description in Chapters 3 and 4, containing problem formula-
tion, mathematical model as the basic equations, brief presentation of solution, and the most
important results.

5.1 Conjugate Models of Peristaltic Flow

5.1.1 Model Formulation

We consider the peristaltic phenomenon as a conjugate problem because any peristaltic sys-
tem is inherently a conjugate. This follows from the fact that the peristaltic flow occurs due

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine,
First Edition. Abram S. Dorfman.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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to close interaction between a flexible wall and fluid containing inside the channel. The word
peristalsis came from the Greek peristaltikos and means clasping and compressing. Peristalsis
or peristaltic motion arises when the progressive wave moving along the flexible tube results
in contraction and expansion of the channel wall, inducing the motion of fluid inside the chan-
nel in the wave direction. Although there are a lot of engineering applications of peristaltic
motion, originally this idea was adapted from creation. Muscular walls of human or primate
organs in the form of a tube provide consecutive narrowing and relaxing of a wall portion,
which travels in longitudinal direction resulting in a conjugation effect in movement of fluid
inside a tube. Some examples of such organs are: (i) the gastrointestinal tract, in which mus-
cles provide a swallowing and movement of the chyme from the mouth, through esophagus,
stomach, small and large intestines, to rectum and anus, resulting in the digestive process, (ii)
the ureter transporting due to its muscles the urine from the kidney to the bladder against the
pressure gradient, (iii) the urethra that discharges the urine outside from the body, (iv) a male
reproductive tract supplying the spermatic flows ejection, (v) the ovum motion inside the fal-
lopian tube and the transport of embryo in uterus, (vi) small blood vessels, like venues and
arterioles, as well as lymphatic channels (Exers. 5.1 and 5.2).

Peristaltic motion is also widely used in engineering devices and systems where the role
of muscles plays the mechanisms compressed the walls of flexible tubes. Some of the most
important application include: (i) an artificial heart-lung device that maintains the circula-
tion of the blood and the oxygen content of the body repeatedly drawing off the blood from
the veins, re-oxygenates it, and pumps it into the arterial system, (ii) the artificial kidney
machine (hemodialysis), which provides the diffusion of waste products, such as urea and cre-
atinine, through the semipermeable membrane into the special dialysis fluid discarding them,
(iii) devices for pumping biomedical fluids, like blood, clean and sterile stuff, pharmaceuti-
cal production and food to prevent the transported substance from contact with the parts of
the mechanical pump as well as to isolate environment from conveying materials, such as
corrosive fluid, slurries, and sewage, (iv) microdevices for improving the mixing process of
chemical reagents and facilitate preparing biological and other mixtures, and (v) devices for
enhancing a mass transfer rate though porous walls.

Comment 5.1 (i) Dialysis is a process of separation of smaller molecules from larger ones
resulting in dissolved substance from colloidal particles (a mixture of dispersed minute parti-
cles) in a solution by selective diffusion through a semipermeable membrane, (ii) homodialysis
is a mechanized system used to perform the dialysis, (iii) urea or carbamide is an organic
nitrogen-containing substance, (iv) creatinine is a breakdown product of natural substance
named creatine, that the body used to store energy for muscles.

To consider the peristaltic flow as a conjugate problem, we use the problem domain similar
to that in the heat transfer conjugate problem described in details above in Part I. Such domain
involves two subdomains and conjugate conditions on the interface consisting in the case of
peristaltic flow: (i) the fluid domain governed in general case by Navier-Stokes equation or
by simplified versions of this equation, that is, creeping (S. 7.4.1) or boundary layer (S. 7.4.4)
equations for low and high Reynolds numbers, respectively, (ii) the wall domain governed in
general case by dynamic equation for flexible wall, or by simplified equation for thin flexible
wall, or by some approximation approach, such as by given propagation wave imposed on rigid
wall, and (iii) the conjugate relations consisting of no-slip condition and the balance of forces
on the interface instead of equalities of temperatures and heat fluxes in the case of heat transfer
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Figure 5.1 Scheme of two-dimensional channel of semi-conjugate model

conjugate problem. Although the formulations of both conjugate problems heat transfer and
peristaltic flow are similar, these problems differ significantly because the latter, in contrast to
former is nonlinear and due to that is much complicated to be solved. In particular, the efficient
superposition method widely used in the case of conjugate heat transfer is not applicable to
the nonlinear peristaltic flow problems.

Because of complexity, the known results are or approximate analytical or numerical solu-
tions (Exer. 5.3). Moreover, the majority solutions of peristaltic problems are not full conju-
gate, rather those are a semi-conjugate solutions. We use this term to specify the approach when
for simplicity instead of flexible wall one considers a rigid boundary with assigned wave prop-
agating along a wall or transversely flexible wall of prescribed form. In such a semi-conjugate
problem, the only effect of the propagation wave on fluid flow is studied, whereas the backward
effect of fluid flow on the wall motion is completely ignored (Exer. 5.4).

A typical semi-conjugate model presents a peristaltic flow as a stream in a plane
two-dimensional channel with flexible in transverse direction walls on which the longitudinal
progressive sinusoidal waves are imposed (Fig. 5.1). Such a model specifies a particular prob-
lem by four dimensionless parameters: (i) the amplitude ratio 𝜀 = a∕H, where a is amplitude
of the wave and H is a half of channel cross-section, (ii) the wave number 𝛼 = 2𝜋H∕𝜆, where
𝜆 is the wavelength, (iii) the Reynolds number R = cH∕𝜈, where c is a wave velocity, and
(iv) the dimensionless pressure gradient or the dimensionless time-mean flow rate. The flow
is unsteady in a fixed coordinate system (the laboratory frame) because of moving boundary.
However, in coordinate system moving with the wave (the wave frame), the flow is steady
one. The longitudinal velocities and coordinates in both systems are connected as u = û + c
and x = x̂ + ct, y = ŷ, where overscore denotes the values in the wave frame (Exer. 5.5).

There is no analytical solution of a problem with arbitrary values of all four parameters,
rather the known results are found on the assumption that at least one of parameters is zero or
small. Most studies, especially in early years, are performed for small or zero Reynolds number
and long wavelength. The typical values of parameters are [178]: R ≈ 1, 𝛼 = 0.02, 𝜀 < 1 and
R ≈ 10, 𝛼 = 2, 𝜀 ≈ 0.3 for ureter and gastrointestinal tract, respectively, R ≈ 1, 𝛼 = 0.5, 𝜀 ≈ 1
for the pumps.

The available literature of peristaltic flows is expansive, however, due to nonlinearity of the
problems, the methods of solution do not vary much. Here, we consider examples presenting
the basic methods that are different in principle of each other and are frequently used.
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5.1.2 The First Investigations

The first studies of peristaltic flows published up to the 1970s of the last century were reviewed
by Jaffrin and Shapiro [178]. These works model the peristaltic flow in ureter using simple
linear models. In such a model, the peristaltic fluid motion in an infinite two-dimensional
channel is induced by propagating sinusoidal wave. The main objective of the early studies
was the understanding of the peristalsis mechanism in order to get some insight into physical
processes in the ureter. A special interest had the flow reflux, because this occasion might be
a reason why bacteria sometimes travel from the bladder to the kidneys agents the mean urine
flow. Early researches contributed also to engineering applications considering the flow in the
roller pumps, which are used, in particular, in medicine procedures, and performing the first
specific experiments confirming the premature theories of peristaltic flows [178].

◾Example 5.1: Peristaltic Motion in the Two-Dimensional Channel at low Reynolds
Number and a Long Wavelength (Linear Model) [178, 345]

In the frame moving with wave, the peristaltic flow is steady, and in the case of low Reynolds
number, the solution of the problem in question is similar to well known simple steady flow
in the two-dimensional channel or in a tube (S. 7.3.2). Nevertheless, there is a difference that
becomes clear if one relates the flow direction to pressure gradient trend. In both flows in the
fixed frame, the pressure decreases in flow direction due to energy losses. At the same time,
in the wave frame, the peristaltic flow is directed opposite to that in the fixed frame, whereas
the pressure gradient remains unchanged. It follows from these notes that in a moving frame,
where the peristaltic is a steady flow, the Navier-Stokes equation simplifies, taking the same
form (7.22) as the exact solution of Navier-Stokes equation for the creeping flow in channel,
but with different sign at the pressure gradient (Exer. 5.6, Fig. 5.1)

𝜕p

𝜕x̂
+ 𝜇𝜕

2û
𝜕ŷ

= 0, u = 1
2𝜇

(
dp

dx

)
(y2 − s2), s = H + 𝜂, 𝜂 = a cos

2𝜋
𝜆
(x − ct) (5.1)

Double integration of differential equation (5.1) subjected to boundary conditions û = −c
(wave velocity) at ŷ = s and (𝜕û∕𝜕ŷ)ŷ=0 = 0 (symmetry condition) results, after return to sta-
tionary frame, in the second relation (5.1) defining the distribution of flow velocity. It is seen
that this distribution is of Poiseuille type, such as, for example, velocity (7.23) or (7.24). How-
ever, profile (5.1), unlike the Poiseuille one, depends not only on transverse coordinate but is
also a function on the longitudinal coordinate 𝜉 = 2𝜋x∕𝜆 and time 𝜏 = 2𝜋ct∕𝜆 through vari-
able s (and, hence, through 𝜂, Fig. 5.1) (Exer. 5.7).

Comment 5.2 The differential equations (5.1) and (7.23), except signs, look identical. Despite
that, these equations differ in essence because the latter is an exact Navier-Stokes equation for
the case of creeping flow (when the inertia terms vanish) inside the two-dimensional channel,
whereas the former is an approximate Navier-Stokes equation obtained under assumptions
of small Reynolds number and long wavelength. This difference is mathematically expressed
using different type of derivatives: (i) equation (7.22) is written in ordinary derivatives because
in this case, the pressure depends only on x as well as the velocity depends only on y, whereas
(ii) equation (5.1) at first is presented in partial derivatives and then, comparing the order of
equation terms (such procedure is described in S. 7.4.4.1), it is shown [345] that for ureter
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the Reynolds number is of order ∼1, and due to that, the equation (5.1) and it approximate
solution may by written in the form similar to equation (7.22), using ordinary derivative for
the pressure (Exer. 5.8).

The instantaneous dimensionless flow rate Q(𝜉, 𝜏) in the fixed frame is obtained by inte-
gration of profile (5.1). Then, the corresponding flow rate Q̂(𝜉, 𝜏) in the wave frame is found
using relation u = û + c and expression for dimensionless pressure p

Q(𝜉, 𝜏) = 1
Hc

s

∫
0

udy = −
dp

3d𝜉
s3, p = 2𝜋H2

𝜇𝜆c
p, Q̂(𝜏) = Q(𝜉, 𝜏) − s,

dp

d𝜉
= −3(Q̂ + s)

s3

(5.2)
It may be shown that the flow rate in the moving frame (the diversity) depends on time, but
not on distance. Physically, that is because according to continuity equation, the flow rate of
incompressible fluid is constant lengthwise the tube or channel. At the same time, the flow
rate in the fixed frame depends on both time and distance because in the fixed coordinates, the
peristaltic flow is unsteady. From the last equation (5.2), it follows that the pressure gradient
strongly depends on the wave characteristics, so that high gradients occurs at s << 1 when the
wave is intensive and contractions are severe (Exer. 5.9).

Analysis of the Lagrangian trajectories of flow particles shows that under certain condi-
tions reflux occurs near the walls. However, the observed negative Eulerian time-mean velocity
could not be surely interpreted as a reflux because calculation and experimental data show that
sometimes despite the negative Eulerian average velocity, the particle Lagrangian trajectories
undergo positive displacement. Comparison with experimental data indicates that the validity
of this simple model is surprisingly wide.

Comment 5.3 The Lagrangian specification of flow field is the way when an observer moves
with flow looking at a particular particle (moving frame). The trace of such particle gives a
trajectory. The Eulerian specification of flow field is the way when an unmoving observer
is focused on a specific location in a space recording the parameters of passing flow at this
location (laboratory frame).

OTHER EARLY WORKS: The majority of the first peristaltic flow investigations was
motivated by insight into uretral function. In particular, the visco-uretral reflux studied in one
of the earliest article [169] was basically of researches interest. The studies [250, 432, 446,
228], and [346] are several examples of early works considered the reflux and other urethral
problems. The peristalsis phenomena in others physiology organs are also simulated by some
early authors. The vasomotion of small blood vessels was studied in article [139], in paper
[32], the chime flow in small intestine was theoretically analyzed, and an influence of stom-
ach peristalsis on blood flow in the gastrosplenic vein was examined in work [342]. Early
researches contributed also to more general results regardless of particular physiology organ.
Thus, the two key methods of peristaltic flow simulation, the progressive wave imposed on the
channel rigid walls and the transversal bending of the flexible walls are analyzed in the articles
[54] and [158], respectively. In a thesis [257], the inertia-free peristaltic pumping theory was
applied to study a blood flow in roller pump. The results of early experimental investigations
were presented in theses [214, 419], and [124]. As one of the earliest numerical studies of
peristaltic flow we mention the work [391].
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5.1.3 Semi-Conjugate Solutions

◾Example 5.2: Peristaltic Motion in Two-Dimensional Channel at Finite Reynolds Num-
ber and Moderate Amplitude (Nonlinear Model) [139]

The nonlinear approach of perturbation series developed in this early work is widely
used up to now for applications, including studying of peristaltic motion of Newtonian and
non-Newtonian fluids (Exam. 5.4-5.7). In the reviewed article, the mathematical model
consists of Navier-Stokes equation in the form of stream function (7.16), and the perturbation
series in power of 𝜀 = a∕H is used for it solution

𝜕

𝜕t
∇2𝜓 + 𝜓y∇2𝜓x − 𝜓x∇2𝜓y = (1∕R)∇2∇2𝜓, 𝜓 = 𝜓0 + 𝜀𝜓1 + 𝜀2𝜓2 + 𝜀3𝜓3 … (5.3)

Here, all linear and velocity parameters are scaled by half wide of channel H and wave speed
c, respectively, and for other quantities, the scales in terms of these two are used: cH for 𝜓, 𝜌c2

for p,H∕c for t, and Reynolds number is defined as R = cH∕𝜈. The sinusoidal wave (5.1) in the
same scales has the form 𝜂 = 𝜀 cos 𝛼(x − t). Solution of equation (5.3) should satisfy boundary
conditions on the upper and lower waves (the upper signs pertain to upper wave)

𝜓y = 0, 𝜓x = ∓𝛼𝜀 sin 𝛼(x − t) at y = ±(1 + 𝜂), (5.4)

Substituting series (5.3) into equation (5.3) and collecting terms with the same powers of 𝜀
yield equations for coefficients 𝜓n of series (5.3) (Exer. 5.10)

(1∕R)∇2∇2𝜓0 = 𝜕

𝜕t
∇2𝜓0 + 𝜓0y∇2𝜓0x − 𝜓0x∇2𝜓0y (5.5)

(1∕R)∇2∇2𝜓1 = 𝜕

𝜕t
∇2𝜓1 + 𝜓0y∇2𝜓1x + 𝜓1y∇2𝜓0x − 𝜓0x∇2𝜓1y − 𝜓1x∇2𝜓0y, etc. (5.6)

To get the boundary conditions for these equations, relations (5.4) are presented in Taylor series
in power of 𝜂. For the first relation one gets 𝜓y + 𝜂𝜓yy + (𝜂2∕2)𝜓yyy + … = 0. Substituting
expressions for 𝜂 and for 𝜓 (i. e. series (5.3)) into this and similar relations in Taylor series
yields boundary conditions for equations (5.5) and (5.6) (Exer. 5.11)

𝜓0y = 0, 𝜓1y + 𝜓0yy cos 𝛼(x − t) = 0 (5.7)

𝜓0x = 0, 𝜓1x + 𝜓0xy cos 𝛼(x − t) = − sin 𝛼(x − t), etc. (5.8)

For the case of constant pressure gradient 𝜕p∕𝜕x, equation (5.5) with boundary conditions
(5.7) and (5.8) and symmetry condition give the Poiseuille profile (5.9) for 𝜓0, whereas
equations (5.6) under the same conditions leads to the Orr-Sommerfeld equation

𝜓0 = −R(𝜕p∕𝜕x)[y − (y3∕3)] (5.9)
{

d2Φ
dy2

− 𝛼2 + i𝛼R

[
1 + R

dp

dx

(
1 − y2)

]}(
d2Φ
dy2

− 𝛼2

)
Φ + 2i

dp

dx
R2Φ = 0 (5.10)
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The second term of series (5.3) is defined as 2𝜓1 = Φ exp[i𝛼(x − t)] + Φ̃ exp[−i𝛼(x − t)],
where Φ̃(y) is the conjugate function to function Φ(y).

Comment 5.4 Another common term conjugate means that two functions of complex vari-
ables are conjugate if they differ by sign, for example, function z = x − iy is conjugate to
function z = x + iy (Exer. 5.12).

Comment 5.5 The Orr-Sommerfeld differential equation named after two scholars plays a
fundamental role in the stability theory of laminar flow considering the transition to turbulent
flow as a passage from stable to unstable regime.

In addition to the first two terms of series (5.3) defined by equation (5.9) and (5.10), the
third term 𝜓2 is found in [139]. Calculation of this term as well as defining the second one 𝜓1
requires a solution of Orr-Sommerfeld differential equation (Exer. 5.13). Instead of numerical
integration of this complex nonlinear fourth order differential equation, authors considered the
pumping regime at zero initial pressure gradient (dp∕dx = 0) and obtained an analytical solu-
tion of Orr-Sommerfeld equation (5.10) for this case. Then, an expression for the averaged
over time axial velocity is computed and is shown that it distribution significantly depends
on average pressure gradient (dp∕dx)2 of order 𝜀2 induced by peristaltic flow. Analysis indi-
cates that this velocity distribution: (i) at negative pressure gradient (dp∕dx)2 < 0 is close to
the Poiseuille profile, (ii) as the pressure gradient grows, it deforms becoming concave at
(dp∕dx)2 ≈ 0, (iii) as the pressure gradient continue increasing and reaches some critical pos-
itive value, the velocity of a caved-in profile becomes zero on the central line of a channel and
then turns to be negative when the pressure gradient (dp∕dx)2 exceeds critical value.

It follows from such velocity profile that there is a reversal moving flow in the neighbor-
hood of the channel central line, which authors interpreted as a reflux showing a possible
bacteria pass from the bladder to the kidney. However later on, it was shown in [345] that such
backward flow could not be seen as a reason of bacteria moving past, rather considering the
Lagrangian trajectories of particles is more reliable way to define the bacteria transmission
(see the previous example and comment 5.3).

◾Example 5.3: Peristaltic Motion in Two-Dimensional Channel at Moderate Reynolds
Number (Numerical Solution) [382].

The peristaltic flow problems of moderate Reynolds number are usually solved numeri-
cally, because in this case both inertia and viscose terms are of the same order, and the full
Navier-Stokes equation should be considered. In this model, the steady Navier-Stokes equation
is used in forticity-stream function (𝜔 − 𝜓) variables (S. 7.1.2.3)

𝜕𝜓

𝜕y
𝜕𝜔

𝜕x
− 𝜕𝜓

𝜕x
𝜕𝜔

𝜕y
= 1

Re

(
𝛼2 𝜕

2𝜔

𝜕x2
+ 𝜕2𝜔

𝜕y2

)
, 𝛼2 𝜕

2𝜓

𝜕x2
+ 𝜕2𝜓

𝜕y2
= −𝜔 (5.11)

The boundary conditions are specified in wave frame: at central axis 𝜓 = 0, 𝜕𝜓∕𝜕y = −1,
𝜕2𝜓∕𝜕y2 = 0, at wave 𝜓 = q, 𝜕𝜓∕𝜕y = −1, for input-output 𝜕𝜓∕𝜕x = 0. These values defined
variables on all boundaries of considering domain (upper half of channel) as it is required for
Navier-Stokes equation (S.1.1): (i) no-slip condition on the lower (centre axis 𝜓 = 0) and on
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the upper (wave 𝜓 = q) boundaries, (ii) symmetry condition on the lower boundary (𝜓 = 0),
(iii) assuming that there is no-flow at the leading and trailing edges of domain as if it were
infinitely long (Exer. 5.14). Here, dimensionless variables are scaled using: 𝜆 for x,H for y, c
for velocities, cH for 𝜓 ,c∕H for 𝜔, cH for flow rate q in wave frame and Reynolds number is
defined as Re = (cH∕𝜈)𝛼, where 𝛼 = H∕𝜆.

Comment 5.6 To carry out practically an input-output condition 𝜕𝜓∕𝜕x = 0, one obtains
numerical results for increasing number of longitudinal points before and after channel or
tube. Comparing the desired accuracy with the difference of results at adjacent points, one
estimates the location where both values are of the same order showing that this condition is
approximately realized. Actually, such a procedure is a way to extend the computing domain
at the entrance and at the exit.

The problem was solved numerically applying the finite-difference approach (S. 9.6). The
details of numerical scheme may be found in [382]. The longitudinal velocity profile in the end-
ing section was compared with experimental data from [23] showing qualitatively agreement
of calculation and measured values. The basic results are:

• In the major central part with forward flow, the longitudinal velocity profiles are almost
parabolical and close to those obtained in a simple linear model in Example 5.1; at the
leading and trailing edges relatively small regions with retrograde flow exit.

• At Re < 1, the velocity profiles are independent of Re, whereas as the Reynolds number
grows, they change and reach asymptotically the parabolic profiles.

• The Lagrangian particles trajectories indicate that the reflux occurs near the wall at Re < 1,
but for Re > 1 the reflux exists near the axis.

• The pressure rise per wavelength is independent of Reynolds at Re < 1, and monotonically
decreases as Reynolds grows.

• The relation between the dimensionless pressure rise per wave length and the time-mean
flow rate is close to linear, which is important to know for applications.

• The shearing stresses vary slightly along the wall for small values of 𝛼 = H∕𝜆 and are
steeply distributed, having a remarkably large maximum for large values of 𝛼, which also
should be taken into account in applications.

• The results for the pressure rise and shearing stresses plotted via 𝛼𝜀 == a∕𝜆 show that
curves for different 𝜀 are close, forming one general relation indicating that this parameter
controls the peristaltic flow behavior.

◾Example 5.4: Peristaltic Motion in Rectangular Container (Perturbation Solution)
[341]

Practical interest in efficient microelectromechnical systems (MEMS) with small scales
results in a variety of design suggestions for such devices. This study is also aimed to under-
stand the possibility of using the peristaltic flow for mixing processes in small channels in
order to design MEMS without mechanical elements. In conformity with the prototype of
MEMS, the model consists of closed long rectangular container with typical for MEMS high
oscillating peristaltic flow. To simulate the peristaltic flow, it is assumed that one of the walls
undergoes sinusoidal oscillation in the form of traveling wave y = 2𝜀H cos(kx − 𝜔t), where k
is the wave number and 𝜔 is the frequency.

The mathematical model contains the continuity and Navier-Stokes equations in vector
form (7.8) and boundary conditions on the wave and on unmoved wall in special form:
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V(x, y = 2𝜀H cos(kx − 𝜔t), t) = 0, 2𝜀H𝜔 sin(kx − 𝜔t) and V(x, y = 2H, t) = 0, respectively
(Com. 5.7). In dimensionless variables this system becomes (Exer. 5.15)

∇ ⋅ V = 0, 𝛼2 𝜕V
𝜕t

+ 𝜀𝛼2V ⋅ ∇V = −∇p + ∇2V (5.12)

V(x, 𝜀 cos(𝜅x − t), t) = 0, sin(𝜅x − t), V(x, 1, t) = 0

Here, lengths are scaled by 2H, velocities by 2H𝜀𝜔, time by 1∕𝜔, pressure by 𝜀𝜇𝜔, whereas
𝜅 = 2Hk, and 𝛼 = 4H2𝜌𝜔∕𝜇 are the dimensionless wave number and frequency.

Comment 5.7 Boundary conditions (5.12) are written in a vector form as V(x, y, t) = u, v
which means: vector V depends on variables x, y, t and has components u, v. Thus, the first
condition (5.12) tells us that: vector V at coordinates and time x, y = 𝜀 cos(𝜅x − t), t, has com-
ponents u = 0, v = sin(𝜅x − t).

The perturbation series are employed for solution taken into account that 𝜀 << 1

V = V0 + 𝜀V1 + 𝜀2V2 + … ,

1

∫
𝜀 cos(𝜅x−t)

udy = cos t − cos(𝜅x − t)
𝜅

(5.13)

Because the model simulates the prototype of MEMS, the high frequency required considering
𝛼 >> 1. The last equation (5.13), defining the flow rate, should be added to usual governing
system for peristaltic flow, because of a closed domain (container). This relation is obtained
knowing that velocities on the walls are zero including side walls (assuming that in a long
container the effect of flow at side walls is negligible). It is shown that the dominant part of
solution V0 satisfies the unsteady Stokes equation (S. 7.3.1). Although this problem is similar
to Stokes’ second problem (Exer. 5.16), analysis reveals that in this case an asymptotic solution
should be constructed of inner and outer perturbation series. That is because the problem is
specified by two small parameters 𝜀 and 1∕𝛼. Such technique was developed by Van Dyke
[404]. Using Van Dyke’s approach requires long mathematical manipulations (given in [341]),
but authors obtain the inner and outer expansions for close to and away from walls areas of
flow and after matching those get the leading term V0 of series for velocity.

Analysis of final expressions results in the following specific features of peristaltic flows
with high frequency oscillations:

• The time-averaged velocity consist of two components: one independent of position x and
another that is periodic in x; the x -independent component is dominant for a wave with
a short dimensionless wavelength (𝜅 >> 1), and the x -periodic component is dominant
for a wave with a long wavelength (𝜅 << 1); for moderate wavelengths (𝜅 ≈ O(1)) both
components are comparable (Com. 3.8).

• The time-average velocity along the channel near the oscillating boundary of order
O(2H𝛼𝜀2𝜔) is in direction of the traveling wave; in this low the thickness of boundary
layer is of order O(2H∕𝛼).

• The opposite to this wave direction flow in the considering closed channel for 𝛼 >> 1 is
independent of 𝛼 and is of order O(2H𝜀2𝜔).

• For high frequencies, the Eulerian and Lagrangian descriptions are in consistent, whereas
at low frequencies, the results of this study confirm the conclusions (Exam. 5.1) obtained
by Jaffrin and Shapiro (Exer. 5.17).



�

� �

�

234 Applications in Fluid Flow

◾Example 5.5: Peristaltic Flow in Closed Cavity (Series and Numerical Solutions) [431]

This investigation was as well motivated by application of peristaltic flows for enhance
mixing process in microdevices. The model is similar to that in a study reviewed in previous
example, but: (i) the peristaltic motion is produced by both upper and lower vibrating walls
moving with the same amplitude and frequency in opposite phases, and (ii) the cavity is shorter,
which requires accounting for side walls effects. The problem is solved analytically for small
amplitudes using perturbation approach and numerically for arbitrary amplitude employing
the finite-element approximation (S. 9.6).

The problem is governed by the Navier-Stokes equation in the same form as in the previ-
ous example using the same dimensionless variables for length, time, velocities, and different
variable for pressure scaled by 𝜀R2𝜇𝜔, where R = 2H

√
𝜔∕𝜈 is the Strouhal number applied

in this study instead of Reynolds number. Thus, governing equations and the boundary con-
ditions are similar to system (5.12), but with regard to literal walls using two third equations
and to both moving walls by the last two expressions (Exer. 5.18)

∇ ⋅ V = 0,
𝜕V
𝜕t

+ 𝜀V ⋅ ∇V = −∇p + (1∕R2)∇2V, V(0, y, t) = V(L, y, t) = 0 (5.14)

V(x, 𝜀 cos(𝜅x − t), t) = 0, sin(𝜅x − t), V(x, 1 − 𝜀 cos(𝜅x − t), t) = 0,− sin(𝜅x − t)

Using perturbation series and integral condition (5.13) with upper limit 1 − 𝜀 cos(𝜅x − t)
instead of 1 and following the tedious procedure from [139], authors obtained solution of
order O(𝜀2) containing two first terms. Detailed description of the procedure of this solution
as well as of the scheme and technique of numerical solution are given in [431].

Some conclusions specific for closed short cavities are derived:

• The first order solution consists of two terms: one the same as in open channel (Exam. 5.2)
and another induced by the pressure oscillating occurring due to sidewalls; this is a contrary
conclusion to previous results based on an assumption that the side walls effects are of the
second order.

• The displacement of passive traces over one period of oscillation predicted by the sec-
ond order approximation is of the same order of magnitude as that given by the first order
approximation, so that both data is necessary to taken into account; however, only the time-
independent term of the second approximation is of order 𝜀2, whereas the time-dependent
term of this solution is of order 𝜀3, and hence, it may be neglected in this order of approxi-
mation.

• In contrast to the case of infinity long channel, the peristaltic flow in closed conduit is
unsteady even in the moving frame.

• Comparison with numerical results shows that the analytical solution is valid in the middle
cavity zone located one wavelength distance away from both sidewalls.

• The Eulerian flow next to the vibration walls is in the wave direction, whereas the flow in
the central area is in opposite direction.

• For finite amplitudes, the particles trajectories indicate the existence of global circulation
in the entire cavity where the fluid moves in the direction of traveling waves next to vibrat-
ing walls, turning around next to the sidewalls, and moves in the opposite direction in the
central region.
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• The flow forms also stationary circulation bubbles, which next to vibration walls rotate in a
clockwise direction, whereas far away from the vibrating walls, they rotate in the counter-
clockwise direction (Exer. 5.19).

OTHER WORKS: Numerous semi-conjugate solutions of different peristaltic flows have
been published over the years starting from the 1970s of the last century. These studies con-
sider the peristaltic flows of various non-Newtonian and other types of fluids, different forms
of channels and tubes, effects of heat and mass transfer, electrical and magnetic field, impact of
particles on the flow and some other factors influence. However, the majority of these solutions
are obtained under the same assumptions of a long wavelength and small Reynolds number
using the same perturbation approach which were first developed by early researchers. As well,
the numerical solutions of these studies differ from early investigations basically by details
of integration. We review some examples mainly selected from the latest results to confirm
just-stated characteristics of semi-conjugate solutions. In particular, many recently published
articles consider the peristaltic flows of different non-Newtonian fluids: the Carreau-Yasuda
fluid with nanoparticles in asymmetric channel [1], the electrically conducting Jeffrey fluid in
inclined channel [400] and in asymmetric rotating channel under magnetic field influence [3],
the Oldroyd fluid in planar channel and tube at presence of magnetic field and heat transfer
[203], and the Burgers fluid in channel with compliant walls and heat transfer [180].. The last
article models the earth’s mantle motion, the third one studies the MHD (magnetohydrody-
namic) flows useful for applications, and the three others simulate flows in human organs. The
first solution is obtained numerically, and the analytical solution in closed form is attained in
the third study, whereas the others used the perturbation approach. Similar problems are exam-
ined in the papers published over the two last decades: the flow of Carreau fluid in divergent
tube with combined effects of heat and chemical reactions [10], the Newtonian fluid flow in
the two-dimensional coiled channel studying the curvature effect [13], the Phan-Thien-Tanner
fluid creeping flow (S. 7.4.1) in a tube using linear and exponential rheology models [157],
the nonlinear magnetohydrodynamic flow of electrically conducting Oldroyd fluid affected by
transversely located magnetic field [159], the flow of rarefied (low density) gas in microchan-
nel with slip and no-slip conditions [75], the unsteady Newtonian fluid flow in finite-length
tube analyzing effect of wave shape [229].

Comment 5.8 A non-Newtonian fluid is a fluid whose properties differ in any way from those
of Newtonian fluid. Most commonly, the viscosity of non-Newtonian fluid depends on spatial
or/and on time deformation, whereas the viscosity of Newtonian fluid depends only on the
temperature. The viscous stress of Newtonian fluid is linearly proportional to strain rate of
deformation. In contrast to that, the similar relations for non-Newtonian fluids are much com-
plicated and usually are named after researchers who first employed corresponding rheological
law. With relatively simple the power law non-Newtonian fluid we encountered in Section 1.9
considering the universal function for a fluid with another than a Newtonian rheology behav-
ior. Many non-Newtonian models that we just mentioned, for example, and many others exist,
because each substance or a group of it shows individual rheological behavior that describes
specific phenomenon and corresponding mathematical model.



�

� �

�

236 Applications in Fluid Flow

Exercises

5.1 Explain how the tubular human organs work transporting the blood, urine, and other
physiological fluids.

5.2 Learn more about artificial human organs using, for example, Wikipeda

5.3 Compare the formulation of the heat transfer and peristaltic flow conjugate problems.
Explain why the latter is much complicated than the former. Recall or study what is a
nonlinear problem.

5.4 Think about the difference between conjugate and semi-conjugate peristaltic flow prob-
lems. Why the second is much simpler? What is basically missing in a semi-conjugate
solution?

5.5 Explain why the peristaltic flow is an unsteady problem in fixed frame, but in the frame
attached to the wave, the same problem is a steady one. Hint: imagine that you are sitting
on the wave and are looking at the flow passes inside of a channel.

5.6 Show that the difference between similar equations (7.22) and (5.1) is caused by the
opposite peristaltic flow directions in fixed and moving frames.

5.7 Derive the velocity distribution (5.1) using integration of differential equation (5.1).
Compare the result with a profile of Poiseuille type. Hint: use Figure 5.1 and profile
(7.23) or (7.24).

5.8 Study carefully Comment 5.2 to understand in essence the difference between equations
(7.22) and (5.1), distinction between their solutions, as well as different style of math-
ematical presentation of the corresponding expressions. Explain why one solution is an
exact result, whereas another is an approximate solution.

5.9 Analyze equations (5.2) and following discourse to understand the conclusions formu-
lated in the text. Hint: also use the dependence between parameters in the moving and
laboratory frames and explanation from Comment 5.2.

5.10 Derive equations (5.5) and (5.6) using equations (5.3) and collecting terms with the same
powers of 𝜀.

5.11 Obtain the Taylor series in power of 𝜂 for first relations (5.4). Compare the result with
expression from text. Hint: Recall that coefficients of Taylor series are found by differ-
entiation of the function that is expanded in the series.

5.12 Recall or study the basic features of functions of complex variable using Advanced Engi-
neering Mathematics.

5.13 As it indicated above, the model 5.2 is nonlinear in contrast to model 5.1. Show that
this is true considering the initial equation (5.3) or the Orr-Sommerfeld equation (5.10).
Specify what terms are responsible for the nonlinearity; see Exercise 2.43.

5.14 Explain physical reasons of boundary conditions for equations (5.11). Recall what was
said about such boundary conditions for Navier-Stokes equation in previous chapters
and analyze the last condition taking into account the comment 5.6.
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5.15 Analyze the boundary conditions (5.12) on the wave and on the unmoving wall of con-
tainer written in the vector form to understand this type of presentation.

5.16 Learn about the second Stokes’ problem using, for example “Fluid Mechanics,
SG2214,HT2010” on the internet.

5.17 Compare the basic features of two peristaltic flows: at low frequency in channels
observed in the first examples and at high frequency in closed container described in
Example 5.4.

5.18 Derive the system (5.14) from the system (5.12) taken into account the changes indicated
in the text.

5.19 Compare results obtained for close containers in two studies reviewed in Examples 5.4
and 5.5 to understand physically the observed difference caused by sidewalls.

5.1.4 Conjugate Solutions

Very few solutions are full conjugate investigating both effects (wall on fluid and backward
one) of interaction between flexible walls and fluid inside the channel. We analyze two results
of that type, one of which is an early publication, and another presents an example of more
contemporary studies. Whereas the former research is performed assuming that the peristaltic
flow is produced by a sinusoidal wave traveling along the walls, the latter is based on a more
realistic model considering the interaction between oscillating walls and fluid flow.

◾Example 5.6: Two-Dimensional Peristaltic Flow Induced by Sinusoidal Wave [270]

This early research is an extension of Fung and Yih study (Exam. 5.2) by including the effect
of walls in purpose to understand the inherent dynamic solid/fluid interaction. This is achieved
by considering equations of motion of both of the fluid and of flexible walls. It is assumed
that a peristaltic flow in an infinite long channel is produced by traveling sinusoidal waves of
moderate amplitude 𝜂 = a cos(2𝜋∕𝜆)(x − ct) imposed on the walls, which are considered as
thin elastic plates or membranes. This relatively simple approach is applied by other authors
(see other works below).

The same mathematical model as in Example 5.2 is used. Thus, the problem is governed by
Navier-Stokes equation (5.3) in the form of stream function with boundary conditions (5.4)
written in the same dimensionless variables. The additional conjugate condition is presented
as an equality of derivatives of forces acting on the wave, which is considered as an interface:
the pressure gradient 𝜕p∕𝜕x acting from the flow and the derivative of wall stresses defining
by a special operator L̃(𝜂)

𝜕

𝜕x
L̃(𝜂) =

𝜕p

𝜕x
= 𝜇∇2𝜓y − 𝜌(𝜓yt + 𝜓y𝜓yx − 𝜓x𝜓yy) at y = ±H ± 𝜂 (5.15)

L̃(𝜂) = −T
𝜕2

𝜕x2
+ m

𝜕2

𝜕t2
+ C

𝜕

𝜕t
L̃(𝜂) = D

𝜕4

𝜕x4
+ m

𝜕2

𝜕t2
+ C

𝜕

𝜕t

The second expression (5.15) for the pressure gradient is obtained from Navier-Stokes
equation (5.3) with additional term 𝜕p∕𝜕x modified using velocity components u = 𝜓y and
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v = − 𝜓x (S. 7.1.2.3) (Exer. 5.20). Two types of wall stresses acting as a membrane or a
flexural elastic plate are specified applying the relations (5.15) for operator L̃(𝜂), where T is
the tension of the membrane, D is the flexural rigidity of the plate, m is the mass per unit area,
and C is the coefficient of viscous damping.

Comment 5.9 The operator is the means to indicate the procedures that should be performed
(Exer. 5.21).

Employing these equations and dimensionless variables from Example 5.2 yields the fol-
lowing condition on the interface at y = ±(1 + 𝜂) instead of (5.15) (Exer. 5.22)

D
𝜕5𝜂

𝜕x5
− T

𝜕3𝜂

𝜕x3
+ m

𝜕3𝜂

𝜕x𝜕t2
+ C

𝜕2𝜂

𝜕x𝜕t
= 1

R
∇2𝜓y − (𝜓yt + 𝜓y𝜓yx − 𝜓x𝜓yy) (5.16)

Here, coefficients are scaled: D by 𝜌c2H3,T by 𝜌c2H,m by 𝜌H, and C by 𝜌Hc2∕𝜈. Comparing
relations (5.16) and (5.15) makes clear that equation (5.16) is valid for a membrane and for a
plate. To see this, set in the first case D = 0 and in the second T = 0.

In the case of pure peristaltic flow that occurs at the zero initial pressure gradient dp∕dx,
the solution of this problem is presented by the Orr-Sommerfild equation (5.10) (Exam. 5.2).
However, the part of solution depending on the wall effects leads to some differences. Using the
solution for the time-average axial velocity, the authors investigate the effect of a thin elastic
plate in cases of negligible and significant dissipation occurring due to viscous damping. The
interaction between the Poiseuille flow, which presents as a part of whole flow when the initial
pressure gradient is not zero, and peristaltic motion, is also studied. The following conclusions
are stated:

• The mean velocity is maximum at the centre and remains constant over some range, which
increases as the Reynolds number grows.

• At the boundaries the mean velocity decreases with increasing the damping, but increases
with increasing the wall tension and elastance.

• The mean velocity perturbation increases with increasing the wall damping, wall tension
and wall elastance.

• At higher wavelength a reversal in the flow direction may occur for very high rigidity of the
walls; the damping may also cause the mean flow reversal at the walls, which is not possible
when the reversal at the centre occurs in the case of pure peristalsis.

• Higher level of tension enhances the efficiency of peristaltic pumping and at lower tension,
the possibility of flow reversal increases.

◾Example 5.7: Steaming Flows in a Channel with Elastic Vibrating Walls [350]

As mentioned above, this study is based on a more realistic conjugate model analyzing
the interaction between vibrating walls and flowing fluid without assumption of the waves
imposed on the walls. The problem is governed by two-dimensional Navier-Stokes equations
(1.5)–(1.6) in Cartesian coordinates and conjugate dynamic equations for a thin elastic plate.
Because the elongate deformations of thin elastic plate are usually small in comparison with
those of bending, the thin plate is modeled employing surface y = 𝜂(t, x), which is supposed
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to vibrate in the transverse direction. The conjugate dynamic equations are formulated using
theory from the book [390]

𝜎+ − 𝜎− = 2𝜌wΔ
𝜕2𝜂

𝜕t2
+ 2EΔ3

3(1 − 𝜈2
w)
𝜕4𝜂

𝜕x4
,

𝜕𝜂

𝜕t
= v, u = 0, − 𝜏xy

𝜕𝜂

𝜕x
+ 𝜏yy − p = 𝜎−

(5.17)
In the first relation, Δ is the wall thickness, E is the Young modulus, 𝜈w is the Poisson coeffi-
cient, 𝜎+ and 𝜎− are normal stresses at the external and internal wall surfaces, so that difference
(𝜎+ − 𝜎−) specifies the surface loading. The second and third relations (5.17) are the kine-
matic (equality of velocities) and the dynamic (equality of forces) conjugate conditions on the
solid/fluid interface y = 𝜂(t, x), where 𝜏ij are the viscous stresses in the fluid (Exer. 5.23). Three
additional relations

𝜕u∕𝜕y = v = 0 at y = 0, 𝜂(0, t) = H + a cos𝜔t, p(x = L) − p(x = 0) = Δp (5.18)

are needed to complete the problem statement. The first condition follows from the symmetry
of a channel, the second determines the harmonic oscillations imposed on the left wall edges,
and the third specifies the time-average pressure drop in the channel.

The following dimensionless variables are introduced: x∕L, y∕H, u∕𝜔L, v∕𝜔H, 𝜂∕H,
p∕𝜌𝜔2L2Re and time 𝜔t, where Re = H2𝜔∕𝜈 is the vibration Reynolds number, which is
a main dimensionless parameter in this study. Using the same notations for dimensionless
variables, yields the system of two-dimensional equations (1.4)–(1.6) for fluid and conjugate
conditions (5.17) on the interface written in the dimensionless variables (except dimensional
scales H,L, 𝜔 and 𝜌) (Exer. 5.24 and 5.25)

𝜕u
𝜕x

+ 𝜕v
𝜕y

= 0, Re

(
𝜕u
𝜕t

+ u
𝜕u
𝜕x

+ v
𝜕u
𝜕y

)
= −

𝜕p

𝜕x
+ 𝜕2u
𝜕y2

+
(H

L

)2 𝜕2u
𝜕x2

Re
(H

L

)2
(
𝜕v
𝜕t

+ u
𝜕v
𝜕x

+ v
𝜕v
𝜕y

)
= −

𝜕p

𝜕y
+
(H

L

)2 𝜕2v
𝜕y2

+
(H

L

)4 𝜕2v
𝜕x2

(5.19)

−�̃� 𝜕
2𝜂

𝜕t2
= −p +

(H
L

)2 𝜕v
𝜕y

−
(H

L

)3
(
𝜕u
𝜕y

+ H
L
𝜕v
𝜕x

)
𝜕𝜂

𝜕x
+ 𝛽 𝜕

4𝜂

𝜕x4
, 𝛽 = 2EΔ3H3

3(1 − 𝜈2
w)𝜔𝜇L6

where �̃� = 2Re𝜌wHΔ∕𝜌L2, 𝜂(0, t) = 1 + 𝜀 cos t, 𝜀 = a∕H. If the channel is relatively long such
that H∕L << 1, the system (5.19) may be significantly simplified by neglecting the terms with
ratio H∕L in power two and higher to obtain

Re

(
𝜕u
𝜕t

+ u
𝜕u
𝜕x

+ v
𝜕u
𝜕y

)
= −

𝜕p

𝜕x
+ 𝜕2u
𝜕y2

,
𝜕p

𝜕y
= 0, −�̃� 𝜕

2𝜂

𝜕t2
= −p + 𝛽 𝜕

4𝜂

𝜕x4
(5.20)

Comment 5.10 The approach of simplifying the equations (5.19) is similar to that in boundary
layer theory (S. 7.4.4.1). Both approaches are based on using the ratio of scales proportional
to main sizes of domain: a small transverse scale (boundary thickness or channel height) and a
large longitudinal gage so that the boundary layer procedure is applicable to flows over bodies,
and another similar way is suitable to the channel flows.
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To obtain an analytical solution, the simplified problem (5.20) containing the nonlinear first
equation and complicated boundary condition is linearized. This is achieved by neglecting
in the first equation the nonlinear terms, which are small in comparison with pressure in the
long channel with H∕L << 1. The solution of such linear problem is constructed using the
perturbation series (5.3) for velocities (Exerc. 5.26)

u = 𝜀u1(x, y, t) + 𝜀2u2(x, y, t) + … , v = 𝜀v1(x, y, t) + 𝜀2v2(x, y, t) + … . (5.21)

and similar series for oscillations 𝜂 = 1 + 𝜀𝜂1(x, t) + 𝜀2𝜂2(x, t)+... Differentiating the lin-
earized (without the second and third nonlinear terms) first equation (5.20) with respect to y,
leads to the partial differential equation (Exer. 5.27)

Re
𝜕2u1

𝜕t𝜕y
=
𝜕3u1

𝜕y3
, u1 = eitF(x̃)(e𝜑y + e−𝜑y − e𝜑 − e−𝜑), F(2) = −𝛾 𝜑

tanh𝜑 − 𝜑
F + 𝛽F(6)

(5.22)

𝜑 =
√

Re
2
(1 + i), 𝛾 = 𝜌H

2𝜌wΔ
, 𝛽 = Δ2E

3H4𝜌w(1 − 𝜈2
w)𝜔2

, 𝛽k6 − k2 − 𝛾 𝜑

tanh𝜑 − 𝜑
= 0

It is shown [350] that the first order term of the solution of differential equation (5.22) for u1
satisfying the second (5.17) and the first (5.18) conditions, has the form of second relation
(5.22). In this solution, the function F(x̃) depends on variable x̃ = xL∕H (here x is dimension-
less) and parameters 𝛾 and 𝛽, which characterize the ratio of the fluid and the walls masses
and the walls rigidity, respectively (Exer. 5.28).

Ordinary linear differential equation (5.22) (the upper signs in parentheses denote the deriva-
tive number) with constant coefficients for function F(x̃) is analyzed using it characteristic
equation given by the last equation (5.22) (Exer. 5.29). Authors show that the roots of this
characteristic equation determine a variety of oscillation regimes depending on three parame-
ters: vibrational Reynolds number Re = H2𝜔∕𝜈 and two ratios 𝛾 and 𝛽 determined by relations
(5.22). Some of these regimes principally differ from oscillations usually observed in the prob-
lems of this type. Analysis of the first order approximation of order Re−1∕2 reveals that the three
roots of a cubic (in new variable k2) characteristic equation (5.20) correspond to three feasi-
ble regimes. One root pertains to pair of traveling waves and two others describe the standing
waves (Exer. 5.30). Similar analysis for low Reynolds numbers (Re << 1) indicates also the
three possible regimes. One describes a relatively slow damping behavior of the system; others
correspond to the standing waves. All three modes weak depend on parameters, such as initial
frequency, the walls rigidity, fluid and walls densities, and so on. The drift velocities and mass
transfer are investigated as well. Detailed data are given in [350].

The following basic conclusions are formulated:

• The two-phase model of peristaltic motion (say conjugate) considered here is basically dif-
ferent from the usual models assuming unchangeable channel walls (semi-conjugate).

• The walls-fluid interaction leads to waves damping and to essential decreasing of the bend-
ing walls oscillations.

• The fluid motion is not periodic in space as it is assumed in usual models, and the
cross-section velocity profiles are not constant changing from boundary layer type at the
entrance to Poiseuille profiles at the end of the channel.
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• Three different regimes are possible: one is the traveling wave and two others are standing
waves.

• In general, the mass flux intensity is much higher at high Reynolds numbers; at high
Reynolds numbers, the standing waves damp rapidly along the channel and provides the
mass flux surpassing the mass flux induced by traveling waves; the drift velocity profile
exposes in this case a counter-flow stream near the walls at the entrance and the Poiseuille
flow at the outlet; at low Reynolds number, the traveling waves with rather low damping
give the maximal fluid mass flux, and the drift velocity profile exposes an intense stream
along the walls and counter flow at the axis.

• The average pressure gradient consists of two terms: one is the constant value of an exter-
nal pressure drop providing the Poiseuille flow, and another is a variable pressure gradient
existing due to vibrating walls with zero pressure difference at the channel ends.

• The study leads to the conclusion of efficiency of the mass flux at a standing wave regime
rapidly damping along the channel, which is contrary to existing opinion that the traveling
wave regime is the basic mechanism for fluid pumping (Exer. 5.31).

OTHER WORKS: The first simple way to take into account both effects of wall/fluid
interaction early developed in [270] was used by many authors for different fluids, channel
configurations and for other specific conditions. Twenty-four articles that used this approach
are listed on the Web of Science, but actually this study has much more followers. We mention
some examples starting from recently published results. In article [126], the three-dimensional
flow of non-Newtonian Williamson fluid in rectangular channel is investigated simulating the
chyme moving in intestine. The influence of a slip boundary condition, magnetic field, heat
and mass transfer on the flow of conducting Carreau fluid in a nonuniform channel is stud-
ied in [399] in a view of MHD application. The combined effect of Brownian motion and
thermophoretic diffusion (the Soret effect observed in a mixture of particles) in the nanofluid
flow is analyzed in [278]. The flow of the couple-stress non-Newtonian fluid that models the
behavior of complex liquids such as blood, infected urine or liquid crystals is studied in [300].
In study [279], the flow of micropolar fluid motion in a flexible tube is considered studying
effects of fluid parameters on elastic wall properties. Works [374] and [373] are examples
of researches which among others early extended the Mittra and Prasad approach [270] to
more complicated flows such as flow of particle-fluid mixture and flow with heat transfer in
nonuniform channel in the first and the second cases, respectively.

Besides considering followers, we also refer to similar methods proposed in papers [273]
and [266]. Both proposed models are different from the initial approach [270] by establishing
the progressive sinusoidal wave. In the first paper, the sinusoidal wave is imposed on walls
taken as compliant instead of rigid walls considered by Mittra and Prasad. In the second ver-
sion, the sinusoidal pressure wave is used instead of usually applied velocity wave. Similar
approach is employed also in the study [384] where the sinusoidal wave of tension is imposed
on the moving boundaries. The basic shortage of approaches of this type is that the walls/flow
interaction process defining the form and motion of the solid is substituted by a progressive
wave a priori giving walls attributes.

Much less researchers followed the more realistic but rather complex model [350] based
on the dynamic conjugate conditions. On the other hand, several attempts to take into account
the wall effects were initiated starting from early time. Despite the muscular structure and its
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working mechanism were of interest of early investigators (see, e.g., [396]), Fung [140] was
apparently the first who studied the walls/fluid interaction influence on the peristaltic flow.
He considered a solitary bolus moving along an axsymmetric slender channel simulating the
ureter. A two-dimensional model based on creeping flow and equations of normal stresses
equilibrium in the wall were used but no predetermined wall configuration was assumed.

Over the next two decades up to the 1990s, the wall effects are studied by many researchers
but, as we just discussed, assuming (like Mittra and Prasad) that due to one or another enforce-
ment, the channel walls are sinusoidal. The importance of the wall properties effects and the
insufficiency of these studies for precise understanding the wall/flow interaction are analyzed
in papers [55, 56], and [397]. The studies considering the fluid/solid interaction naturally using
equilibrium equations instead of giving walls are reviewed in papers [56] and [398]. The rel-
atively early results are analyzed in the first review, and more contemporary publications are
discussed in the second one. It is seen that not much studies of this type, which we view
as the conjugate simulations, are performed, especially in comparison with the amount of
semi-conjugate solutions and researches with given walls. We will analyze below some typi-
cal conjugate solutions. The attempt to study peristaltic flow mechanism by detailed copying
the small part of inherent intestine was made in [265]. Authors formulated a system of 15
complex equations and five relations for initial and boundary conditions simulating not only
walls and fluid kinematics and dynamics but also muscle composed of two electromechanical
coupling layers, and relationships for passive and active components of muscle. A model con-
sisting such complicated system of nonlinear differential equations with numerous constants
and functions, part of which is difficult to estimate, is unreliable due to doubt of the approx-
imation of natural organs operation. Similar but much simpler model of ureter is proposed
in [56]. However, this model contains also too many assumptions and experimental functions
including activation sinusoidal wave.

The physically grounded mathematical models based on equations of the fundamental laws
(S.7.1) and equilibrium equations on the interface are simpler and more reliable. We encoun-
tered two such models considering an early relatively simple study by Fung [140] and pub-
lished thirty years later advanced result [350] (Exam. 5.7). In a recent article [398], uretral
flow model of this type is developed. The model is constructed using geometrical data of real
uretral lumen, and an advanced approach known as arbitrary Lagrangian-Eulerian (Com. 5.3)
formulation (ALE) is employed for fluid domain. The Navier-Stokes and continuity equations
are used in the form containing additional terms caused by moving channel walls, as it follows
from the advanced ALE analysis presented in [34]. The Newton laws of mechanics are applied
as the governing equations for solid domain. On the fluid/ walls interface, the no-slip condition
at the walls and the equalities of fluid and solid stresses and displacements are specified. Sim-
ilar models are utilized to study other biomechanical processes such as propulsion or motility
of solids in flow. A review of early works studied solid motility one may find in article [41]
in which the peristaltic propulsion of spherical bolus is investigated. The model in this study
consists of a segment of a circular cylinder with a membrane simulating the muscle. The creep-
ing approximation equations are used for flow domain. Papers [264] and [383] are examples
of modern analyses of peristalsis with solids. The first work simulates the segment of the gut
modeling it as cylindrical shell with muscular flexible walls. An imposed propagation wave
activates the construction/relaxation of shell surface and the pellet propulsion. The problem is
solved numerically. The second article presents a model for peristaltic waves propelling the
infinite long rod or lozenge of finite length in the fluid-filled axisymmetric tube. The fluid flow
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is described employing creeping flow equations, and the walls deformation is simulated taken
the linearized equations of elasticity theory.

Exercises

5.20 Derive equation (5.15) as described in the text. Hint: use formulae for velocity compo-
nents to modify the equation (5.3) with additional term 𝜕p∕𝜕x to get as, for example, for
the first term 𝜕(∇2𝜓)∕𝜕t = 𝜕[(𝜕𝜓∕𝜕y)∇𝜓]∕𝜕t = 𝜕(𝜓y∇𝜓) = 𝜓yt.

5.21 Learn more about operator method using, for instance, the article on the internet: http://
qedinsight.wordpress.com/2011/02/25/an-operator-method-for-solving-second-order-
differential-equations/.

5.22 Show that equation (5.16) is valid for both for a membrane and for an elastic plate
and determine the scales for coefficients at derivatives knowing that all variables in
equation (5.16) are dimensionless. Hint: take into account that in relations (5.15) written
in dimension variables all terms are in the same units.

5.23 Study or recall basic terms of strength materials from Wikipedia or from more funda-
mental book, for example, [390].

5.24 Convert the two-dimension Navier-Stokes equations (1.5) and (1.6) in the dimensionless
variables given in the text to obtain the second and third equations (5.19).

5.25 Simplify system (5.19) by comparing order of terms to get the set of equations (5.20).
Compare two methods of simplifying equations of flows over bodies and in the long
channels.

5.26 Explain way series (5.21) for velocity components begin from the terms with 𝜀 unlike
to serial (5.3) for stream function that starts from the term without 𝜀. Hint: use formulae
(7.12) for velocity components.

5.27 Obtain the linearized first equation (5.20) (without nonlinear terms) as described in the
text. Prove that the derivative 𝜕2p∕𝜕x𝜕y that appears in the linearized equation (5.20)
equals zero. Hint: take into account the second equation (5.20) and the fact that the
derivative is of a mixed kind.

5.28 Show that the solution (5.22) u1 satisfied the second (5.17) and the first (5.18) boundary
conditions for velocity component u. Hint: note that all variables in expression (5.22)
are dimensionless.

5.29 Derive the characteristic equation (5.22) for ordinary differential equation defining the
function F(x̃). Hint: recall or study in Advanced Engineering Mathematics the integration
of linear ordinary differential equations with constant coefficients applying characteristic
equations.

5.30 Transform the characteristic equation for function F(x̃) (the last equation (5.22)) in the
cubic equation by using a new variable.

5.31 Compare conjugate and semi-conjugate formulation of peristaltic flow models to under-
stand what procedure basically makes the conjugate problem much more complicated
but also more reliable than the semi-conjugate one.

http://qedinsight.wordpress.com/2011/02/25/an-operator-method-for-solving-second-order-differential-equations/
http://qedinsight.wordpress.com/2011/02/25/an-operator-method-for-solving-second-order-differential-equations/
http://qedinsight.wordpress.com/2011/02/25/an-operator-method-for-solving-second-order-differential-equations/
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5.2 Methods of Turbulence Simulation

5.2.1 Introduction

The classical numerical methods (Chap. 9) are applicable to both laminar and turbulent
flows. However, the level of accuracy of governing equations for both flows is different.
Although the unsteady three-dimensional Navier-Stokes equations describes in principle the
turbulent flow as well as laminar flow, the range of eddies sizes is so wide that before the
1960s of the last century, only Reynolds-average Navier-Stokes equations and models such
as k − 𝜀 or k − 𝜔 (S. 8.4.3) might be used for studying and application. The computer advent
changed the situation, and in the last fifty years, the numerical methods of solving the exact
Navier-Stokes equations without averaging are developed and used. The basic values of such
methods is that they provide insight into physics of turbulence increasing our understanding
of its nature and opened a new possibilities in modeling at close to real Reynolds numbers in
applications.

In this chapter, we consider three known methods of this type: Direct Numerical Simula-
tion (DNS), Large Eddy Simulation (LES), and Detached Eddy Simulation (DES). Because
the range of eddies sizes is enormous, each method uses a special restriction in order to be
in line with possibilities of nowadays computer resources. In DNS the exact Navier-Stokes
equations are solved for all range of scales of eddies, but the possible solutions are confined
to moderate Reynolds numbers. Two other methods achieved the restriction by separating
large and small eddies, computing exactly the first part and modeling the others employing
Reynolds-averaging. The difference between LES and DES lies in variation of the small size
eddies’ treatment.

Three characteristic scales are usually used in analyses of turbulence: integral length l, which
is appropriate to the energy-bearing eddies, the Kolmogorov scale 𝜂, characterizing the small-
est eddies, and the Taylor microscale 𝜆,which is relevant to median size eddies. These scales
are related to each other as follows: [421, 422]

𝜂∕l ∼ Re−3∕4
tb , 𝜆∕l ∼ Re−1∕2

tb , 𝜂 = (𝜈3∕𝜀)1∕4, 𝜆 ∼ (l𝜂)1∕3, Retb = k1∕2l∕𝜈 (5.23)

where 𝜀 is dissipation (S. 8.4.1). A comparison shows that 𝜂 << 𝜆 << l, and, since l ∼ 0.1 𝛿,
one estimates that the Kolmogorov length scale outside the viscous wall region (S. 8.3.2) is
one ten-thousandth times less than the thickness of the boundary layer.

In this chapter, we present basic features of the three mentioned above methods of direct
turbulence simulation. Examples of application are reviewed in the next chapter.

5.2.2 Direct Numerical Simulation

A direct numerical simulation is a method to solve the Navier-Stokes equations in order
to obtain the complete space and time-dependent field of turbulent flow. The practical and
fundamental importance of such simulation is eminent because these solutions give numeri-
cally exact results, which may be taken as experimental data. These accurate results on the
microscale level may be used for different studies: for analyzing the turbulence structure and
instantaneous characteristics including fluctuations correlations, to test the other approximate
approaches, to create new turbulence models for applications, to study specific phenomena of
turbulent flows that usually are difficult or impossible obtain in laboratory (Exer. 5.32).
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However, performing DNS requires fine grid sizes. Estimation of the number of grid
points and time steps needed for getting accurate results shows that such calculation is a
complex computation problem. If the increment along the mesh direction is h, the number N
of points should satisfy the inequality Nh > l, providing that the integral scale l is contained
within the computational domain. On the other hand, to resolve the Kolmogorov scale, it is
necessary to have h ≤ 𝜂. Using these two inequalities, relation (5.23) for 𝜂 and knowing that
𝜀 ≈ (u′)3∕l (u′ -fluctuation velocity, S. 8.2.2) leads to expression determining the number
of points N ≥ (u′l∕𝜈)9∕4 = Re9∕4

tb that is required to perform the three-dimensional DNS. In
addition, to obtain accurate results applying the explicit method of integration, the time step
Δt should satisfy inequality for the Courant number C = u′Δt∕h < 1, which ensures that a
fluid particle path in each step is less than a mesh spacing h. Because the turbulence time
scale is of order l∕u′ and h ∼ 𝜂, a simple calculation yields the order of the number
of time steps as Nt ∼ l∕u′Δt = l∕hC = l∕𝜂C, which according to (5.23) gives the following
estimation Nt ∼ Re3∕4

tb ∕C (Exer. 5.33).
More specific examples of estimation are presented in [422] using formulae N ≈

(3Retb)9∕4,Nt ≈ 0.006H∕u𝜏
√

Retb, where Retb = u𝜏H∕𝜈 and 2H is a channel height.
According to these formulae, the numbers of grid points and time steps for a case of one of
Laufer’s experiments [215] are: N = 6.7 ⋅ 106 − 2.1 ⋅ 109 and Nt = 32 ⋅ 103 − 114 ⋅ 103 for
Retb = 360 (ReH = 0.61 ⋅ 104) − 4650 (1.15 ⋅ 105), respectively. These estimations show that
in DNS the required number of grid points and time steps grows fast with Reynolds number,
resulting in large computer memory and time essential for calculation and high cost.

Because the Reynolds numbers of the most engineering applications are higher than moder-
ate ones, some years ago, the only relatively simple problems might be investigated applying
DNS. However, starting with simple geometric flows in channels and in boundary layers, the
DNS availability grows so that the more complicated problems of more complex geometric
flows, high-speed flows, two-phase and reacting flows become possible to consider. Analysis of
the latest publications shows that during the last several years significant progress is achieved
particularly in studying the reacting flows and different form of combustion. Examples are
presented in the next chapter.

The importance of direct Navier-Stokes equation solutions in turbulence theory is difficult
to overestimate: significantly improving the exactness of results, this approach has opened
a new chapter in turbulence understanding, leading to fresh ideas and thoughts. As the more
powerful computers appear, and higher Reynolds numbers become possible, the DNS would be
widely used, resulting in fundamental studies in different science and technology areas [272]
(Exer. 5.34).

5.2.3 Large Eddy Simulation

A large eddy simulation is a method of reduction the number of grid points and time steps
in order to solve directly Navier-Stokes equation for higher Reynolds numbers. Estimations
show that usually the number of grid points required in LES is abut ten times less than that
for DNS [422]. The procedure of LES first was proposed in 1963 by Smagorinsky for the
atmospheric motion study [358]. The main idea of such procedure is to separate the treatment
of large and small eddies. Because the large eddies carry the majority of the energy and
are mostly affected by boundary condition, they should be computed directly using DNS
approach. At the same time, the small turbulence eddies are weaker, nearly isotropic, having
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almost universal characteristics and therefore are more tractable for modeling, applying
Reynolds-average models.

To perform the scale separation, a special method known as filtering was developed. A
simple example [422] helps to understand the notion of filtering and, in particular, to see that
the integration may be used to perform filtering. Consider the finite-difference formula for the
first derivative of some function f (x). Using the Leibniz rule of interchanging the integration
and differentiation, this relation may be presented in the following integral form (Exer. 5.35)

df

dx
=

f (x + Δx) − f (x − Δx)
2Δx

= 1
2Δx

x+Δx

∫
x−Δx

df (𝜉)
d𝜉

d𝜉 = d
dx

⎡
⎢
⎢
⎣

1
2Δx

x+Δx

∫
x−Δx

f (𝜉)d𝜉
⎤
⎥
⎥
⎦

(5.24)

This expression gives an average value of the derivative of function f (x). That derivative is
constant within one grid step Δx, but its value is variable changing from one to another step.
Due to that, the relation of type (5.24) may be considered as a filter of the derivative sizes.
One of the first filters employed in 1970 for three-dimensional turbulence model, known as
volume-average box filter was of this type (Exer. 5.36)

ui(x, t) =
1
Δ3

x+(1∕2)Δx

∫
x−(1∕2)Δx

y+(1∕2)Δy

∫
y−(1∕2)Δy

z+(1∕2)Δz

∫
z−(1∕2)Δz

ui(𝛏, t)d𝜉d𝜂d𝜁 (5.25)

Since that time other types of filters are suggested and used. In relation (5.25), x and 𝛏 are vec-
tors defining the coordinates, Δ denotes the smallest of turbulence scales rated by filter as the
large scales, which are computed, whereas the others, under scale Δ, termed as subgrid scales
(SGS), are eliminated and modeled. Because relation (5.25) determines the filter velocity ui,
the subgrid velocity is found as a difference ũi = ui − ui (Exer. 5.37).

Filtering the Navier-Stokes equation in Einstein notation (S. 7.1.2.2) gives

𝜕ui

𝜕t
+ uj

𝜕ui

𝜕xj
= −1

𝜌

𝜕p

𝜕xi
+ 2𝜈

𝜕

𝜕xj
Sij −

𝜕𝜏ij

𝜕xi
Sij =

1
2

(
𝜕ui

𝜕xj
+
𝜕uj

𝜕xi

)

(5.26)

This equation presents the field of filtered large scales modified by the subgrid scales stresses
through tensors Sij and 𝜏ij (Com. 1.9). The rate-of-strain tensor Sij describes the rate of change
of local deformation (Exer. 5.38). The tensor 𝜏ij represents the process of interaction among
and between large and small eddies and plays a fundamental role in LES. Determining this
tensor requires modeling the subgrid scales stresses, which is a challenge, and during the past
half-century, many models from the first simple to the more complicate nonlinear models were
suggested [143, 223, 422].

The simplest Smagorinsky model is created using analogy with mixing-length formula
(S. 8.3.1). In this case, the tensor 𝜏ij is proportional to the strain-rate tensor Sij and is defined as

[421, 422] 𝜏ij = 2𝜈tbSij, where 𝜈tb = (CsΔ)2
√

2SijSij is Smagorinsky eddy viscosity, Δ is the
grade size, and Cs is a constant coefficient. This model as well as mixing-length approach is not
universal, rather it is calibrated by adjusting the coefficient that varies: Cs ≈ 0.1 − 0.2. Some
other models used Smagorinsky formula with different eddy viscosity. For example, the Lilly
model [231] with turbulence viscosity depending on SGS kinetic energy is similar to Prandtl’s
one-equation model (S. 8.4.2). The dynamic SGS models apply variable coefficients Cs, defin-
ing its spatial [146] or temporal [262] average value using additional filtering (Exer. 5.39).
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5.2.4 Detached Eddy Simulation

Large eddy simulation significantly widened the application of the direct solutions of
Navier-Stokes equation due to increasing the possible Reynolds numbers. This was achieved
by using the Reynolds-average modeling for small eddies instead of computing those in DNS.
However, the important engineering applications such as airfoil ground or marine vehicle
require much higher Reynolds number and so demand great numbers of grid points and time
steps that lie far beyond the resources of current computers. The basic reason for the growth of
such grid number is related to near-wall region with the smallest eddies, whose role increases
as the Reynolds number grows. Estimation shows that Reynolds number increasing by factor
10 leads to increase in the computer work by factor about 30 [422] (Exer. 5.40).

These problems motivated the attempts to develop improved LES methods by changing the
treatment of small eddies. Different approaches were proposed (see, e.g., review [17], p. 715).
The detached eddy simulation (DES) proposed by Spalart et al. in 1997 [365] is the most
promising method of improved LES. This approach gained an acceptance of research commu-
nity due to showing successful applications of computing separation flows past bluff bodies
and vehicles with blunt forebody.

Detached eddy simulation is a hybrid approach combining the RANS (Reynolds-average
Navier-Stokes equation) and LES methods in united technique by using the former procedure
for near-wall region and the latter one for the rest part of domain with large eddies. Because
DES is a single solution for entire computation domain, in this method as well as in LES,
the essential issue is the means of distinguishing between RANS and LES for treatment in
corresponding regions. This is achieved using a special operation, called blending function
f = min(d,CDESΔ), where d is distance to the closest surface, Δ is the largest grid cell and
CDES is constant of proportionality. The blending function impels the model behave as RANS
in regions close to walls, where d << Δ, and perform as a subgrid model, such a Smagorin-
sky model, away from the walls at Δ << d. That feature of changeable procedure in DES
instead of fixed one in LES basically furnishes the better simulation and reduced computing
cost (Exer. 5.41).

One of the most important accomplishments of DES is the successful simulation of massive
flow separation at high Reynolds numbers. In this technique, the RANS model is applied to
study the attached boundary layer, whereas the LES approach is used in the separation region.
Some early results in the form of patterns showing the contours and isosurfaces of instanta-
neous vorticity and graphs of pressure coefficient distribution may be seen in the fundamental
articles [365, 368], and survey [372]. These first results for sub- and super-critical flows over a
sphere are typical examples of flows past bluff bodies which resistance significantly depends
on separation. The early flow separation before sphere equator (at 82∘ for laminar boundary
layer) and below it (at 120∘ for turbulent flow) obtained by computation in both cases in agree-
ment with experimental data and corresponding drag coefficients shown the reliability of DES
for application at actual Reynolds numbers (Exer. 5.42). These and other results of simula-
tion of this type listed in [368] demonstrated the wide applicability of DES in different areas:
cavities with various Mach numbers, wing high-lift systems, ground vehicles, space launch-
ers, air inlets, buildings, flow control, combustors, cavitations in jets, aerodynamic noise, and
more. The patterns of flow past aircraft presented in [372] around forebody at 90∘ angle of
attack, and over fighters: F-15E at 65∘ of attack, F-18E in the case of the abrupt wing stall,
and F-18C at 30∘ with the vortex burst reveal that DES provides the successful modeling of
the aerodynamics of the real industrial objects.
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Nevertheless, scholarly continue to improve DES. Spalart et al [367]. and Deck [90] pro-
posed modifications of original DES improving the treatment of the area where the model
switches from RANS to LES, and where the rapid decrease of the RANS eddy viscosity might
result in the strong instabilities. In order to get rid of this weakness, the authors of the first
study developed a new version Delayed Detached Eddy Simulation (DDES) where the switch
into LES is delayed preventing the undesired depletion of the model strength. In a different
way, Deck resolved this problem by proposing the Zonal Detached Eddy Simulation (ZDES)
in which the RANS and LES domains are separated so that regime in each zone is selected
individually according to the requiring conditions.

Later on, both new approaches were developed farther. To improve the treatment of the
flow at the near-wall area, in study [352], the wall-modeling in LES (WMLES) is adopted in
which RANS is used only at much closer distance from a wall than in DDES, whereas LES
is employed for the rest part of attached boundary layer and separation. In this version known
as Improved Delayed Detached Eddy Simulation (IDDES), two cases depending of inflow
conditions are considered. If the inflow has turbulent content, the model reduces to WMLES
so that most of the turbulence is resolved except the small region near the wall where the RANS
is used. In the other case when the inflow does not have turbulent content, the model performs
as DDES using RANS for whole attached boundary layer and LES for separation area. It is
obvious that in the case of applying WMLES, this model essentially improves the accuracy
of modeling providing LES treatment for much greater part of flow than that in DDES. In the
next study [353], the same authors introduce a procedure that stipulates the treatment by RANS
only in thinnest near-wall area in both cases of inflow with and without turbulent content. This
is achieved by injecting the resolved turbulent content in an overlap of RANS and LES domain
where the RANS treatment is switched to LES one.

The alternative aforementioned improved DES, the Zonal Detached Eddy Simulation
(ZDES), is also farther enhanced in [91] using combination of zonal approach [90] and the
best features of DDES [367]. In this case instead of two different inflow conditions considered
in IDDES, three separate zones are specified in which the flow regime may be selected
according to practical needs. In conformity with that, three possible situations, depending
on the cause of separation are considered. The first and the second zones concern flows
where the point of separation is fixed by the geometry (like terrace or stepped surface) or is
induced by a pressure gradient on a smooth surface, respectively. These are similar to flows
of relatively simple first case considered in IDDES study [352] and are treated as well using
wall-modeling in LES (WMLES) as described in [91]. The flows pertained to the third zone
are more involved by influence of incoming boundary layer and, like the flows of the second
case in [352], require special treatment to set up the desired inflow conditions. This is done
in study [213] applying the Synthetic Eddy Method, which similar to injection of turbulent
content, used in [353] for IDDES, generates the switch from RANS to LES quite close to the
wall (Exer. 5.43).

Both IDDES and ZDES are the most promising advanced approaches providing accurate
simulation of complex turbulent flows past real objects including industrial prototypes at nat-
ural Reynolds numbers under current computational resources. In the next chapter, we review
examples of simulating flows past various bodies at different conditions performed by DNS,
LES, DES, IDDES, and ZDES including the latest.

For further reading about turbulence simulation methods a reader is referred to the just men-
tioned latest original articles. Earlier original publications may be found in [422]. Relatively
simple presentation of modern methods in turbulence is given in articles [386] and [368].
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5.2.5 Chaos Theory

Chaos theory is a field in mathematics that studies behavior of dynamical systems highly sensi-
tive to initial conditions. This feature known as the butterfly effect means that small differences
in initial conditions yield widely different outcomes: a butterfly wings flapping today may
result in storm tomorrow far away from here. Chaotic behavior can be observed in some natu-
ral and engineering systems, such as weather. One remarkable example of chaos theory success
is a qualitatively simulation of Rayleigh-Benard flow by simple system of three ordinary dif-
ferential equations. This phenomenon occurs in a fluid present between two horizontal plates
in gravitational field if the lower plate is heated (Exam. 7.16). Currently, the chaos theory is
not a tool for turbulence modeling; however, some turbulence characteristics are of the con-
ditions that specify the chaotic regime. This indicates that there are hopes of using the chaos
theory for attacking the turbulence problems. At the same time, some researches think that
wavelengths spectrum in turbulence, ranging from Kolmogorov length scale to the dimension
size of flow, is so broad that describing turbulence by chaotic methods would require a system
of several hundred differential equations and hence is unrealistic [422] (Exer. 5.44).

Exercises

5.32 What is the principle difference between classical Reynolds-average models and modern
computation methods of simulation turbulence?

5.33 Obtain estimations of numbers of grid point and time steps required for three-
dimensional DNS as it described in text to understand the difficulties arising in
performing this type of simulation.

5.34 Explain why DNS is critically important even if it may be used basically for relatively
small Reynolds numbers.

5.35 Show that expression (5.24) is correct and explain why such relation may be used as
a filter. Hint: recall the Leibniz rule and perform the integration and differentiation as
formulae (5.24) indicate.

5.36 What is the concept of filtering? Why the filtering process is used in LES? Read about
filter from Wikipedia

5.37 What is Δ in relations (5.25) and for what stands the abbreviation SGS? What quantities
divided the filtering procedure?

5.38 Read about rate-of-strain tensor on Wikipedia or on Google the article “Velocity vector
and strain rate tensor”. You will see that this tensor is of second order (Com. 1.9) defined
by nine components. Why nine? Hint: think about components of deformation.

5.39 Why modeling SGS is very important in LES. Hint: consider the relation between eddies
(S. 8.4.1). Describe the Smagarinsky model. Read “Large eddy simulation” on Wikipedia
or simpler article [386] (at least two first paragraphs) to understand the SGS model prop-
erties.

5.40 What limited the increase of Reynolds number in LES and stimulated attempts to
improve this technique?
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5.41 Explain the basic features of DES. What are the properties of DES that differ in essence
this approach from the pure LES? What is blending function, how does it work?

5.42 Think: is it always true that turbulent flow separates later than the laminar? Recall how
Prandtl use the later separation of turbulent flow around bluff bodies to reduce the resis-
tance (Com. 8.1). Read detailed explanation of separation role in the bluff body resis-
tance at laminar and turbulent boundary layer [338, 1979, p. 41].

5.43 Compare IDDES and ZDES and specify the similarity and dissimilarity of both
approaches. To better understanding, consider examples of simulation presented in
Chapter 6.

5.44 Read the article on Wikipedia to learn more about chaos theory.
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Applications of Fluid Flow Modern
Models

In this chapter, the examples of modern fluid flow applications in two areas are considered. In
biology and medicine, the applications of peristaltic flow and of k − 𝜀 and k − 𝜔 turbulence
models are presented. In engineering, the applications of peristaltic flow models and of direct
simulation of turbulence methods are analyzed. Examples are discussed briefly in the same
way as it done for heat transfer models in Chapter 4, giving only the mathematical model
of problem formulation, conception of solution approach and basic results. For convenience,
examples are marked by letters a (analytical) or n (numerical) showing the type of solution
employed. Additional information from Part III or at least from some Advanced Engineering
Mathematics course should be sufficient for comprehension as well as the previous text.

6.1 Applications of Fluid Flow Models in Biology and Medicine

6.1.1 Blood Flow in Normal and Pathologic Vessels

◾Example 6.1n: Arterial Stenosis Modeling [144]

The stenosis is a constriction of the blood vessel cross-section that occurs due to formation
of plaques in an arterial wall, leading to limitation of blood flow and to separation of flow once
the stenosis becomes large. The disturbance of the blood flow by stenosis produces abnormal
circulation, resulting in vascular disorders such as post-stenoic dilatation, losses in pressure,
abnormally high shear stresses that may provoke blood problems (in particular, associated with
red cells and platelets).

The model consists of a tube with constriction (stenosis) of the length 2D in the form
r(z)∕D = 0.5 − A(1 + cos𝜋 z∕D) where A is a constant, r and z are coordinates with origin
z = 0 at the throat of the stenosis, and D is the unobstructed tube diameter. The stenosis
is located at 15D from the inflow and 20D prior the outflow sections. It is assumed that:

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine,
First Edition. Abram S. Dorfman.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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(i) the blood is a homogeneous, incompressible Newtonian fluid with constant kinematic
viscosity 𝜈 = 0.035 cm2∕ sec and density 𝜌 = 1.06 g∕cm3, (ii) the flow is steady laminar
current with parabolic profile at the inflow that remains laminar proximal to the stenosis, (iii)
the disturbed blood flow after stenosis is turbulent and may be simulated using a turbulence
model for moderate Reynolds number ranging from 400 (human carotid artery) to 1,500
(human ascending aorta).

The mathematical model described the disturbed flow includes the steady state Navier-
Stokes equation, and two transport equations (8.26) and (8.27) determined k and 𝜔 in k − 𝜔
turbulence model (S. 8.4.3.1) specified for low Reynolds numbers [422]. The boundary con-
ditions are prescribed around an entire computational domain for Dirichlet problem (S. 1.1):
(i) at the wall, the usual non-slip conditions for the velocities, k = 0 and 𝜔 = 6𝜇∕𝛽𝜔Δ2 for
k − 𝜔 model, where 𝛽𝜔 = 0.8333 is a constant in equation for 𝜔 and Δ is the height of the
first node above the wall, (ii) the symmetry conditions at the central axis, (iii) at the channel
inlet for laminar flow very small values are taken k = 0.0001, 𝜔 = 0.45, which corresponds to
𝜀 = 0.000045 (see (8.27)), (iv) at the outlet, the normal and tangential stresses are prescribed
as zero, the flow is fully developed and properties are no longer varied with distance so that
𝜕k∕𝜕z = 𝜕𝜔∕𝜕z = 0.

The above-mentioned system of three equations including boundary conditions is solved by
a finite element method using the Fluid Dynamic Analysis Package (FIDAP) software. Three
stenosis models with lumen area reduction: 50%(A = 0.073), 75%(0.125), and 86%(0.1565),
defined as 1 − (r∕R)2, show the following results:

• The stenosis leads to separation of flow and to formation of a zone with vortex which
length increases almost linearly with Reynolds number until it reaches maximum at critical
Reynolds number indicating that flow distal to the stenosis is laminar.

• When Reynolds exceeds critical values of 1,100, 400, and 230 for the first, second, and
third models, respectively, the flow becomes transitional or turbulent; comparison with data
of laminar flow modeling shows that in laminar flow range, both results are in agreement, but
for Reynolds numbers larger than the critical value, the laminar flow model overestimates
the vortex length.

• The wall static pressure distribution obtained for second model at Re = 2,000 well agrees
with experimental data and corresponds to streamlines pattern showing sharp pressure drop-
ping in the stenosis throat; comparison with data given by k − 𝜀 model at Re = 15,000
indicates that k − 𝜀 model predicts much higher pressure post-stenosis.

• The wall shear stress distribution reveals that the highest value takes place at the throat,
and the lowest negative pressure appears at the reattachment point of the vortex; in the
vortex region, the wall share stresses are negative, indicating that they are acting in opposite
directions upstream and downstream of the reattachment point.

• In the case of laminar flow modeling, the wall share stresses downstream of the reattachment
point approach, but never exceed the corresponding value of fully developed Poiseuille flow;
in contrast, when the flow is transient or turbulent in this area, the shear stresses are higher
than the fully developed Poiseuille flow values further decreasing to the laminar flow rate,
which shows that relaminarization takes place.

• The turbulence intensity (a rate of turbulent fluctuations as a percentage of average velocity)
along the central line are computed for second model at Re = 2,000, and the results are com-
pared with experimental measurements and data obtained by k − 𝜀 model at Re = 15,000;
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the computed results as well as experimental data reveal that the turbulent intensity increases
after the throat and reaches the peak at the vortex center in the separation zone, but the
computed prediction underestimates the turbulence intensity, whereas the k − 𝜀model fore-
cast differs much more from the experimental data.

◾Example 6.2n: Blood Flow Through Stenosis Series [221]

Multiple stenoses occur because the primary stenosis resulting in disturbed downstream cir-
culation in time forms a secondary stenosis. This may lead to a third one and so on, yielding
series of stenoses. The paper presents a detailed analysis on the flow dynamics with double
bell-shaped stenoses at the relatively low, realistic Reynolds numbers, ranging from 100 to
4000. The dynamic characteristics including separation, reattachment, the formation of recir-
culation eddy, and the kinetic energy distribution are investigated for the cases of one and two
stenoses at different distances between those.

The model consists of a tube in cylindrical coordinates z, r with two constrictions modeling
the stenoses. The walls along the constriction have the bell-shaped profile

f (z) = 1 − ci exp[−cs(z − s)2] (6.1)

which in curvilinear coordinates, used in this study, transforms in the rectangular domain. In
this expression, cs is the shape constant, ci = (D − di)∕D is the constriction ratio, and si is
the distance of stenosis from the inlet section. The problem is governed by two-dimensional
Reynolds averaged Navier-Stokes equation (RANS) and by k − 𝜔model (S. 8.4.3.1). Both sys-
tems of equations for RANS and for k − 𝜔model are transformed in the curvilinear coordinates
applying formulae given in the paper.

Using curvilinear coordinates simplifies the integration of governing equations. The bound-
ary conditions for Dirichlet problem specified parameters at inflow as follows: u = 1 − r,
k = 1.5I2

tb u2, 𝜔 =
√

k∕C1∕4
𝜇 l, l = min(𝜅yw, 0.1Re). At the outflow, the velocities are extrapo-

lated from interior, and a constant static pressure is imposed. The gradients of k and𝜔 at the exit
are assumed to be zero 𝜕k∕𝜕z = 𝜕𝜔∕𝜕z = 0. The zero gradients along the axis of symmetry for
k and𝜔with respect to r also are applied. At the walls, the no-slip condition for velocities, zero
pressure gradient, k = 0 and 𝜔 = 6𝜈∕𝛽𝜔l are used. In these conditions, turbulence intensity of
inflow is Itb ≈ 1%, yw is a normal distance from the wall, C𝜇 = 0.09, 𝛽𝜔 = 0.075, 𝜅 = 0.41.
Other dimensionless variables are scaled by r0, u0 for lengths and velocities, 𝜌u2

0 for p, u2
0

for k, and u0∕r0 for 𝜔.
The solution procedure is based on modifying the governing elliptic equation in hyperbolic

type. Two tests are performed to verify the accuracy of produced software: (i) the results of
fully developed steady channel flow calculation are compared with data obtained by direct
numerical simulation, and (ii) the computed steady turbulent flow in a circular tube with a
constriction is compared with known experimental data.

Comment 6.1 The elliptic equation is transformed into hyperbolic type by adding an artificial
unsteady term. Such modified unsteady equation, unlike the elliptic equation, may be solved
straightforward starting from initial condition by using some implicit numerical method to
reduce the solution to a system of linear algebraic equations. The desired steady solution of
elliptic equation is obtained as a limit at t → ∞.
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The following results are obtained:

• The flow-through stenosis is complicated because the laminar, transitional, and turbulent
regimes coexist there; since the type of the flow is unknown in advance, it is important
to have a model capable to simulate at least laminar and turbulent flows. The developed
approach for this purpose applies the k − 𝜔 turbulence model.

• The streamlines pattern for turbulent flow through stenosis shows two zones: the circulation
zone behind the stenosis and the main flow zone near the centre of the tube with relatively
straight and parallel streamlines.

• The length of the vortex in laminar flow increases as Reynolds number grows until it reaches
a critical Reynolds number, whose value is about 300, and then when the flow becomes
transitional or turbulent it decreases as the Reynolds number grows.

• The dimensionless vorticity at the wall, which relates to wall shear stress, increases rapidly
as flow approaches stenosis and reaches a peak value slightly upstream of the stenosis area;
then downstream, it value decreases and becomes negative where the separation at the wall
occurs; the value of the vorticity peak increases and tends to shift upstream as the Reynolds
number increases; the negative magnitude of the vorticity at wall in recirculation zone also
increases as the Reynolds number grows.

• The wall pressure and centerline velocity distributions for Re = 100 and 300 in comparison
with data obtained for laminar flow in the same problem [220] indicate that for Re = 100,
k − 𝜔 turbulence model gives the same results as those in the case of laminar flow modeling;
for Re = 300, the centerline velocity obtained by laminar flow simulation is much slower
because the flow distal to the stenosis becomes transitional in this case, and the laminar
model cannot take this into account.

• In the case of two stenoses, the recirculation eddies are formed downstream of each stenosis;
the separation streamline divides the flow in recirculation region distal to each stenosis and
a region with main flow near the centre line, as in the case of the one stenosis, when the
relative distance between stenoses S∕D is less than 3, a recirculation zone fills the valley
region between the two stenoses, and the reattachment occurs at the front of the second
stenosis; the recirculation zone distal to the second stenosis reduces as S∕D grows so that
for S∕D = 4, it becomes much smaller than that for a first stenosis;

• The two peaks exist in the wall vorticity distribution such that the peak induced by second
stenosis is smaller than that generated by the first stenosis; as the distance between stenoses
increases the second vorticity peak grows, and at S∕D = 4, they become almost equal; the
negative wall vorticity peak occurs proximal to the second stenosis when S∕D is les than 3,
whereas it does not appear when S∕D is 3 or 4; the maximum centerline velocity develops
slightly downstream of the stenosis because the formation of a recirculation zone behind
each stenosis reduces the cross-sectional area;

• The maximum of centerline disturbance intensity, which characterized the turbulence inten-
sity, near the second stenosis is higher than that near the first stenosis for all the spacing
ratios; at the same time, the downstream peak value of wall vorticity increases with spac-
ing ratio growing until the spacing ratio S/D reaches 4; thus, it may be deduced that the
double stenosis have the strongest effect on the distribution of the turbulence intensity in
downstream region when the spacing ratio is S∕D = 4.



�

� �

�

Applications of Fluid Flow Modern Models 255

• As the Reynolds number increases, the value of two wall vorticity peaks grow as well as their
difference, the centerline velocity decreases, and the peak of centerline disturbance of tur-
bulence intensity goes up, whereas the distance between the peaks and stenoses decreases.

• The data obtained for different values of ratio ci of the stenosis profile (6.1) shows that
ci = 0.5 is a critical value, which blocks the vessel leading to abrupt changes in the flow
properties; this result is in the line with the clinic practice usually based the treatment of
the artery disease depending on whether the artery is more than 75% stenotic, which corre-
sponds to inequality ci > 0.5.

◾Example 6.3a: Blood Flow Through Multi-Stenoses Under Magnetic Field [258]

This paper studied the effects of several parameters on the blood flow in the elastic artery
with multi-stenosis, basically focusing on the influence of an external magnetic field. Such
analysis simulates the blood flow during the magnetic resonance angiography (MRA) or mag-
netic resonance imaging (MRI). The model is constructed as anisotropically elastic cylindrical
tube with multi-stenosis filled with incompressible viscous electrically conducting fluid mod-
eling the blood. The model with elastic wall is more realistic than the most other much simpler
models of this type considering the vessel wall as a rigid tube. The form of the stenoses is
adopted from [61]

R(z) =
⎧
⎪
⎨
⎪
⎩

a
{

1 − a1

[
sm−1

l

(
z − dl

)
− (z − dl)m

]}
dl ≤ z ≤ dl + sl a1 =

𝛿lm
m∕(m−1)

asm
l (m − 1)

a otherwise

⎫
⎪
⎬
⎪
⎭
(6.2)

where m ≥ 2 is the shape parameter, a is the constant radius of the normal artery, sl is the
length of the stenosis and dl measures the location of stenosis, where l = 1, 2, 3 … , 𝛿l is the
maximum height of the stenosis located at z = a + sl∕m1∕(m−1), and the ratio 𝛿∕a of the height
of the stenosis 𝛿 to the radius a of artery is much less than unity.

The governing equations for fluid are two-dimensional unsteady Navier-Stokes equations in
cylindrical coordinates with additional terms taken into account the effects of magnetic field
(𝜎B2 + 𝜇∕k)u and permeability (𝜎B2 + 𝜇∕k)w, where u and w are the radial and axial velocity
components, 𝜎, k and B are electrical conductivity, coefficient of permeability, and magnetic
flux density.

The equilibrium relations for elastic tube, adopted from [21], are formulated on the base of
the membrane theory of shells. In this case, a mathematical model represents balances of longi-
tudinal and radial components of three forces: inertial, surface forces, and forces of constraint
associated with surrounding connective tissues

(Tt − T𝜃)
dR
dz

+ R
𝜕Tt

𝜕z
− R

[
M0

𝜕2𝜉

𝜕t2
+ C1

𝜕𝜉

𝜕t
+ K1𝜉 +

(
M0

𝜕2𝜂

𝜕t2
+ Cr

𝜕𝜂

𝜕t
+ Kr𝜂

)
dR
dz

]
+

+ R
√

1 + (dR∕dz)2

{
dR
dz

(
Tzz − Trr

)
+

[(
dR
dz

)2

− 1

]

Trz

}

R−Δ∕2

= 0 (6.3)
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T𝜃

R
√

1 + (dR∕dz)2
− d2R

dz2

Tt

[1 + (dR∕dz)2]3∕2
− 1

√
1 + (dR∕dz)2

[
dR
dz

(
M0

𝜕2𝜉

𝜕t2
+ C1

𝜕𝜉

𝜕t
+ K1𝜉

)
−

(
M0

𝜕2𝜂

𝜕t2
+ Cr

𝜕𝜂

𝜕t
+ Kr𝜂

)]

− [1 + (dR∕dz)2]

[

2
dR
dz

Trz − Trr −
(

dR
dz

)2

Tzz

]

R−Δ∕2

= 0 (6.4)

Here, M0 = 𝜌0Δ + Ma, where 𝜌0 and Δ are the density and thickness of the arterial wall, 𝜉 and
𝜂 are the displacement components, Tt and T𝜃 are the components of viscoelastic stress acting
along the longitudinal and the circumferential directions, K1,C1 and Ma represent (per unit
area) the spring coefficient, the frictional coefficient of the dashpot, and the additional mass
of the mechanical model in longitudinal tethering and Kr and Cr are those in radial direction
(Com. 6.2). The boundary conditions are given on the arterial wall as the velocities defined
through displacement derivatives (first two relations) and on the symmetry axis as zero radial
and gradient of axial velocities

u(r, z, t) = 𝜕𝜂

𝜕t
, w(r, z, t) = 𝜕𝜉

𝜕t
on r = R(z), (r, z, t) = 0,

𝜕w(r, z, t)
𝜕r

= 0 on r = 0 (6.5)

Comment 6.2 The simulation of flow in a flexible tube is a complicated problem. Atabek
in the early work [21] proposed simplified model of blood vessel as elastic tube with fluid.
This model was used by many researchers (Web of Science indicates 100 followers). Three
forces mentioned above are taken into account in this model. The two first, the inertia and
surface forces, are considered in his earlier study [20]. The inertia force is determined using
the Newton second law, and the surface forces are calculated as the reaction of the fluid to its
container. The basic difficulty in model formulation of this type is the definition of the third
force arising due to vessel surrounding, which in biology is known as the connective tissue.
In study [21], the effect of tethering force (as such force is called) is described by a simple
mechanical model constructed of an additional mass, a spring for motion, and a dashpot for
deceleration.

The equations governing the motion of both the fluid and the arterial wall are nonlinear.
Approximate solution of this complicated system is found considering for all variables only the
first term of perturbation series in power of small parameter 𝜀 = 𝛿∕a. In order to eliminate the
nonlinear terms and to get the linear differential equations, this term is further approximated
presenting it as the first term of Taylor series for middle wall section at r = R(z) − Δ∕2 in
the form

f (r, z, t)|R(z)−Δ∕2 = f0(a, z, t) + 𝜀
[

f1 (a, z, t) + R1(z)
𝜕f0(a, z, t)

𝜕r

]
+ O(𝜀2) (6.6)

Here, f0(a, z, t) is a known solutions (for example, for artery without stenosis), and the last term
indicates the order of the next terms of Taylor series (Com. 3.8). Substituting relation (6.6)
for each variable in governing equations for fluid, arterial wall (6.3) and (6.4) and boundary
conditions (6.5) after gathering terms with 𝜀 and ignoring the others yields the system of linear
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differential equation governing in this approximation the studied problem. A corresponding
tedious procedure is given in the reviewed paper [258].

Calculations for the artery with three stenosis and relevant experimental data are presented
in paper. The following basic results are observed:

• The resistance to flow (resistive impedance) at the wall surface is influenced by the unsteady
behavior of the flowing blood as well as by the vessel wall distensibility, by the Hartman
number (Ha = BL

√
𝜎∕𝜇), the permeability coefficient k, the maximum height of stenosis

𝛿1, and shape parameter m in (6.2) defined stenosis form.
• In the first stenosis region (0.375 ≤ z ≤ 0.875), the resistance impedance increases at the

onset of the stenosis until its maximum constriction at the throat, then it decreases steeply
to reach the end point of the constriction. This observation holds true for the second stenosis
region (1.25 ≤ z ≤ 1.75) and for the third one (2.125 ≤ z ≤ 2.625); a resistance increases
also as the Hartman number and maximum height of stenosis grow, whereas it decreases
with shape parameter and permeability increasing, attaining its maximum in the symmetri-
cal stenosis with m = 2.

• The wall shear stress 𝜏rz, unlike the characteristic of resistance impedance, in the first steno-
sis area decreases at the onset until the throat, then it decreases steeply to reach the end point
of the constriction; this observation is similar to that in the second and the third stenoses;
stress 𝜏rz increases as the longitudinal viscoelastic stress component and anisotropy param-
eter grow, whereas it decreases with the increasing the viscoelastic stress in the circumfer-
ential direction, the total mass of the vessel, the surrounding tissues, and the contributions
of the viscous and elastic constraints to the total tethering.

• The studying the effect of stenosis shape shows that the magnitude of the wall shear stress
decreases in the converging zones as shape parameter increases, whereas it increases in
the diverging zones in similar situation; for any given stenosis shape, the wall shear stress
steeply decreases in the upstream from an approached magnitude to the peak value at the
throat, and then increases in the downstream of the throat to the its value at the end point of
the constriction profiles.

• The transmission of wall shear stress distribution through a tethered tube is substantially
lower than that through the free tube, whereas the shearing stress distribution at the stenosis
throat have the inverse character through totally tethered and free tubes.

• The stream function at the surface wall increases along the vessel and steeply decreases in
the stenotic region. The stream function decreases as the number of stenosis increases. It
also decreases in the three stenotic region with increasing shape parameter m and height of
stenosis 𝛿.

• The radial velocity at the surface wall decreases with increasing the anisotropy and the con-
tribution elastic constraints of the total tethering, whereas it increases as both longitudinal
and circumferential initial stresses components grow; at the same time, the effects of the con-
tribution viscous constraints of the total tethering, total mass of the vessel, and surrounding
tissues of the radial velocity are negligible small. Similarly, the axial velocity at the surface
wall decreases with increasing the contributions of the viscous and elastic constraints to the
total tethering, the total mass of the vessel, and the surrounding tissues, whereas it increases
with the increasing the anisotropy and the longitudinal and circumferential initial stresses
components.

• The formed bolus (called trapped) defined as a volume of fluid bounded by closet stream-
lines in the wave frame is transported at the wave; the trapped bolus at the central line
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increases in the size as the permeability increases, whereas it decreases in size by increasing
the Hartman number; the trapped bolus appear in the non-symmetric stenosis, but they disap-
pear in the case of symmetric stenosis; they also are smaller in the free tube than in tethered
tube.

◾Example 6.4a: Simulation of Blood Flow in Small Vessels [269]

In his article, the small blood vessels are modeled by considering the flow of the
Herschel-Bulkley non-Newtonian fluid (Com. 5.8) in channels with varying cross-sections. It
is assumed that the progressive sinusoidal wave of the form

H = H0 + Λx + a sin[(2𝜋∕𝜆)(x − ct)] 𝜇 =
𝜏0 + 𝛼[�̇�n − (𝜏0∕𝜇0)n]

�̇�
(6.7)

propagates with constant speed c along such channel filled with Herschel-Bulkley fluid, which
takes into account the combined effect of Bingham plastic and power-law fluids behavior
according to second expression (6.7). In equations (6.7), H0 is the half-width at the inlet
(for small vessel the values of H0 are 10 − 60 μm), a is an amplitude, and Λ is a constant
defining a channel form so that for converging tube (simulating arterioles) the width of the
outlet for one wave length is 25% less and for divergent tube (venules) it is for one wave
length 25% more than width of inlet. At low strain rate �̇� < (𝜏0∕𝜇0), and the Herschel-Bulkley
fluid behaves as viscose fluid with constant viscosity 𝜇0, whereas when the strain rate grows
and passes the threshold, 𝜏0, it behaves as the power law fluid with viscosity determined by
relation (6.7), where 𝛼 is the consistency factor and n is the power law index defining the
thinning (n < 1) or thickening (n > 1) fluid (S. 1.9). The other typical for small blood vessels
parameters used here are: n = 1∕3 − 2, H0∕𝜆 = 0.01 − 0.02, Δp = −300 − 50, 𝜏 = 0 − 0.2,
and 𝜙 = a∕H0 = 0.1 − 0.9, is the amplitude ratio.

It is shown that the governing system of Navier-Stokes equations and relevant boundary
conditions under usual assumptions of small Reynolds number and long wavelength simplifies
and in the fixed frame becomes

𝜕p

𝜕x
=
𝜕𝜏yx

𝜕y
,

𝜕p

𝜕y
= 0, 𝜏yx =

(
𝜏0 +

||||
𝜕u
𝜕y

||||

n)
sgn

(
𝜕u
𝜕y

)

y = 0,
𝜕u
𝜕y

= 0, 𝜏yx = 0, y = H, u = 0 (6.8)

The dimensionless variables are scaled by 𝜆,H0, c, 𝜇cn𝜆∕Hn+1
0 , and 𝜇(c∕H0)n for x and

y,H, u, p and 𝜏yx, respectively. The expression sgn(𝜕u∕𝜕y) = 𝜕u∕𝜕y∕|𝜕u∕𝜕y| is the signum
function. The boundary conditions are the symmetry conditions on the central axis of a
channel and no-slip one on the walls. The solution of the first equation (6.8), which is
independent of y, under conditions (6.8) is presented in the form

(
H 𝜕p
𝜕x

− 𝜏0

) 1
n
−1

−
(

y 𝜕p
𝜕x

− 𝜏0

) 1
n
−1

𝜕p
𝜕x

(
1
n
− 1

) and

(
H 𝜕p
𝜕x

− 𝜏0

) 1
n
−1

−
(
−y 𝜕p

𝜕x
− 𝜏0

) 1
n
−1

𝜕p
𝜕x

(
1
n
− 1

) (6.9)

for y ≥ 0 and for y < 0. On the basis of these solutions, the flow characteristics are computed
for data typical for small blood vessels, and following results are formulated:
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• The data for velocity distribution in the case of Newtonian fluid (n = 1) agree with results
obtained before by Takabatake and Ayukawa [382]: the effect of non-Newtonian rheology
leads to disturbed parabolic profile, which disturbance increases as the index n grows.

• For a converging channel, the magnitude of velocity is greater than that for a uniform
channel, and for a diverging channel the result is altogether different; the data of influence
of the pressure on the velocity distribution show that in the case of Δp = −1, for a shear
thinning fluids (n < 1), flow reversal is totally absent in the uniform/divergent channel; for
a converging channel, although there is a reduction in the region of flow reversal, it does not
vanish altogether, irrespective of whether the fluid is of shear thinning or of shear thickening
fluids (n > 1) type.

• The relationship between the pressure difference and the mean flow rate averaged over one
wave is nonlinear for converging and diverging channels for both values of power index
n ≠ 1, whereas it becomes linear for Newtonian fluid (n = 1), which is in line with before
observed results [345]; it is found that the mean flow rate increases as the pressure difference
decreases.

• The pumping region (Δp > 0) increases with the growing of amplitude ratio 𝜑 for both
shear thinning and shear thickening fluids as well as with increasing the power index n; in
the co-pumping region (Δp < 0), the pressure rise decreases when the flow rate exceeds a
certain value; pumping region increases also with 𝜏 increasing, and this effect is greater in
the case of shear thickening fluids.

• The data for wall shear stress distribution at four instants of wave period show that at each
of these instants, there exists two peaks: a negative 𝜏min and a maximum 𝜏max; transition
from 𝜏min to 𝜏max occurs between the maximal and minimal channel heights.

◾Example 6.5a/n: Simulation of Blood Flow During Electromagnetic Hyperthermia
[268]

The electromagnetic hyperthermia is a procedure for cancer treatment that is based on the
experimental fact that at temperature higher than 41∘C, the transformed malignant cells are
more sensitive than the normal cells. The procedure consists of injecting the magnetic fluid into
an artery supplying the malignant tissues or directly into tumor and then subjecting the system
to an alternating current magnetic field. The elevating of 45 − 47∘C temperature generated
in the injected magnetic fluid owing to the imposed magnetic field results in destroying the
cancer sells. This method is applicable for treatment some tumors sites, including brain, soft
tissues, liver, abdominal, pancreatic cancer, and head/neck tumors.

To simulate the blood flow under the action of the magnetic field, the model is constructed as
two-dimensional channel with a flow of a biomagnetic non-Newtonian viscoelastic fluid whose
rheology behavior is described by second-grade equation (Com. 5.8). The external magnetic
field is generated by dipole located above a channel wall at the distance b. The channel walls
are assumed to be porous and the flow is assumed to be driven by the stretching walls such that
the velocity of each wall is proportional to the axial coordinate. These assumptions correspond
to the physical conditions on the vessels.

The problem is governed by two-dimensional Navier-Stokes and energy equations with the
following three expressions in the right-hand parts accounting for additional effects

− k0

[
u

(
𝜕3u
𝜕x3

+ 𝜕3u
𝜕x𝜕y2

)
+ v

(
𝜕3u
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+ 𝜕3u
𝜕y3

)
− 𝜕u
𝜕x
𝜕2u
𝜕y2

− 𝜕u
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𝜕2v
𝜕y2
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− 2
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u
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𝜕x

+ v
𝜕Ω
𝜕y

)
(6.10)

The two first expressions are terms of Navier-Stokes equations, and the third one presents
terms of energy equations. The first term of each expression, which starts with coefficient
k0 takes into account the viscoelastic effect associated with stretched walls behavior. The
terms 𝜇0M(𝜕Ω∕𝜕x) and 𝜇0M(𝜕Ω∕𝜕y) in two first expressions define components of magnetic
force per unit volume, where 𝜇0,M and Ω are the magnetic permeability parameter, magnetic
moment, and magnetic field strength. The second term in the third expression associated with
magnetic field represents the thermal power per unit volume due to magnetocaloric effect, and
the last two terms 𝜇u∕k and 𝜇v∕k in the first two equations (6.10) determine according to the
Darcy law (Com. 4.25) the additional pressure gradients arising due to the permeability of
channel walls.

Comment 6.3 The magnetocaloric effect is the magneto-thermodynamic phenomenon in
which a temperature change of a suitable material (calling magnetocaloric) is caused by
exposing the material to a changing magnetic field. In such a process, a decrease in the
strength of external magnetic field owning to increased phonons thermal energy leads to
reorientation of the material magnetic field resulting in changes of material temperature. This
effect differs from well-known thermomagnetic (former term pyromagnetic) effect observed
when a sample allowing electrical conduction (for instance, semiconductor) with temperature
gradient is subjected to magnetic field, and as a result, the electrical field establishes in a
sample (Nernst effect).

The boundary conditions consist of symmetry conditions on the central axis x, the
proportional to x longitudinal stretching velocity component u = c̃x and zero the transver-
sal component v = 0 on the wall, the total pressure p0 = p + (𝜌∕2)(u2 + v2), and the
temperature Tw. The governing system of equations is reduced to ordinary differential
equations using five dimensionless functions: f (𝜂) = 𝜓∕c̃H2𝜉, 𝜃1(𝜂) + 𝜉2𝜃2(𝜂) = T∕Tw,
and P1(𝜂) + 𝜉P2(𝜂) = −p∕𝜌c̃2H2, depending on two variables 𝜉 = x∕H and 𝜂 = y∕H,
and seven dimensionless quantities: distance to dipole b̃ = 1 + b∕H, Prandtl Pr = 𝜇cp∕𝜆
and Reynolds Re = 𝜌c̃H2∕𝜇 numbers, and coefficients of viscoelastic K0 = k0c̃∕𝜇, vis-
cous dissipation K = c̃𝜇2∕𝜌kpmTw, permeability K̃ = k∕H2, and ferromagnetic interaction
B = 𝛾𝜇0kpmTw𝜌∕2𝜋𝜇2, where 𝛾 and kpm are coefficients of magnetic strength and pyromag-
netic (Com. 6.3). The system of five ordinary differential equations determining functions
P1, P2, 𝜃1, 𝜃2 and f , specifies velocity components, pressure, and temperature. This system
was solved applying perturbation series in small viscoelastic parameter K0 and numerically
by the finite difference method.

The effect of various parameters on the velocity components, pressure, skin friction coef-
ficient and temperature of the arteries blood flow during electromagnetic hyperthermia was
investigated for the following ranges of parameters: Re = 1 − 2,Pr = 5 − 8, b̃ = 2.5 − 4,
K = 0.05 − 0.1, K̃ = 0.08 − 2,B = 0 − 10. Analysis of graphs presenting results gives the
following basic conclusions:
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• The axial velocity decreases up to central line reaching negative minimum close to it and
then increases; such distribution is obtained for all studied values of parameters showing
that the back flow occurs near the central line; it develops due to the stretching walls and
may be reduced by applying strong external magnetic field.

• Close to the lower wall, the separation is observed for large Reynolds and Prandtl numbers
and small porosity permeability K̃, whereas it decreases as distance b̃ to the magnetic dipole
increases.

• For all studied cases, the transverse velocity increases with distance from lower wall reach-
ing maximum at 𝜂 ≈ 0.7 and then monotonically decreases; it decreases as the Reynolds
and Prandtl numbers increases; for large Prandtl numbers the reversal flow takes place in
the vicinity of the central line; the same tendency is observed for small distances to magnetic
dipole and porosity permeability.

• The data obtained for all values of parameters for function 𝜃1(𝜂) (𝜃2 was not studied) indi-
cates that temperature monotonically decreases across the channel section and grows as the
Reynolds, or Prandtl number, or the ferromagnetic interaction parameter increases, but the
temperature decreases as permeability parameter increases.

• In all cases studied, the distribution of function P2(𝜂) (the behavior of function P1(𝜂) was
not studied) shows that pressure decreases across the channel section, reaches minimum
close to the upper wall (𝜂 ≈ 0.8) and then remains almost constant. The pressure increases
as the Reynolds or Prandtl number increases.

• Skin friction decreases for any values of Pr,K, K̃ and b̃ as the ferromagnetic interaction
parameter B grows; the skin friction increases as Reynolds number increases, and at high
Prandl numbers it grows for the values of B between one and two and then decreases as B
becomes larger.

OTHER WORKS: The review of the early works studied blood flow was published in [186].
The analysis of results obtained up to the first years of 21 century is given in review [154]. The
three-dimensional turbulence model of stenosed arterial bifurcation (division in branches) is
developed in study [29]. Analysis of the blood flow considered as two-phase substance in a
narrow catheterized artery is presented in article [375]. In paper [160], the accuracy of the
velocities in carotid artery obtained during the diagnosis tests by ultrasound Doppler is esti-
mated via comparison with numerical simulation data. Articles [236] and [137] are examples
of recently published works. In the first paper, the pulsatile spiral blood flow through arte-
rial stenosis is investigated. The other research work presents a review of studies of blood
clot formation.

6.1.2 Abnormal Flows in Disordered Human Organs

◾Example 6.6a: Particle Motion in Peristaltic Flow with Application to Ureter [184]

Simulation of interaction process of small particle with peristaltic flow is important for
applications, such as moving cells in blood, or stones, or bacterium in ureteral flow, or
microorganisms in solutions. In engineering the results of these researches are applicable, for
example, in hydraulic particles transport systems design.

In the article reviewed, the interaction between small particle and incompressible New-
tonian two-dimensional peristaltic flow is investigated. The flow in channel is described by
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mathematical model consisting two-dimensional steady-state Navier-Stokes equations in the
moving frame (S. 5.1.1). The sinusoidal waves are imposed on the walls that are assumed to be
flexible in transverse direction. The Navier-Stokes equation for stream function is used in the
form (5.5) often used in studying. Solution of this equation is obtained by perturbation series
up to 𝜀2, similar to Fung and Yih approach (Exam. 5.2).

The momentum equation for suspended in a moving fluid particle is formulated by
Basset-Boussinesq-Oseen (BBO) mathematical model in the dimensionless form. This
equation is applicable to small spherical particle in fluid flow at low Reynolds number and
takes into account specific forces significant in this case

dup

dt
=

2𝜌(u − up)
Stk(2𝜌 + 1)

+ 3
2𝜌 + 1

du
dt

+ r2

40(2𝜌 + 1)
d
dt
∇2u + 𝜌r2

12 Stk (2𝜌 + 1)
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√
9
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[

∫
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)
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√
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√
t

]

+

[
2
(
𝜌-1

)

2𝜌 + 1

]
g𝜏c

c
g

(6.11)

Here, u, up and g are velocity and gravity vectors, 𝜌 = 𝜌p∕𝜌, r is the particle radius, Stk = 𝜏p∕𝜏c
is the Stokes number, 𝜏p = 2𝜌pr2∕9𝜇 is the particle relaxation time, c is the wave speed,
𝜏c = 𝜆∕𝜋c,∇2 = 𝜀2(𝜕2∕𝜕x2) + 𝜕2∕𝜕y2, 𝜀 = 𝜋R∕𝜆, R is the half of channel height, and sub-
script p refers to particle. Variables are scaled as: the axial coordinate by 𝜆∕𝜋, the normal
coordinate and r by R, velocities by the wave speed c, and time by 𝜏c. The terms of sum in the
right-hand side of BBO equation, which defines the particle acceleration dup∕dt, represent the
steady-state Stokes drags force, the virtual mass forces (second and third terms), the Faxen,
Basset, and gravity forces.

Comment 6.4 (i) The Basset force arises due to temporary delay of the boundary layer devel-
opment when a body accelerates in Stokes flow. The corresponding term in the dynamic
equation is known as Boussinesq-Basset (or history) term, who proposed take to account this
force independently at the end of the nineteenth century; (ii) The Faxen force, named after
a scholar who suggested it in 1922, is a correction to the Stokes law for a sphere (S. 7.4.2)
that is valid when the body is moving close to the wall; (iii) The correction to the creeping
flow developed by Oseen in 1910 (S. 7.4.3) takes into account neglected at the low Reynolds
numbers inertia effect; (iv) The virtual mass is some mass of fluid added to a moving body to
account an inertia effect arising at changing the body velocity.

Analysis of the analytical solution in series up to 𝜀2 for flow and numerical solution of BBO
equation (6.11) for particle leads to the following basic results:

• The streamlines and velocity profiles indicate that flow is nonuniform near the wave trough
in which the flow enters; below the wave crest, the downward-upward region grows with the
flow rate increasing; the pressure distribution shows adverse pressure gradient in opposite
to peristaltic flow direction in the upper half plane and favorable pressure gradient in the
flow direction in the lower half plane.

• The satisfactory agreement of these results obtained from solution up to order 𝜀2 with exper-
imental data [420] is observed for 𝜀Re = 𝜔R2∕𝜈 ≤ 10 where𝜔 = 𝜋c∕𝜆 is the frequency; this
is better than it is expected since the Reynolds number is assumed to be of order unity; the
explanation is the sufficient convergence of perturbation series.
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• Two real situations are analyzed by modeling the flow of mixture along the ureter with (i)
stones or small their pieces after acoustic break up the stones and (ii) urine with bacteria that
usually is a result of the stones or of a treatment; the results obtained for velocities compo-
nents from a numerical solution of the BBO equation (6.11) give trajectories of simulated
stones and bacteria using particles of corresponding sizes and characteristics. Analyzing of
trajectories provides the insight into individual particles behavior showing the domains with
normal particles motion and reflux.

• The trajectories of spherical and nonspherical particles in the case of retrograde motion near
the longitudinal axis are similar; for zero pumping regime, the particles near the longitudinal
axis have positive displacement, whereas near the wall the net displacement is negative.
This corresponds to the reflux situation reported in the early studies (Exam. 5.1) showing
that there is a possibility of transport of bacteria to the upper urinary tract.

• The behavior of a group of particles is investigated using a simplified equation (6.11) and
the same assumptions as in the whole steady that: (i) each particle acts independently of the
others and (ii) only flow affects a particle behavior but the back effect may be neglected.

• The groups of particles initially distributed uniformly near the center move forward, whereas
those near the wall are delayed; particles simulating groups of stones and bacteria behave
similar: some particles get closer to the wall, and others participate in formation of a bolus
creating satellite structures from which after a while the bolus are detached; these observed
particles tending to move to the wall may be considered as a possible explanation for the fail-
ure of calculi after successful ESWL (exstracorporeal shock wave lithotripsy) for acoustic
break up of the stones.

• It is shown by comparative calculations that the most significant contribution in BBO
equation are made by the Stokes drag, gravity, and Basset forces.

◾Example 6.7a: Simulation of Chyme Flow During Gastrointestinal Endoscopy [328]

The endoscope is a powerful means to diagnosis and management of intestinal illnesses. The
interaction between intestinal, chyme flow, and endoscope during thegastrointestinal endo-
scope process is studied in this article. The pressure, pressure drop, velocity, and forces acting
by endoscope and the intestine on chyme flow are calculated.

The model consists of cylindrical annulus bounded at the outer boundary by small intestine
and at the inner boundary by the inserted endoscope. The sinusoidal wave is imposed on the
outer tube-small intestine. The two-dimensional Navier-Stokes equations in cylindrical coor-
dinates governed the problem. In dimensionless variables in the frame moving with wave at
speed c, these equations and boundary conditions are presented in the form containing 𝜀 as a
small parameter

𝜕ru
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= 0 𝜀3Re
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u = 0, w = −1 at r = Δ w = −1, at 𝜂 = 1 + 𝜑 sin 2𝜋z (6.12)

The variables are scaled by: r0, 𝜆, 𝜆∕roc, c, 𝜆∕c, 𝜆c𝜇∕r0 for radial and axial distances, radial
and axial velocities, time, and pressure, respectively, Re = 𝜌cr0∕𝜇, 𝜀 = r0∕𝜆, 𝜑 = a∕r0,
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Δ = ri∕r0, 𝜂 = r̃∕r0, where r0 and ri are radii of outer and inner (endoscope) tubes, a and r̃
are an amplitude and radial coordinate of sinusoidal wave (6.12).

Under assumptions of small Reynolds number and long wavelength that are relevant in
this case because the intestine is small as compared to wavelength, the ratio 𝜀 < 1 is small.
Therefore, from simplified equations (6.12) containing only the term of order 𝜀 follows that:
(i) according to first equation the pressure is independent on the radial variable, and (ii) the sec-
ond equation may be integrated twice with respect to r giving expressions for the dimensionless
radial velocity and flow rate in the wave frame

w = −1 − 0.25
dp

dz

[
Δ2 − r2 +

(
Δ2 − 𝜂2) ln

r
Δ
∕ ln

Δ
𝜂

]

q = 𝜋(Δ2 − 𝜂2)
[

1 + 0.125
dp

dz

(
Δ2 + 𝜂2 − Δ2𝜂2∕ ln

Δ
𝜂

)] (6.13)

Solving the first equation for dp∕dz and knowing that q = Q − 𝜋[1 + (𝜙2∕2) − Δ2], where Q
is the flow rate in fixed frame, one finds basic characteristics: pressure drop Δp across one
wavelength and the frictional forces Fe and F0 over one wavelength acting on endoscope and
intestine

Δp = ∫
1

0
G(z)dz, G(z) = −

8 [(Q∕𝜋) + 𝜂2 − 1 − 𝜑2∕2]
Δ4 − 𝜂4 − (Δ2 − 𝜂2)2∕ ln(Δ∕𝜂)

Fe = 𝜋∫
1

0
G(z)Δ

2 − (Δ2 − 𝜂2)
2 ln(Δ∕𝜂)

dz, F0 = 𝜋∫
1

0
G(z)𝜂

2 − (Δ2 − 𝜂2)
2 ln(Δ∕𝜂)

dz

(6.14)

These expressions present an exact solution of the problem in question in the case of small
Reynolds number and long wavelength and lead to the following conclusions:

• The pressure drop is generally positive (which means that the pressure in the chyme flow
decreases with increasing the axial coordinate) when the flow rate is not sufficiently small,
and it is negative otherwise; thus, there is the pressure gradient acting on the flow, if the flow
rate is not too small, whereas this pressure gradient acts in opposite direction in the case of
too small flow rates; the magnitude of the pressure drop increases as the wave amplitude or
endoscope diameter increases.

• The inner friction force is generally negative (the force acts by the chyme flow on the endo-
scope), and provided the flow rate is not sufficiently small being otherwise the positive one;
in any regime, the magnitude of inner force increases with either the wave amplitude or
endoscope cross-section size growing; thus, for small flow rates, the force acts by the endo-
scope on chyme flow and may become strong in the case of large amplitude or endoscope
size, whereas at large flow rate this force acts in opposite direction so that the chyme flow
affects the endoscope.

• The outer friction force is generally positive (the force acts by the chime flow on the intes-
tine), and provided flow rate is not too small, whereas it is negative otherwise; at sufficiently
large flow rate, the outer force is greater for larger amplitude or aspect ratio of an annulus;
thus, for large flow rate, the chyme exerts on the intestine, but at the small flow rate, the
intestine acts on the chyme flow; this effect increases as amplitude or endoscope grows.
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• The leading order term of velocity is higher for higher flow rate, has higher amplitude
and decreases with increasing the radial variable in the absence on endoscope, whereas
it increases as the radial variable grows in the presence of endoscope.

◾Example 6.8a: Simulation of Bile Flow in a Duct with Stones [251]

The article presents a study of the motion of a mixture of the fluid (simulate the bile) and
the solid particles (simulate the stones) that forms a dense porous mass. The model consists
of a channel with wave y = (2𝜋ac∕𝜆) sin(2𝜋∕𝜆)(x − ct) propagating along walls. The problem
is governed by Brinkman equations which are Navier-Stokes equations with viscous terms
𝜇∇2u∕e and 𝜇∇2v∕e instead of usual ones 𝜇∇2u and 𝜇∇2v and additional pressure gradients
𝜇u∕k and 𝜇v∕k taken into account the porosity and permeability of bile with stones. In these
expressions e and k are proper coefficients and ∇2 = 𝜕2∕𝜕x2 + 𝜕2∕𝜕y2 is the Laplace operator
(Com. 1.1). Additional pressure gradients are defined according to Darcy law (Com. 4.25).

In this study, the Brinkman equation is considered in streamline form, which is obtained
after pressure eliminating (like Navier-Stokes equation derived in S. 7.1.2.4). The Saffman
slip boundary conditions is applied on the walls

Re (𝜓t y y + 𝜓t x x + 𝜓y𝜓y y x − 𝜓x𝜓yyy + 𝜓y𝜓x x x − 𝜓x𝜓x x y) = (1∕e)(𝜓yyyy + 𝜓x x yy + 𝜓xxxx)−

(1∕k)(𝜓yy + 𝜓xx), 𝜓y = ∓s𝜓yy, s = b∕
√

k at y = ±H ± 𝜂 (6.15)

Here, the variables are scaled as follows: x and y, u and v, 𝜓, 𝜂, p, t, k by H, c, cH,H, 𝜌c2,

H∕c,H2, respectively, and s is slip parameter in Saffman slip condition.

Comment 6.5 Saffman slip condition is used for smooth or permeable boundaries and has
the form 𝜕u∕𝜕y = (b∕

√
k)u where b is a constant depending only on the properties of a porous

material and k is permeability coefficient [43].

The problem (6.15) is solved using perturbation series up to 𝜀2 in standard form
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𝜕x

)

2

+ … (6.16)

where 𝜀 = a∕H is the dimensionless amplitude considered as a small parameter, and the first
term in the last equation is the imposed pressure gradient, whereas the others are arising due
to peristaltic motion. In general case, the solution is reduced to the fourth-order differential
equation, which may be solved numerically. In a special case, for initially stagnation fluid, a
close solution is obtained. It is observed that in such a case, the maximum pressure gradient
that can be created by one wave of small amplitude is of the order 𝜀2. Using this solution, the
analytical relations are derived for velocity, time-averaged velocity, and for critical pressure
of reflux.

Analyzing of computation results yields the following results and conclusions:

• The time average bile velocity in porous medium is determined by three terms: the parabolic
mean velocity distribution term that arises out of time, constant term, and the term of per-
turbation of the velocity, which controls the peristaltic mean flow.

• To validate the results, the values of perturbation velocity term are compared with data for
the case without porosity and permeability effects from an early Fung and Yih article [139];
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it is found that this term as well as in the previous study decreases as the Reynolds number
grows; it is also estimated that the perturbation velocity term decreases as coefficients of
porosity and permeability decrease, but the wave number 2𝜋H∕𝜆 and slip parameter s only
slightly affect the value of this term.

• The contribution of the constant term in magnitude of bile velocity increases as Reynolds
number and porosity coefficient increase and decreases with slip parameter and permeability
coefficient growing.

• The averaged mean bile velocity increases as the Reynolds number grows, showing that
the reflux occurs in the central region when the pressure gradient attains a critical value
0.220966; the bile velocity strongly depends on the wave amplitude ratio increasing as the
amplitude ratio increases and at high values of it becomes reversal near the boundaries;
these results are in conformity with known experimental data [380].

• The velocity in central region reduces as the Darcy number (which is the same as dimen-
sionless permeability coefficient, Com. 4.25) decreases indicating that the velocity profiles
in this case are quite different from the familiar Poiseuille profile, which means that the bile
velocity decreases as the number of stones increases.

• The velocity increases as the porosity parameter grows under other fixed parameters in the
case when the Darcy number exceeds the value 0.05, although its parabolic nature changes
for small Darcy numbers showing that velocity increases as the number of stones decreases
reaching maximum in the case of the absence of stones.

• The velocity value strongly depends on the slip parameter in the case of porous medium,
whereas the wave number affects the velocity only slightly, more prominently in the vicinity
of the boundaries.

• The critical pressure of reflux decreases as the Reynolds and wave numbers increase,
whereas it first increases with Darcy number growing and then maintains nearly constant;
the critical pressure significantly decreases as the porosity parameter increases showing that
at high amount of stones, the reflux occurs at low pressure; it also decreases considerably
when the slip parameter grows.

Comment 6.6 One may think that some conclusions here and in other similar studies are triv-
ial (like “the bile velocity decreases as the number of stones increases”). Such results obtained
by mathematical simulation differ in principle from usual qualitative statements due to quan-
titative data giving the dependence between characteristics (u = f (e) in this example), which
could not be gained before in the descriptive disciplines.

OTHER WORKS: The reviews of studies of peristaltic flows in normal and abnormal human
organs from early works to the results published up to first decade of the twenty-first cen-
tury one may find reading introduction of articles [184] and [251]. The pyeloureteral function,
which is responsible for transport urine from kidney to bladder is investigated in [294]. The
kidney stones drift and some other biological processes are simulated in [74] by particles
moving in a viscoelastic peristaltic flow. Fluid structures in a tissue during Hyperthermia (dis-
ordered thermal regulation) are analyzed in [11]. The effect of inserted endoscope evaluated
in reviewed above article [328] is also examined in [2] modeling a real situation by peristaltic
flow in cylindrical tube with endoscope and taking into account rotation and magnetic field
influence. The results of experimental and CFD (calculation fluid dynamic) investigation of
pathological bile flow in the binary system are presented in paper [207]. The stents (small
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expendable tubes used for inserting in blocked vessels) properties for bile channels and for
gastric acid environment are evaluated in vitro (not in living organ) in studies [28] and [303],
respectively, using experimental units.

6.1.3 Simulation of Biological Transport Processes

◾Example 6.9a: Modeling Transport Processes in Cerebral Perivascular Space [414]

Perivascular space (PVS) within the brain is an important pathway for interstitial fluid (ISF)
and solute transport in the cerebral cortex that has significant impacts on physiology. In this
paper, a model of fluid flow in the cerebral perivascular space induced by peristaltic motion
of the blood vessel is developed. The model is used to study effects of various physiological
parameters on the perivasclar fluid transport and particularly to investigate the interaction of
special method (convection-enhanced delivery, Com. 6.7) of infusion compounds into the brain
with peristaltic motion of close located blood vessel.

The model is a thin annual fluid-filled porous medium surrounding a blood vessel. The
outer wall is fixed at the distance r = R2 from the blood vessel central line, which is taken
as axis z of cylindrical coordinates. It is assumed that vessel oscillates sinusoidal as 𝜂 = R1 +
a sin(2𝜋∕𝜆)(z − ct) where R1 is a mean radius. The mathematical model is based on the same
as in the last example Brinkman equation, but with modified terms defined additional pressure
gradients in the form 𝜇eu∕k and 𝜇ev∕k. This form follows from Darcy law if one takes into
account that due to e, the velocity components are enhanced by q∕e, where q is the flow rate
per unit area.

It is shown that in moving frame under usual assumptions of small Reynolds number and
long wavelength, the Brinkman equations reduce to simple system for pressure gradients lead-
ing to the following solutions for axial velocity and the flow rate

dp

dr
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, u = − k
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u (6.17)

It is clear from (6.17) that pressure depends only on z, and due to that eliminating u from last
two relations gives equations for dp∕dz and for pressure drop on the one wavelength
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(6.18)
where R± = [1 ± (R1∕R2)]2 + (a∕R2)2.

Analysis yields the following conclusions:

• The total volumetric flow rate is a sum of contributions from the pressure gradient and from
the peristaltic movement of the boundary (vessel walls), which are coupled in solution; the
first part is the flow rate of pressure-driven flow through an annulus filled with a porous
medium, while the second part comes from peristaltic flow.

• The time-averaged displacement of a tracer particle is always positive regardless of the
initial position of the particle, which means that there is no reverse transport in the perivas-
cular space; the reverse perivascular transport observed by Schley et al. [337] is found using
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other model for simulating flow in non-porous space based on Navier-Stokes equation so
that there are no contradictions between two different results.

• As mentioned above, the one of the goals of this study is to investigate the effect of blood
vessel peristaltic motion on the convection-enhanced delivery (CED). It is found that inter-
action between the peristaltic motion of a close blood vessel and CED infusion pressure
gradient depends on the orientation of the vessel; the maximum effect is achieved when the
blood vessel is oriented in radial direction resulting in the peristaltic wave traveling in the
outward radial direction as well.

Comment 6.7 Convection-enhanced delivery is the method in which drugs are infused
directly into the brain tissue through a needle or catheter.

• The comparative calculations of the effects of CED therapy in the presence and in the
absence of peristaltic blood vessel show that the fluid transport in the perivascular space
is predominantly depends on the distance from the needle and on the values of the per-
meability coefficient k and the wave amplitude a; at sufficiently large distances, the main
contribution to fluid transport comes from the peristaltic wave, whereas near the infusion
source, the importance of peristaltic wave depends on the values of k and a and in general
is greater for the lower values of permeability and higher wave amplitudes.

◾Example 6.10a/n: Simulation of Macromolecules Transport in Tumors [36]

The therapeutic efficiency of various genetically engineered macromolecules, which also are
known as monoclonal antibodies, depends on their delivery and distribution in tumors during
the treatment. The reviewer study analysis effects of various physiological parameters on the
transport of interstitial fluid and macromolecules in tumors and uses the results for testing the
basic assumptions in current models.

Comment 6.8 The term “genetically engineered” stands for subjects changed by genetic
engineering methods. Monoclonal antibodies are products developed following idea of a
“magic bullet” coined by Paul Ehrlich at the beginning of the twentieth century: if a compound
selectively target against a disease-causing organism, then a toxin for that organism could
be delivered along with this compound. In the 1970s, this idea was realized by production
of monoclonal antibodies that now widely used in biochemistry, molecular biology and
medicine. One possible treatment for cancer involves monoclonal antibodies that bind
only cancer cell-specific antigens and induce an immunological response against the target
cancer cells.

Comment 6.9 The interstitial fluid (ISF) and blood plasma are two major parts of the all
human body fluid outside of the cells called extracelluar fluid. The interstitial space between
cells in a tissue is called the interstitium

The model consists of a cylindrical region surrounding an individual blood vessel of radius
rb and of intercapillary half-distance L streamlined by fluid with velocity u∞. The pressure and
velocity profiles around a cylinder simulating an isolated capillary are estimated. In contrast
to previous studied, the nonuniform filtration and convection resulting from a heterogeneous
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pressure distribution are taken into account. The flow of interstitial fluid is modeled using
Darcy’s law for flow through a porous medium.

The problem is governed by a creeping flow equation for small Reynolds number (S. 7.4. 1)
in cylindrical coordinates subjected to boundary conditions defining normal pressure gradient
on the vessel wall and velocity components far away from the vessel

u = −K∇p = −K

(
𝜕p

𝜕r
ir +

1
r

𝜕p

𝜕𝜃
i𝜃

)
, ur|r=rb

= −K
𝜕p

𝜕r

||||r=rb

= Lp(pe − p) (6.19)

ur|r→∞ = −u∞ cos 𝜃 u𝜃|r→∞ = −u∞ sin 𝜃 (−𝜋∕2 ≤ 𝜃 ≤ 𝜋∕2)

Here, K and Lp are hydraulic conductivity of the interstitium (Com. 6.9) and of the vessel wall,
respectively, pe = pv − 𝜎(𝜋v − 𝜋i) is the effective pressure, pv is the vascular pressure of the
vessel, (𝜋v − 𝜋i) is the osmotic pressure difference of capillary and interstitial fluid, and 𝜎 is
the osmotic coefficient.

Comment 6.10 The effective pressure is defined using the law formulated by Starling in
1896, which states that net filtration (or net fluid movement) is proportional to driving force
determined as pv − pi − 𝜎(𝜋v − 𝜋i). The osmotic pressure is a force of flow exerted through a
semipermeable membrane separating two solutions with diverse concentrations The solution
of the problem (6.19) for the pressure and velocity has the form [35]

p = p0
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K
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i ) ln
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+
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K

N r cos 𝜃 (6.20)

ur = −u∞N cos 𝜃 + Lp(pe − p0
i )
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r
, u𝜃 = u∞N sin 𝜃, N = 1 +
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1 + Lprb∕K

)

where p0
i is interstitial pressure at r = rb and 𝜃 = 𝜋∕2. The profiles of macromolecular con-

centration are found via diffusion equation with convection and binding (Com. 6.11)

𝜕Ci

𝜕t
= ∇ ⋅ (D∇Ci) − u ⋅ ∇Ci − kf Ci(Bmax − Bi) + krBi (6.21)

satisfying two boundary conditions: no- flux far away from the blood vessel at one-half of the
intercapillary distance L and the fluxes equilibrium at the vessel wall

[−D(𝜕Ci∕𝜕r) + urCi]r=L = 0,

(
−D

𝜕Ci

𝜕r
+ urCi

)

r=rb

= ur|r=rb
(1 − 𝜎)

(Cp exp Pe − Ci

exp Pe − 1

)

(6.22)
Here, Ci and Bi are the interstitial free solute and the bound solute concentrations determined
as 𝜕Bi∕𝜕t = kf Ci(Bmax − Bi) − (kr + ke)Bi, where Bmax is the concentration of binding sites
available, D is the interstitial diffusion coefficient, kf is the forward binding rate constant, kr
is the reverse (dissociation) rate constant, ke is the elimination (or metabolism) rate constant,
Pe is the transcapillary Peclet number defined as a ratio of convective to diffusive fluxes in
transverse direction

Comment 6.11 The diffusion equation with convection and binding (6.21) is a sum of a pas-
sive diffusion equation and irreversible binding of the antibodies (Com. 6.8) with binding sites
on the cell surface.
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The equilibrium condition (6.22) physically means that the sum of diffusion and convective
fluxes at the wall from capillary inside defined by the left-hand part of second equation (6.22)
is equal to the flux at the capillary wall from surrounding medium side given by the right
hand part of this equation. The first boundary condition (6.22) states that the flux defined by
either part (here by the left one) vanishes at one-half of the intercapillary distance L, which is
considered as far away from capillary distance.

The problem (6.21)–(6.22) is solved numerically using finite element approach (S. 9.6).
Calculations are performed employing typical for tumors values of parameters. The following
results and conclusions are derived:

• The interstitial pressure profile for baseline parameters corresponding to those in a lym-
phatic tumor surrounded by normal tissue is not symmetric due to the filtration from blood
vessel; this leads to a stagnation point upstream to the vessel, but none downstream; when
the far away velocity increases by factor 100, the profile resembles a classical solution of
inviscid flow around cylinder; the interstitial velocity streamlines are perpendicular to the
pressure isobars, that is parallel to the pressure gradients.

• These results confirm two assumption used in macroscopic models: the first, although the
pressure is not symmetric around the vessel, the extravasation (leakage from capillary to
surrounding) is a weak function of 𝜃, and the second, the contribution of convection to
interstitial transport and the effect of nonuniform velocities are limited on a macroscopic
scale; binding reduces the diffusive and convective transport rates by the same amount,
keeping their relative contributions equal;

• Unlike the distorted pressure profiles, the concentration profiles for nonbinding macro-
molecules at the vessel wall corresponding to the same baseline parameters of a lymphatic
tumor are relatively unaffected. This is because the transcapillary Peclet number is small.
Since the influence of convection (small Pe) is small, the angular dependence on profiles is
weak, and as a result, the one-dimension model may be used for sensitivity analysis, which,
in particular, has shown that for early times, here considered, there is insufficient material
to saturate the binding sites; therefore, increasing the plasma concentration moderately has
no effect on the dimensionless concentration profile; only significant increasing in plasma
concentration approaching a level close to saturation results in profile change; conversely,
if the forward rate constant kf and the binding affinity ratio kf ∕kr are increased, then pene-
tration into regions far away from the blood vessel is diminished, and larger concentrations
are found outside of the blood vessel. This reduction in the capability to penetrate is known
as the “binding site barrier”.

• The major limitation in the presented microscopic analysis is that interaction between blood
vessels are neglected so that pressure and velocity fields are computed for a single vessel
in an infinite medium; however, for the physiological parameters chosen, the perturbation
of the uniform velocity field is limited essentially to a couple of vessel radii and is nearly
uniform at a distance r = L; neglecting the axial variations in pressure, permeability, or
vessel diameter is the second limitation because there is known to be gradients of these
characteristics; however, for the physiological parameters chosen, the perturbation of the
velocity field is limited essentially as well to a couple of vessel radii, and is nearly uniform
at a distance r = L since even the smallest capillaries are 100 μm long, which is an order of
magnitude greater than the radius of the vessel.
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◾Example 6.11n: Simulation of Embryo Transport [430]

Within three days after fertilization, the embryo is transported along the uterine in the upper
part of the uterus. Unlike sperm, the embryo does not have a self-propelling mechanism, and
therefore, it is transported by intrauterine fluid flow patterns to it final site of implantation dur-
ing the early process of human reproduction. In the outlined paper, the transport characteristics
of this peristaltic motion, which serves as a vehicle for embryo, are investigated. The model
of the uterine cavity is simulated by uniform two-dimensional channel, which is closed at the
rigid end and open towards the cervix. Such a model is more realistic than existing models
with open end due to more adequate imitation of uterine cavity geometry. The fluid motion is
induced by two trains of sinusoidal waves propagating along the flexible in y-direction chan-
nel walls. The sinusoidal wall motility decreases towards the rigid ends of both upper (+) and
lower (−) walls according to the expression

𝜂 = ±H + a cos{2𝜋[(x∕𝜆) − (t∕T)] ± (𝜑∕2)} tanh[𝜙(L − x)] (6.23)

Here, 2H is the unperturbed channel width, T and 0 ≤ 𝜑 ≤ 𝜋 are the period and the phase
difference between upper and lower walls. The hyperbolic tangent is introduced to enforce the
conditions of anchored boundary conditions near the rigid end that is assumed to be a simple
rigid circular curve. The angle 𝜙 controls the slope of the hyperbolic function and ensures
smooth transition between a sinusoidal wave and rigid circular end.

The problem is governed by mathematical model consisting two-dimensional Navier-Stokes
equations, no-slip and no-penetration boundary conditions on the walls. It is assumed that at
the open inlet fluid may flow into and out of the channel. Computing was performed using the
finite volume package FLUENT for moving boundaries according to equations (6.23). The
mesh was composed of 20,000 triangle cells. Analysis of velocity components depending of
time and positions lead to the following results:

• The present study reproduces the previous data obtained for uterus modeled as an open
channel [130]; as before, it is found that the velocity profiles are depended on wall motility,
level of asymmetry and frequency of peristalsis.

• At the same time, the present study shows that flow characteristics in a closed model are
affected by the closed end indicating, in particular, that the magnitude of the axial velocity
is increasing towards the open end of the channel.

• The trajectories of particles revealed the periodic motions in small moving loops; the
particles initially separated by wavelength are transported in almost identical pattern; this
outcome is profound for the simulation with a small wavelength; the particles initially
separated at full wavelength (x = n𝜆) experience small velocities so that their displacement
is negligible.

• Particles within the channel recirculate around their initial location along and across the
channel; trajectories pattern illustrate the overall transport of embryo after it entering the
uterine cavity, where in the idealized conditions, the embryo should recirculte around its
initial location until it will be ready for implantation; this result shows that the real embryo
may never reach the end being implanted in the anterior or posterior walls at some distance
from end. These finding support the observations that implantation of the embryo occurs in
the area where it was placed naturally or artificially.
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• Peristaltic motions due to uterine contractions towards the fundus practically “lock the
embryos” within a small area around the location where they were deposited during the
transport process; this result is in conformity with observation that standing after transport
procedure does not affect the final position of the embryo.

◾Example 6.12a: Modeling the Bioheat Transfer in Human tissues [162]

The bioheat processes are important since heat transfer in human body determines the per-
formance of thermoregulation system and the efficiency of various procedures in thermother-
apy. Heat transfer in human body is complicated involving different processes, like conduction
in human tissues, perfusion of the arterial-venous blood through the tissue pores, metabolic
heat generation and interaction of blood flow with external magnetohydrodynamic (MHD) and
electromagnetic fields.

To study these effects, the relevant model is used that consists of electrically conducting fluid
filling the porous space in an asymmetrical channel in the presence of transversely directed
magnetic field B. The induced magnetic field is neglected. Two asymmetric sinusoidal waves
are imposed on the upper (𝜂1) and lower (𝜂2) walls

𝜂1 = d1 + a1 cos[(2𝜋∕𝜆)(x − ct)], 𝜂2 = −d2 − a2 cos[(2𝜋∕𝜆)(x − ct) + 𝜙], (6.24)

where d1 and d2 are distances from x axis to upper and lower walls, and 0 ≤ 𝜙 ≤ 𝜋 is the phase
difference satisfying the inequality a2

1 + a2
2 + 2a1a2 ≤ (d1 + d2)2.

The governing model consists of Navier-Stokes and energy equations with additional terms
𝜇u∕k, 𝜇v∕k and 𝜎uB2 accounting for permeability and magnetic effects in the same way as in
example (6.3) using the same notations k, 𝜎 and B for the permeability coefficient, electrical
conductivity and magnetic flux density, respectively. Under assumptions of small Reynolds
number and long wavelength, the governing system in wave frame reduces to three sim-
ple equations

𝜕4𝜓

𝜕y4
− N

𝜕2𝜓

𝜕y2
= 0,

dp

dx
= 𝜕3𝜓

𝜕y3
− N

(
𝜕𝜓

𝜕y
− 1

)
,

𝜕2𝜃

𝜕y2
+ Pr Ec

(
𝜕2𝜓

𝜕y2

)2

= 0, (6.25)

where N = (1∕Da + Ha2), and two boundary conditions: 𝜓 = q∕2, 𝜕𝜓∕𝜕y = −1, 𝜃 = 0 and
𝜓 = −q∕2, 𝜕𝜓∕𝜕y = −1, 𝜃 = 1 on the upper and lower waves at 𝜂1 = 1 + a2 cos 2𝜋x and 𝜂2 =
−d2 − a2 cos(2𝜋x + 𝜙), respectively. The variables are scaled by: cd1 for stream function and
flow flux q, 𝜆 for x, d1 for y, 𝜂, d2 and a, c for u, and 𝜆𝜇c∕d2

1 for pressure, 𝜃 = (T − T1)∕(T2 −
T1), Ha = Bd1

√
𝜎∕𝜇, Ec = c2∕cv(T2 − T1), and Da = k∕d2

1 are Hartmann, Eckert, and Darcy
numbers. Solutions of equations (6.25) has the form

𝜓 = C1y + C2 + C3 cosh
√

Ny + C4 sinh
√

Ny, dp∕dx = −N(C1 + 1) (6.26)

Constants are found satisfying indicated above boundary conditions. Expressions for constants
and temperature are awkward [162]. The following conclusions are stated:

• The variation of the pressure rise per wavelength against flow Δp𝛌(Q) shows three regions:
peristaltic pumping (Δp𝛌 > 0 and Q > 0), free pumping (Δp𝛌 = 0) and augmented pumping
(Δp𝛌 < 0 and Q > 0). In the first region, the pumping rate increases as Hartmann number
increases, reaches maximum critical value at Q = 0.6 and decreases as Ha grows farther;
similar behavior is observed in the both other regions.
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• The effect of permeability in all regions is opposite to that of Ha with the same critical value
for Q; an increase in distance between waves leads to decreasing in Δp𝛌 in peristaltic and
free pumping regions; in augmented pumping region a reverse is observed.

• The velocity profile is parabolic at the inlet; for large permeability, increasing in Ha results
in increased axial velocities in the neighborhood of the walls and their decreasing close to
the channel centre.

• Significant variations in temperature profiles occur near the lower wall and in the channel
centre, where a reduction in 𝜃 is noticed with increasing in Ha; an increase in permeability
affects the temperature profile in opposite way to that of Ha: the porous medium resists
the heat flow and this resistance increases as permeability decreases; an increase in the
Brinkman number Br = EcPr leads to increase in heat transfer rate.

• In the wave frame, the stream lines split to trap a bolus; in a symmetrical channel, the bolus
is symmetrical about centerline, and the bolus size is reduced as Ha increases; in asymmet-
ric case, the boluses tend to shift to the left side of the channel; size of bolus increases if
permeability grows in both symmetric and asymmetric cases.

• The heat transfer coefficient for MHD flow is greater when compared with that for the
hydrodynamic flow; heat transfer coefficient increases as Hartmann number increases and
when permeability (Darcy number) or Brinkman number decreases.

OTHER WORKS: The physiological analysis showing the role of peristaltic fluid flow in
modeling the intrauterine fluid motion of the uterus is given in [430]. The embryo transport
simulated in this article is also considered in other works, in particular, in [131] by study-
ing the cyclic uterine peristalsis using a model with two-dimensional tapered channel, in
[132] by employing the laboratory model for in vitro simulation, and in [299] by applying
the non-Newtonian Maxwell fluid flow in channel with varying cross section. A review [68]
presents the biomechanical and molecular aspects of intrauterine embryo distribution (spac-
ing and orientation) studied by genetically engineered mouse models (Com. 6.8). Articles
[359] and [326] as well as study [414], which we reviewed in Example 6.9, contributed in
convection-enhanced delivery (Com. 6.7). In the first article, a model of convection-enhanced
delivery in brain is developed, and in second one, an in-dwelling cannula for this procedure
targeted for neuro-oncological trials is proposed. The rabbit model with human hormone is
used in [293] to investigate the ovum transport in the oviduct. The spermatozoa swimming
stability near a surface is studied in paper [174] by direct numerical computation (S. 5.2.2)
via the boundary element approach (S. 9.6). Bioheat transfer considered in Example 6.12 is
investigated also in recent researches [4] and [187] more specifically simulating numerically
cooling heart by pumping cold liquid through blood vessels and studying thermal effects in
eye during treatment by lasers, respectively.

6.2 Application of Fluid Flow Models in Engineering

6.2.1 Application of Peristaltic Flow Models

In Chapter 5, in analyzing methods of problem solution, we considered two examples of peri-
staltic flow application to microelectromechnical systems (MEMS) (Exam. 5.4 and 5.5) to
show analysis of flow in short closed channels typical to MEMS. Here, we review some spe-
cific engineering peristaltic flow applications and listen, as at the end of each section, the other
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works in this area. We consider in detail four recent results obtained during the last years,
including a complex robot design published in 2015. These examples show the role and effi-
ciency of mathematical models in engineering applications of peristaltic motion changing in
principle the study methods in this area.

◾Example 6.13a: Effects of Chemical Reaction, Heat and Mass Transfer in a Tube Flow
[128]

In this research, the effects of mass diffusion of species, of chemical reaction, and heat trans-
fer on peristaltic motion of a non-Newtonian Jeffrey fluid flow are investigated. It is assumed
that the fluid flows through porous medium between vertical concentric tubes. The inner tube
is uniform with radius y = ri, and the outer tube is conical with radius r0 = R − x tan𝜑, where
R and 𝜑 are the maximum radius and conicity angel. Along the outer tube travels a sinusoidal
wave y = r = r0 + a sin[(2𝜋∕𝜆)(x − ct)] determining the peristaltic flow. Such a model simu-
lates different engineering and geophysical processes: geothermal reservoirs, drying of porous
solids, thermal insulation, enhanced oil recovery, packed-bed reactors, cooling of nuclear reac-
tors, and underground energy transport.

The problem is governed by mathematical model of a complex system consisting of
two-dimensional continuity, Navier-Stokes, and temperature and concentration equations for
Jeffrey fluid flow with chemical reaction. The complex system after employing the usual
assumption of long-wavelength and low Reynolds number is presented in the form

𝜕p

𝜕x
= 1

1 + 𝜆1

𝜕2u
𝜕y2

− 𝜀2u + GΘ + GrCΦ,
𝜕2Θ
𝜕y2

= −𝜀2Ecu2,
𝜕2Φ
𝜕y2

= Sc𝛾Φ (6.27)

The forth equation 𝜕p∕𝜕y = 0 that follows from the second Navier-Stokes equation states that
the pressure is independent on transverse coordinate. The dimensionless variables in equations
(6.27) are scaled by: 𝜆,R, c, 𝜆𝜇c∕R2 for x, y, u and p, respectively, a porosity parameter is
defined as 𝜀2 = R2∕k2(1 + 𝜆1), where 𝜆1 is a relaxation time, k, k1 and k2 are thermal con-
ductivity, constant of chemical reaction, and permeability coefficient of porous media, Θ =
(T − T)∕(Ti − T) and Φ = (C − C)∕(Ci − C) are dimensionless temperature and concentra-
tion determined via mean values marked by overbar. Grashof, Eckert, and Schmidt numbers,
and chemical reaction parameter 𝛾 are defined as follows

Gr =
g𝛽(Ti − T)R2

𝜈c
, GrC =

g𝛽C(Ci − C)R2

𝜈c
, Ec = 𝜇c2

k(Ti − T)
, Sc = 𝜈

D
, 𝛾 =

k1R2

𝜈

(6.28)
The problem is solved following Fang and Yih (Exam. 5.2) by perturbation series in small

parameter 𝜀2 under boundary conditions given at the inner surface (y = ri) and at the wave
y = r = r0 + a sin[(2𝜋∕𝜆)(x − t)], respectively as

u = v = 0, Θ = Θ0, Φ = Φ0 u = 0, v = 𝜕y∕𝜕t, Θ = Φ = 1 (6.29)

Two first series terms for velocity and pressure are obtained. The pressure rise and pressure
forces for the inner and outer tubes per wavelength, the skin friction, the heat and mass transfer
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coefficients are computed as functions of time-averaged over a period flow rate q = Q∕cR using
the following expressions

ΔP𝜆 = ∫
1

0

𝜕p

𝜕x
dx, F𝜆 = ∫

1

0
y2 𝜕p

𝜕x
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1
1 + 𝜆1

(
𝜕u
𝜕y

)

w

, Nu =
(
𝜕Θ
𝜕y

)

w

, Sh =
(
𝜕Φ
𝜕y

)

w

(6.30)
The following conclusions are formulated:

• The variation of the pressure rise per wavelength Δp𝜆 as a function of the time averaged
over a period flow q for various values of parameters indicates that in the region Δp𝜆 > 0, an
increase of Grashof number Gr increases the pumping rate Δp𝜆, and in the region Δp𝜆 < 0,
the pumping rate decreases with increasing Gr; an inversely linear relation between Δp𝜆
and average flow rate q is observed.

• The effects of the parameters 𝜑, a, ri,Ec, and 𝜀 on Δp𝜆 are similar to the effect of Grashof
on Δp𝜆; in the region −1 ≤ q < 0, the rate Δp𝜆 decreases as 𝜆1 grows, while in the region
0 ≤ q ≤ 1,Δp𝜆 increases with increasing 𝜆1; the effects of Grashof GrC (defined via concen-
tration) and Shmidt Sc numbers on Δp𝜆 are similar to effects of Gr and of 𝜆1, respectively,
whereas the parameter 𝛾 affects pumping rate Δp𝜆 as well as Sc.

• The variations of pressure forces per wavelength of the outer and inner surfaces as functions
of flow rate q indicates that the absolute value of the outer surface forces are greater than
that of the inner surface; the effects of Gr, 𝜑, a, 𝜆1, 𝜀, Sc, 𝛾,Ec,GrC and ri on both forces are
similar to the according effects of these parameters on pressure rise.

• The variation of the skin friction coefficient at the inner and outer tubes with the flow rate
indicates that skin friction decreases or increases with increasing GrC depending on cf < 0
or cf > 0, respectively, whereas for fixed GrC, skin friction increases for inner and decreases
for outer tubes as the flow rate grows; the effects of Sc, 𝛾 and 𝜆1 on skin friction are similar
to just described effect of GrC, whereas the effects of other parameters Ec,Gr, 𝜀, 𝜑, a and ri
on cf are similar to foregoing effects on the forces.

• The variation of the Nusselt number at both tubes as functions of the flow rate q shows that
the effects of different parameters on heat transfer are similar to the effects on skin friction,
but with different points of corresponding curves interaction with q axis; for both Grashof
numbers Gr and GrC this results in an increasing of negative values of Nusselt number with
their increasing; the effect of 𝜆1 is similar to the effect of Gr, and the effects of Sc and 𝛾 are
found to be similar to that of GrC on cf , whereas the effects of GrC, 𝜀, ri, a, 𝜑 are similar to
the effect of ri on skin friction coefficient cf .

• The variation of the Nusselt number at the tubes with time indicates that Nu increases for
inner and decreases for outer tubes as Sc increases; the effect of 𝛾 on Nu is similar to that
effect, while the effect of 𝜆1 on Nu is opposite to the effect of Sc on Nu; the effects of
ri,Gr, 𝜑, and a on Nu are similar to the effects of 𝜆1.

• The variation of the Sherwood number at the inner and outer tubes as functions of time
for fixed parameters indicates that Sh increases for inner and decreases for outer tubes as
ri increases; the effects of Sc, 𝜑 and a on Sh are similar to the effect of ri; the effect of 𝛾
on Sh is similar to the effect of Sc on Sh. Sherwood number decreases at both tubes as the
parameter Φ increases.
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◾Example 6.14∗ n: Optimization of Micropumping Systems [193]

This study presents optimization design of micropump with improved discharge efficiency
and reduced reverse flow of its fluid chamber. Devices with such high characteristics are
important for diagnostics, particularly, for blood cell sorting assays (counting cells) where
a full delivery of fluid containment of chamber is critical. The optimized design version was
achieved by changing usual circular camera in two steps. The aim of the first step was to find a
chamber profile, which creates the maximum forward discharge and the minimum retainabil-
ity and reverse flow. The flow simulation inside a chamber was performed using solution of
two-dimensional Navier- Stokes equations with uniform inlet velocity, constant pressure out-
let, and no-slip boundary conditions. The FLUENT software was applied to perform this step.
The reverse flow of species at different inlet velocities towards the exit of a circular chamber
was monitored, and the design of the containment was changed iteratively until no reverse
flow took place. Two pattern images are presented showing velocity distribution inside both
initial circular camera and camera of optimized profile with inlet velocity 0.002 m∕s providing
desired forward discharge and back flow rate.

In the second step, the tree-dimensional distributions of fluid particles in the form of veloc-
ity vectors that occur due to membrane impact in both initial and optimized chambers are
simulated. This was performed using the COMSOL multiphysics program for solving 3D
Navier-Stokes equations under zero velocity and pressure values at the inlet and outlet as the
boundary conditions and freely moving mesh constituting the computation domain. These
results are presented in an article showing much higher deliverability per unit pumping vol-
ume up to 85% for the constructed chamber against 25–30% for the conventional cylindrical
chamber.

Both considered chambers were extensively tested to investigate the differences between
initial and final versions in the basic characteristics and in the operation performance to show
high efficiency of suggested design. To perform these tests, various fluids like fluorescent bead
solutions, DI (deionized) water, blood, and PBS (phosphate buffer solution) are employed. A
special set of trials was performed for retention analysis of blood samples and velocimetry
image was used to estimate the real time flow behavior for the fluid containment. Finally, the
flow rate against the atmospheric pressure head was evaluated to check the operating param-
eters such as membrane deflection pressure and actuation frequency. The article consists of
detailed descriptions about using apertures as well as the methodology of investigation.

◾Example 6.15n: A Valve-Less Microfluidic Peristaltic Pumping Method [442]

The article presents two constructions of valve-less micropumps: the primal linear shape
micropump with continuous outflow but with intrinsic back-flow and strokes and improved a
round shape one with circular micro-channel squeezed by bearings. The final improved version
equips continuous, steady, and precise fluidic perfusion with optimized channel layout. Both
pumps may be used for simultaneous control on multiple flows by squeezing parallel channels
of different width.

Experiments have shown the following pumps characteristics:

• The cam-driven linear micropump is easy to fabricate and operate; however, the backflow
pattern makes the pumping inefficient.
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• The round-shape layout of fluidic channel greatly improves the continuity and stability of
the flow, and makes possible to use miniaturizes motors in portable devices.

• Using a direct pressing of round-shape channel rather than previously reported magnetic
driven rolling ball ensures robust driving; however, the liquid flow still shows small fluctu-
ations resulting in backflow when the bearings approaches the channel outlet.

• The buffer chamber placed outside and upstream of the outlet compensates these adverse
effects and effectively reduces the backflows.

• The velocity of pump is controlled by rotation speed of the motor providing delivery error
not larger than ±3 nl (nanoliter is 10−9 liter).

• The pump shows that at backpressure of 300 kPa, the flow rate drops by 14.7% is much
better than similar characteristics of most commercial peristaltic devices.

• The pump is low-cost, easy-to-fabricate microdevice with precise flow control.

◾Example 6.16n: The Biomimetic Peristaltic Swallowing Robot [94]

The proposed biomimetic robot is designed to investigate the transport of boluses due to
peristaltic motion such as in esophagus and in similar intestine organs. The robot mimics
the biological process of swallowing smoothly and continuously to achieve the peristaltic
contraction trajectories propagating like those in human body. Synonymous with architec-
ture of the esophagus, the robot has no skeletal structures at the artificial conduit and exhibits
distributed actuation in a similar arrangement to muscles around the biological conduit. Peri-
staltic waves are specified by inflammation of a series of twelve adjacent stacked vertically
whorls of pneumatic chambers. Such robot manifests as a benchtop engineering rheometric
(to measure rheological parameters, S. 1.9) instrument for investigation relationship among
bolus formulation, interluminal pressure signature (ILPS) and peristaltic transport effects. The
article presents detailed instructions for bolus preparing and experimental determining swal-
lowing trajectories, intrabolus pressure signatures (IBPS), and other manometric (esophageal
motility study) features.

The following results are obtained using the robot to discern between IBPS in response to
manipulating transport parameters such as peristaltic wave velocity (20, 30, and 40 mm/s),
wave-front length (40, 50, and 60 mm), and starch-based bolus (from Nutulis, particularly)
formulation concentration (25, 50, 75, 100, and 150 g/L).

• The wave velocity and starch thickener concentration exhibits the most profound changes in
the intrabolus pressure signatures, and the last parameter is the most sensitive perturbation
to the swallowing signature across clinically significant ranges of variables.

• The highest bolus tail pressure gradient of 0.33 kPa/mm is achieved at 150 g/L bolus for-
mulation being transported at 40 mm/s with a wave-front length of 60 mm.

• The relationships between the parameters and features of the manometric pressure signature
are nonlinear due to the complex shear field and non-Newtonian nature of the model bolus
materials

• The swallowing robot, augmented with monometric investigation capability, has demon-
strated good sensitivity to bolus transport parameters and displayed the relationship between
mechanical features of process and the resulting ILPS.

• The manometric signature for the robotic swallowing model exhibits the same salient fea-
tures of those captured in the clinical setting; using such a robot overcomes the limitations
of current swallow investigations suffering from intrasubject variability.
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OTHER WORKS: A faithful review of MEMS biologically oriented for drug delivery is pre-
sented in [287]. Shorter reviews (up to the first years of the twenty-first century) of applied
peristaltic flow investigations and of different versions of microfluidic devices may be found in
introductions of reviewed above papers [128] and [193], respectively. Many types of peristaltic
pumps and micropumps were proposed: early models operating by electric motor [292] or
rotary solenoid [57] and more contemporary constructions using various driving approaches:
thermo-pneumatic (pipette-like) [364], pneumatic [181], piezoelectric [37], electro-pneumatic
[64], electrostatic [42], and electromagnetic [38]. Some recent publications considered the
complex engineering problems. For example, the peristaltic magnetohydrodynamic flow with
Hall, ion slip, and Ohmic heating effects is investigated in [18], and the influence of the
variable viscosity and thermal conductivity on the peristaltic flow characteristics is studied
in [259].

6.2.2 Applications of Direct Simulation of Turbulence

In Chapter 5, we considered three methods of direct numerical simulation of turbulence: DNS,
LES, and DES including the most improved IDDES and ZDES versions of DES. We explained
the importance of such simulation, the basic distinction of new direct methods from exist-
ing means, and discussed the difference between these three approaches of simulation. It was
underlined that the direct numerical simulation provides the information, which is viewed as
experimental data obtained computationally. The turbulence characteristics such as the instan-
taneous velocity components, stresses, fluctuation correlations, and so on, may be calculated
instead of or in addition to experimental results. Moreover, each direct numerical solution of
Navier-Stokes equations is a challenge similar in complications to physical experiment, when
computing accuracy of results may slightly differ from each other owning to specific numer-
ical schemes and prescribed boundary conditions as well as data of different experimental
investigations exhibiting some discrepancies due to variations in the setup and experimental
procedures.

Here, we present some examples of direct simulation applications including the latest show-
ing significant improvement of our understanding of turbulence nature due to new methods and
fast-growing applicability of these methods up to industrial prototypes.

6.2.2.1 Direct Numerical Simulation

◾Example 6.17: Direct Numerical Simulation of a Turbulent Boundary Layer [218]

The article presents the characteristics of turbulent boundary layer obtained by direct
numerical simulation at Re𝜃 = 570 − 2560, where 𝜃 is the momentum thickness (S. 7.5.1.1).
The model consist of three-dimensional zero pressure gradient flow along a flat plat described
by Navier-Stokes equations in Einstein notations (S. 7.1.2.2) and variables scaled by the
free-stream velocity and momentum thickness 𝜃 at the inlet
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+
𝜕uiuj
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A basic goal of this study is to increase the value of Reynolds number of turbulent zero
pressure gradient flow over a flat plate achieved in previous simulations as, for example, the
range 80 ≤ Re𝜃 ≤ 940 attained by Wu and Moin [423]. The main reason of the Reynolds num-
ber restriction in that study and others of this type is associated with starting laminar inflow
that requires simulation of the transition process to get the developed turbulent boundary layer.
The problem arising in such approach is a costly simulation of transient process becoming
unacceptable with growing Reynolds number.

During the last two decades, several methods for overcoming this problem are suggested.
The analysis presented in the reviewed article shows that a method proposed by Lund et al.
[248] for generating a turbulent inflow boundary conditions is a realistic, reliable means. The
idea consists of using an auxiliary turbulent inflow to displace the region of interest with simu-
lating main turbulent boundary layer for a relatively short distance upstream from it. To avoid
the artificial numerical periodicity induced in the Lund et al. approach, authors used a long
streamwise domain of length x∕𝜃in,i = 1000, where 𝜃in,i is the inlet momentum thickness for
the development boundary layer adjustment. The other domain parameters and mesh resolution
are given in the reviewed article. The ratio of the main and inflow thicknesses is 𝜃in∕𝜃in,i ≅ 2.5.
The height and width of domain are about three times larger than the maximum momentum
boundary thickness at the maximal Re𝜃 = 2560. The total number of grid points is 315 million.

The governing equations are integrated in time using the fractional step method with implicit
velocity decoupling procedure proposed by Kim et al. [204]. The results obtained at Re𝜃 =
2500, 2000, 1410 are compared with data of five other simulations and of five experiments for
Reynolds numbers in the range at Re𝜃 = 1410 − 2900. The study results are summarized in
the following basic conclusions:

• The calculating velocity profiles and two point correlations of velocity fluctuations are in
good agreement with previous simulations and experimental data. In particular, well-known
universal wall and defect velocity laws for inner and outer regions (S. 8.3.2) found pre-
viously from experimental data are confirmed computationally. Some deviations between
compared data are associated with experimental uncertainties, numerical inaccuracy, and
insufficiently long domains. The famous logarithmic formula U+ = (1∕k) ln y+ + B for
inner velocities follows from calculating profiles as well.

• The present simulation showed the consistent behavior with the recent DNS data of Schlat-
ter et al. [335, 336], despite of the different numerical schemes and inflow conditions. These
observations indicate that: (i) the sufficiently long streamwise domain and high grid resolu-
tion in simulations are essential to obtain the reliable turbulent flow, and (ii) the influences
of the numerical scheme and inflow generation method on the properties of the turbulent
boundary layer quantities are relatively weak.

• The peak values and locations of all the velocity and pressure fluctuations showed
Reynolds-number dependent behaviors: as the Reynolds number increases, the peaks of
the velocity and pressure fluctuations increase; the Reynolds number similarity is achieved
near the wall when the fluctuations are scaled by the friction velocity u𝜏 ; the similarity of
the r. m. s. (root mean square value is the square root of arithmetic mean of the squares)
of vorticity fluctuations is observed in the range 5 < y+ < 70 (S. 8.3.2), and the lack of
similarity is discovered very near the wall and in the wake region.

• Inspection of the instantaneous field and two-points correlation revealed the existence of the
very large-scale motions with the characteristic widths of (0.1–0.2) 𝛿 and the flow structures
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for a length of approximately 6𝛿 fully occupied a streamwise domain statistically. These
motions are the coherent structures residing in the turbulent boundary layer and are consis-
tent with the ‘superstructure’ (extended or developed from basic structure) observed before.

• The results from the two-point correlations of the streamwise velocity fluctuations displayed
that the outer scaling variable (𝛿) is an appropriate length scale for normalizing the turbulent
structure in the logarithmic layer (S. 8.3.2) with respect to the Reynolds number.

◾Example 6.18: Heat Transfer in Turbulent Boundary Layer Flow in a Channel [199]

The effects of Reynolds and Prandtl numbers on the heat transfer characteristics of turbu-
lent boundary layer are investigated. The model consist of fully developed flow in rectangular
channel with dimensions 6.4𝛿 × 3.2𝛿 × 2𝛿, where 𝛿 is the half channel width, heated by the
uniform heat flux qw = const. The governing system involves the continuity and Navier-Stokes
equations in the form (6.31), as in the last example, the energy equation for statistically aver-
aged temperature (i.e., with regard to random errors)

𝜕𝜃

𝜕t
+ uj

𝜕𝜃

𝜕xj
= 1

Re𝜏 Pr
𝜕𝜃

𝜕xj𝜕xj
+

u1

⟨u⟩
, T(x, y, z) =

[
d
⟨

Tm

⟩
∕dx

]
x − 𝜃(x, y, z), (6.32)

and boundary conditions ui = 𝜃 = 0 at y = 0 and y = 2. In the case considered, the statisti-
cally averaged temperature increases linearly with respect to x. Therefore, the instantaneous
temperature is defined by second equation (6.32), where the mixed mean temperature is
estimated as

⟨
Tm

⟩
=

⟨
uT

⟩
∕
⟨

u
⟩

, and the derivative of it for the case of considered config-

uration is inversely proportional to velocity d
⟨

Tm

⟩
∕dx = 1∕

⟨
u
⟩

. In this study, equations
(6.31) and (6.32) are written in dimensionless coordinates, velocities, and temperatures
scaled by 𝛿, u𝜏 =

√
𝜏w∕𝜌, and T𝜏 = qw∕𝜌cpu𝜏 (friction velocity and temperature, S. 8.3.2).

The ovescore (−) and brackets ⟨⟩ defined the variables averaged statistically and over the
channel section, respectively, the Reynolds number is specified as Re𝜏 = u𝜏𝛿∕𝜈, and the
term u1∕⟨u⟩ in equation (6.32) represents the last term of boundary layer energy equation in
dimensionless form.

The simulation was performed by the finite difference approach for 180 and 395 Reynolds
numbers and 0.025, 0.2, and 0.71 Prandtl numbers using grids 128 × 66 × 128 and 256 × 128 ×
256 for first and second Reynolds numbers. The presented results including analysis of visu-
alization pattern are summarized as follows:

• For both Reynolds and three Prandtl considered numbers, the region with logarithmic profile
𝜃
+
= (1∕k𝜃) ln y+ + B𝜃 exists with value of k𝜃 close to Karman constant 0.4; the peak in the

r.m.s temperature distributions weakly depends on Re for Pr = 0.71, but for smaller Prandtl
numbers, the peak increases with Re growing.

• The peak of total and the wall-normal turbulent heat fluxes arise at around y+ = 30 − 60
for Pr ≥ 0.2 and at y+ > 50 for Pr = 0.025 and increase with Re and Pr increasing; the
peak of the streamwise turbulent heat flux increases as the Prandtl number grows, its value
dependence on Reynolds number is negligible for Pr = 0.71, but is appreciable for Pr = 0.2
and Pr = 0.025; in the central channel region for Pr ≥ 0.2, the streamwise heat flux does
not depend on Prandtl number, and its value is much larger than the wall-normal heat flux,
which is a result of much larger streamwise velocity fluctuations u′+ than corresponding
wall-normal velocity fluctuations v′+.
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• The turbulent Prandtl number is calculated as Prtb = 𝜈tb∕𝛼tb, where turbulent viscosity 𝜈tb
and diffusivity 𝛼tb are computed from relations for statistically averaged turbulent stress
u′+v′+ = 𝜈tb(du+

1 ∕dy+) and heat flux v′+𝜃′+ = 𝛼tb(d𝜃
+
∕dy+); It is known that the con-

tradictory experimental data leads to a long discussion about dependence of the turbulent
Prandtl number on transverse coordinate, in particular, at the wall vicinity (Com. 2.5). The
calculation shows that close to the surface for Pr ≥ 0.2, the turbulent Prandl number is close
to unity and is independent on y+ and Prandtl and Reynolds numbers; although this con-
clusion is in line with results obtained before in [16], for small Prandtl number Pr = 0.025
calculation indicates that Prtb is higher for small Reynolds and becomes the same as for
larger Prandtl numbers when Re increases.

• Both the production and dissipation terms (S. 8.4.1) of the budget of the transport equation
for temperature, scaled by u3

𝜏T𝜏∕𝜈, increase as the Reynolds number increases; the domi-
nating terms of the budget for wall-normal turbulent heat flux increase with the Reynolds
number growing as well and this effect is more pronounced for Pr = 0.025; the production
and the temperature pressure gradient (TPG) correlation terms are dominant at Pr = 0.71
and the corresponding dissipation term is considerable small, whereas at Pr = 0.025, the
production and dissipation terms are prominent leading to the negligible TRG term; at
the same time at Pr = 0.2, both the TRG and dissipation terms are comparable, and as
the Reynolds number increases, the dissipation term stays unchanged and the TRG term
increases contributing more dominantly to budget.

• Instantaneous flow and temperature fields are visualized to investigate the streaky and ver-
tical structures and to compare the patterns for both Reynolds numbers; in the case of
low Reynolds number, only limited types of vertical structures are observed, but with the
increase of the Reynolds number, various shapes of the vortices appear; in the case of
Pr = 0.71, the velocity and thermal streaky structures show a strong similarity, while at
Pr = 0.025, the thermal streaks are not so elongated in streamwise direction and their span-
wise spacing are larger than for Pr = 0.71.

◾Example 6.19∗: Exothermic Gas-Phase Reaction in Packed Bed with Particles [277]

The paper presents a simulation of an exothermic gas-phase reaction between ethylene and
oxygen in a two-dimensional packed bed reactor with 600 cylindrical particles with diameter
dp = 2.9 mm. The model is constructed by arranging 10 particles randomly perturbed on a
square lattice spanning the width of reactor of 38.3 mm and by putting 60 of these lattices
next to each other defining the axial reactor size of 240.6 mm. 70 grid nodes on the surface
of each particle and 15 cells around it together with 3000 grid points along the reactor wall
and 500 points along the inlet and outlet are provided resulting in 1.8 × 106 grid cells in the
whole domain. The flow is considered as laminar with Reynolds number 3.5 based on particle
diameter and interstitial velocity vinlet∕𝜀, where 𝜀 is porosity. Mathematical model of four
equations in the vector form (S. 7.1.2.1) governed the problem

𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌v) = 0,

𝜕(𝜌v)
𝜕t

+ ∇ ⋅ (𝜌vv) = −∇p + ∇ ⋅ 𝛕 ⋅ 𝜌g

𝜕(𝜌h)
𝜕t

+ ∇ ⋅ (𝜌vh) = −∇ ⋅

(

𝜆∇T −
N∑

i−0

hiJi

)

+ Sh,
𝜕(𝜌Yi)
𝜕t

+ ∇ ⋅ (𝜌vYi)

= −∇ ⋅ Ji + Ri + Si

(6.33)
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In these mass, momentum, energy and species conservation equations, the variables are: 𝛕 is
stress tensor (Com. 1.9), g is gravity vector, hi,Yi, Si, Ji, and Ri are enthalpy, mass fraction,
rate of source creation, diffusion flux, and net rate of production of chemical species i. The dif-
fusion flux of species i that arises due to concentration and temperature gradients is calculated
using Ficks’ law (S. 7.1.1) as Ji = −𝜌Di,mix∇Yi − DT ,i(∇T∕T), where DT ,i and Di,mix are the
thermal and mass diffusion coefficients estimated by kinetic theory as it suggested in [256].
The source of chemical species i due to ethylene-oxide reaction C2H4 + (1∕2)O2 = C2H4O
is computed as the Arrhenius type reaction (Com. 4.15) using relation Ri = Mw,i R̂i, where
Mw,i is a molecular weight of species i, and a molar rate of ethylene reaction is given as
R̂i = −2.66 ⋅ 1013 exp(−15107∕T)cEt, where cEt is the concentration of ethylene.

The system of equations (6.33) was solved under the following boundary conditions: (i)
the constant velocity profile at inlet and the zero gauge pressure at the outlet, (ii) no slip and
zero heat transfer on the reactor walls and on particles surfaces, (iii) the 0.01 m/s velocity and
450 K temperature of the mixture of ethylene and oxygen in mass fraction 0.7 × 0.3 at the
inlet. Simulation was performed using Computational Fluid Dynamic (CFD) code FLUENT
and the SIMPLE software for pressure/velocity uncoupled procedure (S. 9.7). The elliptical
equations (6.33) are transformed into hyperbolic type by adding artificial unsteady terms and
solved straightforward with time step 0.01 s until the steady state is achieved (Com. 6.1).

The comparison of simulation results with data obtained by one-dimensional with plug
velocity (S. 7.7) solution shows agreement. The following conclusions are stated:

• The local axial velocities between the particles are approximately 2-8 times higher than
the superficial or inlet velocity and are the highest in the regions with high porosity; the
average axial velocities are low near the walls becoming higher as the distance from the
wall increases; the mean velocity is small vinlet∕𝜀 = 0.0175 m∕s. The reason of that is the
depletion of the reactant at about 40 mm from the inlet resulting in “dead zones” of about
half of the space available for gas.

• Both simulation and one-dimensional solution results show that the ethylene and oxygen
concentrations decrease along reactor due to reaction and reach zero at around 68 mm
(65 mm according to one-dimensional data) from inlet where the reaction is finished
resulting in temperature 580 K and constant concentration of ethylene oxide.

• The temperature distributions along the reactor at y = 10, 20 and 30 mm from the right hand
wall side show the existence of high radial and axial temperature gradients at the distance of
55-60 mm from the inlet; the comparison of those three distributions reveals the large dif-
ference between temperatures of these three curves at the same axial location; the reason of
that is the mentioned above slow fluid flowing at the wall, which leads to a longer residence
time for reactants moving near the wall than the corresponding time for mixture flowing far
from the wall; as a result, the more intensive reaction and consequent heat production occur
closer to the inlet in the wall region than in central part of the reactor; the same observation
follows from the temperature contours pattern.

• The existence of large gradients indicates that the convection in this model is small lead-
ing to slight dispersion and mixing processes; this conclusion is in line with small heat
and mass Peclet numbers, which values are in the ranges: Pe = vdp∕𝛼 = 1.96 − 16, and
Pem = vdp∕D = 1.73 − 22.8; this shortage of the model arises due to arrangement of parti-
cles distributed less randomly than in real packed bed reactor.
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OTHER WORKS: In the most recently published in 2016 three articles, DNS is used: to
study the dynamics of new hydroelastic solitary waves in deep water [141], to analyze the
transport of solid particles immersed in a viscous gas [142], and to evaluate the effect of the
size of spanwise domain on the transitional flow past airfoil NACA 0012 at 5 degree attack
[441]. In several other recent DNS articles published during the last three years are inves-
tigated: laminar-turbulent transition in hypersonic boundary layer on a sharp cone at Mach
6 [357], drag and forces acting on a bubble near a plane wall [379], flow in pipes with an
arbitrary roughness topography [406], ignition of pulverized coal particle-laden mixture [51],
droplet-laden heated and humid flow with phase transition [52], and ignition of lean biodisel
fuel/air mixture [249]. For comparison, we mention some of earlier publications considered the
following topics: heat and mass transfer in particulate flow [84], transport of scalars in turbulent
channel flow at high Schmidt numbers [340], stable and unstable flows affected by buoyancy
[161], transitional flow obstructed by rectangular prisms [198], and flow in a rod-roughened
channel [19]. Review of very early results may be found in [195].

6.2.2.2 Large Eddy Simulation

◾Example 6.20: Vortex and Pressure Fluctuation in Aerostatic Bearings [443]

Aerostatic bearings are widely used in precision stationary and moving equipment due to
their merit near-zero friction and low heat generation. However, the inherent small vibration
damages stability and precision of bearing. Recently many studies were fulfilled to understand
the mechanism and suppress those vibrations considering the flow inside the bearing as a steady
and applying the RANS equations or CFD simulation. In this paper to further insight, the
transient compressible turbulent flow is investigated using the LES simulation. The model
is constructed as 1/12 sector of cylindrical bearing of d = 20 mm that is composed of two
components modeling the carrier (upper) and the base (lower) of a real bearing prototype.
The air flow domain is divided in three parts: orifice (d0 = 0.15 mm), cylindrical recess on the
carrier bottom (d1 = 3 mm and depth of 0.1 mm), and the gap between the carrier and base for
air film of thickness h = 10 μm.

To reduce the computational cost, different approaches are used for these parts: the k − 𝜀
model (RANS) for orifice and the LES for the recess are adopted, whereas the air film flow in
a gap is assumed to be laminar, and the time-dependent compressible Favre filtered continuity
and Navier –Stokes equations are employed to model this film flow

𝜕𝜌

𝜕t
+
𝜕(𝜌 ui)
𝜕xi

= 0,
𝜕(𝜌 ui)
𝜕t

+
𝜕(𝜌 uiuj)
𝜕xi

= −
𝜕p̃

𝜕xi
+
𝜕𝜎ij

𝜕xj
−
𝜕𝜏 ij

𝜕xj

𝜎ij =
𝜕ui

𝜕xj
+
𝜕uj

𝜕xi
− 2

3
𝛿ij

𝜕𝜎ij

𝜕xj
, 𝜏 ij = 𝜌(uiuj − uiuj) (6.34)

Equations (6.34) are written in Einstein notations, in which 𝜏 ij is the subgrid scale (SGS)
stress, 𝜎ij is the viscous stress tensor, 𝜌 and p̃ are spatial filtered density and pressure (S. 5.7),
overscore (−) denotes the Favre density-weighted (S. 9.6) filtering, and 𝛿ij is the Kronecker
delta (S. 7.1.2.2).
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Comment 6.12 In the case of compressible fluid, the Reynolds averaging of Navier-Stokes
equations leads to extra unknown terms that require additional hypotheses for closure (S.
8.2.3), further involving the problem. Density-weighted averaging suggested by Favre [133],
which in fact changes the dependent variable from velocity ui to 𝜌ui, leads to equations in the
form close to the Reynolds incompressible equations [422].

The following boundary conditions are used: flow with initial turbulent intensity of 1.5
or 10% at the orifice inlet, atmospheric pressure at the outlet, symmetric conditions on both
gap surfaces in the circumferential direction, no-sleep and no heat transfer on the walls,
which are assumed to be perfectly smooth. The air is considered as ideal gas with viscosity
1.7894 ⋅ 10−5 kg∕ms, molecular weight 28.966 ⋅ 10−3 kg∕mol, specific heat 1006 ⋅ 43 J∕kgK,
and thermal conductivity 0.0242 W∕mK.

The CFD software ANSYS FLUENT with finite volume method (S. 9.6) is used for per-
forming LES. The total numbers of mesh volumes are 268075 and 519644 for coarse and fine
refinement studies, respectively. For the pressure-velocity decomposition the PISO algorithm
is applied (S. 9.7). The second order upwind interpolation is adopted for density, turbulent
kinetic energy and dissipation, and the central differencing is used for interpolation in LES.
The implicit second order scheme is employed with time step 10−8s, satisfying the condition
uΔt∕Δx < 1, where Δx is a control volume size.

The following results and conclusions are obtained:

• The validation of model is justified by comparison of the numerical pressure distribution
with experimental data [435] showing agreement of both results almost everywhere, except
a small region near the orifice outlet.

• The instantaneous flow field in recess reveals series of vortices of varying sizes and shapes
resulting in vortex shedding phenomenon when the vortices downstream break into small
eddies and finally dissipated due to viscosity;

• The pressure distributions at three locations in the recess show the pressure fluctuations,
which weaken in radial direction.

• The comparison of the results for three intensities of initial air turbulence indicates that
influence of initial turbulence on the level of fluctuations is very small.

• The results obtained at 2, 3 and 4 atm. of air supply show that the air flow in recess is steady
and remains laminar at 2 atm., becoming unsteady with vortex shedding at two other values
of air pressure.

• The repeated pressure depression in space and fluctuations in time are observed in the bear-
ing clearance when vortex shedding occurs; this pattern is not resolvable for RANS because
of its statistical averaging.

• As the pressure of air supply and corresponding mass flow rate ṁ increase, the Reynolds
number grows from Re = ṁ∕𝜋r𝜇 = 631 at p = 2 atm. to Re = 1516 and 2515 at p = 3 and
4 atm., resulting at some critical Reynolds number between 1000 and 1500 in the transition
of laminar flow in turbulent, and an increasing of vortex shedding.

• Comparison of flow fields in two models with and without recess reveals that in the second
case the flow is laminar, steady and practically without vortices, which is a result of small
Reynolds numbers.

• The vibration of both recessed and non-recessed models associated with pressure fluc-
tuations are measured by accelerometer showing that amplitude of vibration in recessed
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bearing increases as the supply pressure grows, and in non-recessed bearing, the amplitude
of vibration is much weaker; this confirms the conclusions obtained from computational
results.

◾Example 6.21: Dynamic Flame Response in Gas Turbine Combustion Chamber [166]

The lean premixed combustion systems providing low pollutant emissions are susceptible
to thermo-acoustic instabilities. The article review shows that many investigations performed
to understand a mechanism and to prevent the appearance of these instabilities are basically
studied simple laboratory premixed flame. In contrast, the describing here results are obtained
by LES of a real gas turbine burner at an actual Reynolds number considering the effect of
equivalence (air/fuel) ratio fluctuations on the dynamic flame response.

The burner is of hybrid type where air is injected through diagonal and axial coaxial swirlers
containing 24 and 8 vanes, respectively. Methane is injected through small holes in the vanes
and mixes with air before the combustion chamber. The pilot methane injection is used for the
flame stabilization and the cooling air inlets are applied to shield a cylindrical burner outlet.
The burner is mounted on a 15-degree section of an annular combustion chamber constituting
the computation domain. The mesh is buildup of 1.921.370 nodes and 10.472.070 tetrahedral
elements, the time step is 9 ⋅ 10−8s.

Two simulations are performed on the same geometry. In the first one, called TECH (tech-
nical), the burner operates as a premixed mode where fuel is injected through small holes in
the vanes of the diagonal swirler and mixes downstream with air prior combustion. In the
second simulation (FULL), the fully premixed flow enters through the diagonal passage. The
LES were performed using the fully explicit code for the compressible reactive multi-species
Navier-Stokes equations adopted from [339]. Other details, including the boundary conditions,
are given in reviewed paper.

The obtained results yield the following basic conclusions:

• The equivalence ratio distribution and temperature isolines show that both flames are very
similar, although the equivalence ratio of mixture equals unity in both cases, and the overall
heat release is practically the same, the TECH flame produces slightly less heat release than
FULL one.

• Both cases exhibit similar mean pulsated and non-pulsated flame shapes but with some
differences in the combustion regime. Phase average solutions show that for technically
premixed case, the flame transfer function (FTF) delay is 1.5 times larger than that for the
FULL case, showing that fluctuations in the diagonal swirler modifies the FTF.

Comment 6.13 Flame transfer function is one of the key parameters in the flame dynamic
analysis defined as a ratio of heat release to the velocity of thermo-acoustic fluctuations.

• Because fuel and air jets oscillate with different phases at the injection point, the velocity
and trajectory of the jets also oscillate resulting in the mixing oscillations

• The local FTF fields indicate that the mixture oscillations propagating in the diagonal swirler
lead to locally different responses along the flame showing that mixing process in the diag-
onal passage is not sufficient to damp perturbation induced by unsteady fuel flow. Two
mechanisms are responsible for that: the pulsating injected fuel flow rate and the fluctuating
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trajectory of the fuel jets. Both effects occur due to pressure fluctuations at the fuel injection
holes caused by forcing.

• These mixing fluctuations are not damped at the combustion chamber inlet; they are phased
with velocity oscillations, combined with them and lead to different FTF modifying the
flame response to forcing; local fields of delay and the interaction indices reveal that the
flame is not compact and is affected by fluctuations.

• The obtained data indicate that normal mixing is achieved only for steady flames; as soon
as the flame is pulsated, the fuel injection system produces a response different from that in
a fully premixed system.

◾Example 6.22: Pebble Bed in the High Temperature Nuclear Reactor [344]

An inherent safety advantage of high temperature nuclear reactor (HTR) is related to the very
high temperature that the fuel can sustain preventing the fuel from melting even in the loss of
cooling. Generally, the core is designed using graphite pebble bed, which usually provides
efficient operation. However, heat transfer around curved surfaces, turbulent flow through the
gaps between pebbles, turbulent flow pressure gradients may result in local hot spots affecting
the pebble integrity.

Because the real pebbles bed has complex geometry, the existing investigations were per-
formed on simplified models considering basically single pebble of different configuration
and using RANS. In the reviewed work, the study of flow and heat transfer in the single
cubic pebble of spherical type is performed. Such configuration is called Face cubic cen-
tered (FCC) arrangement consisting of a cube with half-spherical pebbles on each face and
1/8 of such sphere on each corner. For model validation, the results of quasi-direct numer-
ical simulation (q-DNS) are used. In this quasi-DNS simulation, the model is considered
as a porous medium with corresponding porosity that for model in question is estimated as
0.42. Helium is applied as working fluid with the following parameters: 𝜌 = 5.36 kg∕m3,
𝜇 = 3.69 ⋅ 10−5 kg∕ms, 𝜆 = 0.3047 W∕mK, cp = 5441.6 J∕kgK, ṁ = 0.01606 kg∕s, Tinlet =
737 K. A fully polyhedral mesh is employed, which consists of about 6 million dimensionless
grid cells of size smaller than unity.

As usually in LES, the large eddy motion is simulated, whereas the sub-grid scale motion
is modeled using the wall-adapting local eddy-viscosity model [283] as follows:

𝜏ij −
1
3
𝜏kk𝛿ij = −2𝜇tSij, 𝜇t =

𝜌L2
s (SijSij)3∕2

(SijSij)5∕2 + (SijSij)5∕4
, Sij =

1
2
(g−2

ij − g−2
ji − 𝛿ijg

−2
kk )

(6.35)
where gij = 𝜕Ui∕𝜕Uj, 𝛿ij is Kronecker delta (S. 7.1.2.2), Ls = 0.544V1∕3, and V is the cell
volume. The simulation was performed using commercial software STAR-CCM+ with time
step 5 ⋅ 10−5 s and 8 interactions per step, which requires for complete simulation 1.47 million
interactions and the computational time around 1272 hours.

The following results and conclusion are summarized:

• Both predictions by LES and q-DNS are in agreement, except some details for heat fluxes
distribution indicated below.

• The flow field is asymmetric despite the symmetric pebble configuration, which is a result
of formation vortices of different scales on both sides of the pebble; occurrence of such
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asymmetry may be associated with processes similar to the Coanda effect; the iso-contours
indicate the stagnant regions at the front and rear of the pebbles and the shear layers near
gaps between them; the high velocity gradients near the sphere surfaces and broad regions
of low velocities away from spheres are observed.

Comment 6.14 The Coanda effect is a property of fluid jet to be attached to nearby surface.

• The mean temperature distribution shows the high and low temperature zones along the peb-
ble surfaces that correspond to the maximum and minimum regions of wall shear stresses;
these hot and cold spots display a symmetric pattern indicating an opposite behavior of flow
near pebble top and bottom; quantitative results reveal that r.m.s (root mean square) tem-
peratures obtained by LES are over-predicted near the wall region and under-predicted in
the center area with difference of 2% and 6%, respectively.

• The uneven behavior with various peaks is observed from the heat flux profiles indicating a
strongly thermal activity fluctuating of three heat flux components; for the principle compo-
nent, both LES and q-DNS results well agree with difference of 4%, whereas for two other,
less-intensive components, the discrepancy is higher consisting of 33-50 %; due to the small
components intensity, the overall heat fluxes are almost equal.

• The LES was six time faster than q-DNS with respect to the computation power.

OTHER WORKS: Some examples of the latest studies using LES during two last years
present: structure of the transient cavitation (formation of vapor cavities in a liquid) of vor-
tical flow around a NACA 66 hydrofoil (similar to fairwater (Com. 6.15)) used for reducing
the drag coefficient [182], Reynolds number effect in the wake flow behind a circular cylinder
[205], analysis of extinction in non-premixed flame [97], application of the stretched-vortex
model to the atmospheric boundary layer [255], and flow in-cylinder in a DISI (direct injection
spark ignition) gasoline engine [315]. Over the last decade, LES was employed to investigate:
heat transfer at supercritical pressures [282], plasma-based boundary layer separation con-
trol [324], flow and heat transfer in rotating ribbed channel [9], shock-wave induced turbulent
mixing [389], and laser induced surface-tension driven flow [66]. In the just published in 2016
articles, the two phase transient airflow in the indoor environment is simulated [194], and a
specific approach for simulation of dispersion around cubical building is proposed [177].

6.2.2.3 Detached Eddy Simulation

◾Example 6.23: Sub-Critical and Super-Critical Flows Over Sphere [81]

The main goal of this study is the prediction of drag crisis in flow around sphere leading to
well-known significant difference in resistance in the cases of laminar (sub-critical regime) and
turbulent (super-critical regime) boundary layer separations, which first was demonstrated by
Prandtl (Com. 8.1). Prediction of such flows with massive separation is a challenge requiring
accurately capture of complicated flow structure possessing transition from laminar to turbu-
lent flow, large-scale vortex shedding, and turbulent wake with random and periodic Reynolds
stresses.
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The three-dimensional and time-dependent DES formulation [366] is based on a
modification to the Spalart-Allmaras one-equation model (S. 8.4.2) such that it reduces to
RANS close to the solid surfaces and to the LES away from the walls as it requires for
DES approach (S. 5.8). In this model, the transport equation is used to compute the working
variable 𝜈, which is applied to determine the turbulent eddy viscosity

D𝜈
Dt

= cb1S̃𝜈 − cw1fw

(
𝜈

d

)2

+ 1
𝜎
[∇ ⋅ ((𝜈 + 𝜈)∇𝜈) + cb2(∇𝜈)2], 𝜈t = 𝜈fv1

fv1 =
𝜒3

𝜒3 + c3
v1

, S̃ = fv3S + 𝜈

𝜅2d2
fv2, fv2 =

(
1 +

𝜒

cv2

)−3

, fv3 =
(1 + 𝜒 fv1)(1 − fv2)

𝜒

fw = g

(
1 + c6

w3

g6 + c6
w3

)1∕6

, g = r + cw2(r6 − r), r = 𝜈

S̃𝜅2d2
, 𝜒 = 𝜈

𝜈
(6.36)

Here, S is the magnitude of the vorticity, and the constants are: cb 1 = 0.1355, 𝜎 = 2∕3,
cb2 = 0.622, 𝜅 = 0.41, cw1 = cb 1∕𝜅2 + (1 + cb2)∕𝜎, cw2 = 0.3, cw3 = 2, cv1 = 7.1, cv2 = 5,
and d is the distance to the nearest wall.

Solution are performed in polar coordinates for extended domain of 10 diameters from
the sphere using uniform velocity as the boundary condition upstream and velocities and
turbulence values obtained by extrapolation from interior domain as boundary condition down-
stream. The inflow eddy viscosity is set to zero for laminar separation case and 3𝜈 for the flow
with turbulent separation. No-slip conditions on the sphere and periodic boundary condition in
the azimuthal direction are employed. The calculation mesh was 141 × 41 × 101 points in the
three directions with refinement of 141 × 82 × 101 in the azimuth. The time step was 0.02 D∕U
with 60 iterations per each step. The residual values of velocity and pressure for convergence
was set as 10−4.

The following conclusions are summarized:

• Contours of the instantaneous vorticity magnitude in the sphere wake for the flow
with laminar boundary layer separation at Re = 105 and for turbulent separation at
Re = 1.1 ⋅ 106 show the marked difference in wake structure for the sub- and super-critical
solutions indicating that in the fist case the flow detachment occurs at a polar angle 80 − 82∘
and in the second one at 110 − 114∘.

• In sub-critical regime, the predicted shedding frequencies are in reasonable agreement with
measured values; contributions from the rollup of the detached shear layers to the shed-
ding were resolved, along with the low frequency f shedding mode at Strouhal number
St = fL∕U ≈ 2; the drag coefficient (0.4 − 0.51 for Re = 105), pressure (the value and min-
imum position) and skin friction coefficients are also in reasonable agreement with the
measurement data from [7].

• In the case of super-critical regime, the predicted skin friction does not agree well with mea-
sured values; this occurs because the turbulent separation was established by igniting the
turbulence model over the entire surface of the sphere leading to markedly increasing the
skin friction due to arising plentiful regions of laminar flow; nevertheless, the drag coef-
ficients in that case, 0.096 − 0.106 for Re = 4.2 ⋅ 106 and 0.07 − 0.1 for Re = 1.1 ⋅ 106, is
adequate, which is a result of small contribution of the skin friction to the total drag at high
Reynolds number. The pressure prediction is also accurate.
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• The super-critical solutions are chaotic and unsteady, although vortex shedding is quite
different compared to that observed at lower Reynolds numbers in flows with laminar bound-
ary layer separation; in particular, the wake is dominated by a pair of streamwise vortices
that are ‘locked’ in the sense of producing lateral forces that are of the same sign over sub-
stantial sampling intervals; longer sampling periods than the 60 time units over which the
super-critical solution at Re = 4.2 ⋅ 105 was averaged is required to determine the period
over which the lateral forces will average to zero.

• As first observed in DES of the flow over a circular cylinder, fully turbulent simulations
such as those used to predict the super-critical flows are not the definitive approach, even
for rather large Reynolds numbers.

◾Example 6.24: Reentry-F Vehicle Flight Experiment [27]

Reentry-F was a flight test conducted by NASA in 1968 to investigate vehicle heating in
a turbulent environment. For the experiment, the spacecraft was launched outside the atmo-
sphere and then accelerated back at reentry velocity on a ballistic trajectory. The body consisted
of 3.96-m-long 5 deg half-angle cone constructed from beryllium with a 0.254-cm-radius
graphite nose tip [332].

The aim of this paper is to predict the unsteady wake dynamic and its impact of the
surface heating rates of Reentry-F. For this study, two trajectory points were selected for
which data indicated the transitional or turbulent flow on the base, an altitude of 70 and 80
kft and the following flow parameters: Mach number 19.93 and 20.01, Reynolds number
30.1 ⋅ 106 and 18.5 ⋅ 106 per meter, 𝜌∞ = 0.07092, T∞ = 218, U∞ = 5.9, Tbase = 354 and
𝜌∞ = 0.043523 kg∕m3, T∞ = 221 K, U∞ = 5.965 km∕s, Tbase = 354 K, respectively. The
employed mathematical model is similar to described in previous example consisting the
transport equation for the same working variable 𝜈 determining the eddy viscosity 𝜈t.
Five-species finite rate chemical kinetics model is used to take into account the dissociation
of nitrogen and oxygen occurring due to high temperatures in the stagnation region of the
nose and shear layer downstream of the base. Three grid meshes: coarse, medium, and fine
consisting of 1.7, 4.2, and 9.7 million cells are applied to adequately resolve the shear layers
and recirculation zones. The computational time step was 10−7s.

The simulation was performed using US3D finite volume code for hypersonic reacting flows
developed at the University of Minnesota [284].

The following result and conclusion are formulated:

• The DES shows the superior ability over the conventional Reynolds-averaged Navier-Stokes
(RANS) models in capture unsteady flow behavior.

• The presented structure of turbulent base flow colored by temperature clearly shows the
shear layer, recompressing point, and recirculation zone; the shear layer separates from a
forebody and expands to enclose the recirculationg region, recompresses heating signifi-
cantly gas downstream, which results in air dissociation.

• The laminar flow is dominated by a singe large toroidal vortex; the transonic flow at the
vortex center impinges on the base, compressing the flow and creating the peaks in pressure
and heating profiles near the base center; the vortex begins to break down through transi-
tion until the flow becomes turbulent showing very unsteady, chaotic structure with eddies
breaking down into large range of length scales; more uniform pressure and heating profiles
are formed in the wake due to enhanced turbulent mixing.
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• The performed three-dimensional simulation indicates that the small angles of attack are
responsible for the asymmetry experienced during the Reentry-F flight; comparing the com-
putational and measured data reveals superior agreement confirming that the slight pitch and
yaw angles play critical role in explaining an apparent asymmetry of the flight data.

• The predicted heating rates display a strong sensitivity to the vehicle orientation; it is shown
that small errors in angle position might lead to significantly erroneous results; by account-
ing for this sensitivity, the base heat transfer to the vehicle was predicted within the experi-
ment uncertainty.

◾Example 6.25: Free-Surface Flow Around Submerged Submarine Fairwater [170]

The paper presents results of investigation of a free-surface flow around the submarine fair-
water and the effects of reducing its depth on the flow characteristics.

Comment 6.15 A fairwater is a device that improves the ship streamlining through water.

The prototype of the submarine fairwater in the form of cylindrical cross-section
airfoil is simulated; the computational domain stretched around the model is of size
9lc × 4lc × dlc in xyz directions with 3 ⋅ 106 grid notes. Three versions of domain with
heights d∕lc = 1.02113, 0.96237, and 0.90474 are considered that correspond to different
submergence ratios (d − h)∕h = 0.44373, 0.38610, and 0.32847, where lc is the profile chord
length in y-direction and (d − h) is the submergence depth in z-direction. The conforming
Froude numbers defined ahead of a model are Fr = U∕

√
gL = 0.4, 0.42, and 0.44. Typical

length, speed and submergence conditions are used giving Re = 11 ⋅ 106.

Comment 6.16 Froude number is defined as a ratio of characteristic velocity U to the velocity
of gravitational wave free-surface

√
gL where L is the characteristic length.

The model is located at 3lc from the inflow side, at 5lc before the outflow section and is
centered in spanwise direction. The both inflow and outflow are prescribed in streamwise direc-
tion; the first one is specified through constant flux conditions, whereas the second is set using
the continuative conditions. Periodical boundary conditions are employed in lateral direction.
The submerged body is modeled using the ghost-cell immersed boundary method proposed
in [394]. In this method, the ghost cells are obtained extrapolating pressure and velocity to
the nearby cells that fall just within the prescribed boundary, whereas the cells located within
studied body are neglected. This is achieved in two steps. First, the value is interpolated at
a mirror point located within the fluid part of the domain and second, the interpolated value
is reflected beck to the ghost cell. For such interpolation, a 10-point stencil is required to get
the second order accuracy. As a result, the mesh generation around complex geometric body
greatly simplifies and solution time decreases compared to alternative methods.

The free-surface flow associated with wave is modeled using moving mesh and governing
equation adopted from [40]

∫ν

𝜕ui

𝜕t
dv + ∫s

ui(uj − v) ⋅ nds = ∫s

(

v
𝜕uj

𝜕xi
−

p

𝜌

)

⋅ nds + ∫ν
gdv − ∫ν

𝜕𝜏ij

𝜕xj
dv (6.37)
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A parallelized collocated code developed for modeling an incompressible, free-surface flow
[388] is used. The governing equations are spatially discretized applying a central differencing
finite volume method (S. 9.6). A special scheme is used to insure that the blending (S. 5.8)
between the first order upwinding and central differencing is minimal.

The paper presents detailed results of the flow behavior around the fairwater including:
profiles of time averaged velocity components and pressure, turbulent intensity and Reynolds
stresses, streamline instantaneous traces along the body, instantaneous vertical structures for
different depth, vortex alignment and persistence, effects of submergence depth on forces,
shedding frequencies, and turbulent energy budget. On the base of these data, the following
conclusions are formulated:

• Time-averaged Reynolds stresses and turbulent kinetic energy distributions have shown that
the major part of the turbulent energy and flow variation is confined to the near wake region
of the fairwater; the wake is found to grow behind the fairwater whereas the level of turbu-
lence decreased and continues to do so further downstream.

• Within the measured range (aft of the trailing edge) the flow is found not to have fully
recovered even though, on average, the wake/separation region is found to be small; for all
cases and for all positions the turbulent kinetic energy spectrums have shown that the wake
is fully developed and that with reducing height along the fairwater the level of turbulent
kinetic energy in the wake is increased

• Similarly, the effects of reducing the submergence depth have been shown to increase the
turbulent kinetic energy for all wave numbers, whereas these effects were less pronounced
on the time averaged velocity components; the pressure, streamwise intensity, and Reynolds
stresses are influenced by the submergence depth as well; similarly, the turbulent kinetic
energy budget terms are found to show the greatest variation in the near tip and near wake
region, while further downstream the contribution of the turbulent kinetic energy budget
terms substantially decreased.

• Vortical structures are found to show no significant rise or interaction with the free sur-
face, whereas in the wake region, the results show that vorticity is present for over 50%
of the monitored time across the fairwater height and monitored positions; reducing the
submergence depth resulted in the tip vortex shedding being influenced by the wake.

• Time-averaged forces and the variation in forces showed that the reduction in the submer-
gence depth resulted in an increase in the coefficients of both the pressure and total drag.

• For all of the considered cases, the Strouhal number (Exam. 6.23) ranged between
0.31–0.35; the enclosing free-surface wave angle was measured to be between 38-40 deg,
showing that the surface waves are that of a Kelvin kind and are dominated by gravity and
local inertial effects. To know more about Kelvin waves, see [440].

OTHER WORKS: During the last three years, the most improved versions of DES were
used to investigate by IDDES: the supersonic combustion [413], cavity-induced transition in
hypersonic boundary layer [424], vortex breakdown past double-delta wing [238], and flows
around rudimentary landing gear (simplified four-wheel lending apparatus) [425], and by
ZDES: the inlet condition effects on the tip clearance flow of an axial compressor [323], flat
plate turbulent boundary layer over the Reynolds number up to Re𝜃 = 14000 [92], and flow
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of airfoil in poststall condition [226]. During the same time, the original DES was used as
well, in particular, to study: the sub- and supersonic flows past bluff body with comparison to
wind-tunnel data [348], flow control by synthetic jet around airfoil at high angles attack [173],
flow past Delft-372 catamaran including vortical and wake break structures [98]. Similar prob-
lems were considered using DES in earlier publications such as: the vertical field about the
VFF-2 delta wing [83], effects of different wind gust on aerodynamic of road vehicles [134],
unsteady flow of abrupt wing stall [138], and ability of stall flow of iced airfoils [298].
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Part III
Foundations of
Fluid Flow and Heat
Transfer

This part is the third portion of the book containing information intended to help a reader to
understand the applications and to posses the methods outlined in two basic parts. In con-
formity with this purpose, the majority of equations and some other details presented in the
main text are not repeated here, whereas the physical analysis of these equations, additional
explanation of application results, and farther specification of some terms are given in three
chapters of his part: laminar fluid flow and heat transfer (Chapter 7), turbulent fluid flow and
heat transfer (Chapter 8), and analytic and numerical methods in fluid flow and heat transfer
(Chapter 9).

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine,
First Edition. Abram S. Dorfman.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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7
Laminar Fluid Flow and Heat
Transfer

7.1 Navier-Stokes, Energy, and Mass Transfer Equations

The mathematical models describing the transfer processes are based on the system of the
Navier-Stokes equations for momentum transfer and similar equations for energy and mass
transfer. These equations are conservation laws expressed in terms of the velocity components,
temperature, and concentration. For incompressible fluid flows with constant properties, these
expressions are given by equations 1.4–1.8 (without dissipation function S) from Chapter 1
supplemented by equation for mass transfer similar to energy equation, where C is dimension-
less concentration and 𝜌Dm is the coefficient similar to 𝜇.

𝜌

(
𝜕C
𝜕t

+ u
𝜕C
𝜕x

+ v
𝜕C
𝜕y

+ w
𝜕C
𝜕z

)
= 𝜌Dm

(
𝜕2C
𝜕x2

+ 𝜕2C
𝜕y2

+ 𝜕2C
𝜕z2

)
(7.1)

Comment 7.1 The term “Navier-Stokes equations” strictly implies the entire system of
equations (1.4)–(1.7) including the continuity equation (1.4). However, for simplicity, the
same term is used when only the momentum equations (1.5)–(1.7) are considered.

7.1.1 Two Types of Transport Mechanism: Analogy Between Transfer
Processes

Consider a system of equations (1.4)–(1.8) for a steady-state regime together with
equation (7.1). This system of six equations determines six flow characteristics: three com-
ponents u, v,w of velocity, pressure p, temperature T , and concentration C. The continuity
and the three Navier-Stokes equations describe the momentum transfer, whereas the heat and
mass transfer are specified by energy and diffusion equations (1.8) and (7.1), respectively.
Analysis of these fundamental equations shows that these three transfer processes are similar,
being based on the same physical principles. The major part (without pressure gradients
and dissipation function) of each equation has identical structure being composed of two

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine,
First Edition. Abram S. Dorfman.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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analogous groups of terms. Such groups are built of derivatives of a quantity that corresponds
to the driving force of relevant transfer process. In Navier-Stokes equations, these groups
are constructed of velocity derivatives because the velocity gradient is the driving force in
Newton’s viscosity law. In the energy and mass transfer equations, the analogous groups are
made up of the derivatives of temperature or concentration according to the pertinent gradients
forming driving forces in Fourier’s and in Fick’s laws of heat and diffusion, respectively.

Two groups of terms in these transfer equations correspond to two basic transport mecha-
nisms. The group of terms at the right-hand side of each equation corresponds to the molecular
transport, whereas the other group at the left-hand side of each equation represents the convec-
tive transport. According to that, the structure of each group is in line with transport nature. In
each Navier-Stokes equation, the molecular transport group has the form of viscous force in
conformity with molecular mechanism. Such group consists of a sum of the second derivatives
of velocity components with respect to relevant coordinate multiplied by viscosity coefficient
𝜇. The molecular transport groups in energy and mass transfer equations have analogous
structure. Each group is composed of similar product of sum of the second derivatives of
temperature or of concentration and corresponding molecular transfer coefficient, thermal con-
ductivity 𝜆 or similar to viscosity diffusion coefficient 𝜌Dm.

Another structure is essential to the convective transport groups. Since in this case, the
momentum, heat, and species are transported by the fluid flow, the mechanism of this process
is defined by hydrodynamic laws. Therefore, in each Navier-Stokes equation, the convective
group has a structure of inertia force, which in conformity with the second Newton’s law is
a driving force of the fluid flow. According to that, each of these groups is composed as a
product of a mass and acceleration. Because the changes may occur in time and in space, the
result is presented as a product of the substantial derivative of velocity that takes into account
both changes (Exam. 7.2) multiplied by unit mass defined by density. Similarly, the convective
groups in energy and in mass transfer equations are composed. They consist of the substantial
derivative of temperature or of concentration instead of velocity derivative and the specific
thermal capacity 𝜌cp or the mixture density instead of fluid density in the first and the second
cases, respectively.

To express mathematically the similarity of transfer processes, we transform the considering
system of equations to dimensionless form. Let 𝜙 is any dependent (general) variable: velocity
components, temperature, or concentration transformed by pertinent scale to dimensionless
form (u, v,w)∕U, (T − T∞)∕(Tw − T∞) or (C − C∞)∕(Cw − C∞), respectively. Introducing as
well dimensionless time t and coordinates x, y, z scaled by L∕U and by characteristic length
L, respectively, we obtain an equation in dimensionless general form valid for any of three
considering transfer processes

𝜕𝜙

𝜕t
+ u

𝜕𝜙

𝜕x
+ v

𝜕𝜙

𝜕y
+ w

𝜕𝜙

𝜕z
= 1

N

(
𝜕2𝜙

𝜕x2
+ 𝜕2𝜙

𝜕y2
+ 𝜕2𝜙

𝜕z2

)

, N = UL
𝜎

(7.2)

where velocity components u, v,w are scaled by U, 𝜎 is the kinematic viscosity 𝜈, thermal
diffusivity 𝛼, or diffusion coefficient Dm, and the dimensionless number is N = Re, Pe or
Rem = ReSc, whereas Sc = 𝜈∕Dm is the Schmidt number. Equation (7.2) shows that three
transfer processes are greatly similar and in dimensionless variables are described by the same
equation that in the case of zero pressure gradient and neglecting thermal dissipation differs
only by Reynolds, Peclet, or mass Reynolds numbers.
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Equation (7.2) shows that transfer processes of momentum, heat, and mass are described
in dimensionless variables by one equation containing only one dimensionless number Re,Pe
or Rem = ReSc specifies the type of process. This mathematical result confirms the physical
analysis considered above justifying that three basic transport processes are greatly similar.

Considering analogy of processes is useful in understanding the mechanism of transfer pro-
cesses by comparing similar effects. Another advantage of such an idea is the possibility of
using results obtained in studying one phenomenon for investigating similar others. In partic-
ular, due to this principle the basic laws and methods of problem solutions developed in fluid
mechanics are used in heat transfer and diffusion theory.

Equation (7.2) also indicates that all geometrically similar objects having the same charac-
teristic number Re, Pe, or Rem behave similarly if the boundary conditions are identical. This
similarity principle established by Osborne Reynolds is important in modeling, especially in
experimental investigations, because it makes possible to extrapolate dimensionless character-
istics obtained on the models to natural objects and systems. For example, the drag coefficient
measured on car or plane model in a wind tunnel may be used to estimate the resistance force
for real prototype.

7.1.2 Different Forms of Navier-Stokes, Energy, and Diffusion Equations

7.1.2.1 Vector Form

To present Navier-Stokes equation in vector form, two operators are needed: the Laplace
operator

∇2 = 𝜕2

𝜕x2
+ 𝜕2

𝜕y2
+ 𝜕2

𝜕z2
(7.3)

and the Hamilton operator ∇ called del. or nabla. Using nabla as a vector makes it possible to
express the three basic field characteristics: the gradient, the divergence (as a dot product) and
the curl (as a cross product)

∇ = 𝜕

𝜕x
i + 𝜕

𝜕y
j + 𝜕

𝜕z
k, grad V = ∇V = 𝜕V

𝜕x
i + 𝜕V

𝜕y
j + 𝜕V

𝜕z
k

divV = ∇ ⋅ V = 𝜕u
𝜕x

+ 𝜕v
𝜕y

+ 𝜕w
𝜕z

(7.4)

curlV = ∇ × V =
(
𝜕w
𝜕y

− 𝜕v
𝜕z

)
i +

(
𝜕u
𝜕z

− 𝜕w
𝜕x

)
j +

(
𝜕v
𝜕x

− 𝜕u
𝜕y

)
k

where i, j, and k are outward unit normal vectors in x, y, and z directions. To use these
equations, recall that the scalar products of the same unit vectors equal unity, whereas the
other scalar products of unit vectors are zero and vice versa: the vector products equal zero of
the same units but equal to one for product of two others, for example, i × j = k, j × i = −k
and similar others.

Comment 7.2 Nabla is not usual vector, rather it is a symbolic vector that simplifies some
mathematical operations.
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◾Example 7.1: Deriving Continuum Equation (1.4) Via the Expressions For the
Divergence

According to (7.4), the divergence is determined as a scalar product resulting in the expres-
sion for continuity equation (1.4) as follows

∇ ⋅ V =
(
𝜕

𝜕x
i + 𝜕

𝜕y
j + 𝜕

𝜕z
k
)
⋅ (ui + vj + wk) = 𝜕u

𝜕x
+ 𝜕v
𝜕y

+ 𝜕w
𝜕z
, ∇ ⋅ V = 0 (7.5)

◾Example 7.2: Deriving the Expression For the Substantial Derivative

The sum of time and space derivatives like that in the parentheses at the left-hand side of
each Navier-Stokes equation determines the time derivative for observer moving with the flow.
Such a derivative known as a substantial derivative is used as an operator

D
Dt

= 𝜕

𝜕t
+ u

𝜕

𝜕x
+ v

𝜕

𝜕y
+ w

𝜕

𝜕z
,

DV
Dt

= 𝜕V
𝜕t

+ V ⋅ ∇V (7.6)

The spatial part V ⋅ ∇V called convective derivative has x, y and z components. Since they are
similar, we show the deriving only for the x-component

[V ⋅ ∇V]x = (ui + vj + wk) ⋅
(
𝜕u
𝜕x

i + 𝜕u
𝜕y

j + 𝜕u
𝜕z

k
)

= u
𝜕u
𝜕x

+ v
𝜕u
𝜕y

+ w
𝜕u
𝜕z

(7.7)

In terms of field vectors just considered, the continuity equation (1.4) and Navier-Stokes
equations (1.5)–(1.7) became the compact form

∇ ⋅ V = 0, 𝜌
DV
Dt

= −∇p + 𝜇∇2V,
DV
Dt

= 𝜕V
𝜕t

+ V ⋅ ∇V (7.8)

Vector heat and mass transfer equations are similar to vector Navier-Stokes equation

𝜌c
DT
Dt

= 𝜌c
(
𝜕T
𝜕t

+ V ⋅ ∇T
)
= 𝜆∇2T + 𝜇S, 𝜌

DC
Dt

= 𝜌

(
𝜕C
𝜕t

+ V ⋅ ∇C
)
= 𝜌Dm∇2C (7.9)

7.1.2.2 Einstein and Other Index Notations

In Einstein notations equations (7.8) simplifies farther and takes the form

𝜕Vi

𝜕xi
= 0 𝜌

(
𝜕Vi

𝜕t
+ Vj

𝜕Vi

𝜕xj

)
= −

𝜕p

𝜕xi
+ 𝜇

𝜕2Vi

𝜕xj𝜕xj
(7.10)

The idea of index notations known as Einstein’s convention came from a sum. Since sum
implies a repeated index, one may omit the sign of summation if the number of terms is known.
According to Einstein’s convention when an index variable appears twice in a single term, it
implies that we are summing over all of indicated values. In particular, for coordinate com-
ponents, each index should be repeated three times. Thus, for continuity equation (7.10), we
take i = 1, 2, 3, and V1 = u, V2 = v, V3 = w, x1 = x, x2 = y, x3 = z, whereas for Navier-Stokes
equation we should put i = 1, j = 1, 2, 3, which results in the first equation (1.5). Similar,
putting i = 2, i = 3 and j = 1, 2, 3, we obtain the second and third Navier-Stokes equations
(1.6) and (1.7).
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Other index notations often used are Kronecker delta 𝛿ij and Levi-Civita symbol

𝛿ij =
{

1 if i = j

0 if i ≠ j
𝜀ijk =

⎧
⎪
⎨
⎪
⎩

+1 if i, j, k = 1, 2, 3, 3, 1, 2 or 2, 3, 1

−1 if i, j, k = 2, 1, 3, 3, 2, 1 or 1, 3, 2

0 if any two equal

(7.11)

The first symbol means that a combination of two variables is 1 if the indices equal and is
zero if they are different. The second symbol 𝜀i j k indicates that the value of a combination of
three variables is +1 or −1 depending on indices order, or is zero if two of indices are equal.
To understand the indices order, start with 123 and than move 3 in the front of 1 to get 312
and again move 2 in the front of 3 to get 231. Do the same to obtain the second row of indices.
Start once more with 123 and put 2 in the front of 1 to get 213 and finally use displacement
similar to that done in first row to gain 321 and 132.

7.1.2.3 Vorticity Form of Navier-Stokes Equation

This form is usually used for two-dimensional flows for which the stream function 𝜓 may be
introduced, and the expression (7.4) for curl simplifies to one term

u = 𝜕𝜓

𝜕y
, v = −𝜕𝜓

𝜕x
, curl = 𝜔 =

(
𝜕v
𝜕x

− 𝜕u
𝜕y

)
= −

(
𝜕2𝜓

𝜕x2
+ 𝜕2𝜓

𝜕y2

)
= −∇2𝜓 (7.12)

where the last expression is the Laplacian of 𝜓 (Com. 1.1).
Stream function introduced in such a way satisfies the continuity equation (1.4), and the

system of Navier-Stokes equations reduces to one equation after differentiating equations (1.5)
and (1.6) with respect to y and to x, respectively, to obtain

𝜕2u
𝜕t𝜕y

+ u
𝜕2u
𝜕x𝜕y

+ 𝜕u
𝜕y
𝜕u
𝜕x

+ v
𝜕2u
𝜕y2

+ 𝜕u
𝜕y
𝜕v
𝜕y

= −1
𝜌

𝜕2p

𝜕x𝜕y
+ 𝜈

(
𝜕3u
𝜕x2𝜕y

+ 𝜕3u
𝜕y3

)
(7.13)

𝜕2v
𝜕t𝜕y

+ u
𝜕2v
𝜕x2

+ 𝜕u
𝜕x
𝜕v
𝜕x

+ v
𝜕2v
𝜕x𝜕y

+ 𝜕v
𝜕x
𝜕v
𝜕y

= −1
𝜌

𝜕2p

𝜕y𝜕x
+ 𝜈

(
𝜕3v
𝜕x3

+ 𝜕3v
𝜕x𝜕y2

)
(7.14)

Because mixed derivatives in both equations are equal, subtracting the first equation from the
second eliminates the pressure leading to the Navier-Stokes equation in vorticity form

𝜕𝜔

𝜕t
+ u

𝜕𝜔

𝜕x
+ v

𝜕𝜔

𝜕y
= 𝜈

(
𝜕2𝜔

𝜕x2
+ 𝜕2𝜔

𝜕y2

)
or

D𝜔
Dt

= 𝜈∇2𝜔 (7.15)

The first term of the first equation is obtained as a difference between the first terms of
equations (7.14) and (7.13), the second, third, and the last terms are differences of the
second, fourth, and the last terms of these equations. Other terms vanish because they can
be arranged in the form 𝜔(𝜕u∕𝜕x + 𝜕v∕𝜕y) where the sum in parentheses is zero, which
follows from the continuity equation (1.4). Equation (7.15) describes the vorticity transport
and is useful in studying some general properties of lows. For example, it follows from (7.15)
that the vorticity of a fluid flow does not change with time if D𝜔∕Dt = 0. Thus, the initially
irrotational inviscid flow remains irrotational in space and time (S. 7.1.2.5).
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7.1.2.4 Stream Function Form of Navier-Stokes Equation

Substituting the last relations (7.12) into equation (7.15) leads to another form of Navier-Stokes
equation containing only stream function as unknown variable

𝜕∇2𝜓

𝜕t
+ 𝜕𝜓

𝜕y
𝜕∇2𝜓

𝜕x
− 𝜕𝜓

𝜕x
𝜕∇2𝜓

𝜕y
= 𝜈∇4𝜓 = 0, (7.16)

where the last expression is a Laplacian of Laplacian (Com. 1.1) defined as follows

∇4𝜓 = ∇2(∇2𝜓) = 𝜕4𝜓

𝜕x4
+ 2

𝜕4𝜓

𝜕x2𝜕y2
+ 𝜕4𝜓

𝜕y4
(7.17)

◾Example 7.3: Determining Streamlines in a Two-Dimensional Flow Field

Streamlines are curves plotted in flow field such that they are tangent to the direction of the
flow at each point of the field. If 𝛾 is an angle of a slope of a streamline, one finds from vector
triangle of velocity components that tan 𝛾 = v∕u = dy∕dx. Thus, the streamline equation is
vdx = udy or

udy − vdx = 0,
𝜕𝜓

𝜕x
dx + 𝜕𝜓

𝜕y
dy = 0, d𝜓 = 0, 𝜓 = const. (7.18)

Here, the second relation is obtained from the first one after substitution equations (7.12) for
velocity components. Two other results follow from the fact that the left hand part of the second
relation determines the exact differential of stream function d𝜓 , which equals zero indicating
that a stream function is constant along the streamline. Then, since 𝜓 is constant along the
streamlines, the volume of flow rate is defined as difference 𝜓2 − 𝜓1. This may be shown
by integration of an elementary volume rate d(ṁ∕𝜌) = udy = d𝜓 , whereas physically this is
obvious because streamlines indicate the flow direction, and hence, there is no flow across the
streamlines.

7.1.2.5 Irrorational Inviscid Two-Dimensional Flows

It follows from equation (7.12) that in the case of irrorational flow (𝜔 = 0), the stream function
satisfies the Laplace equation ∇2𝜓 = 0. In this case, the another useful function satisfying
the Laplace equation exists. This function called potential of flow field is defined by similar
Laplace equation ∇2𝜑 = 0. Such a function exists only in the case of irrorational flow (without
any rotation) when 𝜔 = 0 which is called a potential flow as well. Because of that one gets
according to the last equation (7.12) two first relations (7.19) and then comparing this result
with velocity components (7.12) obtains

u = 𝜕𝜑

𝜕x
, v = 𝜕𝜑

𝜕y
,

𝜕𝜑

𝜕x
= 𝜕𝜓

𝜕y
,

𝜕𝜑

𝜕y
= −𝜕𝜓

𝜕x
(7.19)

Although both functions 𝜓 and 𝜑 are similar and both are field characteristics, they are dif-
ferent. In particular, the potential function in contrast to stream function does not satisfy the
continuity equation (1.4). The other distinction between these functions is that the potential
function exists in two- and three-dimensional flows, whereas the stream function exists only in
two-dimensional flow field. On the other hand, the stream functions are applicable in viscous
real fluid flows as well as in potential ideal inviscid fluids flows, whereas potential functions
are useful only in fields of potential inviscid flows.
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Comment 7.3 Functions satisfying the Laplace equation describe many physical processes
and are known as harmonic functions.

The last two relations (7.19) are known as Cauchy-Riemann conditions of function differ-
entiability. Any complex function w(z) = 𝜑(x, y) + i𝜓(x, y) where z = x + iy is differentiable
(in other words: is analytic) if it satisfied Cauchy-Riemann conditions.

Comment 7.4 Strongly speaking, the satisfaction of conditions (7.19) may be not sufficient,
but except some special examples, the functions that we frequently use in applications are
analytic functions.

Any analytic function w(z) gives two harmonic functions 𝜓(x, y) and 𝜑(x, y) representing
stream functions and velocity potentials of some irrorational inviscid fluid flow. Two families
of curves𝜓(x, y) = c1 and𝜑(x, y) = c2 constitute the streamlines and equipotential lines, which
are orthogonal to each other. The pattern of these curves is used for graphical presentation and
analyzing potential flows. One of the streamlines may be considered as a body surface because
the normal component of the velocity, which coincides with tangent to equipotential line at the
surface is zero. The last conclusion follows from the fact that streamlines and equipotential
lines are perpendicular to each other.

The characteristics of such potential flow may be calculated if the corresponding complex
function w(z) (complex potential) is known. Dividing the complex potential in the form w(z) =
w(x + iy) = 𝜑(x, y) + i𝜓(x, y) in real and imaginary parts yields functions 𝜑(x, y) and 𝜓(x, y).
Differentiating these functions and using equations (7.19) give the velocity components. The
pressure may be determined from the Bernoulli equation using the knowing velocity. Differ-
ent forms of Bernoulli equation follow from Navier-Stokes equations at zero viscosity. For
the case of a steady potential flow the Navier-Stokes equation (1.5) simplifies after omit-
ting time-dependent and viscosity terms. Considering such potential flow as one-dimensional
flow along the streamline leads to the second equation 1.12, which after integration gives the
Bernoulli equation

𝜌UdU + dp = 0
1
2
𝜌U2 + p = const

1
2
𝜌(u2 + v2) + p = const. (7.20)

Despite all real fluids possess viscosity, models based on idealized inviscid fluid give useful
and meaningful results for several kinds of problems. At the same time, the assumption of neg-
ligible viscosity significantly simplifies the investigation. That is why the potential theory has
been extensively developed. Potential theory methods are applicable in studying low-viscosity
flows. In particular, such methods are widely used in boundary layer theory because potential
flows adequately describe the flow outside the boundary layer. In many cases of flow with
favorable (negative) pressure gradient, the potential theory description is almost entirely close
to reality. For example, the flows through cylindrical and contractive short channels or flows
past relatively short plates are cases of this type. The reason of such close results is that in
these flows the viscose forces are small and, what is most important, the flow structures in real
and potential flows are practically the same. Thus, the potential pattern gives understanding of
flow forms, but the energy losses could not be estimated by potential approaches. The situation
is completely different in the opposite cases when the pressure gradient is unfavorable (posi-
tive) such that the pressure increases in flows direction as, for example, in diffuser. Flows of
this type only at small pressure gradients have continue structure (like in the case of favorable
pressure gradient), which becomes destroyed by flow separation as pressure increases. This
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flow pattern could not be modeled by potential theory. However, until the flow is unseparated,
the inviscid potential flow theory may be used, and even in separated flow there are parts to
which potential methods may be applied [33].

7.2 Initial and Boundary Counditions

The initial and boundary conditions are considered in conjugate problem formulation (S. 1.1).
Here, are added some important details:

• The major problem in formulation of boundary conditions for Navier-Stokes equation
consists of no-slip condition on the surface. This condition was suggested by establishers
of this equation. Today, after more than 150 years, we could not exactly prove that the
Navier-Stokes equation with such boundary condition describes correctly the fluid motion.
The reason of this is that due to huge mathematical difficulties, there is no even single exact
analytical solution of the full Navier-Stokes equations, which is required for comparing it
with corresponding experimental data to get the desired proof. Nevertheless, the available
information, in particular, analytical solution of simple problem like flow in a channel
or in a tube, analytical solution of other reduced Navier-Stokes equations, numbers of
numerical solution of full Navier-Stokes equations, including direct numerical simulations,
results in the boundary layer theory so well agree with experimental data that there are no
reasons to be in doubt about validity of the Navier-Stokes equation and no-slip boundary
condition [338].

• As mentioned in Section 1.1, the basic problems with formulation of the boundary condi-
tions for energy equation are the same as the difficulties arising in solving the Navier-Stokes
equation (Com. 1.2). The reason for this lies in the disturbed temperature profiles at the lead-
ing and trailing edges of an embedded object that are unknown in advance as well as the
similar velocity profiles. Therefore, additional experimental information is needed to create
the boundary conditions in this case also.

We present two Dirichlet problems (S. 11) as examples of such extra information.

◾Example 7.4: Horizontal Channel Heated From Below Considered in Example 3.21
[71]

Two-dimensional Navier-Stokes and energy equations with no-slip and conjugate boundary
conditions on the interface are solved. The velocity and ambient temperature parabolic profiles
at the entrance are assumed and experimentally checked. To take into account the recirculation
effects at the exit section, some experimental known data were adopted using: 𝜕u∕𝜕x = v = 0
for velocity and 𝜃 = T − T∞ = 0 if u < 0 (inflow in the channel), 𝜕𝜃∕𝜕x = 0 if u > 0 (outflow)
for temperature.

◾Example 7.5: Rectangular Slab Heated From One Surface and Isolated Others
(Exam. 3.9)

Two-dimensional Navier-Stokes equations in variables 𝜓 − 𝜔 and energy equation in vari-
able 𝜃 = (T − T∞)∕(Tbt − T∞) are solved (Tbt is the temperature of a bottom). No-slip and
conjugate conditions are used. Uniform velocity and temperature profiles before and behind far
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away from the slab are assumed. Special investigations were performed to estimate perturbed
profiles of 𝜓,𝜔 and 𝜃 close to the slab (Exam. 3.9) [412].

• In contrast to just considered similarity of boundary conditions for Navier-Stokes and energy
equations for both fluid domains, the boundary conditions on the channel walls or on the
body surface for the energy equation are inherently different from those for the Navier-
Stokes equation. To understand the physical reasons of this contrast, note that by crossing the
interface, the dynamical characteristics experience infinite changes: the velocity becomes
zero and the viscosity turns into infinity, whereas the thermal properties after crossing inter-
face remain finite.

Taking this into account, the no-slip boundary condition is used for Navier-Stokes equation
on the solid. Much more complicated is the situation in the case of energy equation. In this
case, the conductivity and other physical properties experienced discontinuity across the inter-
face according to their different values of fluid and of a body. As a result, the two unknown
in advance temperatures and heat fluxes arise, which in determining as well as the interface
temperature, requires conjugate solution. That is the reason why the simple approach based
on heat transfer coefficient was common before computers came to use.

Comment 7.5 It was just said that because the solid viscosity is infinite, the no-slip boundary
condition is used. This is not always the case. The low-density gas slips on the body surface,
so that no-slip boundary condition does not hold. Such an effect occurs when the Knudsen
number Kn = l∕L is of order unity or greater. Knudsen number is defined as a ratio of the
molecular mean free path l (average distance that molecule travels between collision with
other molecules) to characteristic scale length L.

7.3 Exact Solutions of Navier-Stokes and Energy Equations

There are problems when the Navier-Stokes equation simplifies, and it becomes possible to
obtain the exact solution. The importance of such solutions we discuss above showing the
fundamental role that the exact results play. Here, we consider examples of such solutions of
two type: (i) unsteady and steady problems where the nonlinear inertia terms identically vanish
resulting in linear equations and (ii) steady problems governed by full nonlinear Navier-Stokes
equations that may be reduced to ordinary differential equations. Other exact solutions of both
types may be found in [338].

7.3.1 Two Stokes Problems

Stokes was the first given the two exact solutions of the first type. The first solution presents a
flow near a plate suddenly accelerated from rest in its own plane. The second Stokes problem
describes the flow near an infinite plate, which harmonic oscillates parallel to itself. Both prob-
lems are governed by the same simplified Navier-Stokes equation containing only unsteady
and viscous terms and relevant boundary conditions

𝜕u
𝜕t

= 𝜈
𝜕2u
𝜕y2

, t ≤ 0, u = 0, t > 0, u(0) = U0, u(∞) = 0, u(0, t) = U0 cos nt

(7.21)
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The first two conditions (7.21), the starting plate velocity U0 and zero velocity far from the
plate, pertain to the first problem, and the last equation (7.21) specifies the boundary condition
for the second problem. Differential equation (7.21) is the same as one-dimensional conduction
equation (1.1) without source. Thus, the solution of the first problem is given by error function
(S. 9. 1) as u∕U0 = erfc(y∕2

√
𝜈t). The solution of the second problem should satisfy the same

equation (7.21), the last condition (7.21), and an extra asymptotical zero condition at y → ∞,
resulting in u(y, t) = U0 exp(−𝜉) cos(nt − 𝜉), where 𝜉 =

√
n∕2𝜈.

7.3.2 Steady Flow in Channels and in a Circular Tube

Parallel flows containing only longitudinal velocity component in plane channel and steady
Couette flow (flow between two parallel plates, one of which is moving relative to the other)
are described by simple differential equation like equation (7.21) but with pressure gradient
instead of unsteady term. Such equation, boundary conditions and solutions are as follows

dp

dx
= 𝜇

d2u
dy2

, y = ±H, u = 0, y = 0, u = 0, y = 2H, u = U (7.22)

u = − 1
2𝜇

dp

dx
(H2 − y2) u =

y

2H
U − H2

𝜇

dp

dx

y

H

(
1 −

y

2H

)
(7.23)

Here, 2H is the distance between channel walls. The first solution (7.23) determines the
parabolic velocity profile in the plane channel, whereas the second one shows how the
pressure gradient in Couette flow deforms the linear velocity distribution u = (y∕2H)U,
which exists at zero pressure gradient. According to this expression, the decreasing in the
flow direction pressure leads to positive velocity profile over the whole channel cross-section,
whereas the increasing pressure results in the profile containing near the unmoving wall the
negative velocities, which represent the back flow domain.

The meaningful exact solution of Navier-Stokes equation is the flow in circular tube, which
is known as Hagen-Poiseuille flow. At first in the 1930s of the nineteenth century, it was found
experimentally that in this practically important case of circular tube, coefficient of resistance 𝜁
depends inversely proportional on Reynolds num Re = 2uR∕𝜈. Later on, it was shown that such
dependency obtained from exact solution of the reduced Navier-Stokes equation in cylindrical
coordinates with no-slip boundary conditions on walls u = 0 at r = R as follows

𝜇

(
d2u
dr2

+ 1
r

du
dr

)
=

dp

dx
, u(r) = − 1

4𝜇
dp

dx
(R2 − r2), 𝜁 = −

dp

dx
4R

𝜌u2
= 64

Re
, (7.24)

well agrees with experimental data.

7.3.3 Stagnation Point Flow (Hiemenz Flow)

This is an example of steady nonlinear problem of type (ii), described by the full Navier-Stokes
equation, which is reduced to the ordinary differential equations in the form applicable for
numerical solution and tabulation. To obtain such form of equations, the governing system
is transformed using similarity variables. One example of such form of equation we just
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considered as solution of the first Stokes problem u∕U0 = erfcz, where z = x∕2
√
𝛼t is

similarity variable. Physically, the existing of similarity variable in this case means that
velocity distributions for different times and locations are similar so that they construct
one curve in similarity variables, which here are u∕U0 and z. The more general self-similar
solutions for the case of velocity distribution U = cxm that we encountered in Section 1.6.1
are analyzed below in Section 7.5.2.

Example of another type of similarity equation gives the dependence (7.24) 𝜁 (Re) indicating
that using a Reynolds number as a similarity variable leads to universal curve for coefficient 𝜁
instead of different curves for each combination of u,R and 𝜈.

The stagnation flow occurs at blunt nose of any cylindrical body at the stagnation point.
In the considering prototype, the two-dimension flow arrives in a perpendicular direction to a
plate and impinges on some point, which is taken as origin x = y = 0. Since the potential flow
(S. 7.1.2. 5) slips at the wall, it leaves in both directions along the plate so that the velocity
components of this potential flow become to be proportional to corresponding coordinates.
Then, the Bernoulli’s equation (7.20) gives the pressure

U = cx, V = −cy, po − p = (1∕2)𝜌(U2 + V2) = (1∕2)𝜌c2(x2 + y2) (7.25)

It is assumed that solution of the Navier-Stokes equation has the form u = xf ′(y) and v = −f (y).
It is easy to check that such form of solution satisfied the continuity equation (1.4) and give
after substituting into the first Navier-Stokes equation (1.5) an ordinary differential equation
f ′2 − f f ′′ = c2 + 𝜈f ′′′.

This nonlinear equation could not be solved analytically. To solve this equation numeri-
cally, it is reasonable to eliminate two parameters c and 𝜈 to make possible to tabulate the
calculation results. Otherwise, the calculation would be necessary to be perform for each pair
of these parameters. One way to find the proper similarity variables is to introduce new con-
stants putting 𝜂 = c1y and 𝜑 = c2f . Substituting the new variables into considering ordinary
differential equation and equating coefficients to eliminate parameters c and 𝜈 give two alge-
braic equations (c1∕c2)2 = c2 = (c3

1𝜈∕c2) determining c1 and c
2
. Then, the similarity variables

𝜂 = y
√

c∕𝜈, 𝜑 = f
√

c𝜈 and corresponding differential equation with boundary conditions
in these variables are obtained

𝜙′′′ + 𝜙𝜙′′ − 𝜙′2 − 1 = 0, 𝜂 = 0, 𝜙 = 𝜙′ = 0, 𝜂 → ∞, 𝜙′ → 1 (7.26)

To find the last condition, one starts with 𝜙′ = d𝜙∕d𝜂 = (c2∕c1)df∕dy = (1∕c)f ′(y) and after
using the first assuming relations u = xf ′(y) and U = cx obtains 𝜙′ = u∕U, which for 𝜂 → ∞
gives the last condition (7.26).

Solution of this problem was obtained in 1911 by Hiemenz in his thesis and is known as
the Hiemenz flow. Equation (7.26) was tabulated by Howarth as the velocity profile in bound-
ary layer u∕U = 𝜑′(𝜂) (Table 5.1 in [338, 1079]). At 𝜂 = 2.4 the ratio u∕U = 0.99, which
approximately determines the boundary layer thickness (Exam. 7.7).

The other exact solutions of this type are [338]: three-dimensional stagnation flow, the
flow induced by a disk rotating about axis perpendicular to its plane, and flow in convergent
and divergent channels. For each case, the similarity variables are found, and Navier-Stokes
equations are reduced to ordinary differential equations, which are solved numerically and the
results are tabulated.
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7.3.4 Couette Flow in a Channel with Heated Walls

Let the temperatures of resting and moving walls of a plane channel are T0 and T1 > T0, respec-
tively. In the absence of pressure gradient when the velocity distribution contains only the
first linear term u = yU∕2H of the second equation (7.23), the dissipation function S in rela-
tion (1.8) simplifies to one term (du∕dy)2. In this case, the energy equation simplifies as well
because only one velocity component u depends on y, while the other component v is zero. As
the result, the energy equation reduces to the form containing only one viscous term and one
term defining the dissipation function. For the considering Couette flow with linear velocity
profile this equation and its solution satisfying the prescribed wall temperatures mentioned
above are (𝜂 = y∕2H)

𝜆
d2T
dy2

+ 𝜇
(

du
dy

)2

= 𝜆
d2T
dy2

+ 𝜇 U2

4H2
= 0,

T − T0

T1 − T0
= 𝜂 + 𝜂(1 − 𝜂) 𝜇U2

2𝜆(T1 − T0)
(7.27)

It follows from the last expression that fluid cools the heated moving wall only until
(𝜇U2∕2𝜆) < (T1 − T0), whereas with further velocity increasing, the fluid starts to heat the
moving wall despite T1 > T0. The reason of this is that the heat generated due to the friction
exceeds the effect produced by cooling fluid owing to a temperature difference.

7.3.5 Adiabatic Wall Temperature

The effect of the adiabatic wall temperature may be analyzed using the solution of
equation (7.27) subjected to boundary condition for thermally isolated wall. Considering an
isolated unmoving wall (dT∕dy = 0) and another at constant temperature T0, one gets the
following boundary conditions, corresponding solution of equation (7.27), and the value of
adiabatic temperature Tad

y = 0,
dT
dy

= 0, y = 2H, T = T0, T(y) − T0 = 𝜇
U2

2𝜆

(
1 −

y2

4H2

)
, Tad = T0 + 𝜇

U2

2𝜆
(7.28)

The last result is obtained from the temperature distribution at y = 0, that pertains to isolated
wall. This expression shows that adiabatic is the temperature that thermally isolated surface
reaches when the whole released friction heat is adopted because the fluid cannot cool the
isolated wall. Comparing the last formula (7.28) with just gained condition (𝜇U2∕2𝜆) < (T1 −
T0), of cooling-heating process for hot wall, one sees that fluid cools the wall until it reaches
the adiabatic temperature, so that an inequalityΔTw > ΔTad (orΔTw < ΔTad) determines what
process, cooling or heating, takes place. In these inequalities, Δ is a difference between wall
and reference (T0 in this example) temperatures, and according to (7.28) ΔTad = 𝜇U2∕2𝜆.

We considered the estimation of adiabatic temperature in the case of flow impingent on an
isolated wall in Section 2.1.4.3.

7.3.6 Temperature Distributions in Channels and in a Tube

In the case of equal walls temperatures (T0 = T1), the last equation (7.27) gives the symmetrical
temperature distribution in Couette flow. Analogous symmetrical temperature distribution is
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obtained from solution of similar to (7.27) differential equation for Poiseuille flow, which
is a flow through a channel with plane walls. The temperature profiles for both Couette and
Poiseuille flows are represented by parabolas of the second and of the four degrees, respectively

T(y) − T0 = 𝜇U2

4𝜆
y

H

(
1 −

y

2H

)
, T(y) − T0 =

𝜇u2
m

3𝜆

[
1 −

( y

H

)4
]

(7.29)

As we just mentioned, the last expression is a result of solution of the equation similar to
equation (7.27). Such differential equation differs from (7.27) by the second term that is
4𝜇(umy)2∕H4 instead of 𝜇U2∕4H2. This term accounts for dissipation heat produced by
Poiseuille flow with maximal velocity on a symmetry axis um = −(H2∕2𝜇)(dp∕dx).

Comment 7.6 One may be confused by a seeming contradiction: first it was said that there
is no exact solutions of Navier-Stokes equation, and then some exact solutions are discussed.
The answer is that the first statement pertains to solutions of Dirichlet problem of the full
Navier-Stokes equations, whereas the considered exact results are examples of simple solu-
tions of different parts of Navier-Stokes equation. Indeed, we study simple solutions because
we could not obtain the exact ones. Nevertheless, there is no doubt of usefulness of the known
exact solutions, and we explained the importance of such results in Chapters 5 and 6 consid-
ering direct turbulence simulation. We return to this question again in Chapter 9 in discussing
the relation between numerical and analytical methods.

7.4 Cases of Small and Large Reynolds and Peclet Numbers

The two limiting cases of small and large Reynolds or Peclet numbers correspond to situation
when one of two basic groups of terms in Navier-Stokes and energy equations are negligible
small relatively to other (S. 7.1.1). In particular, the inertia terms defining the rate of convec-
tive momentum transfer are proportional to the square of the velocity components, whereas
the viscous terms that specify another, molecular part of transfer process are proportional only
to first power of velocity. Proceeding from this fact, it is easy to understand that in the case of
small Reynolds numbers, the inertia terms may be neglected, whereas in the opposite case of
large Reynolds numbers, the viscous terms are negligible small relatively to inertia ones. Anal-
ogously considering the energy equation, one sees that the convective group of terms contains
the velocity components as factors, but the terms presenting heat conduction are independent
on velocity. Thus again, the conductive terms are dominated at small Peclet numbers, whereas
the convective group may be omitted in this case, and vice versa, under large Peclet numbers.

The more simple relations obtained in this way unlike the reduced exact equations discussed
before are approximate since in this case, the terms are omitted not due to physical sense, but
are neglected causing some inaccuracy.

7.4.1 Creeping Approximation (Small Reynolds and Peclet Numbers)

Creeping flow is a very slow motion at small Reynolds number (Re ≪ 1), that is, at small
velocity, or small object size, or for very viscous fluid. As mentioned above, in this case, the
inertia terms are small and they may be neglected significantly simplifying the Navier-Stokes
equations to the form ∇p = 𝜇∇2V for a steady flow. This type of flow is also known as Stokes
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flow since he first considered such a flow. The energy and diffusion equations may be simplified
to similar Laplace equations as well neglecting small convective terms.

The two-dimensional creeping flow equations may be transformed to a single equation for
the stream function, such as general two-dimensional Navier-Stokes equation (7.16). Neglect-
ing the inertia terms (the left-hand side of this equation), one obtains the Stokes flow equation
in stream function form. Because in this case, the pressure is defined by Laplace equation,
the creeping flow problems are governed by the Laplace and simplified (7.16) equations,
whereas the similar thermal and diffusion problems are governed as mentioned above only
by the Laplace equation. Thus, we have

∇4𝜓 = ∇2(∇2𝜓) = 𝜕4𝜓

𝜕x4
+ 2

𝜕4𝜓

𝜕x2𝜕y2
+ 𝜕4𝜓

𝜕y4
= 0 ∇2p = 0 ∇2T = 0 ∇2C = 0 (7.30)

Note that creeping flow is irrorational because it follows from equations (7.12) and (7.30)
that 𝜔 = ∇2𝜓 = 0. The creeping approximation approach has wide applications for small
objects in different areas from a charging electron to pollution of environment. In nature, this
type of flow occurs in the moving bacteria and other microorganisms, in the motile sperm,
and in a lava flow. In engineering, the application includes polymer and other high viscosity
substances flows, film production, studying of small size, micro- and nano-technology systems.

7.4.2 Stokes Flow Past Sphere

This problem of parallel flow past sphere was as well first considered by Stokes. Consider-
ing creeping flow equation in spherical coordinates r, 𝛾, 𝜙 leads to following expressions for
stream function, pressure, and drag coefficient (e.g., [147, 44])

𝜓 = Ur2sin2𝛾

[
1
2
− 3

4
R
r
+ 1

4

(R
r

)3
]
, p − p∞ = −3

2
𝜇U
R

cos 𝛾, F = 6𝜋𝜇UR, Cf =
24
Re

(7.31)
These results show that: (i) the pressure reaches the extreme values ∓(3∕2)(𝜇U∕R) at 𝛾 = 𝜋∕2
(minimum) and 𝛾 = (3∕2)𝜋, (maximum), (ii) the drag is proportional to the first power of
velocity and consists of two parts F = 2𝜋𝜇UR + 4𝜋𝜇UR, where first one comes from pressure
and the other results from share stress, (iii) the drag coefficient is inversely proportional to
Reynolds Number Re = 2𝜌UR∕𝜇.

Comment 7.7 The solution of similar problem for liquid drop in immiscible liquid medium
indicates that the drag coefficient (7.31) should be multiplied by factor (2𝜇 + 3𝜇w)∕(𝜇 + 𝜇w),
where 𝜇 and 𝜇w are viscosity of medium and drop [227].

7.4.3 Oseen’s Approximation

As the distance from surface increases, the accuracy of creeping approximation decreases due
to growing flow velocity. Oseen took into account the effect of the inertia using the perturbation
approach. Presenting the velocity field as U + u′, v′, w′, where U is the constant velocity far
from the sphere and u′, v′, w′ are a small field, its perturbations leads to the Navier-Stokes and
continuity equations with inertia terms of the first and second order. Neglecting the relatively
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small second order terms, containing products of perturbation values, gives the Oseen lin-
earized equations. For u′ component such Navier-Stokes and Oseen linearized equations are
as follows

U
𝜕u′

𝜕x
+ v′

𝜕u′

𝜕y
+ w′ 𝜕u′

𝜕z
+ 1
𝜌

𝜕p

𝜕x
= 𝜈∇2u′, U

𝜕u′

𝜕x
+ 1
𝜌

𝜕p

𝜕x
= 𝜈∇2u′ (7.32)

Two other Navier-Stokes and corresponding linearized equations for components v′ and w′ are
similar. The system of Oseen equations that takes into account the inertia effects in the first
approximation consists of the second equation (7.32), two similar others with v′ and 𝜕p∕𝜕y or
w′ and 𝜕p∕𝜕z instead of u′ and 𝜕p∕𝜕x, and continuity equation (1.4) with components u′, v′,w′

instead of u, v, and w.
Solution of the system of Oseen equations under the no-slip boundary conditions U + u′ =

v′ = w′ = 0 gives for a sphere the velocity field that in the front is close to Stokes pattern,
whereas the velocities behind the sphere are larger than in Stokes case. The Oseen drag coef-
ficient may be obtained by multiplying the Stokes drag coefficient (7.31) by [1 + (3∕16)Re].
Experimental data show that formula (7.31) is applicable for Re < 1, whereas Oseen approx-
imation is accurate up to Re ≈ 5 [338].

7.4.4 Boundary Layer Approximation (Large Reynolds and Peclet
Numbers)

Two fundamental results published after Euler’s work in the next about hundred years:
Navier-Stokes equations and Reynolds procedure of averaging Navier-Stokes equations for
turbulent flow practically completed classical hydrodynamics—our basic mathematical means
of understanding and modeling flow processes. However, nonlinear, sophisticated Navier-
Stokes and Reynolds equations could not be solved before computers came into use. Thus,
despite the known equations of the real viscous fluid motion, only the Euler’s equations for
perfect fluid could actually be used at the end of the nineteenth century. Because it was clear
that the friction forces in the air or water around a moving body are small in comparison with
pressure and gravity forces, it was expected that solutions of Euler’s equations should be close
to the authentic pattern. In fact, the theory of perfect fluid motion leads to satisfactory results
in many problems such as formatting waves, jets, or in determining the pressure distribution
around a moving body, but this theory fails to predict the pressure drags. That contradiction
between theory and reality is known as a D’Alembert’s paradox: the pressure losses in a flow
moving around a body are zero.

Ludwig Prandtl was the first who understand why the solution of Euler equations for a
perfect fluid do not show any pressure losses and resistance forces of a moving body, even in
the case of small viscosity fluid. In his article published in 1904, he explained that the perfect
flow model describes a major part of the real flow field except the small layer adjusting to
surface called the boundary layer. Therefore, the model that describes the real fluid motion
should consist of two parts: a thin boundary layer where the friction forces are significant, and
another flow part where the friction effects are negligible, and hence, the perfect fluid model
is applicable. The practical significance of the Prandtl approach follows from the fact that the
majority of technical fluids including water, air, and oil are low viscosity and conductivity
liquids.
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7.4.4.1 Derivation of Boundary Layer Equations

The procedure of simplifying the Navier-Stokes and energy equations in boundary layer
equations is based on comparing the order of magnitude of equations terms. To make the terms
comparable, the dimensionless variables, that scaled by maximum value of each variable,
are used. Dividing the longitudinal velocities by U∞, longitudinal coordinates by length
L, transverse coordinates by thicknesses 𝛿 and 𝛿t for Navier-Stokes and energy equations,
respectively, pressure by 𝜌U2

∞, time by L∕U∞, and temperatures by temperature head
𝜃 = Tw − T∞, gives evidence that the value of each dimensionless variable and derivatives
do not exceed a unity. The scale for transverse velocity is obtained from continuity equation.
Taking into account that both terms in this equation are of the same order and knowing that
the scales of the first and second terms are U∞∕L and v∕𝛿, respectively, we get U∞∕L ∼ v∕𝛿,
and then define the scale for transverse velocity v ∼ U∞𝛿∕L.

We begin from estimating the order of magnitude of boundary layer thicknesses. Pro-
ceeding from the fact that both group of terms in the Navier- Stokes and energy equations
presenting convective and molecular transport (S. 7.1.1) are of the same order, we compare
the order of magnitude of these groups using the variable scales. For inertia, terms of
two-dimensional Navier-Stokes equation (1.5) we have 𝜌

(
𝜕u
𝜕t

+ u 𝜕u
𝜕x

+ v 𝜕u
𝜕y

)
∼ 𝜌

(
U∞

L∕U∞
∼

U∞
U∞
L

∼ 𝛿
U∞
L
.

U∞
𝛿

)
. Thus, all inertia terms are of the same order 𝜌U2

∞∕L. Analogously, one
obtains an order 𝜌cpU∞𝜃∕L for convective terms of energy equation.

Quite a different result is attained by comparing terms responsible for the molecular trans-
port. In this case, the orders of magnitude of two viscous terms of Navier-Stokes equation
differ markedly as well as two conductive terms of energy equation, which is clear from the
following two expressions

𝜇

(
𝜕2u
𝜕x2

+ 𝜕2u
𝜕y2

)
∼ 𝜇

(
U∞

L2
+

U∞

𝛿2

)
= 𝜇

U∞

L2

(
1 + L2

𝛿2

)
(7.33)

𝜆

(
𝜕2T
𝜕x2

+ 𝜕2T
𝜕y2

)
∼ 𝜆

(
𝜃

L2
+ 𝜃

𝛿2
t

)

= 𝜆
𝜃

L2

(

1 + L2

𝛿2
t

)

(7.34)

Since (L∕𝛿)2 >> 1, we get from these equations the first statement of Prandtl model: the one
viscous term in the Navier-Stokes equation and the one conduction term in the energy equation
are small compared with another and can be omitted.

Comparing just obtained orders of inertia and viscous or convective and conductive terms,
we accomplish our intent to estimate the order of dynamic and thermal boundary layer thick-
nesses magnitude, and show that those are inversely proportional to square root of Reynolds
or Peclet number

𝜌
U2
∞

L
∼ 𝜇

U∞

L2

L2

𝛿2
,

𝛿

L
∼ 1

√
Re
, 𝜌cp

U∞𝜃

L
∼ 𝜆

𝜃

L2

L2

𝛿2
t

,
𝛿t

L
∼ 1

√
Pe

(7.35)

The second statement of Prandtl model is obtained under comparison of Navier-Stokes
equations (1.5) and (1.6). Comparing magnitude of similar terms of both equations, one sees
that the ratio of magnitude of each pair of terms is the same. For example, this ratio for first
inertia terms is: v𝜕v∕𝜕x∕u𝜕u∕𝜕x ∼ v∕u ∼ 𝛿∕L ∼ 1∕

√
Re, and similarly, it may be shown that
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the ratio of magnitude of the others pair of terms is the same. Thus, each term in the second
Navier-Stokes equation is 1∕

√
Re times smaller than the analogous term in the first equation.

Because the magnitude of all terms in each equation is of the same order, it follows from the
last result that the magnitudes of the pressure gradients 𝜕p∕𝜕x and 𝜕p∕𝜕y are of the same order
as those of the other terms in the first and second Navier-Stokes equations, respectively. Thus,
the ratio of orders of the pressure gradients is also the same (𝜕p∕𝜕y)∕(𝜕p∕𝜕x) ∼ 1∕

√
Re. At the

same time, inside the boundary layer, the transverse coordinate y is of the order of the thick-
ness, which is 𝛿 ∼ 1∕

√
Re, and hence, within the boundary layer the order of the ratio dy∕dx

is as well 1∕
√

Re. Therefore, the order of the ratio of the pressure drops inside the boundary
layer in y and x directions is (𝜕p∕𝜕y)dy∕(𝜕p∕𝜕x)dx ∼ 1∕

√
Re ⋅ 1∕

√
Re = 1∕Re.

Two conclusions of Prandtl model follow from the last analysis: in the case of high Reynolds
number, (i) the second Navier-Stokes equation may be neglected because it order is 1∕

√
Re,

and (ii) the pressure may be considered as unchanged across the boundary layer being equal
to the pressure in external flow at the outer edge because the pressure variation in normal
direction is of order 1∕Re. One more conclusion gives the comparison of the terms of dissipa-
tion function (1.8), which indicates that the order of only one term (𝜕u∕𝜕y)2 is 1∕Re, whereas
others are of smaller orders and may be omitted.

Thus, at high Reynolds and Peclet numbers, Prandtl model reduces the system of continuity,
two Navier-Stokes equations (1.4)–(1.6) and energy equations (1.8) for two dimensional flow
to the system of equations (1.9)–(1.11) governing the velocity and temperature fields inside the
boundary layer and Bernoulli equation (1.12) determining the unchanged across the boundary
layer pressure in the external potential flow at the outer edge of boundary layer.

Comment 7.8 In the case of flow past a flat plat, the external potential flow is a parallel stream
with given velocity U∞. Therefore, at the outer edge of the boundary layer, the velocity U in
Bernoulli equation (1.12) is equal to U∞, whereas v -component is zero. In the case of flow
past another body shape U ≠ U∞, and to get the same result, one uses the natural coordinates
measuring x and y along a body surface and in the normal direction to it, respectively.

The system of boundary layer equations is much simpler than the initial system of
Navier-Stokes and energy equations because this system of partial differential equations
contains three equations with one second derivative instead of four equations with two second
derivatives. The reducing of the number of the second derivatives from two to one transforms
the elliptic Navier-Stokes and energy equations into the parabolic boundary layer equations
that require significantly simpler boundary conditions than complex Dirichlet or Neumann
problems for elliptic equations (S. 1.1).

Comment 7.9 For the first 25 years, the boundary layer theory was developed only by Prandtl
and his students, so that about one or two articles were published per year. The situation
changed after Prandtl’s lecture at the meeting of the Royal Aeronautical Society in London
in 1927, and in the following years, the amount of publication in boundary layer theory was
grown steadily and reached about 100 papers per year in the middle of the last century increas-
ing to almost 300 articles yearly twenty years later [338]. This historical fact shows how long
it takes a new idea or new result (even as practical important as the boundary layer theory) to
become widely known and be used.
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7.4.4.2 Prandtl-Mises and Görtler Transformations

Prandtl and Mises independently show that boundary layer equations in the case of steady
flow can be transformed to the form closed to one-dimensional heat transfer equation (1.2).
This form is obtained using stream function and longitudinal coordinate x as independent vari-
ables and Z = U2 − u2 and T as unknown. Applying chain rule for differentiation yields the
equations and boundary conditions for velocity in new variables, but for temperature the same
boundary conditions as for usual form (S. 1.1) remain valid

𝜕Z
𝜕x

= 𝜈u
𝜕2Z
𝜕𝜓2

,
𝜕T
𝜕x

= 𝛼
𝜕

𝜕𝜓

(
u
𝜕T
𝜕𝜓

)
, 𝜓 = 0 Z = U2(x), 𝜓 → ∞ Z → 0 (7.36)

In contrast to the one-dimensional conduction, the first equation (7.36) for velocity is nonlinear
because the factor u at the second derivative depends on unknown function Z.

Boundary layer equations (7.36) have a singularity at the surface because the derivative with
respect to 𝜓 become infinite at 𝜓 = 0.

Comment 7.10 A function is singular at some point if this function is not analytical at this
point, that is, if it is not differentialable (S. 7.1.2.5). Since such function does not have some
derivatives at singular point, it could not be expended in Taylor series at this point.

To see that equations (7.36) are singular at point 𝜓 = 0, note that the left part of both
equations is finite on the surface. At the same time, velocity u is zero on the surface, and
consequently, the second derivative in the right part of each equation should be infinite. The
type of singularity may be estimated by considering the analytic solution of the boundary layer
equation for velocity. Presenting such solution near the surface by the Taylor series in power
of y, one gets corresponding expansion for stream function and then, the series in power of
stream function 𝜓 for velocity

u = c1y + c2y2 + … , 𝜓 = ∫
y

0
ud𝜉 =

c1

2
y2 +

c2

3
y3 … ,

u = b1𝜓
1∕2 + b2𝜓 + b3𝜓

3∕2 + … (7.37)

The last series is obtained analyzing the second expansion, from which follows that near the
surface at small values of stream function, we have 𝜓 ≈ y2, and hence y ≈ 𝜓1∕2. Substituting
𝜓1∕2 for y in the first series gives the third expansion.

This expansion is not Taylor series since it contains fractional exponents and is singular at
𝜓 = 0 resulting in the infinite first derivative 𝜕u∕𝜕𝜓 ≈ 𝜓−1∕2 and in the infinite higher deriva-
tives as well. The situation may be changed by introducing a new variable 𝜁 = 𝜓1∕2, which
transforms the singular expression (7.37) for velocity in a Taylor series and finite derivatives
with respect to a new variable u = b1𝜁 + b2𝜁

2 + b3𝜁
3 + …

Another form of the boundary layer equations is obtained using Görtler variables

Φ = 1
𝜈∫

x

0
U(𝜉)d𝜉, 𝜂 =

yU

𝜈
√

2Φ
, 𝜑 = 𝜓

𝜈
√

2Φ
, 𝜃 =

T − Tw

T∞ − Tw
(7.38)

that after using chain rule transform boundary layer equations into following [338, 1968]

𝜕3𝜑

𝜕𝜂3
+ 𝜑𝜕

2𝜑

𝜕𝜂2
+ 𝛽(Φ)

[

1 −
(
𝜕𝜑

𝜕𝜂

)2
]

= 2Φ
[
𝜕2𝜑

𝜕Φ𝜕𝜂
𝜕𝜑

𝜕𝜂
− 𝜕𝜑

𝜕Φ
𝜕2𝜑

𝜕𝜂2

]
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1
Pr
𝜕2𝜃

𝜕𝜂2
+ 𝜑𝜕𝜃

𝜕𝜂
+ Φ𝛽t(Φ)𝜕𝜑

𝜕𝜂
(1 − 𝜃) = 2Φ

[
𝜕𝜑

𝜕𝜂

𝜕𝜃

𝜕Φ
− 𝜕𝜑

𝜕Φ
𝜕𝜃

𝜕𝜂2

]
(7.39)

𝛽(Φ) = 2
U2

dU
dx ∫

x

0
U(𝜉)d𝜉 𝛽t(Φ) = 4

U𝜃w

d𝜃w

dx ∫
x

0
U(𝜉)d𝜉

Equations (7.39) are obtained taken Φ and 𝜂 as independent variables and 𝜙 and 𝜃 as unknown.
Görtler variables may be applied to transform Prandtl-Mises equation (7.36). In this case,
variables Φ and 𝜙 (similar to x and 𝜓 in Prandtl-Mises form) are considered as independent
variables and the unknown are the same, Z = U2 − u2 and the temperature or temperature
excess 𝜃 = T − T∞. Using the chain rule leads to boundary layer equations and boundary con-
ditions in the Prandtl-Mises-Görtler form

2Φ 𝜕Z
𝜕Φ

− 𝜑𝜕Z
𝜕𝜑

− u
U
𝜕2Z
𝜕𝜑2

= 0, 2Φ 𝜕𝜃

𝜕Φ
− 𝜑 𝜕𝜃

𝜕𝜑
− 1

Pr
𝜕

𝜕𝜑

(
u
U
𝜕𝜃

𝜕𝜑

)
= 0 (7.40)

𝜑 = 0, 𝜃 = 𝜃w(Φ) 𝜑→ ∞, 𝜃 = 0.

Properties of equations (7.40) are the same as these of Prandtl-Mises equations (7.36), in par-
ticular, the first equation (7.40) is nonlinear and on the surface at 𝜑 = 0 both relations have a
singularity that may be removed employing the variable 𝜑1∕2.

7.4.4.3 Theory of Similarity and Dimensionless Numbers

Similarity theory is intended for reducing the number of variables describing the physical pro-
cesses by combining parameters in the similarity variables or dimensionless numbers. There
are areas where the results of similarity theory have crucial importance. In particular, the sim-
ilarity principle enables investigate natural processes using models of small size at different
values of other parameters on condition of equal dimensionless numbers. For example, to keep
the same Reynolds number on a small model that the nature object has, one uses in the exper-
iment a larger velocity or a fluid with lesser viscosity. This results in the same dimensionless
number because Re = UL∕𝜈, providing in experiment the same conditions as exist in nature

In theoretical studies, similarity ideas permit to use the data gained for the dimensionless
number or for similarity variables for each of the parameters built into this dimensionless com-
bination. The similarity theory methods are also useful in presentations showing the research
results, because applying dimensionless numbers enlarged the number of variables to which
the tabulated data from the tablets or graphs are valid.

The dimensionless numbers are produced employing the technique similar to that we use
in deriving the boundary layer equations. We show this procedure considering the heat trans-
fer between body and flow past it. The two-dimensional problem for this case is governed by
the system of two-dimensional Laplace equation (1.1) for a body and of the boundary layer
equations (1.9)–(1.12) for fluid. To attain the dimensionless numbers that follows from this sys-
tem, we transform it, converting the variables to dimensionless form by applying their greatest
values as the scales. Using scales similar to those applying in Section 7.4.4.1 such as: L for
coordinates, U∞ for velocities, L∕U∞ for time in fluid and L2∕𝛼 for a body, and (Tw − T∞)
for temperatures, we obtain, for example, for velocity u = uU∞, where u is a dimensionless
variable. Substituting this and analogous relations for other variables with relevant scales in
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governing equations gives the transformed system. Then, in order to get the dimensionless
numbers in traditional form, we divide the first transformed equations by U2

∞∕L, the second
one by U∞(Tw − T∞)∕L, and the third transformed equations by 𝛼(Tw − T∞)∕L2, and finally
obtain the following results

𝛼

U∞L
𝜕u
𝜕t

+ u
𝜕u
𝜕x

+ v
𝜕u
𝜕y

− 𝜕U
𝜕t

− U
𝜕U
𝜕x

+
g𝛽L(Tw − T∞)

U2
∞

T − T∞
Tw − T∞

− 𝜈

U∞L
𝜕2u
𝜕y2

= 0 (7.41)

𝛼

U∞L
𝜕T
𝜕t

+ u
𝜕T
𝜕x

+ v
𝜕T
𝜕y

− 𝛼

U∞L
𝜕2T
𝜕y2

−
𝜈U∞

cpL(Tw − T∞)

(
𝜕u
𝜕y

)2

= 0 (7.42)

𝜕Ts

𝜕t
−
𝜕2Ts

𝜕x2
−
𝜕2Ts

𝜕y2
−

qvL2

𝜆s(Tw − T∞)
= 0

qwL

𝜆(Tw − T∞)
=
𝜆s

𝜆

(
𝜕T
𝜕y

)

y=0

(7.43)

This system of equations differs from initial one as follows: (i) although variables in both
equations look identical (we use the same notations) here, unlike the variables in initial system,
they are dimensionless, (ii) there is no continuity equation (1.9) in this system because trans-
formed dimensionless continuity equation remains unchanged, (iii) there also is no pressure
because it is eliminated by Bernoulli equation (1.12) resulting in two terms with derivatives
of external velocity U instead of pressure, (iv) system (7.41)–(7.43) consist of additional
dimensionless groups as factors at the derivatives, and (v) two extra terms: the sixth term
in the first equation that takes into account natural heat transfer effects (S. 7.8), and the last
equation (7.43), which is obtained from conjugate condition (1.18) and determines the dimen-
sionless heat flux on the body/fluid interface.

The six dimensionless groups of parameters from system (7.41)–(7.43) determine eight
dimensionless numbers that are named (except the group with heat source) after pioneers such
as Peclet and Fourier (first term in (7.41)), Grashof (sixth term in (7.41)), Reynolds (last term
in (7.41)), Eckert (last term in (7.42)), Source number (last term in first (7.43)), Nusselt (the
second equation (7.43)), and Prandtl (last and first terms in (7.41))

Pe =
U∞L

𝛼
, Fo = 𝛼

UL
= 𝛼t

L2
, Gr =

g𝛽L3(Tw − T∞)
𝜈2

, Re =
U∞L

𝜈
,

Ec =
U2
∞

cp(Tw − T∞)
, qv

qvL2

𝜆s(Tw − T∞)
, Nu =

qwL

𝜆(Tw − T∞)
, Pr = Pe

Re
= 𝜈

𝛼
(7.44)

In a physical sense, these dimensionless numbers define the ratio of orders of: convec-
tion to conduction heats (Peclet), conduction to energy storage heats (Fourier), buoyancy
to viscous forces (Grashof), inertia to viscous forces (Reynolds), kinetic energy to enthalpy
(Eckert), source to conduction heats (source dimensionless number), convective to conduc-
tion heat transfer across the interface (Nusselt), and kinematic viscosity to thermal diffu-
sivity (Prandtl). Seven numbers (7.44) are independent variables, whereas the Nusselt num-
ber is an unknown dimensionless heat flux through the interface that should be estimated.
Thus, in a problem of convective heat transfer between body and flowing past it fluid, the
seven dimensionless numbers (Gr, Re, Pe, Ec, Fo, qv, and Nu) substitute thirteen dimen-
sional parameters (L,U∞,T∞,Tw, 𝜈, 𝛼, 𝜆, 𝛼s, 𝜆s, g, 𝛽, cp, qv), which cut almost in half reduces



�

� �

�

Laminar Fluid Flow and Heat Transfer 315

numbers of independent parameters. As it noticed above, this lowers the number of variations
that are necessary to study the effects of different parameters on the final results, and simplifies
presentation of obtained data.

In practice, usual effects of two parameters are studied. If, for example, the effects of
Reynolds and Eckert numbers are investigated, and three different values of each parameter
are considered, it is necessary to perform 3 ⋅ 3 = 9 studies (calculations or experiments). On
the other hand, if we try to get the same information using dimensional parameters, it would
be necessary to perform 3 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 3 = 35 = 243 studies because Re and Ec substitute five
dimensional parameters U∞,L, 𝜈, cp, and ΔT .

Numbers (7.44) are used basically in heat transfer researches. Many other dimensionless
numbers are used in studying different phenomena and processes. Some of them are listed in
nomenclature, and a more complete table may be seen on Wikipedia.

7.5 Exact Solutions of Boundary Layer Equations

Although both boundary layer equations are simpler than the Navier-Stokes and full energy
equations, their solutions as well encounter considerable difficulties. The dynamic boundary
layer equation is difficult to solve due to its nonlinearity, whereas the number of exact solutions
of even linear energy equation is also restricted by the same problem since these solutions
depend on the velocity components. Therefore, only a few exact solutions of both velocity
and temperature boundary layer problems are found. We consider well-known solutions of
velocity and thermal boundary layer for the plate and self-similar boundary layer solution.
Other exact solutions of boundary layer equations may be found in [338]. Different exact
solutions of thermal boundary layer equation in the forms of universal functions we presented
in Chapter 1.

7.5.1 Flow and Heat Transfer on Isothermal Semi-infinite Flat Plate

Both indicated problems are governed by steady-state boundary layer system (1.9)–(1.12) at
zero pressure gradient and simple boundary conditions

y = 0, u = v = 0, T = Tw, y → ∞, u → U∞, T → T∞ (7.45)

Because the plate is semi-infinite, the solution cannot depend on specific length so that
the similar variables should be used when the resulting dependences do not depend on
location (S. 7.3.3). Analysis leads to following similar variables: 𝜂 = y∕𝛿, stream function
f (𝜂) = 𝜓∕

√
𝜈xU∞, and temperature 𝜃(𝜂) = (T − T∞)∕(Tw − T∞) two of which f (𝜂) and 𝜃(𝜂)

should be determined. Substituting velocity components obtained via stream function by
equations (7.12)

u = 𝜕𝜓

𝜕y
= 𝜕𝜓

𝜕𝜂

𝜕𝜂

𝜕y
= U∞f ′, v = −𝜕𝜓

𝜕x
=
√
𝜈xU∞f ′

𝜕𝜂

𝜕x
+ 1

2

√
𝜈U∞

x
f

= 1
2

√
𝜈U∞

x
(𝜂f ′ − f ) (7.46)
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into equations (1.9)–(1.11) results in two ordinary differential equations

f f ′′ + 2f ′′′ = 0, 𝜃′′ + Pr
2

f 𝜃′ = −Pr Ecf ′′2 (7.47)

known as Blasius and Pohlhausen equations who, respectively, solved these problems.

7.5.1.1 Solution of Blasius Equation

The first nonlinear equation (7.47) was solved first by Prandtl’s Ph. D. student Blasius in 1908.
Since there were no computers at that time, he constructed the solution using two expansions:
an inner series at the surface and the outer expansion for external flow matching them at some
point inside the boundary layer.[338, 1951] In the following years, several other solutions of
this basic equation were published, and finally Howarth gave in 1938, the numerical solution
of Blasius equation ([338, 1979, Table 7.1). The gained velocity distribution u∕U∞ = f ′(𝜂)
excellent agrees with experimental data [338].

◾Example 7.6: Determining the Skin Friction

The local skin friction is found by Newton law applying the value of the second derivative
of the Blasius function on the surface f ′′(0) = 0.332 ([338, 1979] Table 7.1). Integrating the
local data gives the total skin friction for the plate of unit width

cf

2
= 𝜏

𝜌U2
∞

= 𝜈

U∞

√
U∞
𝜈x

f ′′(0) = 0.332
√

Rex

, Cf =
2

𝜌U2
∞L∫

L

0
𝜏 dx = 1.328

√
ReL

(7.48)

◾Example 7.7: The Boundary Layer Thickness Estimation

Asymptotically, the boundary layer thickness is infinite, however, in many cases, it is more
reasonable to consider the boundary layer of finite thickness. In such a model as it mentioned
above (S 7.3.3), the boundary layer thickness 𝛿 is approximately determined as a distance
from surface to the point where u = 0.99U∞. The two other thicknesses of boundary layer
using in application are displacement 𝛿1 and momentum 𝛿2 thicknesses. In contrast to the
approximately defined finite thickness 𝛿, these two, known as integral thicknesses, are deter-
mined strongly. The first characteristic 𝛿1 shows how much of the potential flow displaced the
established boundary layer, which took it place, whereas the second one 𝛿2 defines how much
momentum this displacement thickness takes away from the flow.

The volume of potential flow displaced at some point of boundary layer is proportional
to difference between potential and boundary layer velocities as (U∞ − u)dy. On the other
hand, if 𝛿1 is displacement thickness, this amount should be equal to the product U∞d𝛿1 that
also defines the displaced volume of potential flow. This results in U∞d𝛿1 = (U∞ − u)dy and
d𝛿1∕dy = (U∞ − u)∕U∞. Similarly, the local amount of momentum that is taken away from
boundary layer u(U∞ − u)dy is equal to the same amount defined through momentum thickness
𝛿2, which gives U∞d𝛿2 = u(U∞ − u)dy and d𝛿2∕dy = u(U∞ − u)∕U∞. Integration and data
from the Howarth numerical solution of Blasius equation [338] lead to formulae determining
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the boundary layer thicknesses

𝛿1 = ∫
∞

0

(
1 − u

U∞

)
dy = 1.72

√
𝜈x
U∞

, 𝛿2 = ∫
∞

0

u
U∞

(
1 − u

U∞

)
dy = 0.664

√
𝜈x
U∞

,

𝛿 = 5
√

𝜈x
U∞

(7.49)

The factor
√
𝜈x∕U∞ comes from similarity variables u∕U∞ = f ′(𝜂) during differentiation. The

last formula for finite boundary layer thickness obtained using Howarth data as well according
which u∕U∞ = 0.99 at 𝜂 = y∕𝛿 = 5.

7.5.1.2 Solution of Pohlhausen Equation

The second equation (7.47) is a linear inhomogeneous equation of second order governing the
problem of heat transfer on flat plate. Solution of this problem obtained by Pohlhausen in 1921
is presented as a sum 𝜃 = C𝜃1 + (Ec∕2) 𝜃2 of a general solution 𝜃1 and particular solution 𝜃2 of
the inhomogeneous equation (7.47) (S. 9.2). The general solution under boundary conditions
(7.45) 𝜂 = 0, 𝜃1 = 1, 𝜂 → ∞, 𝜃1 = 0 covers the cooling process, whereas a particular solu-
tion subjected to boundary conditions 𝜂 = 0, 𝜃′2 = 0, 𝜂 → ∞,𝜃2 = 0 determines the adiabatic
temperature (S. 7.3.5).

Because Pohlhausen equation (7.47), unlike the Blasius one, is linear, both 𝜃1 and 𝜃2, solu-
tions may be found using standard technique.

◾Example 7.8: The Thermal Boundary Layer Thickness Estimation

The homogeneous Pohlhausen equation 𝜃′′ + (Pr ∕2)f 𝜃′ = 0 is integrated by separation of
variables (S. 9.2). After satisfying the boundary conditions in form (7.45) just indicated, the
solution 𝜃1 defining cooling process is obtained

𝜃1 = ∫
∞

𝜂

exp

(
−Pr∫

f

2
d𝜉

)
d𝜉 = ∫

∞

𝜂

[f ′′(𝜉)]Prd𝜉∕∫
∞

0
[f ′′(𝜉)]Prd𝜉 ∫ (−f∕2)d𝜉 = ln f ′′

(7.50)
Here, the final expression is attained after using the last equality, which follows from Blasius
equation (7.47) and which validity is easy to check by differentiation.

It follows from the first equation (7.50) that the temperature distribution and, hence, the
thermal boundary layer thickness depend on Prandtl number. In the case of Pr = 1, evaluation
of integral (7.50) gives 𝜃1 = 1 − f ′ = 1 − u∕U∞ or (T − Tw)∕(T∞ − Tw) = u∕U∞.

This means that temperature head and velocity distributions are identical, and therefore,
both dynamic and thermal boundary layer thicknesses are equal 𝛿t∕𝛿 = 1 (Reynolds analogy,
S. 2.1.2.3). Physical reason of such result is that in the case of Pr = 1, the flow kinematic
viscosity and thermal diffusivity are equal. In the case of Pr > 1, the fluid viscosity is larger,
and due to that wall braking effect extends farther into flow. As a result, the dynamic boundary
layer thickness becomes larger than the thermal one, 𝛿 > 𝛿t. Consequently, in the opposite
case of Pr < 1 when the fluid viscosity is smaller, the dynamis boundary layer is thinner, and
a contrary inequality 𝛿 < 𝛿t is valid.
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◾Example 7.9: The Adiabatic Wall Temperature Estimation

As it mentioned above, an adiabatic wall temperature 𝜃2 is defined by a particular solution
of inhomogeneous full Pohlhausen equation (7.47). Such a linear equation of the second order,
which does not contain an independent variable (in this case 𝜂) is reduced by substitution of a
new variable z = 𝜃′2 to the first order equation for the new variable

z′ + (Pr ∕2)fz = −Pr Ecf ′′2, 𝜃2(Pr) = 2 Pr∫
∞

𝜂

[f ′′(𝜉)]Pr∫
𝜉

0
[f ′′(𝜁 )]2−Prd𝜁d𝜉,

𝜃ad = Ec
2
𝜃2(Pr) (7.51)

Employing a standard method for solving the first order linear differential equation, one finds
expression for 𝜃′2, which integration under the second boundary condition (7.45) for adiabatic
temperature results in solution for 𝜃2. Dimensionless temperature in the form 𝜃ad = (Tad −
T∞)∕(Tw − T∞) is defined then using an Eckert number (7.51). For Pr = 1, after evaluation of
second integral, the integrant may be presented as a full differential 2f ′(𝜉)f ′′(𝜉)d𝜉 = d(f ′2), and
hence, the second integration leads to relation 𝜃2(1) = f ′2|∞0 = 1 (recall that f ′ = u∕U∞ ). This
result together with Eckert number (7.44) indicates that for Pr = 1, the adiabatic wall temper-
ature is defined as Tad = T∞ + U2

∞∕2cp (compare to (7.28)). It follows from this formula that
in the case of Pr = 1, the adiabatic temperature is equal to temperature rise produced by veloc-
ity change from U∞ to zero. The values of 𝜃2(Pr) are greater for Pr > 1 and lesser for Pr < 1
than for Pr = 1. Approximate formulae presented these values for moderate and large Prandtl
number as follows: 𝜃2(Pr) = Pr1.2 and 1.9Pr1∕3 for 0.6 < Pr < 10 and Pr → ∞, respectively
[338]. Then, the adiabatic wall temperature is estimated as Tad = T∞ + 𝜃2(Pr)U2

∞∕2cp.

◾Example 7.10: Estimation of the Heat Flux at the Surface

According to similarity analysis (S. 7.4.4.3) the heat flux on a surface is defined by Nusselt
number (7.43) via temperature derivative on surface (𝜕T∕𝜕y)y=0. To estimate this derivative
from full solution of Pohlhausen equation 𝜃 = C𝜃1 + (Ec∕2)𝜃2, given as a sum of general 𝜃1
and particular 𝜃2 solutions, the constant C should be specified. From boundary conditions for
general solution it is known that on the surface 𝜃1 = 1 (see also Example 7.8)). Using this
result, and solving equation 1 = C + (Ec∕2)𝜃2(Pr) for C, one substitutes the obtained relation
for C in full solution and finds the expressions first for 𝜃, and then for (𝜕T∕𝜕y)y=0, and finally
for Nusselt number

𝜃 =
[
1 − Ec

2
𝜃2 (Pr)

]
𝜃1 +

Ec
2
𝜃2(Pr), Nux = −

(
𝜕𝜃1

𝜕𝜂

)

𝜂=0

√
Rex

[
1 − Ec

2
𝜃2 (Pr)

]
(7.52)

Here,
√

Rex comes from differentiation with respect to 𝜂 = y∕𝛿 and a link 𝛿 ∼ 1∕
√

Rex.
A minus at the derivative in (7.52) defines according to Fourier law the positive heat
flux.Analysis of equation (7.52) shows that Nux > 0 if Ec𝜃2(Pr) < 2 and Nux < 0 when
Ec𝜃2(Pr) > 2. At the same time, it follows from the last equation (7.51) and expression for 𝜃ad
from Example 7.8 that [1 − (Ec∕2)𝜃2(Pr)] = 1 − 𝜃ad = (Tw − Tad)∕(Tw − T∞). Comparing
this result with equation (7.52) shows that the Nusselt number is proportional to difference
Tw − Tad so that positive or negative Nux corresponds to Tw − Tad > 0 or Tw − Tad < 0,
respectively. This means that fluid cools a plate only until the plate temperature is greater
than the adiabatic plate temperature Tw > Tad, and then at Tw < Tad the plate heats the fluid.
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Thus, in the case of isolated plate, the cooling process is reduced comparing to that in a usual
case when the plate at given surface temperature Tw is cooled as long as Tw > T∞. Similar
results we obtained in Section 7.3.5 considering the Couette flow. As there we mentioned,
the physical reason of the cooling process restriction is that in the case of adiabatic wall, the
whole released friction heat is adopted because the fluid cannot cool the isolated wall.

For practical applying relation (7.52), the values of derivative (𝜕𝜃1∕𝜕𝜂)𝜂=0 are needed. As
well as for 𝜃2(Pr), we present approximate relations for this derivative from [338]: 𝜃1(Pr) =
0.564 Pr1∕2, 0.332 Pr1∕3 and 0.339Pr1∕3 for Pr → 0, 0.6 < Pr < 10 and Pr → ∞, relatively.

Another useful result becomes clear if one writes equation (7.52) for heat flux and sub-
stitutes the expression in brackets using relation for adiabatic wall temperature to get qw =
−𝜆(𝜕𝜃1∕𝜕𝜂)𝜂=0

√
U∕𝜈x(Tw − Tad). This expression differs from common relation for heat flux

only by temperature difference (Tw − Tad), which substitutes the usual difference (Tw − T∞).
By employing such substitution of adiabatic temperature head 𝜃ad = Tw − Tad for usual tem-
perature head 𝜃w = Tw − T∞ in known relations yields the expressions valid for the case with
heat dissipation. We discussed this question in more detail, especially considering university
functions for the recovery factor (S.1.14, Com. 1.11).

7.5.2 Self-Similar Flows of Dynamic and Thermal Boundary Layers

As indicated in Section 1.6.1, the velocity distribution of a potential flow over the wedge with
opening angle 𝜋𝛽 has the form of power function U = Cxm with exponent m = 𝛽∕(2 − 𝛽). If
the temperature head distribution along the wedge surface is also the power function Tw −
T∞ = C1xm1 , then both boundary layer partial differential equations for velocity and for tem-
perature head can be reduced to ordinary differential equations, which have similarity, called
self-similar, solutions. As we discussed in Section 7.3.3, such solutions describe flows in which
the velocity or the temperature head profiles at different locations are similar forming one pro-
file in similarity variables. Some problems of that type we consider above as exact solutions
of Navier-Stokes equation. The just discussed Blasius and Pohlhausen solutions of dynamic
and thermal boundary layers on the plate are particular cases of self-similar problems with
m = m1 = 0. Applying similar to employing in the case of plate variables gives equations
analogous to equations (7.47)

𝜂 = y
√
(m + 1)Cxm−1∕2𝜈, f = 𝜓

√
m + 1

2𝜈Cxm+1
, 𝜃 =

T − Tw

T∞ − Tw
(7.53)

f ′′′ + f f ′′ + 𝛽(1 − f ′2) = 0, 𝜃′′ + Pr f 𝜃′ +
2m1

m + 1
Pr f ′(1 − 𝜃) = 0 (7.54)

Comment 7.11 Variable (7.53) are known as variables of Falkner and Skan who first studied
self-similar boundary layers. These variables for the case of plate differ from Blasius variable
by factor

√
2.

The numerical solution for different 𝛽 obtained by Hartree (Fig. 9.1) [338] shows that the
behavior of accelerated and decelerated flows is essentially different: in flows with exponents
from m = 0, 𝛽 = 0 (plate) to m = 1, 𝛽 = 1 (stagnation point), which correspond to constant and
decreased pressure, the velocity profiles in boundary layer are regular without specific features,
whereas in flows with negative exponent m = −0.091, 𝛽 = −0.199, the pressure increases, and
the velocity profiles first exhibits a point of inflexion and then separation occurs (compare to
S. 2.3, Exam. 2.14).
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Numerical solution of the second equation (7.54) for thermal boundary layer was performed
by several authors. Employing Hartree and other authors’ numerical results, the friction
and heat transfer characteristics are obtained. Here, we present some approximate data for
stagnation point flows in the form similar to that given for the flows around the plate in
Section 7.5.1.2: for friction coefficient cf∕2 = 1.233∕

√
Rex, and for heat transfer coefficient

Nux∕
√

Rex = 0.791 Pr1∕2, 0.570 Pr1∕3, 0.661 Pr1∕3 valid for Pr → 0, Pr = 1 and Pr → ∞,
respectively. These relations are useful, in particular, for calculating the dynamic and thermal
characteristics of flows around the blunt noses of cylindrical bodies.

7.6 Approximate Karman-Pohlhausen Integral Method

The idea of the integral method is based on transforming the two-dimensional boundary
layer problem to one-dimensional task by integrating the boundary layer equations in the y
-direction. Since the integration in fact is an averaging process, this procedure results in losing
the information across the boundary layer. Therefore, the solution of such one-dimensional
integral equations requires choosing some functions satisfying the given boundary conditions
for describing the profiles in boundary layer. Substituting these functions into integral equation
yields the one-dimensional differential equation defining the boundary layer characteristics.

To obtain the integral equations for steady state, the system (1.9)–(1.11) modified by
Bernoulli equation (1.12) is presented in the form

𝜕(Uu)
𝜕x

+ 𝜕(Uv)
𝜕y

− u
dU
dx

= 0,
𝜕(T∞u)
𝜕x

+
𝜕(T∞v)
𝜕y

= 0,
𝜕u2

𝜕x
+ 𝜕(uv)

𝜕y
− U

dU
dx

− 𝜈 𝜕
2u
𝜕y2

= 0

(7.55)
The two first equations are obtained by multiplying the continuity equation (1.9) by U or T∞ in
the first and second cases, respectively. The third equation is a sum of the continuity equation
multiplied by u and the modified (by Bernoulli equation (1.12)) the momentum equation (1.10).
Integrating a difference between the first and third relations (7.55) and using obvious condi-
tions 𝜕u∕𝜕y = 0 at y → ∞ and v(U-u) = 0 at y = 0 and y → ∞ leads to final form of integral
momentum equation in terms of thicknesses (7.49)

𝜕

𝜕x
(U2𝛿2) + U

𝜕U
𝜕x
𝛿1 =

𝜏w

𝜌
,

𝜕

𝜕x
(U𝜃w𝛿2t) =

qw

𝜌cp
𝛿2t = ∫

∞

0

u
U

T − T∞
Tw − T∞

dy (7.56)

Analogously, integrating the difference between the second equation (7.55) and energy bound-
ary layer equation (1.11) (without dissipative term) is obtained the thermal integral equation
using specific thermal integral thickness 𝛿2t defined by the last equation (7.56).

7.6.1 Approximate Friction and Heat Transfer on a Flat Plate

◾Example 7.11: Friction on a Flat Plate

We consider three functions for velocity profiles u∕U = f (𝜂), where 𝜂 = y∕𝛿,

f1(𝜂) = 𝜂, f2(𝜂) = a0 + a1𝜂 + a2𝜂
2 + a3𝜂

3, f3(𝜂) = a0 + a1𝜂 + a2𝜂
2 + a3𝜂

3 + a4𝜂
4

(7.57)
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in a purpose to illustrate the effect of a chosen function on the accuracy of an integral method.
Functions (7.57) should satisfy some of or all following boundary conditions

𝜂 = 0, f = 0, 𝜈
𝜕2u
𝜕y2

=
dp

dx
,

𝜕2f

𝜕y2
= 0 𝜂 = 1 f = 1,

𝜕f

𝜕y
=
𝜕2f

𝜕y2
= 0 (7.58)

Here, the second condition follows from steady boundary layer equation (1.10) since on the
surface u = v = 0 and shows that for zero pressure gradient the third condition is true. Other
conditions are evident. The first function (7.57) satisfies two first conditions (7.58) at 𝜂 = 0
and 𝜂 = 1. The coefficients of two other profiles are found satisfying the same two conditions,
the third condition at 𝜂 = 0 and the condition for first derivative at 𝜂 = 1. The condition for the
second derivative at 𝜂 = 1 is used in addition to find coefficients of the third profile. Solutions
of corresponding algebraic equations give the values of the coefficients in the polynomials
(7.57): a0 = a2 = 0, a1 = 3∕2, a3 = −1∕2 for the second profile and a0 = a2 = 0, a1 = −a3 =
2, a4 = 1 for the third one. Using these data, one finds profiles (7.57) and then obtains the
thicknesses 𝛿1 and 𝛿2 by formulae (7.49) and shear stress by Newton law. Substitution of
relations (7.59) into integral momentum equation (7.56) gives differential equation for 𝛿 and
finally leads to formulae for 𝛿(x) and cf (x)

𝛿1

𝛿
= ∫

1

0
(1 − f )d𝜂,

𝛿2

𝛿
= ∫

1

0
f (1 − f )d𝜂, 𝜏

𝜌
= 𝜇

(
𝜕u
𝜕y

)

y=0

= 𝜈a1
U∞
𝛿

(7.59)

𝛿
d𝛿
dx

=
𝛿a1𝜈

𝛿2U∞
, 𝛿(x) =

√
2𝛿𝜈x
𝛿2U∞

, cf (x) =

√
2𝜈a1𝛿2

𝛿xU∞
(7.60)

Here, final results are expressed in terms of 𝛿2∕𝛿 determined by second formula (7.59).
The calculation yields: 𝛿

√
U∞∕𝜈x = 3.46, 4.64, 5.84, and cf

√
U∞x∕𝜈 = 0.577, 0.646,

0.577 for three profiles, respectively, whereas the exact solution indicates that yields
𝛿
√

U∞∕𝜈x = 5 and cf

√
U∞x∕𝜈 = 0.664. Thus, the results for friction with accuracy ∓3% are

achieved with the second and third profiles (7.57). Less exactness with difference of 7% and
17% is achieved in the thickness estimation. That is because of conventional definition of the
boundary layer thickness. In contrast, the results for strongly defined integral thicknesses are
almost the same 𝛿1

√
U∞∕𝜈x = 1.73, 1.74, 1.75, as exact data 1.72.

◾Example 7.12: Heat Transfer From Nonisothermal Plate [241]

The same third polynomial (7.57) f3(𝜂) is used for the temperature profile in the form (T −
Tw)∕(T∞ − Tw) = ft(𝜂t) and 𝜂t = y∕𝛿t. Then, the heat flux on the surface is defined by Fourier
formula, and an integral energy equation (7.56) (the second one) gives the similar to (7.59)
differential equation for thermal boundary layer thickness 𝛿t(𝜂t)

qw

𝜌cp
=
𝛼a1𝜃w

𝛿t
𝛿t

d
dx

(𝜃w𝛿2t) =
𝛼a1𝜃w

U∞
(7.61)

Two cases depending on whether the thermal boundary layer is thinner (Pr ≥ 1) or thicker
(Pr → 0) than the velocity boundary layer are considered, and the following results for the
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ratio 𝛿t∕𝛿 of both thicknesses are obtained for Pr ≥ 1 and (Pr → 0) in [241]

𝛿t

𝛿
= 0.871

Pr1∕3𝜃
1∕2
w (x)x1∕4

[

∫
x

0
𝜃

3∕2
w (x) x−1∕4dx

]1∕3

,
𝛿t

𝛿
= 0.626

Pr1∕2𝜃w(x)x1∕2

[

∫
x

0
𝜃2

w (x) dx

]1∕2

(7.62)
Using these relations and the data for 𝛿 obtained with third polynomial (7.57) f3(𝜂) in the last
example, one calculates the heat flux via first equation (7.61) and then gets other heat transfer
characteristics. The accuracy of this approach is estimated comparing the Nusselt numbers for
power law temperature obtained by relations (7.62) using formulae

Nux = 0.358(2m + 1)1∕3 Pr 1∕3Re1∕2
x , Nux = 0.548(2m + 1)1∕2 Pr 1∕2Re1∕2

x (7.63)

with corresponding data for self-similar solutions. For surfaces with 𝜃w = const. (m = m1 =
0) and qw = const. (m = 0,m1 = 1∕2) equations (7.62) give: Nux = 0.358, 0.548 and 0.452,
0.775 for Pr ≥ 1 and for Pr → 0, respectively. The largest difference of these values from
exact data from [338] is about 12% for qw = const. and Pr → 0.

7.6.2 Flows with Pressure Gradients

The effect of pressure gradient is taken into account applying the parameter Λ based on the
second boundary condition (7.58) at 𝜂 = 0

Λ =
𝜕2f

𝜕𝜂2
= 𝛿2

𝜈

dU
dx
, f = 2𝜂 − 2𝜂3 + 𝜂4 + Λ

6
(𝜂 − 3𝜂2 + 3𝜂3 − 𝜂4) (7.64)

This parameter, the no-slip condition at 𝜂 = 0, and the first conditions (7.58) f = 1 at 𝜂 = 1
define the four coefficients of polynomial (7.57) giving the velocity profile (7.64). Physically
parameter Λ may be interpreted as a ratio of pressure to viscous forces. This becomes clear
if the first formula (7.64) is modified to form Λ = (−dp∕dx)𝛿∕𝜈(U∕𝛿) by multiplying and
dividing it by U. This expression shows that flows with increasing and decreasing pressure
gradient are described by negative and positiveΛ, respectively. The zero pressure gradient flow
corresponds to Λ = 0. Separation occurs at 𝜏w ∼ (𝜕f∕𝜕𝜂)𝜂=0 = 0, which according to (7.64) is
achieved at 2 + (Λ∕6) = 0, i.e. at Λ = −12.

The friction coefficient is obtained by determining boundary layer thickness from the
momentum integral equation (7.56) in the same way that was used for the flat plate
(Exam. 7.11). Comparison between approximate and exact results shows that the results are
accurate enough for the accelerated flows with negative pressure gradients. Accuracy achieved
for the flows with increasing pressure, especially close to separation point, is significantly less.
For example, in the case of transverse flow past circular cylinder compared with the numerical
data shows that both results are practically the same in the range of the angle 0 − 90∘ where
the pressure decreases, whereas after a pressure minimum, the approximate data differ more
significantly so that exact angle of separation is 104.5∘ against approximate result 109.5∘.
Similar results give the other approximate approaches. For example, an integral method
based on self-similar profiles described in the last edition of Schlichting’s book [338, 2000]
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or approach grounded on linearized boundary layer equation that we used considering the
gradient analogy in Section 2.3.

7.7 Limiting Cases of Prandtl Number

In both limiting cases, for fluids with small or large Prandtl numbers, the thermal boundary
layer equation may be simplified. That is because Prandtl number determining the ratio of
boundary layer thicknesses shows that in the first case the thermal thickness is large and in the
second one it is small compared to the velocity boundary layer thickness. Due to that in both
cases, the velocity distribution across the thermal boundary layer may be considered as known.
When the thermal boundary layer is large, a velocity distribution across it may be considered
as the same as in external flow since the relatively small velocity layer covers only a miner part
of the thermal layer at vicinity of a surface. Thus, in this case, the major part of thermal bound-
ary layer appears to be in external flow. In the other case, the situation is opposite because a
small thermal boundary layer lies at the surface covering only minor part of the large velocity
boundary layer. Therefore, in that case, the velocity distribution across the thermal boundary
layer may be considered as a linear using tangent to velocity profile at the surface. The phys-
ical reasons of Prandtl number effects we analyzed determined the thermal boundary layer
thickness (Exam. 7.8).

There are at least three situations when the real velocity distribution across thermal bound-
ary layer is close to a linear. The first one is the case of fluids with large Prandtl numbers
just discussed. For example, the high Prandtl numbers are typical for non-Newtonian fluids
(S. 1.14). The other is the case when an unheated part of a surface precedes the heated zone
so that the thermal boundary layer starts to develop inside the velocity boundary layer. This
results in a thin thermal boundary layer inside the thicker velocity layer. Such a situation takes
place, in particular, in a special problem when the step change in temperature follows the
unheated zone. As indicated in Section 1.3.1, the solution of this problem is usually used as
a standard influence function in the Duhamel integral. The third case with practically linear
velocity distribution is the entrance of a tube or a channel when the thermal boundary layer
grows inside the fully developed flow resulting as well in a thin thermal boundary layer inside
the thicker velocity layer.

◾Example 7.13: Deriving an Influence Function

The deriving of a general expression for influence function is a complicated problem
(S. 1.3.2). For a simplest case of a plate with zero pressure gradient and Pr ≥ 1, the influence
function was found by integral method [123, 201]. Third power polynomial (7.57) f2(𝜂) is
applied for describing the velocity and temperature profiles. This leads to first equation (7.60)
for 𝛿 and to second equation (7.61) modified for the ratio 𝜀 = 𝛿t∕𝛿

𝛿
d𝛿
dx

= 140
13

𝜈

U∞
, 𝛿𝜀

d(𝛿𝜀2)
dx

= 10
𝛼

U∞
, 𝜀3 + 4𝜀2x

d𝜀
dx

= 13
14 Pr

(7.65)

Defining 𝛿 from the first equation (7.64) and substituting the result into the second one
yields the third differential equation for the ratio of thicknesses. Assuming 13∕14 ≈ 1 and
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integrating this differential equation gives an expression for 𝜀 containing integration constant.
Determining this constant knowing that at x = 𝜉 the ratio of thicknesses is zero (S.1.3.1),
which finally results in influence function (1.24).

7.8 Natural Convection

Natural convection occurs whenever there are the density differences in gravitational field. The
considered above forced convection exists due to external forces such as pressure differences,
which drives the flow, or other external action, for example, in a moving body. In contrast
to that in natural convection, the buoyancy driving force is produced naturally by the density
difference, and that is why this type of heat transfer is called natural or free convection. The
density difference arises usually due to temperature gradients and decreases with temperature
increasing. The velocities in free convention are small, which result in the much smaller heat
transfer rates than that in forced convection. Since in this case, there is no establishing velocity,
the Grashof number (7.44) or related to it Rayleigh number Ra = Gr Pr is used instead of
Reynolds number.

As well as in general in forced heat transfer, the majority problems of natural convection
require solution of Navier-Stokes and full energy equations. A small group of problems associ-
ated with natural heat transfer on vertical surfaces such as a plate or a vertical cylinder may be
considered in terms of boundary layer theory. Some of those have analytical solutions (Exam.
7.14), whereas the others are usually treated numerically (Exam. 7.15). To understand physical
reasons of this difference of two types of problems, note that in free convection the driving
force is of gravitational nature so that flow is directed vertically. Such a flow along the verti-
cal surface forms a typical boundary layer structure similar to that in the case of longitudinal
forced flow along the flat plate. A completely different structure has a natural convective flow
on horizontal plate. In that case, the whole heated surface is covered by small rising flows in
the form of plumes without any dominated direction typical to a boundary layer structure.

In solutions of Navier-Stokes and energy equations for natural convection flows, some spe-
cific issues should be taken into account in addition to general requirements to similar problems
considered above. In particular, since the rates of natural convection are small, the radiation
heat transfer is often on the same order so that it should be considered along with convection
in such a case (Exam. 7.15). The other phenomenon significant for some free convection flows
is the stability conditions (Exam. 7.16).

◾Example 7.14: Free Convection on a Vertical Plate

Solutions of this problem include early attempts of solution and comparison with exper-
imental data are reviewed in [125]. Here, we consider the solution given by Pohlhausen in
1921, which is now regarded as classical. The problem is governed by the steady-state bound-
ary layer system (1.9)–(1.11) without pressure and dissipation terms in the second and the
third equations, respectively. A term g𝛽(T − T∞) is added in the second equation to take into
account the buoyancy effects. In this problem as well as in the case of the forced heat trans-
fer on a flat plate, employing similarity variables reduces the partial differential equations to
system of two ordinary differential equations [125]

𝜂 = c
y

x1∕4
, 𝜁 =

[
𝜓

4𝜈cx3∕4

]1∕4
, 𝜁 ′′′ + 3𝜁𝜁 ′′ − 2𝜁 ′2 + 𝜃 = 0, 𝜃′′ + 3 Pr 𝜁𝜃′ = 0, (7.66)
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where c = [g(T − T∞)∕4𝜈2T∞]1∕4 and 𝜃 = (T − T∞)∕(Tw − T∞). The boundary conditions
cover: 𝜃 = 1 at 𝜂 = 0, no-slip 𝜁 = 𝜁 ′ = 0, and asymptotic 𝜁 ′ = 𝜃 = 0 at 𝜂 → ∞ conditions.

It follows from relations (7.66) that: (i) according to similarity variable 𝜂 both boundary
layer thicknesses are proportional to x1∕4 (unlike to x1∕2 in forced convection), (ii) both veloc-
ities on the surface and far away from the plate are zero (unlike that in forced convection)
and (iii) dynamical and thermal differential equations (7.66) (unlike Blasius and Pohlhausen
equations (7.47)) are coupled, so that the temperature and velocity depend on each other, and
hence, both equations should be solved concurrently. Another difference between both types of
convection follows from similarity analysis, which shows that the heat transfer rate depends on
Grashof and Prandtl (or Rayleigh) numbers in the case on free convection instead of Reynolds
and Prandtl (or Peclet) numbers for forced convection. Relevant formulae for natural convec-
tion are given [125]:

Nux =
3A
4
(Grx Pr)1∕4, A =

[
2 Pr

5
(
1 + 2Pr1∕2 + 2 Pr

)

]1∕4

, Grx =
g𝛽x3(Tw − T∞)

𝜈2

(7.67)
where A = 0.8Pr1∕4 and A = 0.670 for Pr → 0 and Pr → ∞, relatively. Expression (7.67) for A
is an approximation of tabulated numerical solution of equations (7.66), whereas the limiting
data are asymptotic values for Pr → 0 and Pr → ∞.

◾Example 7.15: Free Convection with Radiation From Horizontal Fin Array [319]

This complex problem is discussed here without detailed solution presenting only a formula-
tion of such type of problems, the way of solution and some of the basic results. More complete
information one may find in the original paper or in review in book [119]. The model consists
of two long adjacent vertical fins attached to a base with constant temperature Ts > T∞. The
mathematical model of two-dimensional Navier-Stokes equations in vorticity-stream function
form (S. 7.1.2.3 and 7.1.2.4) and full energy equation for the fluid, one-dimensional conduc-
tion equation for the fins and conjugate boundary conditions (S. 1.1) governed the problem.
The radiation heat transfer fluxes are included in the energy equation as the sources. Since
solution of Navier-Stokes and full energy equations requires the closed domains (S. 7.2 and
1.1), the configuration of two fins on the base is considered as a closure with the open top,
front, and rear sides regarded as imaginary surfaces. The radiation heat fluxes are calculated
as sums of heat exchanges between all six surfaces: two fins, base, and three open imaginary
sides. The system of governing equations is solved numerically. Some of basic results are as
follows:

• Calculation of average Nusselt numbers for a four-fin array agree with experimental data
presented in [318]. Analysis of these results show that the contributions of the fins, base, and
end fins to total heat transfer are 36, 13.5, and 50.5%, which agrees with the observation in
[318]. The effect of fins spacing on heat fluxes is studied for arrays with different number of
fins over a fixed base. As the number of fins increases from 4 to 16 and the value of spacing
decreases from 20 to 2.8 mm, the heat fluxes from fin and from base decrease from 149 to
44 W/m2 and from 379 to 148 W/m2. Despite increased numbers of fins, the heat transfer
rate and effectiveness remain almost the same, but average heat transfer coefficient lessens
remrkable om 5.29 to 1.48 W/Km2.
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• The effect of the base temperature indicate that the total heat transfer rate increases as the
base temperature grows for any studied values of spacing and heights. The effectiveness
increases as well for all heights, but it is found that for small values of spacing, effective-
ness decreases as the base temperature grows.

• The results obtained for different fins thicknesses indicate that in the case of low heights
and high thermal conductivities, the heat flux from the fin does not depend on thickness.
For instance, as the thickness increases from 1.5 to 6 mm, the heat flux changes only from
146.6 to 150.6 W/m2. The role of thermal conductivity and emissivity of the fin is also
studied. It is observed that thermal conductivity decreasing leads to reduction of the fin heat
flux, and increasing in emissivity yields growing heat flux due to increasing the radiation
component.

• The temperature profiles obtained for two different spacings show that the temperature far
away from the fins is lower for higher spacing than that for smaller spacing. At the same
time, the velocity profiles indicate that at larger spacings, the greater recirculation results
in higher velocities near the wall and lower velocities farther from the wall. The isotherms
and streamlines for the same two enclosures indicate that the air temperature is high in
the middle of the enclosure with smaller spacing, whereas in the other enclosure with the
larger spacing, the heating is confined to the air near the fins and the base. It can be seen
from the streamlined distribution that the streamlines travel upward along the fins, where
the temperature is high compared to that of the enclosure.

◾Example 7.16: Stability of Fluid Between Two Horizontal Plates

The stability of fluid located between two long parallel heated plats depends on the tem-
perature gradient. If the temperature of the upper plate is higher than that of the lower one,
the temperature gradient is directed along the gravitational force. In such a case, the fluid
density increases in gravitational force direction so that lighter fluid layers are located above
heavier part of fluid. This situation is stable, and heat is transformed in gravitational force
direction from upper to lower plate by conduction. In the opposite case, the density decreases
in direction of gravitational force, resulting in situation when the buoyancy force rises the
lighter fluid layers cooling those, whereas the heavier layers are descended by the gravita-
tional force being warmed. This situation is unstable resulting in circulation pattern. In this
case, the Rayleigh-Benard cells are forming if the Rayleigh number RaL = g𝛽(Tu − Tb)L3∕𝜈𝛼
(indices u and b refer to upper and bottom plats, L is the height between plates) exceeds it
critical value. This effect was first observed by Benard experimentally in 1900, and was first
studied by Rayleigh in 1916.

Comment 7.12 Natural convection has many applications. In meteorology, free convection
processes are relevant since the stable and unstable phenomena similar to that between two
parallel plates occur in the atmosphere and ocean significantly affecting the weather. In the
Earth’s mantle convection results due to the temperature difference between the warmer inside
and surface. Small heat transfer rate are required for cooling in many engineering systems:
electronic devices, thermal pipes, refrigerators, and room radiators.
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Turbulent Fluid Flow and Heat
Transfer

8.1 Transition from Laminar to Turbulent Flow

Laminar flow exists only at relatively small Reynolds numbers. As the Reynolds number
increases, the laminar regime of flow transients in turbulent flow. The laminar flow is well
organized so that it looks like thin parallel layers (lamina in Greek means plate or layer) of fluid
move unmixed along a pipe or a plate. In contrast to that, the mixing process inside a fluid lead-
ing to homogeneous disturbed medium is one of the basic characteristics of turbulent flow. The
patterns of these two regimes were first observed by Reynolds in the nineteenth century, who
put the dye inside the flow to make it visible. He was also the first to understand that there exists
a universal dimensionless number (now known as critical Reynolds number) at which the tran-
sition occurs. The critical Reynolds numbers experimentally determined for flows in a circular
section pipe and past a plate are: Recr = ûD∕𝜈 = 2300 and Recr = Ux∕𝜈 = 3.5 ⋅ 105 ÷ 106,
where û is an average velocity in a pipe. The value of critical Reynolds number depends on
the conditions outside of a pipe or a body and increases as the level of disturbances in the inlet
flow decreases. The just indicated critical Reynolds numbers correspond to usually disturbed
environment, whereas in the experiments when the disturbance in the inlet flow was reduced,
the flow in a pipe remained laminar up to Reynolds number 40000 [338]. At the same time
at Reynolds numbers less than 2000, the flow in a pipe remains laminar independent of the
level of inlet disturbances because these are dissipated by viscosity in flows with smaller than
critical Reynolds numbers.

The transition occurs not at one specific Reynolds number, rather it develops in a transition
interval from critical to some greater Reynolds numbers. In this interval, the flow alternately
becomes laminar or turbulent being fully laminar at the beginning and fully turbulent at the
end of the transition interval. This phenomenon called intermittency is characterized by the
intermittency factor 𝛾 , which is defined as a fraction of the interval when the flow is turbulent.
Thus, the intermittency factor is a function of the point coordinates and of the Reynolds num-
bers being equal 𝛾 = 0 and 𝛾 = 1 at the beginning and at the end of the transition interval. The
experiments indicate that intermittency factor in pipe at fixed Reynolds number increases with

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine,
First Edition. Abram S. Dorfman.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
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distance from leading edge and in direction from the axis to the wall [338]. In the boundary
layer in the transition interval, the intermittence factor also increases toward the wall becoming
constant close to surface on a distance of about 20% of boundary layer thickness [145].

As the transition occurs, the flow characteristics change: (i) the local parameters, velocity
and pressure, at each point become unstable randomly fluctuating, (ii) a velocity distribution
across the cross-section in pipe and in boundary layer becomes more uniform due the mixing
process in turbulent flow, (iii) the boundary layer becomes thicker being proportional to x4∕5

instead of x1∕2 in laminar flow, (iv) in conformity with this the skin friction on the flat plate
increases becoming proportional to the free stream velocity of power 1.8 instead of power 1.5,
and similarly, the proportionality of the skin friction to average velocity for the laminar flow
in pipe changes to square dependency of average velocity for turbulent flow, (v) analogous to
the case of flat plate, changes occur in the laminar flows past thin bodies streamlined without
or with late separation (e.g., past aerofoil), (vi) in contrast, in the case of thick bodies (like
sphere or cylinder), the resistance decreases after transition because in this case, the laminar
flow separates far from the trailing edge creating significant wake behind body, whereas the
turbulent flow separates downstream later resulting in smaller wake and reducing energy loss.

Comment 8.1 The basic properties of laminar and turbulent flows are important to know
to distinguish these two regimes as well as to find the way to reduce the energy losses. For
example, in the case of a thin body such as airfoil, the energy losses are reduced by using spe-
cial body form (laminar airfoils) providing the separation downstream as far as possible. An
opposite technique is employed for reducing energy losses in flow past thick body, providing
the transition as early as possible because turbulent flow separates later downstream than lam-
inar flow. Prandtl used the wire on a sphere as a turbulator to get an early transition, showing
the remarkable decreasing of the resistance ([338], p. 41).

8.2 Reynolds Averaged Navier-Stokes Equation (RANS)

8.2.1 Some Physical Aspects

The turbulent flow is extremely complicated phenomenon. In that case, the velocity and pres-
sure at each point of flow fluctuate randomly depending on coordinates and time. Despite the
range of the scales of those fluctuations is extremely wide, the unsteady three-dimensional
Navier-Stokes equation, in principle, describes the real flow patterns. However, it is impossi-
ble, at least at present, to get a solution of such a problem due to enormous computer memory
and speed required for this procedure. Because of that for a long time, only semi-empirical,
based on hypothesis, or statistically grounded approaches are available for studying turbulent
flows. Only in the last few decades, the essential new methods of direct numerical simula-
tion of turbulence were developed and used to solve the practically important problems. These
methods and current situation in this area are outlined in the Chapters 5 and 6, whereas the
classical methods are considered in this chapter as well as other helpful special information in
Part III.

The turbulent flow behavior is characterized by interaction between fluctuations of quite
different scales of length and time, ranging in length from a largest of the order of the boundary
layer thickness to the extremely small sizes. This process of interaction is usually described
in terms of turbulent eddies-small swirling flows of size, corresponding to fluctuation scales.
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Such eddies provide the energy transport across the boundary layer by cascading manner: the
large eddies take the energy from the mean flow transferring it to smaller ones, whereas the last
transforms the energy to miner eddies and so on until the smallest eddies are achieved, which
energy is dissipated in the heat by viscous effects. This energy transferring process leads to
great transfer of momentum and mass and yields huge waste of energy and additional turbulent
stresses several order larger than laminar stresses. More detail analysis of a cascading process
may be found, for example, in [422].

8.2.2 Reynolds Averaging

To apply averaging following Reynolds, the instantaneous turbulence parameters should be
expressed as a sum of a mean Ui(x) and the fluctuating u′i(x, t) components

ui(x, t) = Ui(x) + u′i(x, t), Ui(x) =
1
t2

t1+t2

∫
t1

ui(x, t)dt, u′i =
1
t2

t1+t2

∫
t1

[ui(x, t) − Ui(x)]dt = 0

(8.1)
These relations are obtained under an assumption that the averaging time is sufficiently large
compared to time of scale t2 ≫ t1. This makes sure that the mean velocity Ui(x) is independent
of time and hence, according to the first and the last relations (8.1), provides the average fluctu-
ation u′i to be zero. This becomes evident after substitution Ui(x) from the first equation (8.1)
into third one. Comparing the time of averaging with the scale of time shows also that the
averaging value of time derivative of a turbulence velocity is equal to derivative of the mean
flow velocity according to expression

𝜕ui

𝜕t
= 1

t2

t1+t2

∫
t1

𝜕

𝜕t

(
Ui + u′i

)
dt =

Ui

(
x, t1 + t2

)
− Ui

(
x, t1

)

t2
+

u′i
(
x, t1 + t2

)
− u′i

(
x, t1

)

t2
=
𝜕Ui

𝜕t

(8.2)
This relation is true because in the right-hand side: (i) the scale t1 of mean flow in the first term
is large in comparison with averaging time t2 so that in a limit at t2 → 0 this term corresponds
to derivative 𝜕Ui∕𝜕t, whereas (ii) the second term of sum (8.2) ceases because the same time
of averaging t2 in the denominator in this term is large comparing to a very small scale of
fluctuation.

In contrast to zero result (8.1) for average single fluctuation u′i, the average product of two
fluctuating values uiuj differs from the corresponding mean product UiUj by average product

of fluctuation components u′iu
′
j

uiuj =
(
Ui + u′i

) (
Uj + u′j

)
= UiUj + Uju

′
i + Uiu

′
j + u′iu

′
j = UiUj + u′iu

′
j (8.3)

This follows from the central part of this equation because the second and third terms vanish
due to the last equation (8.1). That is because U does not depend on time, and therefore, the
integral of a product Uu′ is equal to the product of U and the last integral (8.1) for u′i, which
is zero. Two quantities for which product is not zero uiuj ≠ 0 are considered as correlated
quantities, otherwise these are uncorrelated.
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To understand physically that the turbulent fluctuation velocities are correlated, consider a
simple example of two adjusted flow layers with longitudinal mean velocities u1and u2 [338].
Let the velocity of upper layer is u1 > u2. If a particle from lower layer enters the upper layer
having transverse velocity v′, which we count to be positive, it provides due to inertia a negative
change u′ of velocity u1 because the velocity of coming particle is u2 < u1. This results in a
negative averaged product (−u′v′) since v′ > 0 and u′ < 0. Similarly, the particle with negative
transverse velocity v′, which enters the lower layer from upper layer, gives a positive rise u′

to velocity u2 leading again to a negative averaged product (−u′v′) because in this case v′ < 0
and u′ > 0.

This simple example illustrates that the turbulent fluctuation velocities are inherently cor-
related. The considered here principles of turbulent flow averaging were first formulated by
Reynolds in 1895.

8.2.3 Reynolds Equations and Reynolds Stresses

For averaging, the Navier-Stokes equations in the Einstein notation (S.7.1.2.2)

𝜕ui

𝜕xi
= 0, 𝜌

(
𝜕ui

𝜕t
+ uj

𝜕ui

𝜕xj

)
= −

𝜕p

𝜕xi
+ 𝜇

𝜕2ui

𝜕xj𝜕xj
(8.4)

is convenient to present in the form similar to equation (7.55). To do this, the convection terms
of equation (8.4) are modified by adding and subtracting the second term to obtain

uj
𝜕ui

𝜕xj
=
𝜕(uiuj)
𝜕xj

− ui

𝜕uj

𝜕xj
=
𝜕(uiuj)
𝜕xj

, 𝜌
𝜕ui

𝜕t
+ 𝜌

𝜕(uiuj)
𝜕xj

= −
𝜕p

𝜕xi
+ 𝜇

𝜕2ui

𝜕xj𝜕xj
(8.5)

where finally this term is omitted taken into account that according to first equation (8.4) it
equals zero. Replacing the modified convection terms gives the Navier-Stokes equation in the
form (8.5). Employing equations (8.1)–(8.3) yields

𝜕Ui

𝜕xi
= 0,

𝜕u′i
𝜕xi

= 0, 𝜌
𝜕Ui

𝜕t
+ 𝜌 𝜕

𝜕xj
(UiUj + u′iu

′
j) = − 𝜕P

𝜕xi
+ 𝜇

𝜕2Ui

𝜕xj𝜕xj
(8.6)

First equation (8.6) is found from continuity equation (8.4) since averaging fluctuation compo-
nents are zero, whereas the second equation (8.6) for fluctuation velocities (not averaging) is
a result of subtracting the first equation (8.6) from continuity equation (8.4). A third equation
(8.6) is the last equation (8.5) with convection term changed by relation (8.3). Returning to
initial equations form (8.4) gives the Reynolds averaging equations

𝜕Ui

𝜕xi
= 0, 𝜌

𝜕Ui

𝜕t
+ 𝜌Uj

𝜕Ui

𝜕xj
= − 𝜕P

𝜕xi
+ 𝜕

𝜕xj

(
𝜇
𝜕Ui

𝜕xj
− 𝜌u′iu

′
j

)
(8.7)

It is seen that the Reynolds averaging equations (8.7) are Navier-Stokes equations in which
the instantaneous parameters are replaced by mean values, but the additional terms (−𝜌u′iu

′
j)

known as Reynolds stresses fundamentally change the situation. The Reynolds stresses form
a symmetric (𝜏ij = 𝜏ji) tensor 𝜏ij = −𝜌u′iu

′
j defined by six unknown independent components.

This means that the averaging process creates six extra unknown quantities without producing
additional equations, which results in unclosed system of four equations containing ten instead
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of four unknown. To close the system, the deficient equations or other means defining the
unknown Reynolds stresses must be created. In classical turbulent theory, the closure problem
is solved by semi-empirical or statistical models.

According to current terminology, the turbulence models are classified, depending on a
number of differential equations used in addition to continuity and Navier-Stokes equations.
In conformity with that, the semi-empirical models based on algebraic (without differential)
equations are zero-equation models. The models grounded on one or two differential equations
are called as one- or two-equations models.

Comment 8.2 Attempts to create additional equations for estimating Reynolds stresses by
employing, for example, method of moments (S. 9.6) failed. The new equations are produced
in moment method by multiplying an existing equation by some parameter in first, second,
third, and higher powers. Such procedure results in moment equations of the first, and higher
orders. However, even the first order moment equation obtained by averaging Navier-Stokes
equation contains due to its nonlinearity 22 new unknown [422].

8.3 Algebraic Models

Boussinesq was the first who in 1877 tried to estimate the turbulent stresses. Proceeding from
analogy, he proposed a relation 𝜇tb(𝜕U∕𝜕y) similar to that for shear stress in laminar flow
𝜇(𝜕u∕𝜕y). These two very similarly looking expressions are in fact different in essence. First
of all, the viscosity coefficient 𝜇 is physical property of fluid and usually is known, whereas
the eddy viscosity coefficient 𝜇tb is a flow characteristic, depending practically on the same
parameters as the flow itself. In particular, in contrast to viscosity coefficient, the eddy viscosity
should depend on velocity characteristics because the viscous forces in laminar flow are pro-
portional to velocity, whereas in turbulent flow these depend on square of mean velocity. The
other essential difference between both flows is the mechanism of transport processes respon-
sible for stresses generation. Whereas in a laminar flows, these transport processes are of the
molecular nature, in turbulent, they are produced by eddies motion, which is of macroscopic
type because even smaller eddies are many orders of magnitude larger than molecules. So, it
is clear that an analogy between the Boussnesq and laminar shear stress formulae does not
help for calculation of turbulent flow characteristics until the relations between eddy viscosity
coefficient and flow parameters are established.

Today, the problem of turbulent flow prediction is still far from its complete solution. Never-
theless, the turbulence models enable us to solve more-or-less accurate the turbulent flow prob-
lems. Our prediction methods and understanding of turbulence nature improves remarkable
due to modern experimental technique and the recently developed direct numerical simulation
approaches considered in Chapters 5 and 6.

8.3.1 Prandtl’s Mixing-Length Hypothesis

In 1925, Prandtl gave the first method for estimating the eddy-viscosity coefficient, introducing
the mixing-length hypothesis. He considered a simple model assuming that in turbulent flow
particles coalesce forming lumps, which moves remaining value of their momentum some
distance l that he named mixing length.
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The basic Prandtl’s idea may be explained considering simple model of three parallel layers
flow in x−direction. If the particles at a middle layer with coordinate y have mean velocity
U(y), then, particles at the layers above and below with coordinates y + l and y − l have the
velocities U(y + l) and U(y − l), where l is the mixing length. These particles arriving into the
middle layer due to transverse fluctuation v′ < 0 and v′ > 0 from above and below, respec-
tively, change the velocity U(y) at the middle layer by ΔUa = U(y + l) − U(y) and by ΔUb =
U(y) − U(y − l). Expansion of the functions U(y + l) and U(y − l) in Taylor series in the vicin-
ity of U(y) and taking into account only first two terms U(y) ± l(dU∕dy) shows that both
changes equal approximately each other ΔUa = ΔUb = l(dU∕dy). The quantities ΔU might
be considered as the turbulent fluctuations since they estimate the small changes of the mean
velocity U(y). Averaging the absolute values of these fluctuations arriving to the middle layer
from adjacent two layers give the estimation of absolute value |u′| of x- component fluctuation
in the layer with velocity U(y). Then, employing another Prandtl’s assumption that both fluctu-
ation components are proportional to each other yields basic relations of mixing-length model

|u′| =
|ΔUa| + |ΔUb|

2
= l

||||
dU
dy

||||
, |v′| = const. ⋅ l

||||
dU
dy

||||
, 𝜏tb = 𝜇tb

dU
dy
, 𝜇tb = 𝜌l2

||||
dU
dy

||||
(8.8)

The last expression is obtained comparing a Boussinesq relation (third one) with relation for
turbulent stresses gained via the first two relations (8.8) 𝜏tb = −𝜌u′v′ = 𝜌|l(dU∕dy)|2.

It follows from the preceding discussion that the mixing-lengthlis a distance that a particle
lump travels in transverse direction before this lump affects the mean velocities of adjacent
layers of flow. Mixing-length concept is similar to the free path notion in the kinetic theory
of gases in which the molecules motion is replaced by flow of macroscopic particles lumps.
Prandtl postulated that close to the surface mixing-length is proportional to a distance from
the surface l = 𝜅y, where 𝜅 = 0.41 is the Karman constant.

The Reynolds stresses determined by Boussinesq formula (8.8) through mixing-length van-
ish at the points with dU∕dy = 0, which are points of maximum or minimum of velocity. This
is against the fact that the turbulent mixing exists all over the turbulent flow including as well
these points. To fix this shortage, Prandtl suggested another relation 𝜇tb = 𝜅1𝜌𝛿(x)(Umax −
Umin) according to which the eddy viscosity is proportional to a maximum velocity differ-
ence and width of mixing zone 𝛿(x) via empirical constant 𝜅1. Time showed that this relation
yields fair results basically for free turbulent flows.

Comment 8.3 Prandtl himself counted his mixing-length model as a first approximation.
Later, detail analysis based on comparison with molecular transport process indicated some
theoretical shortages of mixing-length model [422]. Nevertheless, for many years, until the
computer came to use, Prandtl’s model was widely used for studying turbulent flows inside
the pipes, around bodies, and in free streams showing satisfactory agreement with experimental
data in a number of cases.

8.3.2 Modern Structure of Velocity Profile in Turbulent Boundary Layer

Experimental and theoretical results presented, in particular in [76, 79, 327, 392 and 422],
lead to detailed analysis of special type of turbulent flows known as equilibrium boundary layer
flows. Despite strictly speaking turbulence is never in equilibrium, this term becomes common
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defining in fact the turbulent flows with small changes characteristics [422]. As indicated in
Section 1.7, such a type of boundary layers are characterized by constant dimensionless pres-
sure gradient parameter (1.48) analogous to the parameter𝛽 for self-similar laminar boundary
layers (S. 7.5.2). The equilibrium turbulent flows as well as self-similar laminar flows pos-
sess of the similarity property (S.7.4.4.3), significantly simplifying the studying the turbulence
processes.

Modern models adopted the equilibrium velocity profile and corresponding eddy viscosity
distribution across the boundary layer as a basis of the models. Such typical velocity profile
consists of three parts: (i) the viscous sublayer (inner part), the relatively small laminar region
near the surface, where the law of the wall holds, (ii) the defect layer (outer part), the major
region of the boundary layer with dominant turbulent Reynolds stresses and Clauser’s law
located between the viscous sublayer and the free stream region, and (iii) the overlap region
of inner and outer layers covered by the log layer where both laws are asymptotically valid.
Thus, the equilibrium turbulent velocity profile is basically determined by the wall and defect
laws

U+ = f1(y+),
Ue − U

u𝜏
= f2

(
y

𝛿𝜏

)
, 𝛿𝜏 =

Ue𝛿1

u𝜏
, 𝜇tb = 𝜅2𝜌Ue𝛿1 (8.9)

where U+ = U∕u𝜏 , y+ = yu𝜏∕𝜈, u𝜏 =
√
𝜏w∕𝜌, 𝛿1 is the displacement thickness defined by

equation (7.48), Ue is the velocity on the outer edge in turbulent flow (in this case U is used
for mean flow velocity), u𝜏 is the friction velocity so called because it is defined via shear
stress on the surface 𝜏w, f1(y+) and f2(y∕𝛿𝜏) are universal functions found from a number of
experimental data, (e.g.., Fig. 3.7 in [442]) with a linear part U+ = y+ of f1(y+) at the surface.

The velocity log layer profile is found by considering log layer region as limiting case of the
inner and outer layers. Two assumptions are employed as properties of the log layer structure:
(i) the inertia terms are small compared to viscous terms, and (ii) the turbulent stresses are
dominant. While the first affirmation is based on the fact that inner layer lies sufficiently close
to the surface, where the velocities are small, the second assumption is true because the outer
layer is located enough far from the body, where the laminar stresses are negligible. It may be
shown that flow with such properties has the logarithmic velocity profile. This follows from
Reynolds equation (8.7), which shows that in the case of a steady-state at zero pressure gradient
and negligible convective terms (see (i)), the derivative of a sum of laminar and turbulent
stresses (last term in (8.7)) is zero.

𝜕

𝜕y

[(
𝜇 + 𝜇tb

) 𝜕U
𝜕y

]
= 0, 𝜇

𝜕U
𝜕y

+ 𝜇tb
𝜕U
𝜕y

= const., 𝜇
𝜕U
𝜕y

+ 𝜌
(
𝜅y
𝜕U
𝜕y

)2

= const.

(8.10)
Integrating this relation after using Prandtl’s formulae (8.8) for turbulent stress and for mixing
length l = 𝜅y leads to the second and to the last expressions (8.10). At the surface (y = 0), the
second term in the last equation vanishes telling us that a constant in this equation is equal to
stress 𝜏w = 𝜇(𝜕U∕𝜕y)w on the surface. On the other hand, from the assuming (ii) it follows
that far from surface the first term in this relation (laminar stress) may be omitted. Taken this
into account and the just gained fact that a constant in the last relation (8.10) is 𝜏w, we get an
equation, which integration leads to logarithmic profile.

𝜌

(
𝜅y
𝜕U
𝜕y

)2

≈ 𝜏w 𝜅y
𝜕U
𝜕y

≈
√
𝜏w

𝜌
= u𝜏 , U =

u𝜏
𝜅

ln y + C, U+ = 2.5 ln y+ + 5

(8.11)
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In the last equation the variables (8.9) y+,U+ are used. According to experimental data, a
log layer is located between y+ = 30 and y = 0.1𝛿, so that the sublayer and defect layer are
disposed from y+ = 0 to y+ = 30 and from y = 0.1𝛿 to y = 𝛿, respectively.

Wilcox showed that the features discussed above of equilibrium flows found on empirical
basis may be obtained theoretically applying the perturbation approach [422].

In what follows, we consider three algebraic models based on modern velocity profiles:
one of the earliest Mellor-Gibson model that the author used in applications (S. 1.7, 2.1.2.3,
2.1.2.4, 2.3) as well as the Cebecy-Smith and Baldwin-Lomax models published about ten
years after the Mellor-Gibson model and taking into account some additional effects on eddy
viscosity.

8.3.3 Mellor-Gibson Model [260, 261]

In this model, the eddy-viscosity function is constructed using: the Laufer [216] measured
data for the inner part, the Clauser law (8.9) for the outer part and the Prandtl mixing-length
relations (8.8) for the log layer. The Laufer data for inner part is presented as dimensionless
total viscosity �̃�Σ = 𝜈Σ∕𝜈 = 1 + 𝜈tb∕𝜈

0 < r < 2, 𝜔 = r2 − r, �̃�Σ (𝜔) = 1

2 < r < 4.5, 𝜔 = 2.75r − 1.5, �̃�Σ(𝜔) =
r2

𝜔

4.5 < r < 11, 𝜔 = 11, �̃�Σ(𝜔) =
r2

11

⎫
⎪
⎬
⎪
⎭

𝜈tb = 0.016 Ue𝛿1, 𝜈tb = 𝜅2y2 ||||
dU
dy

||||

(8.12)
where the function �̃�Σ(𝜔) is composed using two other functions 𝜔 = 𝜅2y+2(dU+∕dy+),
r = 𝜅y+(1 + 𝛽vy+)1∕2, and three pieces for the experimental curve approximation (more
details may be found in [111] or [119]). Parameter 𝛽v in function r is connected with

parameter (1.48)𝛽 as 𝛽v = 𝛽∕Re𝛿1

√
cf∕2. The eddy viscosity in the outer part of boundary

layer and in the log layer is presented by second (Clauser) and third (Prandtl) right-hand
formulae (8.12).

The velocity profiles are obtained by integrating the steady-state boundary layer equation
(8.7) using relations (8.12). For the inner layer this gives: [260]

U+ = u+v + 2
𝜅

[(
1 + 𝛽vy+

)1∕2 − 1
]
+ 1
𝜅

ln

[
4
𝛽v

(
1 + 𝛽vy+

)1∕2 − 1
(
1 + 𝛽vy+

)1∕2 + 1

]

,

u+v = lim
𝜁→0

⎡
⎢
⎢
⎢
⎣

y+

∫
𝜁

𝜎 (r)
𝜅2y+2

dy+ − ln 𝜁
𝜅

⎤
⎥
⎥
⎥
⎦

, 𝜎(r) = 𝜔 − r (8.13)

Far from the wall, at 𝜔 ≥ 11 function 𝜎(r) vanishes, and the first term in equation (8.13)
becomes a constant u+v = D+(𝛽v). Equation (8.13) unlike a common logarithmic profile takes
into account the effect of the pressure gradient through parameter 𝛽v. In the case of zero pres-
sure gradient (𝛽v = 0) close to the surface when y+ << 1∕𝛽v,an equation (8.13) has a limit
taking usual simple form U+ = (1∕𝜅) ln y+ + D+.

Comment 8.4 The notes “far from the wall” in the first sentence after equation (8.13) and
“close to the surface” in the last sentence means in fact the same area of the log layer. Here,
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as well as in the case of analyzing equations (8.10), the log layer overlaps the inner and outer
regions, and words “relatively close” and “relatively far” are omitted.

For positive pressure gradient, especially close to the point of separation, friction coefficient
cf → 0, and both parameters 𝛽 ∼ 𝛽v → ∞, so that relations (8.13) become not applicable. For
this case, Mellor [260] introduced new variables suitable for large values of𝛽 and obtained the
velocity profile for the inner part in the other form

u++ = u++v + 2
𝜅

[(
𝛽
−2∕3
v + y++

)1∕2
− 𝛽−1∕3

v

]
+ 1

𝜅𝛽
−1∕3
v

ln

⎡
⎢
⎢
⎢
⎣

4
𝛽v

(
𝛽
−2∕3
v + y++

)1∕2
− 𝛽−1∕3

v

(
𝛽
−2∕3
v + y++

)1∕2
+ 𝛽−1∕3

v

⎤
⎥
⎥
⎥
⎦

u++v = lim
𝜁→0

⎡
⎢
⎢
⎢
⎣

y++

∫
𝜁

𝜎 (r)
𝜅2y++2

dy++ − 1

𝜅𝛽
1∕3
v

ln
𝜁

𝛽
1∕3
v

⎤
⎥
⎥
⎥
⎦

, r = 𝜅

(
𝛽
−2∕3
v + y++

)1∕2
y++ (8.14)

Here, u++ = u∕up, y++ = upy∕𝜈, up = [(𝜈∕𝜌)(dp∕dx)]1∕3 is the pressure velocity so called
because it determines velocity via pressure similar to u𝜏defined friction velocity through
skin friction. Equation (8.14) as well as (8.13) close to the wall has the limit (2∕𝜅)y++1∕2 +
(1∕𝜅𝛽1∕3

v )[ln(4∕𝛽v) − 2] + D+∕𝛽1∕3
v when 1∕𝛽v → 0, y++ ≫ 1∕𝛽v and 𝜔 ≥ 11. Coefficients

D+ in this and above present limiting formulae as well as pertinent logarithmical formulae
for friction may be found in original papers or in [119].

The outer defect layer profiles are found by integrating boundary layer equations for entire
range −0.5 ≤ 𝛽 ≤ ∞ and Re𝛿1

= U𝛿1∕𝜈 = 103, 105, 109. For the not large values of 𝛽 cor-
responding to inner profiles (8.13), the calculated defect profiles are tabulated in Clauser
variables (8.9) as f ′(𝜂) and independent variable 𝜂

U − u
u𝜏

= f ′(𝜂), 𝜂 =
y

𝛿𝜏
, 𝛿𝜏 =

𝛿1U

u𝜏
,

U − u
up

= F′(𝜉), 𝜉 = 𝜂𝛽1∕2, up = u𝜏𝛽
1∕2

(8.15)
For the large 𝛽 pertaining to inner profile (8.14), the outer defect profiles are tabulated in
different suitable variables F′(𝜉) and 𝜉. The results show that the data in the range 103 <

Re𝛿1
< 109 differ by less than 2% from corresponding data for Re𝛿1

= 105. Due to that, only
the last numerical results are tabulated in [261]. The velocity distribution across the entire
boundary layer is obtained by matching equations (8.13) or (8.14) for inner and tabulated data
from [261] for outer parts. It is shown that inner and outer profiles coincide in overlap area
crating the log layer region.

8.3.4 Cebeci-Smith Model [59]

The eddy viscosity is build as well of the inner 𝜇in and outer 𝜇ou parts

𝜇in = 𝜌l2
[(

𝜕U
𝜕y

)2

+
(
𝜕V
𝜕x

)2
]1∕2

, l = 𝜅y

[
1 − exp

(
−

y+

A+

)]
, 𝜇ou = 0.0168𝜌Ue𝛿1FK

(8.16)
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The first two relations are applicable for y ≤ ym, and the third equation is used for y > ym,
where ym is a coordinate of the matching point. The value of ym may be found from equation
𝜇in = 𝜇ou. Since the matching point lies in log layer, the 𝜇in is found from first equation (8.16).
Neglecting the second term in this equation, one obtains as above a logarithmical formula
(8.11) U = (u𝜏∕𝜅) ln y + C, and after it is differentiated gets a simplified first relation (8.16)
𝜇in = 𝜌𝜅2y2u𝜏∕𝜅y = 𝜌𝜅u𝜏y. Equating this result to the last relation (8.16), defining 𝜇ou (taking
FK = 1) gives y+ ≈ 0.04Re𝛿1

.
The second equation (8.16) is the Van Driest’s formula, which takes into account the damp-

ing effect near the surface. This effect occurs because in vicinity of the wall, the laminar
stress is so weak that the turbulent fluctuations contribution becomes significant. Assuming
that at the surface u′ ∼ y, we obtain from continuity equation that v′ ∼ y2, and hence, near
a surface the turbulent stresses (−u′v′) are proportional to y3. Nevertheless, some authors
think that the term with y3 is small so that actually the turbulence decays as y4 [274]. The
same result follows from formulae (8.16) because according to second relation (8.16) a mix-
ing length is proportional to y2 (the first term of Taylor series of difference in brackets is of
order y). Consequently, 𝜇in is of order y4. The other two functions in relations (8.16) defining
A+ and FK are

A+ = 26

[
1 + y

dp∕dx

𝜌u2
𝜏

]−1∕2

, FK =
[

1 + 5.5
( y

𝛿

)6
]−1

(8.17)

The first function differs from the initial constant A+ = 26, given in [403], by expression in
brackets, which takes into account the effect of pressure gradient. Another function (8.17)
FK accounts for the intermittence influence. It was experimentally observed that the intermit-
tence phenomenon of alternative laminar and turbulent flows well-known in transition regime
in a tube (S. 8.1) takes place also close to the border between boundary layer and external
potential flow, and function FK was introduced in [206] to take into account the eddy viscosity
decreasing in outer boundary layer caused by this effect.

8.3.5 Baldwin-Lomax Model [25]

This model is constructed as well using two layers for defining the eddy viscosity

𝜇in = 𝜌l2|𝜔|, |𝜔| =
||||
𝜕V
𝜕x

− 𝜕U
𝜕y

||||
, 𝜇ou = 0.027FwakeFK(y, ymax∕0.3)

Fwake = min
[
ymaxFmax, ymaxU2

dif ∕Fmax

]
, Fmax = (1∕𝜅)[max(l|𝜔|)] (8.18)

where the mixing length l is defined by Van Driest’s formula (8.16) with A+ = 26, ymax is
the ordinate at which the product (l|𝜔|) achieved the maximum value, |𝜔| is the magnitude
of vorticity (S.7.1.2.3), FK(y, ymax∕0.3) is function (8.17) with ymax∕0.3 replaced for 𝛿 in
Clauser formula (last equation (8.18)), and Udif is the maximum of U. This model was
formulated specially for the cases when the usual boundary layer properties like thicknesses
are difficult to estimate, for example, for separated flows. Because of that 𝛿 in function 𝜇ou
and some quantities in other relations are replaced by unusual characteristics. Nevertheless,
the results obtained for separated flows by this as well as by other algebraic models are
unsuccessful [422].
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8.3.6 Application of the Algebraic Models

8.3.6.1 Flows in Channel and Pipe

In a channel or in a pipe with fully developed flow, the velocity is independent on x, and because
of that from continuity equation one gets 𝜕V∕𝜕y = 0. This gives V = cont. and V = 0 since
the velocity is zero at a surface. In such a case, the inertia terms vanish simplifying boundary
layer equation (8.7) to the form, which integrating leads to solution

dp

dx
= 1

rj

𝜕

𝜕r

[
rj
(
𝜇
𝜕U
𝜕r

+ 𝜏tb

)]
, (𝜇 + 𝜇tb)

𝜕U
𝜕y

= 𝜌u2
𝜏

(
1 −

y

R

)
(8.19)

Here, r (or y) and R are transverse coordinate and half of channel height (for j = 0) or radius of
pipe (for j = 1). The solution (8.19) is obtained as follows: (i) both sides of equation (8.19) are
multiplied by rjand then integrated, knowing that in the fully developed flow dp∕dx = const.;
this yields: r(dp∕dx) = (j + 1)[𝜇(𝜕U∕𝜕r) + 𝜏tb], (ii) for the surface, this relation becomes
dp∕dx = 𝜏w(j + 1)∕R because the expression in brackets is a surface shear stress, and (iii)
substituting the last relation in the previous one, using formula Boussinesq for 𝜏tb, and y
instead of r = R − y lead to solution (8.19).

The numerical results are attained using the Cebeci-Smith and Baldwin-Lomax models for
eddy viscosity estimation. Since Ue and 𝛿1 in the first as well as Udif and ymax in the second
models are unknown in advance, the relaxation iterative method (Com. 4.12) is employed. The
agreement with direct numerical simulation (S. 5.6) and experimental results is gained with
difference (1–8) % for velocity profiles and skin friction (Fig. 3.11 and 3.12 in [422]).

Comment 8.5 This problem in fact is the same as the Hagen-Poiseuille laminar flow in a
tube (S. 7.3.2). Comparison shows how much complicated is the turbulent case even for such
relatively simple problem. Whereas the Hagen-Poiseuille problem has an exact solution, the
analogous turbulent task is solved numerically using at least one empirical constant. Because
of that, along with semi-empirical turbulence models, in practical calculations widely are
employed empirical correlations. For example, the well-known simple relation for velocity
profiles in a tube u∕U = (y∕R)1∕n, where U is the maximum velocity and n is a function
of Re = uD∕𝜈, or formula c−1∕2

f = 4 log(2Re
√

cf ) − 1.6 for friction coefficient. Such corre-
lations for different cases usually are given in engineering fluid flow courses, some examples
with references may be found also in [338].

8.3.6.2 The Boundary Layer Flows

We consider examples of prediction of boundary layer characteristics by Cebeci-Smith and
Baldwin-Lomax models. Comparison of computed and measured results including data from
AFOSR (Com. 8.6) shows that predictions of both models are accurate: (i) satisfactory for
flows with zero and favorable (negative) pressure gradients, (ii) reasonable for flows with mild
adverse (positive) pressure gradients, and (iii) unsatisfactory for flows with strongly adverse
pressure gradients. Whereas the differences from measured data for velocity profiles are small
in the first two cases, these for integral characteristics, such as friction coefficient and shape
factor H = 𝛿2∕𝛿1, are usually of 8-10%. In the third case, the results for cf are significant
higher than the measured data. A special case is the separated flows. Because in this case,
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a bubble forms between the flow and surface, and there is no longer equilibrium, the algebraic
models could not describe properly the flow separation.

Comment 8.6 The AFOSR (Air Force Office of Scientific Research) Conference on Compu-
tational of Turbulent Boundary Layer was held in Stanford University in 1968. There were 75
invited famous scholars, and their presented results became standard examples for checking
the accuracy of turbulent boundary layer researches.

8.3.6.3 Heat Transfer From an Isothermal and Nonisothermal Surface

The investigation of heat transfer in turbulent boundary layer obtained using Mellor-Gibson
model were performed in the 1970s and presented in articles [102, 106], shortly after this
turbulence model was published. We discussed the basic parts of these results for arbitrary
nonisothermal surfaces in the form of universal functions in Chapter 1 and for isothermal
surfaces including comparison with experimental data in Chapter 2. Here, we present some
details that may be useful for interested reader.

The thermal boundary layer equation and boundary conditions for the turbulent flow as well
as for laminar flow are used in Prantl-Mizes-Görtler’s form (7.40)

2Φ 𝜕𝜃

𝜕Φ
− 𝜑 𝜕𝜃

𝜕𝜑
− 1

Pr
𝜕

𝜕𝜑

(
u
U
𝜀a
𝜕𝜃

𝜕𝜑

)
= 0, 𝜀a =

𝛼e

𝜈Φ
= 1

Φ

(
1
Pr

+ 𝜀 − 1
Prtb

)
(8.20)

where 𝜑 = 𝜓∕𝜈Φ slightly differs from similar variable (7.38) for the case of laminar bound-
ary laer, 𝜀 = 𝜈tb∕𝜈 (S. 8.3.3) and 𝛼e = 𝛼 + 𝛼tb (S. 1.7 ). Solution of this equation in the form
of universal function (1.39) after substitution into equation (8.20) yields ordinary differen-
tial equations, which were solved numerically defining coefficients gk as well as for laminar
and other universal functions considered in Chapter 1. Then, the exponents C for the inte-
gral form of universal function (1.40) are calculated using known coefficients gkas explained
in Section 1.6. More detailed description of this procedure may be found in original papers
or in [119].

8.3.7 The 1/2 Equation Model

This model proposed by Johonson and King [185] takes an intermediate position between the
algebraic and energy equations models. In fact, it is an algebraic model, like the Cebeci-Smith
or the Baldwin-Lomax model, which applies in addition one ordinary differential equation.
That is maybe the reason way this model is called “1/2 equation” in contrast to one- or
two-equations models based on the partial differential equations. The eddy viscosity is
defined similar to other models using the inner and outer layers

𝜇in = 𝜌

[
1 − exp

(
−

uDy

𝜈A+

)]2
𝜅usy, 𝜇ou = 0.0168𝜌Ue𝛿1FK(y, 𝛿)𝜎(x) (8.21)

but the relation for eddy viscosity contains both components𝜇tb = 𝜇ou tanh(𝜇in∕𝜇ou). Here,
uD = max(um, u𝜏 ) and um =

√
𝜏m∕𝜌m are velocity scales, index m denotes the coordinate ym

at which the Reynolds stress achieves the maximum value 𝜏m, the scale us is given through
several quantities: u𝜏 , um, ym∕𝛿, 𝜌w, 𝜌m,Lm, where 𝜌w is a density on the surface,
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Lm = 𝜅ym if ym∕𝛿 ≤ 0.09∕𝜅, and Lm = 0.09𝛿 if ym∕𝛿 > 0.09∕𝜅. The additional scales
are also employed to improve the prediction of separated flows.

The last relation (8.21) is the equation (8.16) from the Cebeci-Smith model with an addi-
tional function 𝜎(x) that provides departure from equilibrium, which corresponds to 𝜎(x) = 1.
The maximum Reynolds stress is defined by ordinary differential equation

Um
d
dx

(
𝜏m

𝜌m

)
= 0.25

(um)eq − um

Lm

(
𝜏m

𝜌m

)
− c

(𝜏m∕𝜌m)
0.7𝛿 − ym

3∕2 [
1 −

√
𝜎 (x)

]
(8.22)

where 𝜏m = (𝜇tb)m(𝜕U∕𝜕y + 𝜕V∕𝜕x)m, c = 0.5 if 𝜎(x) ≥ 1, otherwise c = 0, and (um)eq corre-
sponds to the equilibrium case with 𝜎(x) = 1. The function 𝜎(x) is found iteratively so that a
maximum Reynolds stress 𝜏m obtained from equation (8.22) will be finally equal to the max-
imum stress defined by relation given just after equation (8.22). Satisfying of this equality
ensures that eddy viscosity 𝜇tb and the maximum Reynolds stress 𝜏m gained separately are
adjusted to each other. Examples show that this more complicated model predicts better the
attached and separated flows than simple algebraic models.

8.3.8 Applicability of the Algebraic Models

The algebraic models are the simples and easies in performance among turbulence models.
Therefore, it is reasonable to start with such relatively simple approach and then use more com-
plicated models if alternatives are significantly better in accuracy or in some specific features.
For the flows with zero, favorable, and not very strong adverse pressure gradients, algebraic
modal predictions are usually satisfactory. At the same time, the algebraic models are incom-
plete, since the mixing length in those models is not specified. Because of that, the algebraic
models consist of free constants, which are defined by meeting experimental data leading to
significantly restricted range of models applicability. Nevertheless, algebraic models are used
in solving turbulence problems including complex flows without separation. For example,
the results for isothermal (S. 2.1.2.3) and nonisothermal (S. 1.7) heat transfer characteristics
obtained using Mellor-Gibson model well fit the experimental correlation for different veloc-
ity and temperature distribution for wide range of Prandtl and Reynolds numbers (S. 2.1.2.2).
Other satisfactory applications of algebraic models may be seen, for example, in [422]. At the
same time, the results providing by the 1/2 equation model better correlate with measured data
of separation flows than algebraic models predictions.

8.4 One-Equation and Two-Equations Models

Since the 1960s, after the advent of computers, the one- and two-equations models become
a basic powerful tool of turbulence flows investigation. These types of models, which are
grounded on kinetic energy equation and other differential equations, simulate the actual phys-
ical patterns of turbulence much closer than the algebraic models. Whereas the one-equation
models are still incomplete because they adapt the length scale from some typical flows, the
two-equations models are complete, determining the turbulence length scale or some equiv-
alent parameter by special differential equation. The improved turbulence models are more
complicated and required additional closure coefficients. However, using such models is worth
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because modern models enhance the computation results and take into account nonlocal and
flow history effects that help to develop our insight into turbulence nature.

8.4.1 Turbulence Kinetic Energy Equation

Prandtl defined the kinetic energy per unit mass as a sum of square of fluctuation velocity
components. Then, using the dimensional analysis of units, he defined eddy viscosity and
Reynolds stress and in terms of turbulence energy and density as

k = (1∕2)
(

u′2 + v′2 + w2
)
, 𝜇tb = const.𝜌k1∕2l, 𝜏ii = −𝜌u′iu

′
i = −2𝜌k (8.23)

The differential equation determining the turbulence energy, which is called the transport
equation, is similar to average Reynolds equation (8.7) but consist of second and third specific
terms in the right-hand side instead of pressure gradient

𝜌
𝜕k
𝜕t

+ 𝜌Uj
𝜕k
𝜕xj

= 𝜏ij
𝜕Ui

𝜕xj
− 𝜌𝜀 + 𝜕

𝜕xj

[(
𝜇 + 𝜎k𝜇tb

) 𝜕k
𝜕xj

]
, 𝜀 = CD

k3∕2

l
(8.24)

Here, 𝜎k and CD are closure coefficients. The terms in equation (8.24) physically signify the
following. The two terms at the left-hand side define the substantial derivative (Exam. 7.2) of
the turbulence energy. The first and the second terms at the right-hand side called production
and dissipation give the rate of energy that turbulence takes from mean flow and the rate of the
loss of turbulence energy transforming into thermal energy. The last term in equation (8.24)
consists of two parts. The first one, which is similar to terms in other analogous equations, takes
into account the molecular diffusion, whereas the second part of this term, also looking similar
to analogous terms, here represents two complex processes. The turbulent transport provided
by turbulent fluctuations, and the pressure diffusion occurring due to correlation of the pressure
and velocity fluctuations. The two terms on the left-hand side and the molecular diffusion term
are exact items, whereas the others in equation (8.24) are approximated via turbulence energy
k using postulated by Prandtl relations: for the Reynolds stress 𝜏ij = −(2∕3)𝜌k𝛿ij and the last
equation (8.24) for the dissipation term 𝜀, respectively. The second part of the last term of
equation (8.24), which represents the turbulent transport and the pressure diffusion is defined
though Boussinesq approximation as a product of eddy viscosity 𝜇tb and gradient of turbulent
energy k. Thus, three approximate relations and two closure coefficients 𝜎k and CD are needed
to close the equation for turbulence energy.

8.4.2 One-Equation Models

Two equations (8.24) for turbulence kinetic energy and for dissipation with equation (8.23)
for Reynolds stresses in addition form the basic set of equations for one-equation model.
To complete the model, the length scale should be specified. Prandtl used in his model the
mixing length for this purpose. It can be seen applying equations (8.23) and (8.24) together
with two last relations (8.8) that this assumption leads to proportionality between production
𝜏(𝜕U∕𝜕y) = 𝜇tb(𝜕U∕𝜕y)2 and dissipation 𝜌𝜀 given through relation (8.24). To see this note
that according to (8.8) and (8.23) we have 𝜏 = 𝜌l2(𝜕U∕𝜕y)2=2𝜌k, and hence, (𝜕U∕𝜕y)2 =
2k∕l2 giving for production 𝜏(𝜕U∕𝜕y) = 𝜇tb(𝜕U∕𝜕y)2 = const.𝜌k1∕2l ⋅ 2k∕l2 ∼ 𝜌k3∕2∕l an
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expression proportional to dissipation defined by (8.24). Due to that in this case, the constant
in formula (8.23) for eddy viscosity may be taken unity leading to formula 𝜇tb = 𝜌k1∕2l, and
both mixing lengths in obtained independently equations (8.8) and (8.24) are proportional.
The other one-equation models using Prandtl’s turbulence energy equation (8.24) differ from
initial Prandtl model basically by closure coefficients and length scale functions [422].

A different type of one-equation model was introduced by Bradshaw, Ferriss, and Atwell
[48]. They employed the same equation (8.24), but instead of using the Boussinesq approx-
imation in the last term, they used an experimental result, which according to the Reynolds
stress in the boundary layer is approximately proportional to turbulence kinetic energy with
constant factor resulting in 𝜏tb ≈ 0.3k. This modification changes the type of partial differen-
tial equation (8.24) from parabolic to hyperbolic type (S. 1.1 and Com. 8.7) and is remarkable
at simplifying the solution of this equation. This model shows well predictions, in particular,
for the adverse pressure gradients and provides the best results among others models tested at
AFOSR 1968 (Com. 8.6).

Comment 8.7 Hyperbolic equation has real characteristics: two lines crossing at each point
of solution domain, which are used to build a method of solution. See also Com. 6.1.

There are also one-equation models based on equations other than turbulence energy
equation (8.24). Several models used equations similar to (8.24) but are written for kinematics
eddy viscosity 𝜈tb = 𝜇tb∕𝜌. Models using other than (8.24) energy equations contain more
closure coefficients (up to eight) and additional empirical function including definition for
the length scale. Two models of this type, Baldwin-Barth and Spalart-Allmaras are analyzed
in [422]. Comparing obtained computational results with measurements shows that the
predictions of the Spalart-Allmaras model are satisfactory for special problems, such as
airfoil and wings, for which this model was calibrated. The results obtained by Baldwin-Barth
model differ more from the measured data even than simpler algebraic models predictions.
In general, the one-equation models predictions are close to those of the algebraic models. If
one-equation model is specified giving satisfactory results for some separated flows than it
could not predict the other flows, like wake or mixing layers, even with accuracy of algebraic
models.

8.4.3 Two-Equation Models

The modern two-equation models are currently the basic tools for solving complex engineering
and scientific problems. The popularity of these models came due to the fact that two-equation
models are the simplest complete models. This means that problem solution is found by the
model without using the experimental data. Because of importance of the two-equation mod-
els, at the Conference of AFOSR 1980-81 basically these models are tested. Considering the
one-equation models, we have seen the difficulties associated with length scale definition. In
contrast to that, the two-equation models provide along with turbulence energy equation the
analogous equation for length scale or for some equivalent parameter.

Whereas any model consists of the turbulence energy equation, there is no universal param-
eter for second equation. Kolmogorov first used for the turbulence model a second partial
differential equation and formulated it for specific dissipation energy rate per unit volume and
time 𝜔. Since this quantity has the dimension (1/s), it follows from dimensional analysis that
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the eddy viscosity, length scale, and the dissipation are defined as 𝜇tb ∼ 𝜌k∕𝜔, l ∼ k1∕2∕𝜔,
𝜀 ∼ k𝜔. Some other developers suggested the second equation for time t ∼ 1∕𝜔, length scale,
dissipation 𝜀, or product kl. As was pointed at the Conference of AFOSR 1980-81, the uncer-
tainty about the two-equation models is the vague choice of variable for second equation.
Whereas during the last time some clearness was gained, there still is no full answer what
variable is most suitable [422].

8.4.3.1 The k−𝝎 Model

The first two-equation model was suggested in 1942 by Kolmogorov. His second equation in
terms of dissipation per unit volume and time 𝜔 was formulated in the form similar to the
equation for turbulence kinetic energy (8.24)

𝜌
𝜕𝜔

𝜕t
+ 𝜌Uj

𝜕𝜔

𝜕xj
= −𝛽𝜔𝜌𝜔2 + 𝜕

𝜕xj

(
𝜎𝜇tb

𝜕𝜔

𝜕xj

)
, 𝜔 = C

k1∕2

l
(8.25)

This equation as compared to equation (8.24) for k has no production and molecular diffusion
terms. In the early days when it was difficult to use complex turbulent models, Kolmogorov
did not develop the model complete, rather he published an idea including in the equation
for specific dissipation 𝜔 only the most important terms. The production term was not taken
into account because the smallest eddies are responsible for dissipation for which production
is not as important. Under the same reason, the molecular diffusion term was omitted, which is
not very important for the case of high Reynolds numbers considered by Kolmogorov.

In the 1960s when the interest in turbulence models was rising, the followers added to Kol-
mogorov’s model missing terms and improved it. Further improvements were achieved by
testing models comparing the computed and measured results for estimating the closure coef-
ficients. Currently, the several versions of k − 𝜔 models exist, in particular, based on different
variables for 𝜔−equation mentioned above. Here we present the model developed by Wilcox
as it is given in his first edition (1994) book [422]

𝜌
𝜕k
𝜕t

+ 𝜌Uj
𝜕k
𝜕xj

= 𝜏ij
𝜕Ui

𝜕xj
− 𝛽k𝜌k𝜔 + 𝜕

𝜕xj

[(
𝜇 + 𝜎k𝜇tb

) 𝜕k
𝜕xj

]
, l = k1∕2

𝜔
(8.26)

𝜌
𝜕𝜔

𝜕t
+ 𝜌Uj

𝜕𝜔

𝜕xj
= 𝛼𝜔

𝜔

k
𝜏ij
𝜕Ui

𝜕xj
− 𝛽𝜔𝜌𝜔2 + 𝜕

𝜕xj

[(
𝜇 + 𝜎𝜔𝜇tb

) 𝜕𝜔
𝜕xj

]
, 𝜀 = 𝛽k𝜔k, (8.27)

where 𝜇tb = 𝜌k∕𝜔. Closure coefficients are: 𝛼𝜔 = 5∕9, 𝛽k = 0.09, 𝛽𝜔 = 3∕40, 𝜎 = 1∕2.

Comment 8.8 A more complicated system of equations determines the k − 𝜔 model in the
third edition (2006) of this book, which in addition consists of three closure coefficients: two
tensors and equation for dissipation with one term more.

8.4.3.2 The k− 𝜺 Model

The first version of this model was suggested in 1945 by Chou. The improved version, which is
known in the turbulence modeling as a standard k − 𝜀 model was developed in several papers
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published in the middle of 1970s by Launder with co-authors. The model is as follows:

𝜌
𝜕k
𝜕t

+ 𝜌Uj
𝜕k
𝜕xj

= 𝜏ij
𝜕Ui

𝜕xj
− 𝜌𝜀 + 𝜕

𝜕xj

[(
𝜇 +

𝜇tb

𝜎k

)
𝜕k
𝜕xj

]
, l = C𝜇

k3∕2

𝜀
(8.28)

𝜌
𝜕𝜀

𝜕t
+ 𝜌Uj

𝜕𝜀

𝜕xj
= C𝜀1

𝜀

k
𝜏ij
𝜕Ui

𝜕xj
− C𝜀2𝜌

𝜀2

k
+ 𝜕

𝜕xj

[(
𝜇 +

𝜇tb

𝜎𝜀

)
𝜕𝜀

𝜕xj

]
, 𝜔 = 𝜀∕C𝜇k, (8.29)

with 𝜇tb = C𝜇𝜌k2∕𝜀, closure coefficients C𝜀1 = 1.44, C𝜀2 = 1.92, C𝜇 = 0.09, 𝜎k = 1, 𝜎𝜀 =
1.3, and additional correction function for low Reynolds numbers. Later a more complicated
version was published [422, 2006] for the k − 𝜔 model.

Comment 8.9 The other two-equation models applying different second differential
equations,for example, k − 𝜏 or k − kl (with the second equation for time 𝜏 or for product kl)
are used and tested much less than k − 𝜀 and k − 𝜔 models.

8.4.4 Applicability of the One-Equation and Two-Equation Models

The one-equation models as well as algebraic models are uncompleted, and due to that, the
accuracy of those methods often are comparable with the algebraic models predictions. In
contrast, the completed two-equation models are superior to both one-equation and algebraic
models because those consist of the whole required for solution information inside the model.
The turbulent flows with strong adverse pressure gradients, separated or/and reattachment
flows, compressible flows with high Mach numbers, and other complications may be studied
with reasonable accuracy only by two-equation models, since applications of more accurate
and reliable new methods of direct numerical simulation at present are relatively restricted
(Chaps. 5 and 6). At the same time, the algebraic models are preferable for solution of prob-
lems at zero and favorable pressure gradients, especially when a close analytic solution may
be obtained to get insight into physics.

Comment 8.10 The Karman-Pohlhausen integral methods described in Section 7.6 for lami-
nar boundary layer are applicable to turbulent flows as well. Those methods were developed
and also widely used before computer era. Because the polynomial velocity profiles usually
applied for laminar boundary layer problems are not proper for turbulent flows, in this case for
velocity distribution instead of polynomial profiles are used other simple functions reviewed,
for example, in [113], [202], and [304].

Even now, there are some problems for which the solution of a plain integral method is
reasonable to use, in particular, when simple analytical formula is required. We encountered
such cases, considering different relations for influence functions (S. 1.3.2, Exam. 7.13).
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Analytical and Numerical Methods
in Fluid Flow and Heat Transfer

This chapter presents the mathematical methods frequently applied in applications. Although
the reviewed methods are general, the following examples are mainly the problems of heat
transfer in solids. That is because the other two topics laminar and turbulent fluid flow and
heat transfer important for studying the basic text are considered with examples in previous
chapters of this part of the book. As well as in previous chapters, here, the information from
basic text is not repeated, rather at advising the additional explanations a reader is referred to
the relevant basic text sections.

Analytical Methods

9.1 Solutions Using Error Functions

Error integral is usually used in two tabulated functions erf (z) and erfc(z)

erf (z) = 2
√
𝜋

z

∫
0

exp(−𝜉2)d𝜉, erf (−z) = −erf (z), erfc(z) = 1 − erf (z) (9.1)

with different limiting properties erf (0) = 0, erf (∞) = 1 and erfc(0) = 1, erfc(∞) = 0.
It can be shown that functions (9.1) satisfied the unsteady one-dimensional (without source)

conduction equation (1.1) and boundary conditions of two types of one-dimensional problems:
(i) two-dimensional solid with infinite transverse size and infinite or semi-infinite length in
longitudinal direction and (ii) thin rod with insulated literal surface. To see that these problems
are inherent one-dimensional, note that in both cases, the transverse resistance is infinite, and
due to that heat flows only in the longitudinaldirection. Therefore, in such a problem, similarity
variable should be exists since in this case with l → ∞, the usual dimensionless variable x∕l
could not be used. Knowing that one-dimensional equation (1.1) contains three variables: 𝛼, x
and t with units m2/s, m, and s, one finds a combination x∕

√
𝛼t giving a desired dimensionless

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine,
First Edition. Abram S. Dorfman.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.



�

� �

�

Analytical and Numerical Methods in Fluid Flow and Heat Transfer 345

variable. Then, the equation (1.1) and its solution become

z
d𝜃
dz

+ c2 d2𝜃

dz2
= 0, 𝜃 = c1

z

∫
0

exp(−𝜉2)d𝜉 + c2 = c1erf (z) + c2, z = x

2
√
𝛼t

(9.2)

where 𝜃 = (T − Ti)∕(Tw − Ti), Ti and Tw are initial and surface temperatures. To adjust the
solution to function (9.1) erf (z), the constant in differential equation (9.2) is taken as c =

√
2,

which yields the variable z = x∕2
√
𝛼t instead of initial x∕

√
𝛼t. The constants c1 and c2 in

solution (9.2) are found from boundary conditions.

◾Example 9.1: A solid or thin rod with constant initial Ti and surface Tw temperatures

From boundary conditions we have: t = 0, z → ∞, T = Ti, 𝜃 = 0 and x = 0, z = 0, T = Tw,
𝜃 = 1. Then, according to (9.1) and (9.2) the constants are: z = 0, erf (z) = 0, c2 = 1 and z →
∞, erf (z) = 1, c1 = −1 resulting in solution (9.2)

T(x, t) − Ti

Tw − Ti
= 1 − erf

(
x

2
√
𝛼t

)

= ertc

(
x

2
√
𝛼t

)

= 2
√
𝜋

∞

∫
x∕2
√
𝛼t

exp(−𝜉2)d𝜉 (9.3)

Other examples of solutions in terms of error functions may be found in [58].

◾Example 9.2: A solid or thin rod with zero initial and function 𝝓(t) surface
temperatures

Solution of this problem for dependent of time temperature𝜙(t)may be found by Duhamel’s
integral (1.21) employing (9.3) as a simple solution f (x, t) and function 𝜙(t) as F(t) (S. 1.3.1).
In this case, another form of Duhamel integral that is obtained after integrating (1.21) by parts
is convenient to use. Putting u = f (x, t − 𝜏), dv = F′(𝜏)d𝜏, one transforms (1.21) by parts, gets
the other form of Duhamel integral, and then find solution of considering problem with initial
temperature Ti = 0

T(x, t) = f (x, 0)F(t) +

t

∫
0

f ′(x, t − 𝜏)F(𝜏)d𝜏 (9.4)

T(x, t) =

t

∫
0

𝜙(𝜏) d
dt

f (x, t − 𝜏)d𝜏 = x

2
√
𝜋𝛼

t

∫
0

𝜙(𝜏)
(t − 𝜏)3∕2

exp

[
− x2

4𝛼 (t − 𝜏)

]
d𝜏 (9.5)

Comment 9.1 A solution of this problem for the case of spatial variable Ti(x) initial tempera-
ture and time variable 𝜙(t) surface temperature may be gained using principle of superposition
as a sum of solutions (9.3) and (9.5) for body at temperatures Ti(x) and at 𝜙(t), respectively.

9.2 Method of Separation Variables

The idea of separation variable is to present a solution of a partial differential equation as
a product of several parts in which each part depends only on one variable. Such procedure
reduces partial differential equation to a set of ordinary equations.
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9.2.1 General Approach, Homogeneous, and Inhomogeneous Problems

The problem is homogeneous if the right-hand sides of equation and boundary conditions
are zero; otherwise, the equation or boundary condition is inhomogeneous. For example, both
equations (1.1) having sources in the right hand sides are inhomogeneous. Consider three cases
when separation of variable is possible for conduction equation:

(i) Homogeneous equations (1.1) and boundary conditions when substitution of a product
of two functions T = f1(t)f2(xi), one depending on time f1(t) and another on coordinates
f2(xi), reduces the problem to following system

𝜕f1(t)
𝜕t

f2(xi) = 𝛼f1(t)∇2f2(xi), T(xi, 0) = F(t) 𝜆wi
𝜕f1(xi)
𝜕ni

+ hi f1(xi) = 0 (9.6)

Here, T is temperature excess beyond surrounding, the function F(t) specifies initial con-
ditions at t = 0,n is the outward normal, and the homogeneous general form of boundary
condition of the third kind becomes boundary condition of the first kind at 𝜆wi = 0 and
of the second kind at hi = 0. Separation of variables in first equation (9.6) transforms the
solution of partial differential equations (1.1) to the simplified equations for the three- (or
two-) and one-dimensional conduction problems, respectively, as

1
𝛼f1(t)

df1(t)
dt

= 1
f2(xi)

∇2f2(xi) = −𝜇2 1
𝛼f1(t)

df1(t)
dt

= 1
f2(x)

d2f2(x)
dx2

= −𝜇2 (9.7)

These equations are in separated form because the left hand side of each relation depends
only on time, whereas expressions of the right hand side of both equations (9.7) depend
only on coordinates. Because of that, two parts of each equation (9.7) may be equal to
each other only if each of these parts is constant and are equal to some negative value
(−𝜇2). Integrating the left-hand side of equations (9.7) gives f1(t) = C exp(−𝜇2t). This
result tells us that 𝜇2 should be negative: otherwise, the solution will be infinite at t → ∞,
which contradicts the physics. The right-hand part of each equation (9.7) constitutes the
second separated equation—an ordinary or a partial differential equation in the cases of
one-dimensional and of two- or three-dimensional conduction problems, respectively

d2f2(x)
dx2

+ 𝜇2f2(x) = 0 ∇2f2(xi) + 𝜇2f2(xi) = 0 (9.8)

The partial differential equation (9.8) known as Helmholtz equation may be separated
further to ordinary differential equations, if the solution of this equation may be presented
as a product of two or three functions each depending only on one of coordinates.

(ii) Problems with time-independent inhomogeneous boundary conditions may be reduced to
homogeneous problems of type considered in (i), if suitable for separation new variables
are possible.

(iii) Solution of an unsteady inhomogeneous problem with time-dependent sources or/and
boundary conditions may be reduced by Duhamel’s integral to a simpler problem
with independent of time sources and boundary conditions [295]. Examples are
considered next.
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9.2.2 One-Dimensional Unsteady Problems

◾Example 9.3: Thin laterally insulated rod of length L initially at the temperature Ti(x)
and constant ends temperatures T0 at x= 0 and TL at x=L

Because both boundary conditions are inhomogeneous (not zero), a new variables x and 𝜗
are used, transforming boundary conditions in homogeneous form

x = x∕L, 𝜗 = T − T0 − (TL − T0)x, 𝜗 = 0 at x = 0, 𝜗 = 0 at x = 1 (9.9)

Because the conduction equation in these variables is also homogeneous, the separation vari-
able approach is possible resulting in two ordinary differential equations

𝜕𝜗

𝜕Fo
− 𝜕2𝜗

𝜕x2
= 0, 𝜗 = f1(Fo)f2(x),

df1
dFo

+ 𝜇2 = 0,
d2f2
dx⃗2

+ 𝜇2f2 = 0 (9.10)

where the Fourier number Fo = 𝛼t∕L2 is used instead of time. As we know, integrating the
first equation gives f1(Fo) = C exp(−𝜇2Fo) (see (9.7)). Integrating a second equation is also a
simple task leading to f2(x) = C1 sin𝜇x + C2 cos𝜇x. Thus, the solution in the form of product
(9.10) should satisfy two boundary conditions (9.9)

𝜗 = (C1 sin𝜇x + C2 cos𝜇x) exp(−𝜇2Fo), 𝜗(0,Fo) = 𝜗(1,Fo) = 0 (9.11)

To satisfy the first condition at x = 0, it is necessary to take C2 = 0. Then, the second con-
dition at x = 1 can be satisfied only by putting 𝜇 = n𝜋 as the angle of a sine, which gives
𝜗 = C1 exp(−n2𝜋2Fo) sin 𝜋nx. Since here, constant C1 remains free, it is replaced by Cn form-
ing a family of partial solutions of conduction differential equation (9.10)

𝜗 =
∞∑

n=1

Cn sin(n𝜋x) exp(−n2𝜋2Fo) 𝜗i(x, 0) =
∞∑

n=1

Cn sin(n𝜋x) (9.12)

This solution satisfies all assigned conditions, except the initial temperature Ti(x) at Fo = 0.
Setting in this equation Fo = 0, we find that initial condition is presented by the Fourier series
(S. 9.3.1) given by the second expression (9.12).

The coefficients Cn of Fourier series are defined by the Euler formula (S. 9.2.3)

Cn = 2

1

∫
0

𝜗i(x) sin(n𝜋x)dx, Cn = 2

1

∫
0

Ti(x) sin(n𝜋x)dx − 2
n𝜋

T0 (9.13)

which for initial temperature (9.9) 𝜗i(x) = Ti(x) − T0 − (TL − T0)x 𝜗i leads to the second rela-
tion (9.13). Substituting this result into first relation (9.12) gives the problem solution

T(x,Fo) = T0 + (TL − T0)x + 2
∞∑

n=1

⎡
⎢
⎢
⎣

1

∫
0

Ti

(
x
)

sin(n𝜋x)dx −
T0

n𝜋

⎤
⎥
⎥
⎦

sin(n𝜋x) exp(−n2𝜋2Fo)

(9.14)
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In the case of constant initial temperature, solution (9.14) simplifies to

T(x,Fo) − T0

TL − T0
= x +

Ti − T0

TL − T0

2
𝜋

∞∑

n=1

sin(n𝜋x)
n

exp(−n2𝜋2Fo) (9.15)

◾Example 9.4: Thin rod laterally insulated of length L initially at temperature Ti(x), at
temperatures T0 at the end x= 0 and at insulated (𝝏T/𝝏x= 0) end x=L

Variables similar to (9.9) transform the boundary condition to homogeneous form

𝜗(x⃗,Fo) = T(x⃗,Fo) − T0 𝜗 = 0 at x = 0 𝜕𝜗∕𝜕x = 0 at x = 1 (9.16)

Similarly, solution (9.11) subjected to the second and then to the first conditions yields

𝜗 =
∞∑

n=0

Cn cos
[(

n + 1
2

)
𝜋x
]

exp

[
−
(

n + 1
2

)2
𝜋2Fo

]
𝜗i =

∞∑

n=1

Cn cos
[(

n + 1
2

)
𝜋x
]

(9.17)
Determining coefficients Cn as in previous example, one obtains the problem solution

Cn = 2

1

∫
0

Ti(x) cos
[(

n + 1
2

)
𝜋x
]

dx − 2(−1)n

(n + 1∕2)𝜋
T0 (9.18)

T(x,Fo) = T0 + 2
∞∑

n=0

⎧
⎪
⎨
⎪
⎩

1

∫
0

Ti

(
x
)

cos
[(

n + 1
2

)
𝜋x
]

dx −
2(−1)nT0

(n + 1∕2)𝜋

⎫
⎪
⎬
⎪
⎭

× cos
[(

n + 1
2

)
𝜋x
]

exp

[
−
(

n + 1
2

)2
𝜋2Fo

]
(9.19)

In the case of constant initial temperature, solution (9.19) becomes

T(x,Fo) − T0

Ti − T0
= 2
𝜋

∞∑

n=0

(−1)n

(n + 1∕2)
cos
[(

n + 1
2

)
𝜋x
]

exp

[
−
(

n + 1
2

)2
𝜋2Fo

]
(9.20)

9.2.3 Orthogonal Eigenfunctions

In solutions just considered, the coefficients Cn were determined using Fourier’s trigonometric
series. However, there are problems that require for such procedure other types of series. The
required properties of such a set of functions gives a solution of the Sturm-Liouville problem
named after pioneers first studied this subject.

Consider the Sturm-Liouville problem in interval a < x < b with boundary conditions at
x = a and x = b, respectively

d
dx

[
p (x)

dy(x, 𝜇)
dx

]
+ q(x)y − 𝜇w(x)y = 0, C1

dy

dx
+ C2y = 0, C3

dy

dx
+ C4y = 0 (9.21)

This homogeneous problem has solution only for a set of values 𝜇1 < 𝜇2 < 𝜇3 … which are
called eigenvalues of problem (9.21). The corresponding solutions yn(x) of equation (9.21)
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form a set of functions that are called orthogonal eigenfunction with respect to weighting
function w(x) if they satisfy the following integral conditions

I =

b

∫
a

yn(x)ym(x)w(x)dx = 0 for any 𝜇n ≠ 𝜇m, I ≠ 0 for 𝜇n = 𝜇m (9.22)

Or in other words: a set of functions is orthogonal if the integral (9.22) equals zero for each
pair of eigenfunctions yn(x) and ym(x) corresponding to eigenvalues 𝜇n and 𝜇m except the case
of their equalities when 𝜇n = 𝜇m and yn(x) = ym(x).

The orthogonal property ensures that a given set of functions is presentable as a series of
eigenfunctions similar to Fourier’s expansion. To see that this is true, multiply both sides of

series f (x) =
∞∑

n=0
Cnyn by eigen yn(x) and weighting w(x) functions to get

b

∫
a

f (x)yn(x)w(x)dx = C1

b

∫
a

y1(x)yn(x)w(x)dx + C2

b

∫
a

y2(x)yn(x)w(x)dx + … +

Cn

b

∫
a

yn(x)yn(x)w(x)dx (9.23)

Due to orthogonal conditions (9.22), all integrals except the last one containing y2
n(x) become

zero, and then, formula-defining coefficients Cn follows from expression (9.23)

Cn =

b∫
a

f (x)yn(x)w(x)dx

b∫
a

y2
n(x)w(x)dx

f (x) =
∞∑

n=1

Cnyn(x) (9.24)

It is easy to check that Fourier series are orthogonal, and that the Euler formula (9.13) is a
particular case of this equation at a = 0, b = 1, f (x) = 𝜗i(x), yn(x) = sin n𝜋x and w(x) = 1.

◾Example 9.5: Thin laterally insulated rod of length L initially at Ti(x), with T0 at x= 0
and heat transfer into surrounding at x=L according to boundary condition of the third
kind 𝝀w(𝝏T/𝝏x)= h(T−T∞)

Both given boundary condition are inhomogeneous since these contain specific values of
temperatures. However, in this case, it is not as easy as before to modify given conditions
to the homogeneous forms. We will show one possible way to solve this problem and to
find a proper variable. Consider an expression relating the prescribed temperatures T0 and
T∞ to a new variable 𝜗 through two linear functions with undetermined coefficients T =
𝜗 + (a1 + b1x)T0 + (a2 + b2x)T∞, where x = x∕L. It is easy to understand that to modify the
given conditions at x = 0 to homogeneous form we should take a1 = 1 and a2 = 0. Then, sub-
stituting the reduced relation in the second prescribed boundary condition at x = 1 leads to
following expression

𝜕𝜗

𝜕x
+ b1T0 + b2T∞ = Bi[𝜗 + (1 + b1)T0 + (b2 − 1)T∞, Bi = hL

𝜆w
(9.25)
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It is seen that to have homogeneous boundary condition 𝜕𝜗∕𝜕x − Bi𝜗 = 0, it is necessary to sat-
isfy two conditions [b1 − Bi(1 + b1)]T0 = 0 and [b2 − Bi(b2 − 1)]T∞ = 0 which after solution
for coefficients give b1 = −b2 = Bi∕(1 − Bi) resulting in proper new variable and homoge-
neous form of both prescribed boundary conditions

𝜗 = T − T0 −
Bi

1 − Bi
x(T0 − T∞), 𝜗 = 0 at x = 0,

𝜕𝜗

𝜕x
− Bi𝜗 = 0 at x = 1 (9.26)

The conduction equation in a new variable 𝜗 remains homogeneous because the second deriva-
tive of additional term, appearing in transformed equation due to the new variable, which is
proportional to x, is zero. The solution of transformed equation is the same relation (9.11).
Satisfying the first condition (9.26) at x = 0 requires to take C2 = 0. Then, we get as before
𝜗 = C1 sin𝜇x exp(−𝜇2Fo). Substituting this result in another condition (9.26) at x = 1 gives
the second expression, which should be satisfied

𝜇 cos𝜇 = Bi sin𝜇 at x = 1 or tan𝜇 = 𝜇∕Bi (9.27)

Numerical solution shows that this equation has infinite number of roots 𝜇1, 𝜇2, 𝜇3, … , and
hence, the problem solution may be presented by series similar to (9.12)

𝜗 =
∞∑

n=1

Cn sin(𝜇nx) exp(−𝜇2
nFo) 𝜗i =

∞∑

n=1

Cn sin(𝜇nx) (9.28)

Although both series are looking identical, they differ in essence. Comparison indicates that a
set of roots of equation (9.27), in contrast to usual evenly spaced roots defined by trigonomet-
ric function in series (9.12), are spaced not evenly so that the interval between roots grows
with n increasing and reaches 𝜋 as n → ∞. Therefore, the series (9.28) with roots 𝜇n of
equation (9.27) are not usual Fourier series. In such a case, coefficients Cn of series (9.28) can
be determined applying formula (9.24) only if the roots 𝜇n are eigenvalues of Sturm-Liouville
problem.

To check if in some particular case roots 𝜇n are eigenvalues and formula (9.24) is applica-
ble, one should compare the problem in question with Sturm-Liouville standard model (9.21).
In this case, relation (9.27) is a solution of ordinary differential equation (9.10) f ′′ + 𝜇2f = 0
obtained for function f2 after separation of variables. For the problem in question, this differ-
ential equation was solved under two boundary conditions (9.26), which in terms of function
f are: f (0) = 0, f ′(1) + Bif (1) = 0. Comparing this system of equation and boundary condi-
tion with Sturm-Liouville mathematical model (9.21) shows that the problem in question is a
particular case of standard model (9.21) for interval 0 < x < 1 with p(x) = w(x) = 1, q(x) = 0,
C1 = 0, C2 = C3 = 1, and C4 = Bi. This implies that 𝜇n defined by equation (9.27) and func-
tions sin(𝜇nx) in series (9.28) are eigenvalues and eigenfunctions, respectively, and hence, the
coefficients Cn may be defined by formula (9.24). Taken into account equations (9.26) and
carry out integration, one gets coefficients Cn and then, via first equation (9.28) obtains the
problem solution

Cn =

1∫
0
𝜗i(x) sin(𝜇nx)dx

1∫
0

sin2(𝜇nx)dx

=

1∫
0
[Ti(x) − T0 − Bx(T0 − T∞)] sin(𝜇nx)dx

1∫
0

sin2(𝜇nx)dx

, B = Bi
1 − Bi

(9.29)
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T(x,Fo) = T0 + Bx(T0 − T∞) + 2
∞∑

n=1

1
𝜇n(𝜇n − sin𝜇n cos𝜇n)

⎡
⎢
⎢
⎣
𝜇2

n

1

∫
0

Ti

(
x
)

sin(𝜇nx)dx

−T0𝜇n

(
1 − cos𝜇n

)
− B(sin𝜇 − 𝜇 cos𝜇)(T0 − T∞)

⎤
⎥
⎥
⎦

sin(𝜇nx) exp(−𝜇2
nFo) (9.30)

Some more simple cases follow from this solution. For the case of heat transfer from both ends
of a rod into surrounding at T∞, we obtain since in this case T0 = T∞ at x = 0

T(x,Fo) = T∞ + 2
∞∑

n=1

𝜇n

1∫
0

Ti(x) sin(𝜇nx)dx − T∞(1 − cos𝜇n)

𝜇n − sin𝜇n cos𝜇n
sin(𝜇nx) exp(−𝜇2

nFo) (9.31)

If in addition, the initial temperature is constant, this expression becomes farther simpler

T(x,Fo) − T∞
Ti − T∞

= 2
∞∑

n=1

1 − cos𝜇n

𝜇n − sin𝜇n cos𝜇n
sin(𝜇nx) exp(−𝜇2

nFo) (9.32)

Comment 9.2 Nonstandard series satisfying Sturm-Liouville requirements such as a problem
considered in the last example are called generalized Fourier series.

9.2.4 Two-Dimensional Steady Problems

The two-dimensional steady heat transfer problems are governed by homogeneous Laplace’s
or by inhomogeneous Poisson’s equation (1.2). Since these equations are of elliptic type, the
boundary conditions should be specified on each side of the computation domain (S. 1.1). Two
types of problems are usually considered: the Dirichlet problem when the boundary condition
of the first kind is used, specifying the temperature on the boundaries of domain, and the
Neumann problem in which the second kind of boundary condition in the form of normal
temperature derivative on domain sides is specified. The Neumann problem is ill-posted, which
means that a solution of the problem requires the thermal equilibrium when the integral of total
heat flow inside the object is zero (S. 1.1).

◾Example 9.6: Two-dimensional rectangular sheet in xy plane of length a, height b and
prescribed sides temperatures: left T(0, y)=𝝋1(y), right T(a, y)=𝝋2(y), lower T(x, 0)=
𝝋3(x), and upper T(x, b)=𝝋4(x) (Dirichlet problem)

Substitution of the product f1(x)f2(y) into Laplace equation (1.2) and separation of variables
yields as in above examples two differential equations and their solutions

f ′′1 (x)
f1(x)

= −
f ′′2 (y)
f2(y)

= −𝜇2 f ′′1 (x) + 𝜇2f1(x) = 0 f ′′2 (y) − 𝜇2f2(y) = 0 (9.33)

T(x, y) = [C1 sin(𝜇x) + C2 cos(𝜇x)][C3sh(𝜇y) − C4ch(𝜇y)] (9.34)
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Assuming that the temperatures along the vertical sides are zero 𝜑1(y) = 𝜑2(y) = 0, we
satisfy zero conditions at x = 0 and x = a by taking C2 = 0 and 𝜇 = n𝜋∕a, respectively. It
should be also taken C4 = 0 because in the case of zero temperatures on the vertical sides,
the temperatures at y = 0 and y = b are zero as well. As a result, we obtain from (9.34) the
solution C1n sin(n𝜋x∕a)sh(n𝜋y∕a) which meets three conditions at x = 0, x = a, and y = 0.
To satisfy the forth condition of zero at y = b, the superposition principle is used by adding
a similar relation C2n sin(n𝜋x∕a)sh[(n𝜋∕a)(b − y)]. A sum of these two results gives the
problem solution with two unknown coefficients Cn1 and Cn2

T(x, y) =
∞∑

n=1

[
C1nsh

n𝜋
a

y + C2nsh
n𝜋
a

(b − y)
]

sin
n𝜋
a

x (9.35)

These coefficients are determined applying giving boundary conditions at y = 0, 𝜑3(x) and at
y = b, 𝜑4(x). Corresponding equations are obtained by putting y = 0 or y = b into solution
(9.35) and employing formula (9.24), which yields two expressions

𝜑(x) =
∞∑

n=1

Cnsh
n𝜋b

a
sin

n𝜋
a

x Cn = 2

ash n𝜋b
a

a

∫
0

𝜑(x) sin
n𝜋
a

xdx (9.36)

defining C1n and C2n in both considering cases at 𝜑(x) = 𝜑3(x) and 𝜑4(x), respectively. Sub-
stituting these constants into (9.35) completed the solution of this part of the problem.

The other part of the solution is considered in a similar way, assuming two other boundary
conditions being zero: 𝜑3(x) = 𝜑4(x) = 0. The full solution is established as a sum of results
obtained for horizontal and vertical sides considering cases.

◾Example 9.7: The same problem at mixed type of boundary conditions: left T(0, y)= 0,
right T(a, y)= 0, lower T(x, 0)− (𝝏T/𝝏y)y= 0 = 0 and upper T(x, b)=𝝋(x)

The partial solution of this problem is the same expression (9.34) that after satisfying con-
ditions T = 0 at x = 0 and x = a by taking C2 = 0 becomes

T(x, y) = C1 sin
n𝜋
a

x
(

C3sh
n𝜋
a

y − C4ch
n𝜋
a

y
)

(9.37)

Meeting the condition at the lower side by applying this relation leads to expression

C1 sin
n𝜋
a

x
[
C3sh

n𝜋
a

y − C4ch
n𝜋
a

y − n𝜋
a

(
C3ch

n𝜋
a

y − C4sh
n𝜋
a

y
)]

y=0
= 0 (9.38)

Putting here y = 0 gives condition C4 + (n𝜋∕a)C3 = 0, which substituting into equation (9.37)
and changing C3 to Cn yields the problem solution

T(x, y) =
∞∑

n=1

Cn sin
n𝜋
a

x
(

sh
n𝜋
a

y + n𝜋
a

ch
n𝜋
a

y
)

(9.39)

Then, employing upper side condition results in relation giving via (9.24) coefficients Cn

𝜑(x) =
∞∑

n=1

Cn sin
n𝜋
a

x
(

sh
n𝜋
a

b + n𝜋
a

ch
n𝜋
a

b
)

Cn =
2

a∫
0
𝜙(x) sin n𝜋

a
xdx

a
(

sh n𝜋
a

b + n𝜋
a

ch n𝜋
a

b
) (9.40)

that along with expression (9.39) issued the complete solution of the problem in question.
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9.3 Integral Transforms

The integral transform technique significantly simplifies differential equations solutions reduc-
ing the ordinary differential equations to algebraic relations and modifying partial differential
equations into ordinary differential equations. We consider briefly the Fourier and Laplace
transforms, that most often are used in applications. A systematical usage of integral trans-
forms to heat conduction problems one may find in [295].

Although the transformed equations are simpler than the originals and usually can be solved
readily, the most difficult procedure consists of inversion of the solution from the subsidiary
space in physical variables. Therefore, it is common to use transforms tablets presenting the
inverse solution. Such relatively short tables are given in advanced mathematic courses. More
complete tables may by found in special books [129, 310].

9.3.1 Fourier Transform

The expansion in Fourier series, that we use above, presents an arbitrary functions as a sum
of harmonic oscillations with finite frequencies n𝜋∕L = 𝜋∕L, 2𝜋∕L, 3𝜋∕L … As L increases,
the distance between frequencies 𝜋∕L decreases so that the numbers of terms in the series
increases. Therefore, in the case of infinite or semi-infinite domain, the difference between
frequencies goes to zero, whereas the number of terms becomes infinite, and in the limit the
Fourier series converts into integral

f (x) = 1
2𝜋

∞

∫
−∞

Cn exp(i𝜔x)d𝜔 Cn =

∞

∫
−∞

f (x) exp(−i𝜔x)dx (9.41)

with continuous spectrum of frequency 𝜔. The last integral denoting as f̂ (𝜔) gives the Fourier
transform of function f (x). The first integral in which the integrand is replaced by the Fourier
transform f̂ (x) instead of coefficients Cn presents the inverse formula that returns the initial
function f (x). These two integrals form the Fourier transform

f̂ (𝜔) =

∞

∫
−∞

f (x) exp(−i𝜔x)dx f (x) = 1
2𝜋

∞

∫
−∞

f̂ (𝜔) exp(i𝜔x)d𝜔 (9.42)

Relations (9.42) become simpler for even and odd function f (x) resulting in two pairs of
expressions known as cosine and sine Fourier transforms:

f̂C(𝜔) =

∞

∫
0

f (x) cos𝜔xdx f (x) = 2
𝜋

∞

∫
0

f̂C(𝜔) cos𝜔xd𝜔 (9.43)

f̂S(𝜔) =

∞

∫
0

f (x) sin𝜔xdx f (x) = 2
𝜋

∞

∫
0

f̂S(𝜔) sin𝜔xd𝜔 (9.44)

These equations follow from relations (9.42) after using formula exp(±i𝜔x) = cos𝜔x±
i sin𝜔x. Putting this expression, for example, in the first integral (9.42), we get

f̂ (𝜔) =

∞

∫
−∞

f (x)(cos𝜔x − i sin𝜔x)dx = 2

∞

∫
0

f (x) cos𝜔xdx (9.45)
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This result is obtained by taking into account that cosine is an even function but sine is odd
one. Due to that, the integral in equation (9.42) with limits ∓∞ containing cosine doubles,
whereas the similar integral with sine vanishes. Analogous procedure leads to the other
integral (9.43).

◾Example 9.8: Infinite solid or thin laterally insulated rod initially at Ti(x)

Fourier transform of one-dimensional equation (1.1) according to (9.42) yields

𝛼

∞

∫
−∞

𝜕2T
𝜕x2

exp(−i𝜔x)dx =

∞

∫
−∞

𝜕T
𝜕t

exp(−i𝜔x)dx
dT̂
dt

+ 𝛼𝜔2T̂ = 0 (9.46)

The first term in the last equation is obtained using in the right hand side of integral (9.46)
the Leibniz rule of interchanging the integration and differentiation, whereas the second term
is derived from the left hand side of this relation applying double integration by parts with
u = exp(−i𝜔x) and dv = (𝜕2T∕𝜕x2)dx which gives after first integration

∞

∫
−∞

𝜕2T
𝜕x2

exp(−i𝜔x)dx = 𝜕T
𝜕x

exp (−i𝜔x)
||||

∞

−∞
+ i𝜔

∞

∫
−∞

𝜕T
𝜕x

exp(−i𝜔x)dx (9.47)

In the right-hand side of this expression, the first term vanishes due to usual assumption that
the temperature and its derivatives go to zero as x → ±∞. Then, repeating integration by part
of the last integral (9.47) with u = exp(−i𝜔x) and dv = (𝜕T∕𝜕x)dx leads to the second term
of equation (9.46). In this equation, the frequency 𝜔 is a constant parameter, and hence, this
equation is a simple ordinary differential equation which solution is

T̂ = C exp(−𝛼𝜔2t), C = T̂|t=0 = T̂i(𝜔), T̂(𝜔, t) = T̂i(𝜔) exp(−𝛼𝜔2t) (9.48)

Determining the constant C of this solution using a transformed initial temperature T̂i(𝜔) by
second relation leads to the problem solution (9.48) in Fourier space.

To return to physical variables, the so-called convolution theorem is employed. According
to this theorem, the inverse of a product of two transformed functions is given by integral of a
product of the inverted functions gained for each of these functions. Thus, for solution (9.48)
of two transformed functions T̂i(𝜔) and exp(−𝛼𝜔2t), we have

T(x, t) =

∞

∫
−∞

Ti(𝜉)I(x − 𝜉, t)d𝜉, I(x, t) = 1
𝜋

∞

∫
0

exp(−𝛼𝜔2t) cos𝜔xd𝜔 (9.49)

where I(x, t) is an inverted function obtained for exp(−𝛼𝜔2t) using cosine transform (9.43)
since the exponential function is even with respect to 𝜔. A half of this function is taken into
account only because of the relationship (9.45) between Fourier integrals with infinite and
semi-infinite limits. As the next step, the integral (9.49) should be inversed in the physical
space. As mentioned at the beginning of Section 9.3, in contrast to other standard steps
in Fourier transform, the inverse procedure does not have a standard technique. In this
case, the inverse expression may be found by artificial approach based on the fact that the
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derivative of integral (9.49) with respect to x after integration by parts (u = sin(𝜔x) and
dv = exp(−𝛼𝜔2t)𝜔d𝜔) yields a relation proportional to the self integral (9.49)

dI
dx

= − 1
𝜋

∞

∫
0

exp(−𝛼𝜔2t) sin(𝜔x)𝜔d𝜔 = − x
2𝜋𝛼t

∞

∫
0

exp(−𝛼𝜔2t) cos𝜔xdx = − x
2𝛼t

I (9.50)

The first and the last terms of that expression comprise an ordinary differential equation
dI∕dx = −(x∕2𝛼t)I, which solution gives the integral (9.49) in the physical variables
I = C1 exp(−x2∕4𝛼t). The constant C1 is defined as a value of this integral at x → 0
when cos𝜔x → 1, and integral (9.49 becomes error function (9.1) giving C1 = 1∕2

√
𝜋𝛼t.

Substituting these results into the first equation (9.49) results in the solution

T(x, t) = 1

2
√
𝜋𝛼t

∞

∫
−∞

Ti(𝜉) exp[−(x − 𝜉)2∕4𝛼t]d𝜉 (9.51)

It may be shown that for the case of the constant initial temperature, this result coincides with
relation (9.3) obtained using the error function directly.

Comment 9.3 The inversed integral (9.49) may be found much easier using the table of
Fourier transforms. We present this example to show one of artificial inverse means.

◾Example 9.9: Two-dimensional infinite sheet in xy plane of semi-infinite height (half
plane) initially at Ti(x)

The mathematical model of this problem consists of the homogeneous two-dimensional
Laplace equation (1.2), which after Fourier transform yields similar to (9.46) simple ordinary
differential equation

∞

∫
−∞

𝜕2T
𝜕x2

exp(−i𝜔x)dx +

∞

∫
−∞

𝜕2T
𝜕y2

exp(−i𝜔x)dx = 0
d2T̂
dy2

− 𝜔2T̂ = 0 (9.52)

This differential equation is derived in the same way as equation (9.46). The first term is
obtained by changing the integration and differentiation in the second integral (9.52) as well
as the first term of equation (9.46) is gained. Such procedure is authorized because in both
cases the operations of differentiation and integration are designated with respect to different
variables, t and x in the first, and, y and x in the second integrals, respectively.

The second term of the last equation (9.52) is derived by double integration by parts of the
first integral (9.52) also as the same term of equation (9.46) resulting in both cases after first
integration in expression (9.47) and in desired term after second integration.

The solution of ordinary differential equation (9.52) satisfying the transformed initial con-
dition T̂|y=0 = T̂i(𝜔) is T̂ = T̂(𝜔) exp(−|𝜔|y) (the absolute value is applied to avoid the case
T̂ → ∞). To return to physical variables, the convolution theorem and sine inverse formula
(9.44) are used in the way similar to that in the previous example

T(x, y) =

∞

∫
−∞

Ti(𝜉) I(x − 𝜉, y)d𝜉, I(x, y) = 1
𝜋

∞

∫
0

exp(−|𝜔|y) cos𝜔xd𝜔 (9.53)
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The inverted integral (9.53) in contrast to resemble integral (9.49) in the former problem may
be found performing integration. Because the operation variable in (9.53) is 𝜔, the coordinates
x and y are considered as parameters, and calculation leads to the expression

I(x, y) = 1
𝜋

∞

∫
0

exp(−|𝜔|y) cos𝜔xd𝜔 =
exp (− |𝜔y|)
𝜋(x2 + y2)

(−y cos𝜔x + x sin𝜔x)
||||

∞

0
=

y

𝜋(x2 + y2)
(9.54)

The last result follows from limiting values estimation giving zero for upper limit since
exp(−|𝜔y|) → 0 and y for lower limit because x sin𝜔x = 0. Substituting the result (9.54) in
the first equation (9.53) completes the problem solution

T(x, y) =
y

𝜋

∞

∫
−∞

Ti(𝜉)
(x − 𝜉)2 + y2

d𝜉 (9.55)

9.3.2 Laplace Transform

Laplace transform is another widely used integral transform. Whereas the Fourier transform is
usually used for infinite variable domains, the Laplace transform is suitable to problems with
domains restricted to semi-infinite positive part of numerical axis. Accordingly, in this case,
the basic equations (9.42) contains a variable (−st) with s > 0 instead of variable (−i𝜔x) in the
Fourier integral, and the transform expressions are

f̂ (s) =

∞

∫
0

f (t) exp(−st)dt f (t) = 1
2𝜋i

𝛾+∞

∫
𝛾−∞

f̂ (s) exp(st)ds (9.56)

where functions f (t) and f̂ (s) substitute functions f (x) and f̂ (𝜔) in Fourier integrals.
It is common to use in Laplace transforms the variable t instead of x because time is often

an independent variable in the relevant applications. In fact, for dummy variables in integrals
(9.56) it does not matter. Laplace transform is most often applied integral transform due to
better integrals convergence with real kernels in comparison with complex ones, which some-
times results in divergent trigonometric functions as x → ±∞. At the same time, the more
complex inverse procedure in Laplace transform via second formula (9.56) is usually over-
come employing tables of transforms.

◾Example 9.10: Semi-infinite solid or thin insulated rod initially at zero temperature
and time-dependent surface temperature T(0, t)=𝝓(t)

Because the domain is semi-infinite and temperature is a function of time, the Laplace trans-
form is appropriate. For the same one-dimensional Laplace equation one gets

𝛼

∞

∫
0

𝜕2T
𝜕x2

exp(−st)dt =

∞

∫
0

𝜕T
𝜕t

exp(−st)dt 𝛼
d2T̂
dx2

− sT̂ = 0 (9.57)

The first term in the last equation is obtained by interchanging the integration and differentia-
tion as in prior examples. The second term is the Laplace transform of derivative 𝜕T∕𝜕t, which
is found by integrating by parts the second integral (9.57).
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Putting u = exp(−st), dv = (𝜕T∕𝜕t)dt and knowing that T(0) = 0, we obtain

∞

∫
0

𝜕T
𝜕t

exp(−st)dt = exp(−st)T(t)|∞0 + s

∞

∫
0

T(t) exp(−st)dt = sT̂ − T(0) = sT̂ (9.58)

Solving the ordinary differential equation (9.57) and using the common condition for the lim-
ited final result lim

x→∞
T̂(x, s) = 0 leads to the solution in the Laplace space

T̂(x, s) = C1 exp(
√

s∕𝛼x) + C2 exp(−
√

s∕𝛼x) T̂(x, s) = �̂�(s) exp(−x
√

s∕𝛼) (9.59)

in which the constant C1 = 0 and C2 are defined applying the boundary condition in the trans-
formed space T̂(0, s) = �̂�(s). To inverse the solution (9.59), the convolution theorem in the
same way as in the derivation of equation (9.49) is used. First, applying the table of transforms,
one gets the inverse of the function f̂ (x, s) = exp(−x

√
s∕𝛼)

f (x, t) =
x exp(−x2∕4𝛼t)

2
√
𝜋𝛼 t3∕2

, T(x, t) =

t

∫
0

𝜙(𝜏)f (t − 𝜏, x)d𝜏 (9.60)

and then, obtains according to the convolution theorem the second expression (9.60) for tem-
perature in the physical space. Combination of two relation (9.60) gives the solution

T(x, t) = x

2
√
𝜋𝛼

t

∫
0

𝜙(𝜏)
(t − 𝜏)3∕2

exp

[
− x2

4𝛼 (t − 𝜏)

]
d𝜏 (9.61)

This outcome agrees with solution (9.5) obtained by Duhamel integral and error function.

◾Example 9.11: Thin rod literally insulated of length L initially at zero temperature
with insulated end at x= 0 and constant temperature TL at x=L

We considered analogous problem in example 9.4. The series obtained in that example as
well as others of such type convergence slowly at small values of Fourier number, close to
t = 0. Here, we present the solution in series obtained by Laplace transform that converges
fast at small times. In Laplace space, the problem is governed by the same equation (9.57) as
in previous example and following boundary conditions

𝛼
d2T̂
dx2

− sT̂ = 0,
dT̂
dx

= 0 at x = 0,

∞

∫
0

TL exp(−st)dt =
T̂L

s
at x = L (9.62)

The solution of this simple differential equation is

T̂(x, s) = C1sh

√
s
𝛼

x + C2ch

√
s
𝛼

x, C2ch

√
s
𝛼

L =
T̂L

s
, T̂(x, s) =

T̂Lch
√

s∕𝛼 x

sch
√

s∕𝛼L
(9.63)

The constants here are found satisfying the boundary conditions: first at x = 0 by taking C1 =
0, which gives dT̂∕dx = C2sh

√
s∕𝛼, and then, using the other condition at x = L via the second

equation (9.63) determining the constant C2.
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One way to inverse the solution (9.63) gained after substitution of the constants in the first
equation (9.63) is to express hyperbolic functions in Taylor series to get [58]

T̂(x, s) =
T̂L

s
(eax + e−ax)e−aL(1 + e−2aL)−1 =

T̂L

s
[e−a(L−x) + e−a(L+x)]

∞∑

n=0

(−1)ne−2naL

=
T̂L

s

∞∑

n=0

(−1)ne−a[(2n+1)L−x] +
T̂L

s

∞∑

n=0

(−1)ne−a[(2n+1)L+x], a =
√

s
𝛼

(9.64)

Then, using the table of transforms for e−ax∕s, results in the problem solution

T(x, t)
TL

=
∞∑

n=0

(−1)nerfc
(2n + 1)L − x

2
√
𝛼t

+
∞∑

n=0

(−1)nerfc
(2n + 1)L + x

2
√
𝛼t

(9.65)

This solution is reasonable to use along with solution of the same problem in series (9.20),
which converges fast at large time.

Comment 9.4 There are two forms of hyperbolic function expressed by notations similar to
trigonometric function and via exponential function like in series (9.64).

Comment 9.5 Integral transforms are widely used for solving differential equations in differ-
ent areas. Advanced Engineering Mathematics courses usually consider Fourier and Laplace
transforms and offer problems for exercises as well as other analytical methods including drills
for practice shortly reviewed in this part of Chapter 9.

9.4 Green’s Function Method

The idea of Green’s function is similar to Duhamel’s principle. This method presents a solution
of a given problem in terms of a simple problem of the same type. In creating Green’s function,
the simplicity is achieved due to applying homogeneous boundary conditions and Dirac delta
function instead of inhomogeneous conditions and space-time dependent sources, respectively.
Dirac delta function is defined as a zero value for all x except one x = x0 for which an infinite
value is assigned so that integral of this function is equal to unity

𝛿(x − x0) =

{
0

∞
x ≠ x0
x = x0

,

∞

∫
−∞

𝛿(x − x0)dx = 1,

∞

∫
−∞

𝛿(x − x0)f (x)dx =

{
f
(
x0

)

0
x = x0
x ≠ x0

(9.66)
Here, the third relation presents one of Dirac function property called general sampling, which
specifies the value f (x0) of any function f (x) that is continuous at origin point x = x0 (Com. 9.4).
In formulating Green’s function, the space-time dependent heat source is substituted by the
product of delta functions 𝛿(x − 𝜉)𝛿(t − 𝜏). Physically, it means that such a product of delta
functions determines the temperature at the location x and time t produced by an instantaneous
source of strength of unity at point with coordinate 𝜉 at time 𝜏.
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The solution of one-dimensional conduction problem for finite domain is given in terms of
Green’s function G𝜏=0(x, t |𝜉, 𝜏) by the following expression [295]

T(x, t) =

L

∫
0

G|𝜏=0Ti(𝜉)d𝜉 +
𝛼

𝜆w

t

∫
0

d𝜏

L

∫
0

qv(𝜉, 𝜏)Gd𝜉 + 𝛼

𝜆w

t

∫
0

d𝜏

L

∫
0

(Gf |𝜉=0 + Gf |𝜉=L)d𝜉

(9.67)
This equation is written for Green’s function satisfying the boundary conditions G = 0 at
t < 𝜏 and the general boundary condition hG − 𝜆w(𝜕G∕𝜕n) = f (x, t) at t > 𝜏. The first term
in equation (9.67) takes into account the initial temperature distribution, the second deter-
mines the effect of source qv(𝜉, 𝜏), and the third one defines the contribution of the boundary
conditions at x = 0 and x = L via functions Gf |𝜉=0 and Gf |𝜉=L, respectively. If the problem in
question consists of a boundary condition of the first kind, the last integral in equation (9.67)
should be replaced by (−1∕h)(𝜕G∕𝜕n).

◾Example 9.12: One-Dimensional Solid at Initial Temperature Ti(x) and Boundary
Conditions: 𝝏T/𝝏x= 0 at x= 0, Temperature 𝝓(t) at x=L and Source qv(x, t)

The mathematical model includes equation (1.1), two boundary conditions

𝛼
𝜕2T
𝜕x2

+ 𝛼

𝜆w
qv −

𝜕T
𝜕t

= 0,
𝜕T
𝜕x

= 0 at x = 0, T = 𝜙(t) at x = L (9.68)

and temperature T = Ti(x) at t = 0. The Green’s function is formulated as it described above
using homogeneous boundary conditions and a product of delta functions instead of source
qv(x, t). This results in a system of equation and boundary conditions similar to initial system
(9.68), but significantly simpler

𝛼
𝜕2G
𝜕x2

+ 𝛼

𝜆w
𝛿(x − 𝜉)𝛿(t − 𝜏) = 𝜕G

𝜕t
, G = 0 t < 𝜏,

𝜕G
𝜕x

||||x=0
= 0, G|x=L = 0 (9.69)

To satisfy the homogeneous (without delta functions) problem, the separation of variables is
employed leading according to expressions (9.11) and (9.69) to the following relations

(C1 sin𝜇nx + C2 cos𝜇nx) exp(−𝛼𝜇2
nt) = 0, C1 = 0, 𝜇n = (2n + 1)𝜋

2L
, n = 0, 1, 2 …

(9.70)
In (9.70), the first constant is zero due to the condition (9.68) at x = 0, and the value of 𝜇n
follows from the other condition at x = L, which requires C2 cos𝜇nx = 0. To find the Green’s
function associated with equation (9.69), the cosine Fourier transform (9.43) with respect to x
is applied taken into account that the cosine is an even function

𝛼

L

∫
0

𝜕2G
𝜕x2

cos𝜇nxdx + 𝛼

𝜆w

L

∫
0

𝛿(x − 𝜉)𝛿(t − 𝜏) cos𝜇nxdx −

L

∫
0

𝜕G
𝜕t

cos𝜇nxdx = 0 (9.71)
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The integrals in (9.71) are evaluated employing: the Green’s identity

L

∫
0

(
u
𝜕2v
𝜕x2

− v
𝜕2u
𝜕x2

)
dx = u

𝜕v
𝜕x

||||

L

0
− v

𝜕u
𝜕x

||||

L

0
, (9.72)

for the first integral, the property of delta function for the second, and the interchanging inte-
gration and differentiating for the third integral. Setting in relation (9.72) u = cos𝜇nx,v = G,
and solving the obtained equation for the first integral, one gets

L

∫
0

𝜕2G
𝜕x2

cos𝜇nxdx = −𝜇2
n

L

∫
0

G cos𝜇xdx + cos𝜇nx
𝜕G
𝜕x

||||

L

0
+ G sin𝜇nx|L0 = −𝜇2

nĜ (9.73)

The second and third terms in the right-hand side of this expression vanish due to the two last
conditions (9.69) and to value (9.70) of 𝜇n giving the Green function in Fourier space. For the
second integral from expression (9.71) we have

L

∫
0

𝛿(x − 𝜉)𝛿(t − 𝜏) cos𝜇nxdx = 𝛿(t − 𝜏)

L

∫
0

𝛿(x − 𝜉) cos𝜇nxdx = 𝛿(t − 𝜏) cos𝜇n𝜉 (9.74)

This result is obtained considering that: (i) the integration variable is x, so that time-dependent
function 𝛿(t − 𝜏) is placed out of integral and (ii) a reduced integral (9.74) according to sam-
pling property of Dirac function (third relation (9.66)) equals cos𝜇n𝜉. The evaluation of the last
integral (9.71) through change of integration and differentiating with regard to the value (9.70)
of 𝜇n results in derivative of the Green function in Fourier space dĜ∕dt. As a consequence,
these three transformed integrals comprise a linear first order ordinary differential equation in
Fourier space and which solution is found by standard procedure or using well-known formula
as follows

dĜ
dt

+ 𝛼𝜇2
nĜ = 𝛿(t − 𝜏) cos𝜇n𝜉, Ĝ = cos𝜇n𝜉 exp(−𝛼𝜇2

nt)
⎡
⎢
⎢
⎣
C +

t

∫
0

exp
(
𝛼𝜇2

n𝜏
)
𝛿(t − 𝜏)d𝜏

⎤
⎥
⎥
⎦

(9.75)

After taking C = 0 according to initial condition (9.69) and using sampling property of delta
function (9.66), relation (9.75) of Green function in Fourier space Ĝ simplifies to

Ĝ = cos𝜇n𝜉 exp[−𝛼𝜇2
n(t − 𝜏)], G(x, t) = 2

L

∞∑

n=1

exp[−𝛼𝜇2
n(t − 𝜏)] cos𝜇n𝜉 cos𝜇nx (9.76)

Because the space domain is finite, to get the Green function in physical space, we apply
Fourier series instead of the first integral (9.43) with infinite limit and obtain the last
equation (9.76). Finally, substitution of the Green function (9.76) into expression (9.67) leads
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to the problem solution

T(x, t) = 2
L

∞∑

n=1

exp(−𝛼𝜇2
nt) cos𝜇nx

⎧
⎪
⎨
⎪
⎩

L

∫
0

Ti (𝜉) cos𝜇n𝜉d𝜉 +

t

∫
0

exp(𝛼𝜇2
n𝜏)

×
⎡
⎢
⎢
⎣

𝛼

𝜆w

L

∫
0

qv (𝜉, 𝜏) cos𝜇n𝜉d𝜉 + (-1)n𝛼𝜇n𝜙(𝜏)
⎤
⎥
⎥
⎦

d𝜏

⎫
⎪
⎬
⎪
⎭

(9.77)

This result is gained taking into account that: (i) in considering case the Green function is
cos𝜇nx with 𝜇n defined by (9.70), and (ii) the last term in equation (9.77) corresponds to the
boundary condition of the first kind T = 𝜙(t) at x = L, and therefore, in conformity with notes
concerning the Green function (9.67), the derivative 𝜕G∕𝜕x along with given temperature 𝜙(t)
at x = L is replaced for the last integral in Green function (9.67).

Comment 9.6 Different methods may be used to solve the same problem. For example, we
considered solutions of similar problems as the last one applying the Duhamel’s integral
(Exam. 9.2) and Laplace transform (Exam 9.10). Despite the fact that these solution should
follow one from another, it is not easy sometimes to show this, as it is, in particular, in the
case of comparing solutions (9.61) and (9.5) with the last result (9.77).

Numerical Methods

9.5 What Method is Proper?

Finite-difference methods were developed and used long before the numerical methods
became a powerful common tool for solving differential equations due to computers [301].
Because the understanding and technique of the finite-difference methods seems to be simpler
than that of analytical methods, it was believed that the time of analytical methods was over.
Although the techniques of analytical and numerical approaches indeed are different, both
methods are based on the same fundamental principles. The only distinction between both
approaches is that these basic principles are applied in the former case to infinite-small dif-
ferences, whereas in the latter one they are used for small but finite size values. For example,
both derivatives analytical and numerical are determined by the same principle. However,
to calculate an analytical derivative, one needs to have some knowledge, and nevertheless,
sometimes that might be not easy. At the same time, to obtain the finite-difference derivative
using the difference between function values at two grid points is not at all a problem. This
feature of numerical methods gives an impression that numerical approach is much simpler
then analytical methods

In the early 1960s, this seeming simplicity leads to many unsuccessful attempts to
solve numerically complex contemporary problems, showing that only a deep physics



�

� �

�

362 Foundations of Fluid Flow and Heat Transfer

understanding, together with careful testing software, may yield the proper solution. It
becomes clear that only an investigator who adopted a corresponding part of current knowl-
edge can possess the complex technique of a numerical solution, which just seems to be
simple, and then interpret the obtained results. Otherwise, an insufficiently considered and
prepared program can give an unrealistic outcome.

After the applications of computers were expanded, analytical methods not only retained
their importance, but gained new functions as well. In particular, despite the fact that there are
many recommendations and rules for preparing and checking numerical programs, one of the
best ways to test and control the accuracy is to compare the result obtained by software with
the available proper analytical solution [306]. We mention below some cases where analytical
solutions are especially useful in preparing and testing the software:

• The formulae for the finite-difference derivatives are usually obtained using a Taylor series.
For a grid point i located midway between points i − 1 and i + 1, one obtains the following
two expressions, using the first three terms of the Taylor series

fi−1 = fi − (xi − xi−1)
(

df

dx

)

i

+ 1
2
(xi − xi−1)2

(
d2f

dx2

)

i

+ … (9.78)

fi+1 = fi + (xi − xi−1)
(

df

dx

)

i

+ 1
2
(xi − xi−1)2

(
d2f

dx2

)

i

− … (9.79)

Adding and subtracting these equations give formulae for the first two derivatives
(

df

dx

)

i

=
fi+1 − fi−1

xi − xi−1
,

(
d2f

dx2

)

i

=
fi−1 − 2fi + fi+1

(xi − xi−1)2
(9.80)

These formulae may be used only if the function in question is analytic. If at some grid
points the function is singular, such as, for example, at these points one or more derivatives
become infinite, equations (9.80) cannot be applied. We encountered such a case in Section
3.1.1 showing that a wall temperature of a thermally thin plate at leading edge (x = 0) is
not an analytic function of the coordinate x. It is rather presented as a series in integer pow-
ers of variable x1∕s, where s is the denominator of the exponent in the relation (3.1) for an
isothermal heat transfer coefficient. For laminar or turbulent flow, this variable is x1∕2 or
x1∕5, respectively. It is clear, that in this case the derivative with respect to x is proportional
to x−1∕2, or to x−4∕5 for laminar, or turbulent flow, or to x(1∕s)−1 for any other value of s.
Hence, this derivative becomes infinite at x = 0 for laminar, turbulent flows or for other
cases in which an exponent r∕s in the relation (3.1) for an isothermal heat transfer coeffi-
cient is less than unity. However, if one introduces a new variable z = x1∕s, the temperature
distribution turns into analytical function, the derivative with respect to z becomes finite,
and equations (9.80) can be used.

A similar situation is observed for the boundary layer equations in Prandtl-Mises form
(7.36). These equations have a singularity at the surface where the stream function is zero
because the velocity and temperature near the surface are presented in series of variable𝜓1∕2

(see (7.37)). Therefore, near the surface, both derivatives of the velocity and of the temper-
ature with respect to variable 𝜓 become infinite, but introducing a new variable z = 𝜓1∕2

solves this problem again. Thus, analytical analysis gives us knowledge what variable should
be used to overcome the singularities in general and particularly in the case of numerical
approach.
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• The other difficulty that usually arises in preparing a program for numerical solution is
an attaining the proper distribution of the grid points inside a considering domain. This
distribution should correspond to the studied function gradient distribution. In resolving
this problem, significantly may assist an analyzing a field of analytical solution of similar
problem. For example, it is known from exact solutions of the boundary layer problems that
at the vicinity of the wall, the values of the velocity, and temperature gradients are maximum
gradually decreasing as the distance from the wall increases, becoming zero at y → ∞.

• Analytical solutions are useful also in approximating computation mesh pattern between
the grid points. In particular, for the case of boundary layer equations, it is reasonable to
apply the polynomial profiles that are usually used in integral methods (S. 7.6) or some
other well-known distribution, for example, self-similar profiles (S. 7.5.2).

• In numerical applications, apparently the most important function of the analytic solution
is that these can be applied as references in checking and testing the software. Comparing
computation results with the exact solution estimates not only the usefulness of the tested
program but gives the expected deviation from the exact data as well.

These examples demonstrate the role of the analytical solutions in creating the software.
At the same time, there is no doubt of the significance of the numerical data without which
the analytic solutions are practically unproductive. Therefore, it is meaningless to oppose
the analytical and numerical methods. Rather, it is reasonable to consider both approaches as
a united, combined method for investigation and solution of the contemporary problems. In
fact, the numerical and analytical methods are means supplementing each other. Whereas the
former is the a powerful technique for approximate solution of almost any complex problem
using known mathematical models, the latter gives a possibility to find exact solutions of
relatively simple problems, investigate general properties of a particular phenomena, and
think of a new models on the basis of this data. Because the solution of any contemporary
problem is a challenge, only employing both methods in combination gives hopes for getting
the adequate results.

9.6 Approximate Methods for Solving Differential Equations

The approximate methods for solving differential equations were developed and widely used
many years before they became a basis of modern numerical methods. However, before com-
puters, these methods were usually used for entire computation domain as analytical means.
The use of computers makes it possible to divide the computation domain on small subdo-
mains and apply the same approximate methods for each small mesh. This modification vastly
increases the calculation accuracy and converts these simple analytic approaches into the con-
temporary numerical methods.

Numerical methods differ from each other by means of discretization of the computation
domain and by just-mentioned analytical methods for problem solutions in the small sub-
domains. Depending on the first procedure, the numerical methods can be classified in three
basic groups: the finite-difference (FDM), finite-element (FEM), and boundary element (BEM)
methods. The old one, the finite-difference method, usually uses for discretization the uni-
form grids and calculates in the points of these grids the derivatives by formulae (9.80). The
two other techniques compute the values of the studied functions in each of subdomains,
usually irregular distributed, employing the approximate analytical methods. The distinction
between these two approaches results from various numbers of subdomains that are needed for
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a solution. Whereas the finite-element method requires the subdomains of the whole field of a
function of interest, the boundary-element means uses only subdomins located on boundaries
(see details below).

The finite-difference method is employed also in two modern modifications based on
control-volume (CV) approach: the finite-difference method (CVFDM), and finite-element
method (CVFEM). In the control-volume formulation, discretization equations are obtained
as a result of integrating the applying differential equations over each of control volume.
Here, the basic idea is that such an equation expresses the conservation laws for small finite
volume just as the differential equation expresses these laws for an infinitesimal volume.
The modified finite-difference method (CVFDM) for simplicity is called as previously the
finite-difference method (FDM), but the modified finite-element method (FEM) is in the
essence the finite-volume method (FVM) since the finite volume coincides with considering
element. Thus, there are three commonly used types of finite-difference approaches: FDM,
FVM, and BEM.

The distinction between different analytical approximate methods employed in numerical
methods is convenient to describe using the weighted residual approach (see, e.g., [306], [49],
or [50]). The weighted residual method is a generalized well-known approach of moments,
which was widely used before computers became common, in particular, in the integral meth-
ods (S. 7.6). The concept of weighted residual method can be explained as follows.

Let’s say we need to find an approximate solution of differential equation F(u) = 0 sub-
jected to a given boundary condition. First, the given boundary condition is converted to a
homogeneous form (S. 9.2.1). Then, some function ũ = f (x) is chosen that exactly satisfies
the boundary condition but contains one or more unknown parameters; for instance, a polyno-
mial with undefined coefficients. Substituting this function into the just-mentioned differential
equation yields a residual R = F(ũ) because ũ is an approximate solution and, hence, does not
satisfy the equation under consideration. Multiplying this residual by some weighted function
w and integrating the result over the considering domain S, one tries to minimize an average
error by equating this integral to zero

∫S
wRdx = ∫S

wF(ũ)dx = 0 (9.81)

Applying a set of weighted functions gives as many algebraic equations as are required to
determine the unknown parameters. Solving gained in this set of equations and substituting
evaluated parameters into function ũ = f (x) completed the desired solution of the considering
equation F(u) = 0.

Various approximate methods applied to create a set of algebraic equation differ from each
other by classes of weighted functions. For instance, the method of moments results in a set of
weighted function: 1, x, x2, … The above-mentioned integral method is a case when the first
moment is used only, that is w = 1. Using other approximate method leads us to different set
of weighted functions and slightly different approximate solution (see examples below).

◾Example 9.13: Consider a simple conduction problem for a plane plate governed by
one-dimensional equation and simple boundary conditions

𝜆
d2T
dx2

+ q = 0, x = 0 T = T0, x = L T = TL (9.82)
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where T0 and TL are temperatures of edges of a plate and q is uniform heat source. To solve the
problem using the method of moments, a new variables 𝜗 and 𝜉 = x∕L are introduced, which
change the problem to homogeneous form (S. 9.2.2)

𝜗 = T − T0(1 − 𝜉) − TL𝜉,
d2𝜗

d𝜉2
+ q = 0, 𝜉 = 0, 𝜉 = 1 𝜗 = 0, q =

qL2

𝜆
(9.83)

For using first two moments, one should apply function with two parameters that satisfies-
boundary conditions, for instance, a relation 𝜗 = a1𝜉(𝜉 − 1) + a2𝜉

2(𝜉2 − 1). Substituting
this relation into equation (9.83) gives the residual R = 2a1 + (12𝜉2 − 2) + q. Then, using
weighted functions w = 1 and 𝜉 for first two moments, we get from equation (9.81)

1

∫
0

[2a1 + (12𝜉2 − 2)a2 + q]d𝜉 = 0

1

∫
0

[2a1 + (12𝜉2 − 2)a2 + q]𝜉d𝜉 = 0 (9.84)

These two equations determine coefficients a1 = q∕2 and a2 = 0 resulting in solution

T =
qL2

𝜆

x
L

( x
L
− 1
)
+ T0

(
1 − x

L

)
+ TL

x
L

(9.85)

In this particular case, approximate method yields exact solution.

Similar solutions are obtained employing other methods. Some differences arise due to other
sets of weighted functions. Thus, in Galerkin’s method, the weighted functions are the same as
the functions satisfying the boundary conditions. Therefore, in this case, the equations (9.84)
should be constructed by multiplying the same residual R = 2a1 + (12𝜉2 − 2) + q by parts
of function 𝜗 = a1𝜉(𝜉 − 1) + a2𝜉

2(𝜉2 − 1) to find from equation (9.81) the following two
expressions

1

∫
0

[2a1 + (12𝜉2 − 2)a2 + q]𝜉(𝜉 − 1)d𝜉 = 0,

1

∫
0

[2a1 + (12𝜉2 − 2)a2 + q]𝜉2(𝜉2 − 1)d𝜉 = 0

(9.86)
Solution of these equations gives the same results (9.85).

We show that analogous results yields also point collocation method with Dirac delta
weighted function (9.66) and subdomain collocation method. In the last case, instead of
multiplying a residual by weighted functions, the domain is divided into some subdomains.
For instance, for two domains, instead of equations (9.84) one gets a system

1∕2

∫
0

[2a1 + (12𝜉2 − 2)a2 + q]d𝜉

1

∫
1∕2

[2a1 + (12𝜉2 − 2)a2 + q]d𝜉 (9.87)

which again leads to the same solution (9.85).

Comment 9.7 The point collocation method mentioned above consists of satisfying the
boundary conditions functions with some undefined parameters that are evaluated by fitting
the solution in corresponding number of grid points.
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Comment 9.8 The relation 𝜗 = a1𝜉(𝜉 − 1) + a2𝜉
2(𝜉2 − 1) that was used in the considered

examples is not unique; there are many others with free coefficients satisfying the same bound-
ary conditions that result in slightly different approximate solutions. We consider several meth-
ods with the same relation for 𝜗 in order to show that the basic distinction between those
methods lies in the different weighted functions.

A special case is the subdomains method when the weighted function is taken as w = 1 for
one of subdomains and w = 0 for all others at a time. Physically, this implies that the average
residual error is zero over the each small domain. In particular, the control-volume formulation
pertains to this type of methods. Applying this approach to the same simple one-dimensional
equation (9.82), one gets after its integration

𝜆

[(dT
dx

)

b
−
(dT

dx

)

a

]
+

b

∫
a

qdx = 0,
Ti+1 − Ti

xi+1 − xi
−

Ti − Ti−1

xi − xi−1
+ q(xb − xa) (9.88)

Here, a and b denote the midways points between xi−1, xi and xi+1. In deriving the last
equation (9.88) from the first one, it is assumed that the temperature between grid points
changes linearly. This example shows the usual way of using a control-volume approach for
determining derivatives in the form of first part of the second equation (9.88).

Comment 9.9 This way of defining the finite-difference derivatives differs from relations
(9.80) certifying the derivatives via the Taylor series and is more grounded because the
control-volume method provides satisfaction of conservation laws over each subdomain.

Another specific case, which is called weak formulation, is employed in the finite-element
and boundary-element numerical methods. While in finite-difference method, an approximate
solution is obtained by satisfying the differential equation at the grid points, in FEM and
BEM, the solution is found by distributing the solution error over the each subdomain.
To introduce the basic concepts of boundary-element approaches, we start again from the
simple one-dimensional equation (9.82) for domain (0, 1). Multiplying this equation by
some weighted function w and transforming the result by double integration by parts (setting:
u = w, dv = (d2T∕dx2)dx and u = (dw∕dx)dx, dv = (dT∕dx)dx)), one obtains the following
two relation

1

∫
0

(
d2T
dx2

w +
q

𝜆
w

)
dx = −

1

∫
0

(dT
dx

dw
dx

+
q

𝜆
w
)

dx +
[dT

dx
w
]1

0
= 0 (9.89)

1

∫
0

(
−dT

dx
dw
dx

+
q

𝜆
w
)

dx +
[dT

dx
w
]1

0
=

1

∫
0

(
T

d2w
dx2

+
q

𝜆
w

)
dx +

[dT
dx

w
]1

0
−
[
T

dw
dx

]1

0
= 0

(9.90)
These two final weak expressions are starting statements for both element methods: the first
expression for FEM and the second for BEM.
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Comment 9.10 A weak solution of differential equation means that despite such solution
is not differentiable, it may be used due to reduction of the continuity requirements (see S.
7.1.2.5) for weak defined expressions.

The basic idea of employing the two last equations is that those relations give a possibility
to substitute the searching of some approximate solution by using a proper weighted function
such that only boundary values would be needed to obtain the final result instead of the data
of the whole computation domain usually required for that. This can be achieved in two ways
[49, 50]:

• Selecting a weighted function that satisfies the homogenous form of the governing equation.
Considering again the simple problem (9.82), we have the system of the following homo-
geneous differential equation with boundary conditions (9.82) and the weighted function
satisfying this system.

d2T∕dx2 = 0, T0 = TL = 0, w = a1x + a2 (9.91)

Substituting this result into last expression (9.90) yields

1

∫
0

q

𝜆
wdx +

[dT
dx

w
]1

0
−
[
T

dw
dx

]1

0
=

1

∫
0

q

𝜆
(a1x + a2)dx +

(dT
dx

)

1
(a1 + a2) −

(dT
dx

)

0
a2 = 0

(9.92)
This equation should be satisfied for arbitrary a1 and a2. Therefore, collecting terms con-
taining these coefficients leads to equations determining the derivatives at x = 0 and x = 1
and then gives the solution of the problem knowing only a weighted function

1

∫
0

q

𝜆
xdx +

(dT
dx

)

1
= 0,

1

∫
0

q

𝜆
dx +

(dT
dx

)

1
−
(dT

dx

)

0
= 0, (9.93)

(dT
dx

)

1
= −

q

2𝜆
,

(dT
dx

)

0
=

q

2𝜆
, T =

q

2𝜆
x(1 − x) (9.94)

• Using a function (usually Dirac function) satisfying a homogeneous governing equation.
Assuming that delta function meets the homogeneous equation (9.82), we find the corre-
sponding weighted function

d2w
dx2

= −𝛿i, 𝛿i =

{
1,

0,
x = xi
x ≠ xi

w =

{
x at x ≤ xi

xi at x > xi

, (9.95)

After that, applying relation (9.90) and first equation (9.95), we obtain

−

1

∫
0

T𝛿(x)dx +

1

∫
0

q

𝜆
wdx +

(dT
dx

)

1
w1 −

(dT
dx

)

0
w0 = 0 (9.96)
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The first integral equals Ti for 𝛿 = 𝛿i because the integral of delta function equals unit (see
(9.66)). Solving equation (9.96) for this integral and taking in conformity with relation
(9.91) that w0 = 0, we determine temperature Ti as follows

Ti =
q

𝜆

⎛
⎜
⎜
⎝

xi

∫
0

xdx +

1

∫
xi

xidx
⎞
⎟
⎟
⎠
+
(dT

dx

)

1
w1 =

q

𝜆

(
x2

i

2
+ xi − x2

i

)

+
(dT

dx

)

1
xi (9.97)

Using the boundary condition Ti = 0 at xi = 1 yields unknown derivative (dT∕dx)1 at xi = 1
and then gives the same solution (9.94) after substitution x for xi in (9.97)

(dT
dx

)

1
= −

q

2𝜆
, T =

q

𝜆

(
x − x2

2

)
−

q

2𝜆
x =

q

2𝜆
x(1 − x) (9.98)

Transforming equation (9.90) applying delta function as it just was shown is a routine proce-
dure in boundary element method. Modifying the last term of this equation using delta function
(9.95) leads to the usual form of equation in the boundary element approach

Ti =

1

∫
0

q

𝜆
wdx +

[dT
dx

w
]1

0
−
[
T

dw
dx

]1

0
(9.99)

This relation indicates that the unknown function is defined only by boundary conditions data.
In contrast to that, the finite element method is based on equation (9.89), which reveals that
the unknown function is defined by information of the whole domain. This may be seen by
applying a similar modifying procedure to the last equation (9.89).

Comment 9.11 The procedures and features described here for a simple one-dimensional
equations are valid for two- and three-dimensional problems [49, 50].

9.7 Computing Flow and Heat Transfer Characteristics

In practice, computing flow and heat transfer characteristics is associated with some specific
difficulties [6, 306].

9.7.1 Control-Volume Finite-Difference Method

9.7.1.1 Computing Pressure and Velocity

The main difficulty in solving the Navier-Stokes equations is that the pressure is unknown.
Although there is no a special equation for pressure, it is indirectly controlled by the con-
tinuity equation. This is achieved due to connection between the velocity field calculation
and satisfying the continuity equation. As it is clear from Navier-Stokes equations (1.5) and
(1.6), the velocity field can be calculated only if the pressure is known. At the same time, the
continuity equation can be satisfied only when the velocities are computed using a proper pres-
sure. Thus, to calculate the velocities and satisfy the continuity equation, the pressure should
be known.
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One well-known simple method to overcome this difficulty is to use Navier-Stokes
equation in the stream function form that is obtained by cross-differentiating equations (1.5)
and (1.6) to eliminate the pressure (S. 7.1.2.3). However, this approach is not applicable for
three-dimensional case in which the stream function does not exist.

As shown in [306], the direst computing pressure procedure for standard three-point con-
trol volume approach with midway located grid point fails resulting in zero pressure. A real
pressure distribution can be obtained by using special so-called staggered control volumes.
In staggered control volume, the velocity components and pressure are calculated for main
points located on the control volume faces that are set midway between two adjacent points in
direction normal to corresponding velocity component. This means that x-velocity component
u is calculated at the y-directed feces, and vice versa, the y-directed component v is calculated
at the x-directed faces. Such method results in the u-components located on the left and on the
right faces from the main point and in the v-components located above and below the main
point. The location of the main point with respect to two adjacent points is not important. It is
significant only that the main point should be on the control volume face.

Using the staggered grid eliminates the difficulties of calculating the pressure field, but
a corresponding computer program becomes more complicated because it must record all
information about the location of the velocity components and must perform tiresome interpo-
lations. The software SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) takes
into account just discussed peculiarities of computing the velocity components and pressure
[306]. This iterative procedure starts from guessing of the pressure field. Then, using the
finite-difference technique and guessed pressure field, the Navier- Stokes equations in the form
(1.5) and (1.6) for velocity components are solved. The second iteration consists of apply-
ing just found velocity components to calculate the pressure difference between adjacent grid
points. This gives the new pressure field that is used to get new velocity components. These
iterations are carried on until the continuity equation is satisfied. To control the process of
iterations, the special equation is derived.

Later, to improve the process of convergence, revised versions were developed. The
most used among others are: SIMPLER (SIMPLE Revised) [306], SIMPLEC (SIMPLE
Consistent) [402], and SIMPLEM (SIMPLE Modified) [276]. A nonitertive procedure PISO
(Pressure-Implicit with Splitting of Operators) also is developed [175].

Available studies reveal that family SIMPLE is a reliable, practical computing tool [175].

9.7.1.2 Computing Convection-Diffusion Equations

Consider a steady one-dimensional equation with only the convection and diffusion (or con-
duction, S. 7.1.1) terms, in which integration over a control volume yields

d
dx

(𝜌cuT) = d
dx

(
𝜆

dT
dx

)
, (𝜌cuT)i+1∕2 − (𝜌cuT)i−1∕2 =

(
𝜆

dT
dx

)

i+1∕2
−
(
𝜆

dT
dx

)

i−1∕2
(9.100)

Here, i + 1∕2 and i − 1∕2 denote a midway position between points i + 1, i and i, i − 1, respec-
tively. Using the lineal approximation between grid points and the same simple equation (9.80)
for the first derivative, we obtain from the last equation

1
2
(𝜌uc)i+1∕2(Ti+1 + Ti) −

1
2
(𝜌uc)i−1∕2(Ti + Ti−1) =

𝜆i+1∕2(Ti+1 − Ti)
xi+1 − xi

−
𝜆i−1∕2(Ti − Ti−1)

xi − xi−1
(9.101)
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It can be shown that this fine-looking central-difference scheme leads to unrealistic results
[306]. To see this, rearrange the last equation by collecting terms with the same Tn

Ti

[ (𝜌cu)i+1∕2

2
−

(𝜌cu)i−1∕2

2
+

𝜆i+1∕2

xi+1 − xi
+

𝜆i−1∕2

xi − xi−1

]
= Ti+1

[
𝜆i+1∕2

xi+1 − xi
−

(𝜌cu)i+1∕2

2

]

+Ti−1

[
𝜆i−1∕2

xi − xi−1
+

(𝜌cu)i−1∕2

2

]
ai = ai+1 + ai−1 + (𝜌cu)i+1 − (𝜌cu)i−1 (9.102)

In the last equation, notation a stands for relations in the brackets. The two additional terms
do not change this equation because according to continuity law they are equal: (𝜌u)i+1 =
(𝜌u)i−1. Consider now a simple example. Let, for instance, we have: (𝜌cu)i+1 = (𝜌cu)i−1 =
3∕2, 𝜆i+1∕(xi+1 − xi) = 𝜆i−1∕(xi − xi−1) = 1∕2, Ti+1 = 200, Ti−1 = 100. Then, from (9.102) it
follows that: Ti = 75, but if Ti+1 = 100, Ti−1 = 200, we get from (9.102) that Ti = 225. These
results are unrealistic because Ti cannot fall outside its neighbors Ti+1 and Ti−1. It is obvious
that such unrealistic results are possible in any case if |𝜌cu| exceeds 2𝜆∕Δx.

There are some possibilities to overcome this difficulty. The simplest way is to apply
the upwind scheme where the midway between i and i ± 1 points are determined as:
Ti±1∕2 = Ti if (𝜌cu)i±1∕2 > 0 and Ti±1∕2 = Ti±1 if (𝜌cu)i±1∕2 < 0 and with unchanged diffusion
terms. The exact solution of the first equation (9.100) subjected to boundary conditions x = 0,
T = T0, x = L, T = TL and presented in the form

T − T0

TL − T0
=

exp Pe(x∕L) − 1

exp Pe − 1
, Pe = 𝜌cuL

𝜆
(9.103)

gives an understanding of the applicability of upwind scheme. Analysis shows that for large
values of |Pe|, the temperature at the middle is nearly equal to that at upwind boundary, and this
is the assumption used in upwind scheme. However, in this scheme, the boundary temperature
remains the same for all values of Peclet number. The other imperfection is that for large |Pe|
at the middle, the derivative dT∕dx is almost zero so that the diffusion is almost absent. At the
same time, in upwind scheme the diffusion is calculated always applying linear profile, which
overestimates it for large Peclet numbers.

Two schemes with qualitative behavior close to solution (9.103) are usually used instead
of central-difference scheme. One is the hybrid scheme that approximated fairly such behav-
ior working alike the central-difference scheme for the range −2 ≤ Pe ≤ 2 and reducing the
diffusion to zero similar to upwind scheme outside of this range. That is the reason why this
scheme is named hybrid scheme. A power-law scheme constructed of four ranges of Peclet
number, Pe < −10, −10 ≤ Pe < 0, 0 ≤ Pe ≤ 10, and Pe > 10, better approximate the exact
solution (9.103).

9.7.1.3 False Diffusion

There are two types of false diffusion. The first type is a usual misunderstanding when by
comparison of central-difference and upwind schemes using the Taylor series, one concludes
that the upwind scheme produces the false diffusion. Indeed, the central-difference scheme is
better than upwind one only in the case of small Peclet numbers when the Taylor expansion is
applicable. For large Peclet numbers, the truncating Taylor series cannot be used for analyzing
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convention-diffusion dependence, which in this case is of exponential type. At the same time,
as is discussed above a central-difference scheme leads to unrealistic results in the case of large
Peclet numbers.

The other type is the real false diffusion that arises in situation when the calculations show
the present of diffusion despite the diffusion coefficient is zero. For example, if two paral-
lel two-dimensional streams of equal velocities and different temperatures come in contact,
the diffusion process forms a mixed layer only in the case of nonzero diffusion coefficient.
However, when the diffusion coefficient is zero, such two streams remains separated with tem-
perature discontinuity at the interface. Thus, if in such situation, the computer program shows
smeared profile in the cross section, it is obvious that a real false diffusion is taking place.

In general, false diffusion arises when the flow is oblique to the grid lines and there is a
gradient in the direction normal to the flow. Since the false diffusion is the most severe when
the flow direction makes an angle 45∘ with the grid lines [306], the intensity of false diffusion
can be reduced by adjusting the flow along the grid lines. The other way to reduce the false
diffusion is to use a small Δx and Δy, knowing that this results in small Peclet numbers when
the central-difference scheme works perfectly.

9.7.2 Control-Volume Finite-Element Method

The control-volume finite-element method is basically very close to the control-volume
finite-difference method described above. The only advantage that distinguishes the former
from the latter is the ability to use the irregular grids, since in the finite-difference approach,
mainly uniform grids are employed. Such irregular, for example, triangular grids are more
flexible and allow providing local grid refinement.

The difficulties just discussed are inherent in the finite-element method as well. These diffi-
culties have been resolved leading to a similar control-volume finite-element method with the
following basic features [6, 26]:

• For the triangular grids, the values of dependent variables are calculated for the grid points
that lie at the vertices of the triangles, which plays a role of main points. The lines joined
the centroid of each triangular element with midpoints of its sides divide each element in
three equal areas, regardless of the form of triangle element. These areas collectively con-
struct the nonoverlapping contiguous polygonal volume elements that are similar to these
in finite-difference approach.

• Many CFD (computational fluid dynamics) codes used the staggered grids that do not have
the problems of central-difference schemes. However, the staggered grids cannot be used
for nonorthogonal grids and unstructured meshes, which are typical for the finite-element
approach. Therefore, in the finite-element method, instead of the staggered grids, two other
approaches are used. One consists of unequal-order formulations for pressure and veloc-
ity components in which for the former are used a sparser grid and a lower-order inter-
polation than that for the latter. In the second approach, the equivalent of the co-located
momentum-interpolation scheme is applied. However, the first approach requires two sets
control volumes that makes the calculation awkward and an excessively fine grids in the
case of high Reynolds numbers or pressure gradients.
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• As a result, the co-located momentum-interpolation scheme has been adopted in computa-
tion practice. In these schemes, both the velocities and pressure are calculated at the same set
of nodes located at the centre of the control volume in contrast to the case of staggered grids
when the pressure and the velocities are determined at different faces of the control volume.
The formulae for velocities and pressure in co-located methods are derived employing the
discretization of the momentum and continuity equations for the staggered grids and due to
that do not have problems of the central-difference as well.
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Conclusion

How Close should be a Model to Nature?

For every complex problem there is an answer that is clear, simple, and wrong.

Henry Mencken

This book presents applications of modern mathematical models of heat transfer and fluid
flow developed and widely used during the last fifty years after computers became common.
These models and corresponding methods of problem solutions in comparison with previ-
ous approaches are physically and mathematically much stronger grounded, comprising the
powerful tools for investigating natural and engineering systems. Although the contemporary
models are formulated relatively recent, they are obtained as a result of numerous improve-
ments of the first simple models, gradually approaching the current stage of development.
Because of that, the proximity of the model to the natural prototype represents on each step
the level of knowledge in a specific field.

For example, the contemporary direct numerical simulation methods were created as a result
of enormous studies for the past 200 years. Starting from Navier and other scholars’ attempts
as well as equations given by Stokes in 1845, the developers greatly improved the initial simple
models of turbulent flow in many steps, including such keystone contributions as proposed by
Reynolds’ dimensionless number, his averaging of Navier-Stokes equations, the first simple
Prantdl mixing-length model, the Kolmogorov turbulent energy equation, the Smogorinsky
LES procedure, and finally DES models.

Examples considered in this text show that despite the current restricted computer resources,
the results obtained by the last versions of DES differ in principle from former solutions. In par-
ticular, the presented numerical data and contour patterns demonstrate successful simulation
of flow separation around the bluff bodies and models of aircraft at high Reynolds numbers. In
contrast to other methods, the direct simulation approaches also provide the numerical infor-
mation of the instantaneous parameters such as velocity components fluctuation, stresses, cor-
relations of parameters, and so on, which before could only be attained experimentally. Due to
that development, these results are viewed as experimental data, albeit gained computationally.

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine,
First Edition. Abram S. Dorfman.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.



�

� �

�

374 Foundations of Fluid Flow and Heat Transfer

As the computer power increases, new feasibilities will be achieved, resulting in fresh, original
thoughts, ideas, and improved models.

The leading role of mathematical models in research is clearly seen as well from another
part of the book, which presents applications of modern methods in heat transfer. Comparing
the boundary conditions of third and forth kinds reveals that using conjugate models leads to a
better physical understanding of heat transfer features as well as to diverse new applications.
Such results as essentially different effects of positive and negative temperature head gradients
on heat transfer coefficient, the analogy of this effect with a well-known effect of pressure gra-
dients on the friction coefficient, as well as the data of Reynolds and Prandtl numbers influence
on the temperature head effects could not be observed within the frame of boundary conditions
of the third kind. The same merit of conjugate models showed applications in various areas
from modeling industrial and technology processes to cooling, drying, thermal treatment, and
production of goods and food.

A special case is the usage of mathematical models in biology and medicine. The employing
of mathematical models cardinally changed the theoretical methods in these fields of science
from qualitative considerations to the quantitative approaches presenting the results in analyti-
cal, numerical, or graphical dependences between parameters. Even the first results of possible
bacteria trajectories in the ureter obtained by a simple linear model showed just how reliable
and informative the modeling of fluid flow in human organs is. The further advanced studies
applying k − 𝜔 and k − 𝜀 turbulent models and peristaltic flow simulations gave new insight
into processes in healthy and pathologic body organs. This was achieved due to gained pat-
terns of flow in normal and disordered blood vessels, urine and bile channels with or without
stones, simulation data of thermal, magnetic, and electromagnetic effects during medical pro-
cedures, in particular, direct drag infusion, delivery antibodies into tumors, endoscopy, and
hyperthermia for cancer treatment.

In fact, any research starts from choosing or creating a model, and the question of proximity
of the employing model to nature is one of the first to answer. A simple response to this question
is unrealistic because creating a model is a challenge. The two conflicting essential parts—the
system of equations describing a problem and algorithm specifying the solution—constitute
this issue. Usually, the more complete and hence, more complex, is the system of governing
system of equations, the more involved is the algorithm for solving it. Although it is obvious
that a complete model is desired, the realization of a complex pattern requires high computer
memory and computing time, which leads to excessive costs. Therefore, a balance between the
simplicity and usefulness is one of the basic model characteristics that have to be provided.

The complexity of the model largely depends particularly on the problem in question and
on the details that we are supposed to get. For example, in the case of a high Reynolds number,
if only friction, heat, and/or mass transfer coefficients have to be estimated, the model may be
based on boundary layer equations. In such a case, there is no reason to apply software; rather
it is much easier to use the analytical or correlative relations. A similar situation takes place if
the flow is characterized by a low Reynolds number, and if the more simple creeping relations
are applicable, instead of Navie-Stokes and full energy equations. On the other hand, in the
case of moderate Reynolds numbers as well as regardless of Reynolds number values when the
parameter profiles or flow patterns are required, the Navie-Stokes and full energy equations
should be solved. Such a compromise between possibilities and specific requirements one
should achieve in all other aspects of the model, including initial and boundary conditions, type
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of numerical methods and grid discretization, accuracy and applicability of results, computer
memory, time and costs of calculations.

The great investigative experience represented by examples reviewed in the basic text along
with conclusions outlined in this short analysis show that the model should be as simple as
possible while describing the essential physical properties of studied phenomenon with
satisfactory accuracy.

The modern methods introduced by this book have a long-term bright future. Nevertheless,
the detailed forecast for each means widely depends on the current degree of it evolution.
Thus, to predict the future of conjugate heat transfer approach, we take into account that this
subject has been studied since the time of Newton, and that the current methods are highly
developed. Proceeding from these facts, it may be expected that in the future, the existing
conjugate methods will be widely used for solving more complicated, realistic problems, and
the conjugate principles will be extended to study the other phenomena where interface effects
are important, such as, for instance, in combustion or biology structures.

From quite a different situation one proceeds to predict the future of modeling in biology
or medicine in which the mathematical methods are only first applied to obtain the quanti-
tative data of processes in nature and in human organs. The review of examples shows that
these first mathematical models are simple, based on weighty assumptions, and are mainly
semi-conjugate considering only the impact of the imposed propagation wave on fluid flow,
ignoring the backward effects of fluid flow on the organ wall’s motion. In such a case, it is rea-
sonable to anticipate that the coming years will bring the more physically grounded models,
and wide, profound investigations will be accomplished, providing a deep insight and resulting
in new methods of treatment.

The more assured forecast may be devised for the turbulence direct simulation. We have seen
that even now, under limited computer means, the new modern methods made great progress,
especially because the last models provided the first successful simulation of separation flows
around real objects at rather high Reynolds numbers. Therefore, there is no doubt that grow-
ing computer resources will lead to further essential improvements of models and simulation
techniques, opening new horizons in understanding the turbulence nature and in practical appli-
cations. However, estimations show that direct numerical simulation of flow past airborne or
ground vehicle at real Reynolds numbers requires computer efficiency that may be possible
approximately in 2045 (Spalart) [368]. When it came true, the turbulence “the most important
unsolved problem of classical physics”, as it was characterized by Richard Feynman, would
be finally solved almost two centuries after its first publication.

Finally, it is worth to mention that although studying the new efficient methods requires
much time and energy, this gives a person a powerful tool for solving complicated contempo-
rary problems, which provides physical understanding and highly accurate data of processes
of interest.



�

� �

�

References

1. Abbasi, F.M., Hayat, T., Ahmad, B. and Chen, G.Q. (2014) Peristaltic motion of a non-Newtonian
nanofluid in an asymmetric channel. Zeitschrift für Naturforschung Section, A-A J. Physical Sci-
ence, 69, 451–461.

2. Abd-Alla, A.M., Abo-Dahab, S.M. and El-Semiry, R.D. (2014) Peristaltic flow in cylindrical tubes
with an endoscope subjected to effect of rotation and magnetic field. J. Comput. Theor. Nanoscin.,
11 (4), 1040–1048.

3. Abd-Alla, A.M. and Abo-Dahab, S.M. (2015) Magnetic field and rotation effects on peristaltic
transport of a Jeffrey fluid in an asymmetric channel. J. Magnetism Magnetism Materials, 374,
680–689.

4. Abdoli, A., Dulikravich, G.S., Bajaj, C. and Jahania, M.S. (2014) Human heart conjugate simula-
tion: unsteady thermo-fluid-stress analysis. Int. J. Num. Meth. Biomed. Engin, 30 (11), 1372–1386.

5. Abramzon, B.M. and Borde, I. (1980) Conjugate unsteady heat transfer from a droplet in creeping
flow. AIChE, J, 26, 536–544.

6. Acharya, S., Baliga, B.R., Karki, K. et al. (2007) Pressure-based finite-volume methods in compu-
tational fluid dynamic. ASME J. Heat Transfer, 129, 407–424.

7. Achenbach, E. (1972) Experiments on the flow past spheres at very high Reynolds numbers. J. Fluid
Mech, 54 (3), 565–575.

8. Aerotherm corporation, Ed. (1992) User’s manual non proprietary aerotherm charring material
response and ablation program, CMA 925, Mountain View, California.

9. Ahn, J., Choi, H. and Lee, J.S. (2007) Large eddy simulation of flow and heat transfer in a rotating
ribbed channel. Int. J. Heat Mass Transfer, 50 (25–26), 4937–4947.

10. Akbar, N.S. and Nadeem, S. (2011) Combined effects of heat and chemical reaction on the peri-
staltic flow of Carreau fluid model in divergent tube. Int. J. Num. Meth. Fluids, 67, 1818–1832.

11. Al-Amiri, A., Khanafer, K. and Vafai, K. (2014) Fluid-structures interactions in tissue during
Hyperthermia. Num. Heat Transfer Part A, 66 (1), 1–16.

12. Al-Bakhit, H. and Fakheri, A. (2006) Numerical simulation of heat transfer in simultaneously devel-
oping flows in parallel rectangular duct. Appl. Therm. Engin., 26, 596–603.

13. Ali, N., Sajid, M., Jsved, T. and Abbas, Z. (2010) Heat transfer analysis of peristaltic flow in a
curved channel. Int. J. Heat Mass Transfer, 53, 3319–3325.

14. Ambrok, G.S. (1957) The effect of surface temperature variability on heat transfer exchange in
laminar flow in a boundary layer. Soviet Phys.-Tech. Phy, 2, 738–748.

15. Amin, M.R. and Gawas, N.L. (2003) Conjugate heat transfer and effects of interfacial heat flux
during the solidification process of continuous castings. J. Heat Transfer, 125, 339–349.

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine,
First Edition. Abram S. Dorfman.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.



�

� �

�

References 377

16. Antonia, R.A. and Kim, J. (1991) Turbulent Prandtl number in the near-wall region of turbulent
channel flow. Int. J. Heat Mass Trans., 34, 1905–1908.

17. Argyropoulus, C.D. and Markatos, N.C. (2015) Recent advances on the numerical modeling of
turbulent flows. Appl. Math. Model., 39 (2), 693–732.

18. Asghar, S., Nussain, Q., Hayat, T. and Alsaadi, F. (2014) Hall and ion slip effects on peristaltic flow
and heat transfer analysis with Ohmic heating. Appl. Math. Mech-English Ed., 35 (12), 1509–1524.

19. Ashrafian, A., Andersson, H.I. and Manhart, M. (2004) DNS of turbulent flow in a rod-roughened
cannel. Int. J. Heat Flow, 25, 373–383.

20. Atabek, H.B. and Lew, H.S. (1966) Wave propagation through a viscous incompressible fluid con-
tained in an initially stressed elastic tube. Biophys. J., 6, 481–503.

21. Atabek, H.B. (1968) Wave propagation through a viscous incompressible fluid contained in a teth-
ered, initially stressed, orthotropic elastic tube. Biophys. J., 8, 626–649.

22. Aydin, O., Avci, M., Bali, T. and Arici, M.E. (2014) Conjugate heat transfer in a duct with an axially
varying heat flux. Int. J. Heat Mass Transfer, 76, 385–392.

23. Ayukawa, K., Kawai, T. and Kimura, M. (1981) Streamlines and path lines in peristaltic flows at
high Reynolds number. Bull. Japan Soc. Mech. Engin., 24, 948–955.

24. Baiocco, P. and Bellomi, P. (1996) A coupled thermo-ablative and fluid dynamic analysis for numer-
ical application to solid propellant rockets, AIAA 96-1811, 31 st. AIAA Thermophysics Conference,
June 17–20, New Orleans, LA.

25. Baldwin, B.S. and Lomax, H. (1978) Thin-later approximation and algebraic model for separated
turbulent flows. AIAA paper, 78–257.

26. Baliga, B.R. and Patankar, S.V. (1983) A control-volume finite-element method for
two-dimensional incompressible fluid flow and heat transfer. Num. Heat Transfer, 6, 245–261.

27. Bamhardt, M. and Candler, G.V. (2012) Detached eddy simulation of the Reentry-F flight experi-
ment. J. Spacecraft and Rockets, 49 (4), 691–699.

28. Bang, B.W., Jeong, S., Lee, D.H. et al. (2012) The biodurability of covering materials for metallic
stents in a bite flow phantom. Digestive Diseases Sci., 57 (4), 1056–1963.

29. Banks, J. and Brssloff, N.W. (2007) Turbulence modeling in three-dimensional stenosed arterial
bifurcations. J. Biomech. Engin. ASME, 129 (1), 40–50.

30. Barmpas, F., Bouris, D. and Moussiopoulos, N. (2009) 3D Numerical simulation of the transient
thermal behavior of a simplified building envelope under external flow. Appl. Thermal. Engin., 19,
3716–3720.

31. Barozzi, G.S. and Pagliarini, G. (1985) A method to solve conjugate heat transfer problems-the
case of fully-developed laminar flow in a pipe. ASME J. Heat Transfer, 107 (1), 77–83.

32. Barton, C. and Raynor, S. (1968) Peristaltic flow in tubes. Bull. Math. Biophys., 30, 663–680.
33. Batchelor, G.K. (1967) An Introduction to Fluid Dynamics, Cambridge University Press, New York.
34. Bathe, K.J., Zhang, H. and Ji, S. (1999) Finite element analysis in fluid flows fully coupled with

structural interactions. Comput. Struct., 72, 1–16.
35. Baxter, L.T., (1990) Transport of fluid and macromolecules in normal and neoplastic tissue, Ph. D.

Thesis. Carnegie Mellon University, Pittsburg, PA.
36. Baxter, L.T. and Jain, R.K. (1991) Transport of fluid and macromolecules in tumors 1V.A micro-

scopic model of the perivascular distribution. Microvas. Resear., 41, 252–272.
37. Beckers, G. and Dehez, B., (2013) Design and modeling of a quasi-static peristaltic piezoelectric

micropamp, Int. Conf. Elekt. Mash. Syst., Busan, South Korea, Okt. 26–29, 2013.
38. Beckers, G. and Dehez, B., (2014) Design and modeling of an electromagnetic peristaltic microp-

ump, IEEE/ASME Int. Conf. Adven. Intellig. Mechanotron. Besacon, France, Jul. 08–11.2014.
39. Bejan, A. (1982) Second law analysis in heat transfer and thermal design, In Advances Heat Trans-

fer, vol. 15 (eds T.F. Irvine and J.P. Hartnett), pp. 1–58.
40. Bensow, R.E., Persson, T., Fureby, C. et al. (2004) Large Eddy Simulation of the Viscous Flow

Around Submarine Hulls, St. John’s Newfoundland and Labrador, Canada, pp. 1–16.



�

� �

�

378 References

41. Bertuzzi, A., Salinary, S., Mancinelli, R. and Pescatori, M. (1983) Peristaltic transport of a solid
bolus. J. Biomech., 16 (7), 459–464.

42. Besharatian, A., Kumar, K., Peterson, R.L., Bernal, L.P. and Najafi, K. (2012) A scalable, modular,
multi-stage, peristaltic, electrostatic gas micro-pump, 25 IEEE Int. Conf. Micro Elect. Mech. Syst.,
Paris, France, Jan. 29–feb. 02. 2012.

43. Bhatt, B.S. and Sacheti, N.C. (1979) On the analogy in slip flows. Indian J. Pure Appl. Math., 10,
303–306.

44. Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2005) Transport Phenomena, 2 edn, Wiley & Sons
Inc, New York.

45. Blasé, T.A., Guo, Z.X., Shi, Z. et al. (2004) A 3D conjugate heat transfer model for continuous
wire casting. Mater. Sci. Engin. A, 365, 318–324.

46. Boyd, R.D. and Zhang, H. (2006) Conjugate heat transfer measurement with single-phase and
water flow boiling in a single-side heated monoblock flow channel. Int. J. Heat Mass Transfer,
49, 1320–1328.

47. BPD, Ed. (1994) EBM motor, low density liner characterization, RE-EBM-7101, Ed.3.
48. Bradshow, P., Ferriss, D.H. and Atwell, N.P. (1967) Calculation of boundary layer development

using the turbulent energy equation. J. Fluid Mech., 28 (3), 593–616.
49. Brebbia, C.A. and Walker, S. (1980) Boundary Element Technique in Engineering, Butterworths,

London-Boston.
50. Brebbia, C.A. and Dominguez, J. (2001) Boundary Elements. An Introductory Course, Second edn,

WIT Press, Boston.
51. Brosh, T., Patel, D., Wacks, D. and Chakraborty, N. (2015) Numerical investigation of localized

forced ignition of pulverized coal particle-laden mixtures: A direct numerical simulation (DNS)
analysis. Fuel, 145, 50–62.

52. Bukhvostova, A., Russo, E., Kuerten, J.G.M. and Geurts, B.J. (2014) DNS of turbulent
droplet-laden heated channel flow with phase transition at different initial relative humidities. Int.
J. Heat Fluid Flow, 50, 445–455.

53. Burdo, O.G., Milinchuk, S.L. and Kovalenko, E.A. (2003) Conjugate heat and mass transfer in
crystallization from food solutions, Heat Transfer Res. 34 (i 5 - 6): 170, 14 pages.

54. Burn, J.C. and Parkes, T. (1967) Peristaltic motion. J. Fluid Mech., 29 (4), 731–743.
55. Bykova, A.A. and Regirer, S.A. (2005) Mathematical models in urinary system mechanics (review).

Fluid Dynamics, 40 (1), 1–19.
56. Carew, E.O. and Pedley, T.J. (1997) An active membrane model for peristaltic pumping: part

1-Periodic activation waves in an infinite tube. J. Biomech. Eng. Transact. ASME, 119, 66–76.
57. Carlson, G.A., Love, J.T., Urenda, R.S. et al. (1980) A portable insulin infusion system with rotary

solenoid-driven peristaltic pump. Med. Prog. Tech., 8 (1), 49–56.
58. Carslaw, H.S. and Jaeger, J.C. (1986) Conduction of Heat in Solids, 2nd edn, Clarendon Press,

Oxford.
59. Cebeci, T. and Smith, A.M.O. (1974) Analysis of turbulent boundary layer, Ser. In Appl. Math.

Mech, vol. XV, Academic Press.
60. Cebeci, T. and Bradshaw, P. (1984) Physical and Computational Aspects of Convective Heat Trans-

fer, Springer, New York.
61. Chakravarty, S. and Chowdhury, A.G. (1988) Response of blood flow through an artery under

stenotic conditions. Rheol. Acta, 27, 418–427.
62. Chang, C.M., Cheng, W.T., Huang, C.E. and Du, S.W. (2009) Numerical prediction on the erosion in

the hearth of a blast furnace during tapping process. Int. Commun. Heat Mass Transfe, 36, 480–490.
63. Chang, K. (1970) Separation of Flow, Pergamon Press, New York.
64. Chang, S.L., Chiu, K.C., Hsu, F.Y. and Chen, J.K. (2012) Design of a novel pump for

bio-applications, Ed. Thienpont, H., Mohr, J., Zappe, H. and Nakajima, H., Conf. Micro-Optics,
Brussels, Belgium, Apr. 16–19. 2012.



�

� �

�

References 379

65. Chapman, D. and Rubesin, M. (1949) Temperature and velocity profiles in the compressible laminar
boundary layer with arbitrary distribution of surface temperature. J. Aeronaut. Sci., 16, 547–565.

66. Chatterjee, D. and Chakraborty, S. (2005) Large eddy simulation of laser-induced surface-
tension-driven flow. Metallurg. Mater. Transact. B-Process Metallurg. Mater. Sci., 36 (6), 743–754.

67. Chen and Pei, D. (1989) A mathematical model of drying processes. Int. J. Heat Mass Transfer,
32, 297–310.

68. Chen, Q., Zhang, Y., Elad, D. et al. (2013) Navigating the site for embryo implantation: biomed-
ical and molecular regulation of intrauterine embryo distribution. Mol. Aspects Med., 34 (5),
1024–1042.

69. Chida, K. and Katto, Y. (1976) Conjugate heat transfer of continuously moving surfaces, Int. J.
Heat Mass Transfer 19 (5) : 461–470.

70. Chiruvella, R.V., Jaluria, Y., Esseghir, M. and Sernas, V. (1996) Extrusion of non-Newtonian fluids
in a single-screw extruder with pressure back flow. Polymer Eng. Sci., 36, 358–367.

71. Chiu, W.K.S., Richards, C.J. and Jaluria, Y. (2001) Experimental and numerical study of conjugate
heat transfer in an horizontal channel heated from below. ASME J. Heat Transfer, 123 (4), 688–697.

72. Choi, C.Y. and Hsieh, C.K. (1992) Solution of Stefan problems imposed with cyclic temperature
and flux boundary conditions. Int. J. Heat Mass Transfer, 35, 1181–1195.

73. Choi, C.Y. (2006) A boundary element solution approach for conjugate heat transfer problem in
thermally developing region of a thick walled pipe. J. Mech. Sci. Techn., 20, 2230–2241.

74. Chrispell, J. and Fauci, L. (2011) Peristaltic pumping of solid particles immersed in viscoelastic
fluid. Math. Model. Natur. Phenom., 6 (5), 67–83.

75. Chu, W.K. and Fang, J. (2000) Peristaltic transport in a slip flow. European Phis. J. B, 16, 543–547.
76. Clauser, F.H. (1956) The turbulent boundary layer, Advances in Applied Mechanics, vol. IV, Aca-

demic Press, New York, pp. 1–51.
77. Coccarelli, A. and Nithiarasu, P. (2015) A robust finite element modeling approach to conjugate

heat transfer in flexible elastic tubes and tube network. Num. Heat Transfer, part A, 67 (5), 513–530.
78. Cole, K.D. (1997) Conjugate heat transfer from a small heated strip. Int. J. Heat Mass Transfer, 40

(11), 2709–2719.
79. Coles, D.E. and Hirst, E.A. (1969) Computation of turbulent boundary layer, 1968

AFOSR-IFP_Stanford Conference, vol. II, Stanford University, CA.
80. Comini, G., Nonino, C. and Savino, S. (2008) Modeling of conjugate conduction and heat and mass

convection in tube-fin exchangers. Int. J. Num. Methods Heat Fluid Flow, 18, 954–968.
81. Constantinescu, G.S., Pacheco, R. and Squires, K.D. (2002) Detached-eddy simulation of flow over

a sphere. AIAA, 2002–0425.
82. Croce, G. (2001) A conjugate heat transfer procedure for gas turbine blades. Annals New York

Academy Science, 934, 273–280.
83. Cummings, R.M. and Schutte, A. (2013) Detached eddy simulation of the flow field about VFF-2

delta wing. Aerospace Sci. Techn., 24, 66–76.
84. Dan, C. and Wachs, A. (2010) Direct numerical simulation of particulate flow with heat transfer.

Int. J. Heat Flow, 31, 1050–1057.
85. Davie, C.T., Piarce, C.J. and Bicanic, N. (2006) Coupled heat and moisture transport in concrete at

evaluated temperatures-effects of capillary pressure and adsorbed water. Num. Heat Transfer, part
A, 49 (8), 733–763.

86. Davis, E.J. and Gill, W.N. (1970) The effects of axial conduction in the wall on heat transfer with
laminar flow. Int. J. Heat Mass Transfer, 13, 459–470.

87. Davis, E.J. (1973) Exact solution for a class of heat and mass transfer problems. Can. J. Chem.
Engin., 51, 562–572.

88. Davis, E.J. and Venkatesh, S. (1979) Solution of conjugated multiphase heat and mass transfer
problems. Chem. Engin. Sci., 34 (6), 775–787.

89. De Bonis, M.V. and Ruocco, G. (2014) Conjugate heat and mass transfer by jet impingement over
a mist protrusion. Int. J. Heat Mass Transfer, 70, 192–201.



�

� �

�

380 References

90. Deck, S. (2005) Zonal-detached eddy simulation of the flow around a high-lift configuration. AIAA
J., 43 (11), 2372–2384.

91. Deck, S. (2012) Recent improvements in the zonal detached eddy simulation (ZDES) formulation.
Theor. Comput. Fluid Dyn., 26 (6), 523–550.

92. Deck, S., Renard, N., Laraufie, R. and Sagaut, P. (2014) Zonal detached eddy simulation (ZDES)
of a spatially developing flat plate turbulent boundary layer over the Reynolds number range 3150
<= Re-theta <=14000. Phys. Fluids, 26 (2), 025116.

93. Defraeye, T., Blocken, B. and Carmeliet, J. (2012) Analysis of convective heat and mass transfer
coefficients for convective drying of a porous flat plate by conjugate modeling. Int. J. Heat Mass
Transfer, 55, 112–124.

94. Dirven, S., Xu, W., Cheng, L.K. and Allen, J. (2015) Biomimetic investigation of intrabolus pres-
sure signatures by a peristaltic swallowing robot. IEEE Transac. Instrum. Measur., 64 (4), 967–974.

95. Divo, E., Steinthorsson, E., Kassab, A.J. and Bialecki, R. (2002) An iterative BEM/ FVM protocol
for steady-state multi-dimensional conjugate heat transfer in compressible flows. Engin. Analys.
Bound. Elem., 26 (5), 447–454.

96. Divo, E. and Kassab, A.J. (2007) An efficient localized radial basis function meshless method for
fluid flow and conjugate heat transfer. ASME J. Heat Transfer, 129, 124–136.

97. Dodoulas, I.A. and Navarro-Martinez, S. (2015) Analysis of extinction in a non-premixed turbulent
flame using large eddy simulation and the chemical explosion mode analysis. Comb.Theory Model.,
19 (1), 107–129.

98. Dogan, T., Sadat-Hosseini, H. and Stern, F. (2015) DES of Delft catamaran at static drift condition.
Naval Engin. J., 126 (4), 97–101.

99. Dolinsky, A.A., Dorfman, A.S. and Davydenko, B.V. (1991) Conjugate heat and mass transfer in
continuous processes of convective drying. Int. J. Heat Mass Transfer, 34 (11), 2883–2889.

100. Dorfman, A.S. (1970) Heat transfer from liquid to liquid in a flow past two sides of a plate. High
Temperature, 8 (3), 515–520.

101. Dorfman, A.S. (1971) Exact solution of the thermal boundary layer equation with arbitrary tem-
perature distribution on streamlined surface. High Temperature, 9, 870–878.

102. Dorfman, A.S. (1971) Solution heat transfer equation for equilibrium turbulent boundary layer
when the temperature distribution on the streamlined surface is arbitrary. Fluid Dynamics, 6,
778–785.

103. Dorfman, A.S. (1972) Calculation of the thermal fluxes and the temperatures of the surface of a
plate with heat transfer between fluids flowing around the plate. High Temperature, 10, 293–298.

104. Dorfman, A..S. and Vishnevskii, V.K. (1972) Approximate solution of dynamic and thermal bound-
ary layer equations for non-Newtonian fluids with arbitrary pressure gradients and surface temper-
ature. Int. Chem. Engin., 12, 288–294.

105. Dorfman, A.S. (1975) Temperature-distribution singularities on the separation surface during heat
transfer between a plate and the liquid flowing around it. High Temperature, 13 (1), 97–100.

106. Dorfman, A.S. and Lipovetskaya, O.D. (1976) Heat transfer of arbitrary nonisothermic surface with
gradient turbulent flow of an incompressible liquid within a wide range of Prandtl and Reynolds
numbers. High Temperature, 14 (1), 86–92.

107. Dorfman, A.S. and Lipovetskaya, O.D. (1976) Heat transfer to an isothermal flat plate in turbulent
flow of a liquid over a wide range of Prandtl and Reynolds numbers. J. Applied Mechan.Tecnic.
Physics, 17 (4), 530–535.

108. Dorfman, A.S. and Davydenko, B.V. (1980) Conjugate heat exchange for flows past elliptical cylin-
ders. High Temperature, 18 (2), 275–280.

109. Dorfman, A.S. and Novikov, V.G. (1980) Heat transfer from a continuously moving surface to
surroundings. High Temperature, 18, 898–901.

110. Dorfman, A.S., Grechannyy, O.A. and Novikov, V.G. (1981) Conjugate heat transfer problem for
a moving continuous plate in fluid flow. High Temperature, 19 (5), 706–714.



�

� �

�

References 381

111. Dorfman, A.S. (1982) Heat Transfer in Flow around Nonisothermal Bodies (in Russian), Mashinos-
troenie, Moscow.

112. Dorfman, A.S. (1982) Exact solution of the thermal boundary layer equation for an arbitrary heat
flux distribution on a surface. High Temperature, 20 (4), 567–574.

113. Dorfman, A.S. (1983) Methods of estimation of coefficients of heat transfer from nonisotheramal
walls. Heat Transfer- Soviet Research, 15 (6), 35–57.

114. Dorfman, A.S. (1984) Influence of turbulent Prandtl number on heat transfer of a flat plate. J.
Applied Mechan. Tech. Physics, 25 (4), 572–575.

115. Dorfman, A.S. (1986) Combined heat transfer over the initial segment of a plate in a flow. Heat
Transfer-Soviet Research, 18, 52–74.

116. Dorfman, A.S. (1988) Solution of certain problems of optimizing the heat transfer in flow over
bodies. Appl. Therm. Sci., 1 (2), 25–34.

117. Dorfman, A.S. (1995) Exact solution of nonsteady thermal boundary layer equation. ASME J. Heat
Transfer, 117, 770–772.

118. Dorfman, A.S. (2004) Transient heat transfer between a semi-infinite hot plate and a flowing cooling
liquid film. ASME J. Heat Transfer, 126 (2), 149–154.

119. Dorfman, A.S. (2009) Conjugate Problems in Convective Heat Transfer, CRC Press Taylor & Fran-
cis, Boca Raton, Fl.

120. Dorfman, A.S. (2011) Universal functions in boundary layer theory (Review). Fundam. J. Therm.
Sci. Engin., 1, 35–72.

121. Dorfman, A.S. (2013) Classical and Modern Engineering Methods in Fluid Flow and Heat Trans-
fer, Momentum Press.

122. Dunin, I.L. and Ivanov, V.V. (1974) Conjugate heat transfer problem with surface radiation taken
into account. Fluid Dynamic, 9 (4), 667–670.

123. Eckert, E.R.G. and Drake, R.M. (1959) Heat and Mass Transfer, McGrew-Hill.
124. Eckstein, E.C. (1970) Experimental and theoretical pressure studies of peristaltic pumping, in S,

M. Thesis. Dep. of Mech. Eng. M. I. T , Cambridge, Mass.
125. Ede, A.J. (1967) Advances in free convection, in Advances in Heat Transfer, vol. 4, Acad. Press,

pp. 1–64.
126. Ellahi, R., Riaz, A. and Nadeem, S. (2014) Three-dimensional peristaltic flow of a Williamson fluid

in a rectangular channel having compliant walls. J. Mech, Med. Biology, 14 (1), 1450002.
127. El Qarnia, H. (2004) Theoretical study of transient response of a rectangular latent heat ther-

mal energy storage system with conjugate forced convection. Energy Conver. Maneg., 45,
1537–1551.

128. El-Sayed, M.F., Fldabe, N.T.M., Ghaly, A.Y. and Sayed, H.M. (2011) Effects of chemical reaction,
heat, and mass transfer on non-Newtonian fluid flow through porous medium in vertical peristaltic
tube. Transp. Porous Med., 89, 185–212.

129. Erdelyi, A. (ed.) (1954) Tables of Integral Transforms, vol. 1, McGraw-Hill, New York.
130. Eytan, O. and Elad, D. (1999) Analysis of intra-uterine fluid motion induced by uterine contractions.

Bull. Math. Biol., 61, 221–238.
131. Eytan, O., Jaffa, A.J. and Elad, D. (2001) Peristaltic flow in a tapered channel: application to embryo

transport within the uterine cavity. Med. Engin. Physics, 23 (7), 473–482.
132. Eytan, O., Zaretsky, U., Jaffa, A.J. and Elad, D. (2007) In vitro simulations of embryo transfer in

a laboratory model of the uterus. J. Biomech., 40 (5), 1073–1080.
133. Favre, A. (1965) Equations des gaz turbulents compressibles. J. de Mecanique, 4 (N 3),

361–390.
134. Favre, T. and Efraimsson, G. (2010) Detached eddy simulation of the effects of different wind

gust models on the unsteady aerodynamic of road vehicles. Proceedings ASME Fluid Engin. Divis.
Summer Conf. PTS A-C, 1, 2605–2614.

135. Fedorov, A.G. and Viskanta, R. (2000) Three-dimensional conjugate heat transfer in the microchan-
nel heat sink for electronic packaging. Int. J. Heat Mass Transfer, 43 (3), 409–415.



�

� �

�

382 References

136. Fedorovich, E.D. (1959) Heat transfer to a flat plate streamlined by a turbulent boundary layer of
incompressible fluid with Pr<< 1. J. Engin. Phys. Thermod, 2, 3–11.

137. Fogelson, A.L. and Neevels, K.B. (2015) Fluid mechanics of blood clot formation, Ed. by Davis,
S.H. and Moin, P., Ann. Rev. Fluid Mech. 47: 377–403.

138. Forsythe, J.R. and Woodson, S.H. (2005) Unsteady computations of abrupt wing stall using
detached eddy simulation. J. Aircraft, 42 (3), 606–616.

139. Fung, Y.C. and Yih, C.S. (1968) Peristaltic transport. Trns. ASME, J. Appl. Mech., 35, 669–675.
140. Fung, Y.C. (1971) Peristaltic pumping: Bioengineering model, in Urodynamics: Hydrodynamics

of The Ureter And Renal Pelvis, vol. 15 (eds S. Boyarsky, G.W. Gottshalk, E.A. Tanagho and P.D.
Zimsjind), pp. 177–198.

141. Gao, T., Wang, Z. and Vanden-Broeck, J.M. (2016) New hydroelastic solitary waves in deep water
and their dynamics. J. Fluid Mech., 788, 469–491.

142. Garzo, V., Fillmer, W.D., Hrenya, C.M. and Xiaolong, Y. (2016) Transport coefficients of solid
particles immersed in a viscous gas. Phys. Rev., 93, 012905.

143. Germano, M., Piomelli, U., Moin, P. and Cabot, W.H. (1991) A dynamic subgrid-scale eddy vis-
cosity model. Physics Fluid, 3 (7), 1760–1765.

144. Ghalichi, F., Deng, X., De Champlain, A. et al. (1998) Low Reynolds number turbulence modeling
of blood flow in arterial stenoses. Biorheology, 35, 281–294.

145. Gibbings, J.C. (2003) Diffusion of the intermittency across the boundary layer in transition. Pro-
ceeding of the institution of Mechanical Engineering, part C: J. Mech. Engin. Sci. 217/12/1339.

146. Ginevskii, A.S. (1969) Theory of Turbulent Jets and Wakes, (in Russian), Mashinostroenie.
147. http://web2.clarkson.edu/proects/cred/me537/download/02 Pastsphere,pdf
148. Grechannyy, O.A., Nagolkina, Z.I. and Senatos, V.A. (1984) Heat transfer in jet flow over an arbi-

trary nonisotermal wall. Heat Transfer –Soviet Research, 16, 12–22.
149. Grechannyy, O.A., Dorfman, A.S. and Gorobets, V.G. (1986) Coupled heat transfer and effective-

ness of flat finned surfaces in a transverse flow. High Temperature, 24 (5), 678–683.
150. Grechannyy, O.A., Dolinsky, A.A. and Dorfman, A.S. (1987) Conjugate heat and mass transfer in

continuous processes of the convective drying of thin bodies (in Russian). Prom. Teplotekhn., 9 (4),
27–37.

151. Grechannyy, O.A., Dolinsky, A.A. and Dorfman, A.S. (1988) Flow, heat and mass transfer in the
boundary layer on a continuously moving porous sheet. Heat Transfer- Soviet Research, 20 (1),
52–64.

152. Grechannyy, O.A., Dolinsky, A.A. and Dorfman, A.S. (1988) Effect of nonuniform distribution of
temperature and concentration differences on heat and mass transfer from and to a continuously
moving porous plate. Heat Transfer- Soviet Research, 20 (3), 355–368.

153. Grober, H., Erk, S. and Grigull, U. (1955) Die Grengesetze der Wärmeübetragung, 3 edn, Springer,
Berlin.

154. Grotberg, J.B. and Jensen, O.E. (2004) Biofluid mechanics in flexible tubes. Annu. Rev. Fluid
Mech., 36, 121–147.

155. Guedes, R.O.C., Ozisik, M.N. and Cotta, R.M. (1994) Conjugated periodic turbulent forced con-
vection in a parallel plate channel. ASME J. Heat Transfer, 116 (1), 40–46.

156. Hajmohammadi, M.R. and Nourazar, S.S. (2014) Conjugate forced convection heat transfer from a
heated flat plate of finite thickness and temperature-dependent thermal conductivity. J. Heat Trans-
fer Engin., 35 (9), 863–874.

157. Hakeem, A.E. and Naby, A.E. (2009) Creeping flow of Phan-Thien-Tanner fluids in peristaltic tube
with an infinite long wavelength. J. Appl. Mech. Trans. ASME, 76, 064504.

158. Hanin, M. (1968) The flow through a channel due to transversely oscillating walls. Israel J. Thech-
nol., 6, 67–71.

159. Haroun, M.H. (2006) On non-linear magnetohydrodynamic flow due to peristaltic transport of
an Oldroyd 3-constant fluid. Zeitschrift für Naturforschung, Section A-A J. Physical Science, 61,
263–274.

http://web2.clarkson.edu/proects/cred/me537/download/02


�

� �

�

References 383

160. Hassani-Ardekani, H., Ghalichi, F., Niroomand-Oscuii, H. et al. (2012) Comparison of blood flow
velocity through the internal carotid artery based on Doppler ultrasound and numerical simulation.
Australasian Phys. Engin. Sci. Med., 35, 413–422.

161. Hattori, H., Houra, T. and Nagano, Y. (2007) Direct numerical simulation of stable and unstable
turbulent thermal boundary layer. Int. J. Heat Flow, 28, 1262–1271.

162. Hayat, T., Qureshi, M.U. and Hussain, Q. (2009) Effect of heat transfer on the peristaltic flow of
an electrical conducting fluid in porous space. Appl. Math. Model, 33, 1862–1873.

163. Hayday, A.A., Bowlus, D.A. and Mcgraw, R.A. (1967) Free convection from a vertical plate with
step discontinuities in surface temperature. Int. J. Heat Mass Transfer, 89, 244–250.

164. He, M., Bishop, P.J., Kassab, A.J. and Minardi, A. (1995) A coupled FDM/BEM solution for the
conjugate heat transfer problem, Num. J. Heat Transfer part B 28 ( 2): 139–154.

165. Heidmann, J., Rigby, D. and Ameri, A. (2002) A three-dimensional coupled external/internal sim-
ulation of a film-cooled turbine vane. ASME J. Turbomach., 122, 348–359.

166. Hermeth, S., Staffelbach, G., Gicquel, L.Y.M. and Poinsot, T. (2013) LES evaluation of the effects
of equivalence ratio fluctuations on the dynamic flame response in a real gas turbine combustion
chamber. Proceeding of the Combustion Institute, 34, 3165–3173.

167. Hikman, H.J. (1974) An asymptotic study of the Nusselt-Graetz problem, part I: large x behavior.
J. Heat Transfer, 96, 354–358.

168. Horvat, A., Mavko, B. and Catton, I. (2004) The Galerkin method solution of the conjugate heat
transfer, Proceeding of the ASME-ZSIS, Int. Thermal Science Seminar II, 3-Thermal Science, Bled,
Slovenia, June 13–16.

169. aHutch, J.A. (1967) Visco-uretral reflux, The Ureter, Ed. by Bergman pp. 465–507.
170. Ikram, Z., Avital, E.J. and Williams, J.J.R. (2012) Detached eddy simulation of free-surface flow

around a submerged submarine fairwater. J. Fluid Engin. Trtransact. ASME, 134, 061103–11.
171. Imtiaz, H. and Mahfouz, F.M. (2014) Conjugate heat transfer within a concentric annulus filled

with micropolar fluid. J. Heat Mass Transfer, 50 (4), 457–468.
172. Incropera, F.P. and Dewitt, D.P. (1996) Fundamental Heat and Mass Transfer, Fourth edn, Wiley&

Sons, New York.
173. Ishibashi, Y. and Miyaji, K. (2015) Detached eddy simulation of synthetic jets for

high-angles-of-attack airfoils. J. Aircraft, 52 (1), 168–175.
174. Ishimoto, K. and Gaffney, E.A. (2014) A study of spermatozoa swimming stability near a surface.

J. Theor. Biology, 360, 187–199.
175. Issa, R.I., Gosman, A.D. and Watkinc, A.P. (1986) Computation of compressible and incompress-

ible recirculating flows by a non-iterative implicit scheme, J. Comput. Phys. 62: 66–82.
176. Ito, Y., Inokura, N. and Nagasaki, T. (2014) Conjugate heat transfer in air-to-refrigerant airfoil heat

exchangers, J. Heat Transfer-Transactions ASME 136 (8): article 081703.
177. Jadidi, M., Bazdidi- Tehrani, F. and Kiamansouri, M. (2016) Dynamic sub-grid turbulent Schmidt

number approach in large eddy simulation of dispersion around an isolated cubical building. Build-
ing Simul., 9, 183–200.

178. Jaffrin, M.Y. and Shapiro, A.N. (1971) Peristaltic pumping. Annu. Rev. Fluid Mech., 3, 13–37.
179. Jaluria, Y. (1992) Transport from continuously moving materials undergoing thermal processing,

Annu. Rev. Heat Mass Transfer 4, chapter 4, ed. by C.L. Tien, Hemisphere Corp., Taylor and Francis
Group, Washington.

180. Javed, N., Hayat, T. and Alsaedi, A. (2014) Peristaltic flow of Burgers’ fluid with compliant wall
and heat transfer. Applied Math. Comput., 244, 654–671.

181. Jeong, O.C. and Konishi, S. (2008) The self-generated peristaltic motion of cascaded pneumatic
actuators for micro pumps. J. Micromech. Microeng., 18, 085017.

182. Ji, B., Luo, X.W., Arndt, R.E.A. et al. (2015) Large eddy simulation and theoretical investigations
of the transient cavitating vortical flow structure around a NACA 66 hydrofoil. Int. J. Multiphase
Flow, 68, 121–134.



�

� �

�

384 References

183. Jians, Y., Zheng, Q., Yue, G. et al. (2014) Conjugate heat transfer simulation of turbine blade high
efficiency cooling method with mist injection. Proccedings of the Institution of Mechanical Engi-
neering, part C- J. Mech. Engin. Sci., 228 (15), 2738–2749.

184. Jimenez-Lozano, J., Sen, M. and Dunn, P.F. (2009) Particle motion in unsteady two-dimensional
peristaltic flow with application to the ureter. Phys. Rev. E, 79, 041901.

185. Johnson, D.A. and King, L.S. (1985) A mathematically simple turbulence closure model for
attached and separated turbulent boundary layers. AIAA J., 23 (11), 1684–1692.

186. Jones, T. (1969) Blood flow. Annu. Rev. Fluid Mech., 1, 223–244.
187. Joukar, A., Nammakie, E. and Niroomand-Osccuii, H. (2015) A comparative study of thermal

effects of 3 types of laser in eye: 3D simulation with bioheat equation. J. Thermal Biology, 49–50,
74–81.

188. Joyce, G. and Soliman, H.M. (2009) Analysis of the transient single-phase thermal performance of
micro-channel heat sinks. Heat Transfer Engin., 30, 1058–1067.

189. Kang, B.H., Jaluria, Y. and Karve, M.V. (1991) Numerical simulation of conjugate transport from
a continuous moving plate in materials processing. Num. Heat Transfer, 19 (2), 151–176.

190. Kanna, P.R. and Das, M.K. (2007) Conjugate heat transfer steady of a two-dimensional laminar
incompressible wall jet over a back-ward-facing step. ASME. J. Heat Transfer, 129, 220–231.

191. Kanna, P.R. and Das, M.K., (2009) Effect of geometry on the conjugate heat transfer of wall jet
flow over a backward-facing step, J. Heat Transfer 131: 114501-1-7.

192. Kanna, P.R., Taler, J., Anbumalar, V. et al. (2015) Conjugate heat transfer sudden expansion using
nanofluid. Num. Heat Transfer, part A, 67 (1), 75–99.

193. Kant, R., Singh, H., Nayak, M. and Bhattacharya, S. (2013) Optimization of design and characteri-
zation of a novel micro-pumping system with peristaltic motion. Microsyst. Technol., 19, 563–575.

194. Karadimou, D.P. and Markatos, N.C. (2016) Modeling of two-phase, transient airflow and particles
distribution in the indoor environment by large eddy simulation. J. Turbul., 17 (2), 216–236.

195. Karniadakis, G.E. and Orszag, S.A. (1993) Nodes, modes and flow codes. Physics Today, 46 (3),
34–42.

196. Karwe, M.V. and Jaluria, Y. (1990) Numerical simulation of fluid flow and heat transfer in a single
screw extruder for non-Newtonian fluids. Num. Heat Transfer, part A, 17, 167–190.

197. Kassab, A., Divo, E., Heidmann, J. et al. (2003) BEM/FVM Conjugate heat transfer analysis of
a three-dimensional film cooled turbine blade. Int. J. Num. Methods Heat Fluid Flow, 13 (5),
581–610.

198. Kawamura, F., Seki, Y., Iwamoto, K. and Kawamura, H. (2007) DNS of heat transfer in turbulent
and transitional channel flow obstructed by rectangular prisms. Int. J. Heat Flow, 28, 1291–1301.

199. Kawamura, H., Abe, H. and Matsuo, Y. (1999) DNS of turbulent heat transfer in channel flow with
respect to Reynolds and Prandtl numbers effects. Int. J. Heat Fluid Flow, 20, 196–207.

200. Kawano, K., Minakami, K., Iwasaki, H. and Ishizuka, M. (1998) Development of microchannels
heat exchanging, In Application of Heat Transfer in Equipment, Systems and Education, Ed. by
R.A. Nelson, Jr., L., W. Swanson, M.V.A., Bianchi and C. Camci, HTD-Vol. 361-3/PID-Vol. 3, pp.
173–180, ASME, New York.

201. Kays, W.M. (1980) Convective Heat and Mass Transfer, McGraw-Hill, New York.
202. Kestin, J. and Richardson, P.D. (1963) Heat transfer across turbulent incompressible boundary

layer. Int. J. Heat Mass Transfer, 6 (6), 147–189.
203. Khan, A.A., Ellahi, R., Gulzar, M.M. and Sheikhleslami, M. (2014) Effects of heat transfer on

peristaltic motion of Oldroyd fluid in presence of inclined magnetic field. J. Magnetism, Magnetism
Materials, 372, 97–106.

204. Kim, K., Baek, S.J. and Sung, H.J. (2002) An implicit velocity decoupling procedure for the incom-
pressible Navier-Stokes equations. Int. J. Numer. Methods Fluids, 38, 125–138.

205. Kim, S., Wilson, P.A. and Chen, Z.M. (2015) Large eddy simulation of the turbulent near wake
behind circular cylinder: Reynolds number effect. Appl. Ocean Research, 49, 1–8.



�

� �

�

References 385

206. Klebanoff, P.S. (1956) Characteristics of turbulence in a boundary layer with zero pressure gradi-
ent, NACA TN, p. 3178.

207. Kuchumov, A.G., Gilev, V., Popov, V. et al. (2014) Non-Newtonian flow of pathological bile in the
binary system: experimental investigation and CFD simulation. Korea-Australia Rheol. J., 26 (1),
81–90.

208. Kutateladze, S.S. and Leontev, A.I. (1972) Heat and Mass Transfer and Friction in Turbulent
Boundary Layer (in Russion), Energiya Press, Mockow.

209. Kutateladze, S.S. (1973) Near-Wall Turbulence, (in Russian), Nauka, Novosibirsk.
210. Kuznetsov, G.V. and Sheremet, M.A. (2009) Numerical modeling of temperature fields in the ele-

ments and units of electronic system. Microelectronica, 38, 344–352.
211. Lai, H.X., Zhang, H.B. and Yan, Y.Y. (2004) Numerical steady of heat and mass transfer in rising

inert bubbles using a conjugate flow model. Num. Heat Transfer part A, 46 (1), 79–98.
212. Lamnatou, C., Papanicolaou, E., Belessiotis, V. and Kyriakis, N. (2009) Conjugate heat and mass

transfer from a drying rectangular cylinder in confined flow. Num. Heat Mass Transfer, part A, 56,
379–405.

213. Laraufie, R. and Deck, S. (2013) Assessment of Reynolds stresses tensor reconstruction methods
for synthetic turbulent inflow conditions., Application to hybrid RANS/LES methods. Int. J. Heat
Fluid Flow, 42, 68–78.

214. Lathman, T.W. (1966) Fluid motion in a peristaltic pump, S. M. Thesis, M. I. T, Mass, Cambridge.
215. Laufer, J. (1951) Investigation of Turbulent Flow in a Two Dimensional Channel, NACA, Rep. No.

1053.
216. Laufer, J. (1952) The Structure of Turbulence in Fully Developed Pipe Flow, NACA, Rep. No.1174.
217. Lawal, A., Kalyon, D.M. and Yilmazer, U. (1993) Extrusion and lubrication flows of viscoplstic

fluids with wall slip. Chem. Engin. Com., 122, 127–150.
218. Lee, J.H. and Sung, H.J. (2011) Direct numerical simulation of a turbulent boundary layer up to

Re𝜃 = 2560. Int. J. Heat Fluid Flow, 32, 1–10.
219. Lee, K.T. and Yan, W.M. (1993) Transient conjugated forced convection heat transfer with fully

developed laminar flow in pipes. Num. Heat Transfer, 23 (3), 341–359.
220. Lee, T.S., Liao, W. and Low, H.T. (2001) Development of an artificial compressibility methodology

with implicit LU-SGS method, Int. J. Comp. Fluid Dyn. 15: 197–208.
221. Lee, T.S., Liao, W. and Low, H.T. (2003) Numerical simulation of turbulent flow through series

stenoses. Int. J. Num. Meth. Fluid, 42, 717–740.
222. Lee, W.C. and Ju, Y.H. (1986) Conjugate Leveque solution for Newtonian fluid in a parallel plate

channel. Int. J. Heat Mass Transfer, 29, 941–947.
223. Leonard, A. (1974) Energy cascade in large eddy simulation of turbulent fluid flow. Advan. Geo-

phys. A, 18, 237–248.
224. Leontev, A.I., Mikhin, V.A., Mironov, B.P. and Ivakin, V.P. (1968) Effect of boundary condition

on development of turbulent thermal boundary layer (in Russian), in Teplo i Massoperenos, vol. 1,
Energiya, Moscow, pp. 125–132.

225. Leontev, A.I., Shishov, E.V., Belov, V.M. and Afanas’ev, V.N. (1977) Mean and fluctuating charac-
teristics of thermal turbulent boundary layer and heat transfer in a diffuser, In: Teplomassoobmen-V
(Heat and Mass Transfer-V [Proceedings of the 5th All-Union Conference on Heat and Mass Trans-
fer, 1, part. 1, [engl. trans., Heat Transfer-Soviet Research 9: 48–56], Minsk.

226. Le Pape, A., Richez, F. and Deck, S. (2013) Zonal detached eddy simulation of airfoil in poststall
condition. AIAA J., 51 (8), 1919–1931.

227. Levich, V.G. (1962) Physicochemical Hydrodynamics, Prentice-Hall.
228. Li, C.H. (1970) Peristaltic transport in circular cylindrical tubes. J. Biomech., 3, 513–523.
229. Li, M.J. and Brasseur, J.G. (1993) Nonsteady peristaltic transport in finite-length tubes. J. Fluid

Mech., 248, 129–151.
230. Lighthill, M.J. (1950) Contribution to the Theory of Heat Transfer Through a Laminar Boundary

Layer, Proc. Roy. Soc. A, vol. 202, London, pp. 359–377.



�

� �

�

386 References

231. Lilly, D.K. (1966) On the application of the eddy viscosity concept in the inertial subrange of
turbulence, NCAR Manuscript 123.

232. Lin, P. and Jaluria, Y. (1997) Conjugate transport in polymer melt flow through extrusion dies.
Polymer Engin. Sci., 37 (9), 1582–1596.

233. Lin, P. and Jaluria, Y. (1998) Conjugate thermal transport in the channel of an extruder for
non-Newtonian fluids. Int. J. Heat Mass Transfer, 41 (21), 3239–3253.

234. Lin, T.F. and Kuo, J.C. (1988) Transient conjugated heat transfer in fully developed laminar pipe
flows. Int. J. Heat Mass Transfer, 31 (5), 1093–1102.

235. Lindstedt, M. and Karvinen, R. (2013) Conjugate heat transfer in a plate-one surface at constant
temperature and the other cooled by forced or natural convection. Int. J. Heat Mass Transfer, 66,
489–495.

236. Linge, F., Hye, M.A. and Paul, M.C. (2014) Pulsatile spiral plod flow through arterial stenosis.
Comput. Metod Biomech. Biomed. Engin., 17, 1727–1737.

237. Liu, J.Y., Minkowycz, W.J. and Cheng, P. (1986) Conjugated mixed convection-conduction heat
transfer along a cylindrical fin in a porous medium. Int. J. Heat Mass Transfer, 29, 769–775.

238. Liu, J., Sun, H.S., Liu, Z.T. and Xiao, Z.X. (2014) Numerical investigation of unsteady vortex
breakdown past 80 degrees/65 degrees double-delta wing. Chinese J. Aeronautics, 27 (3), 521–530.

239. Lock, G.S.H. and Ko, R.S. (1973) Coupling through a wall between two free convective systems.
Int. J. Heat Mass Transfer, 16 (11), 2087–2096.

240. Londhe, S.D. and Rao, C.G. (2014) Interaction of surface radiation with mixed convection from a
vertical channel with multiple discrete heat sources. J. Heat Mass Transfer, 50 (9), 1275–1290.

241. Love, G. (1957) An approximate solution of the laminar heat transfer along a plate with arbitrary
distribution of the surface temperature. J. Aeronaut. Sci., 24, 920–921.

242. Loytsyanskiy, L.G. (1962) The Laminar Boundary Layer (in Russian), Fismatgiz Press, Moskow
[English translation, 1966].

243. Ludwieg, H. (1956) Bestimmung des verhaltnisses der austauschkoeffizienten fur warme and
impuls bei turbulenten grenzschichten. ZFW, 4, 73–81.

244. Luikov, A.V. (1966) Heat and Mass Transfer in Capillary-Porous Bodies, Pergamon Press, Oxford.
245. Luikov, A.V. (1968) Analytical Heat Diffusion Theory, Academ. Press, New York.
246. Luikov, A.V., Perelman, T.L., Levitin, R.S. and Gdalevich, L.B. (1970) Heat transfer from a plate

in a compressible gas flow. Int. J. Heat Mass Transfer, 13 (8), 1261–1270.
247. Luikov, A.V., Aleksashenko, V.A. and Aleksashenko, A.A. (1971) Analytical methods of solution

of conjugated problems in convective heat transfer. Int. J. Heat Mass Transfer, 14, 1047–1056.
248. Lund, T., Wu, X. and Squires, D. (1998) Generation of turbulent inflow data for spatially developing

boundary layer simulations. J. Comput. Phys., 140, 233–258.
249. Luong, M.B., Luo, Z., Lu, T. et al. (2013) Direct numerical simulations of the ignition of

lean primary reference fuel/air mixtures with temperature inhomogeneities. Comb. Flame, 160,
2038–2047.

250. Lykoudis, P.S. (1969) The ureter as a peristaltic pump, Presented at the Workshop on Hydrodynam-
ics of the Upper Urinary Tract, Univ. of Chicago, Chicago, Illinois, pp. 24–66, Oktober.

251. Maiti, S. and Misra, J.C. (2011) Peristaltic flow of a fluid in a porous channel: A study having
relevance to flow of bile within duct in pathological state. Int. J. Energ. Sci., 49, 950–966.

252. Mansour, M.K. (2014) Effect of natural convection on conjugate heat transfer characteristics in
liquid minichannel during phase change material melting. Proceedings Institution Mech. Engin.,
part C-J. Mech. Engn. Sci., 228 (3), 491–513.

253. Martyushev, S.G. and Sheremet, M.A. (2013) Surface radiation influences on the regimes of con-
jugate natural convection in an enclosure with local energy source. J. Thermophys. Aeromech., 20
(4), 417–428.

254. Masmoudi, W. and Prat, M. (1991) Heat and mass transfer between a porous medium and parallel
external flow. Int. J. Heat Mass Transfer, 34, 1975–1989.



�

� �

�

References 387

255. Matheou, G. and Chung, D. (2014) Large eddy simulation of stratified turbulence, par. 11: Applica-
tion of the stratched-vortex model to the atmospheric boundary layer. J. Atmosph. Sci., 71, 45–66.

256. McGee, H.A. (1991) Molecular Engineering, Mc Graw Hill Press, New York.
257. Meginniss, J.R. (1970) An analytic investigation of flow and hemolysis in peristaltic-type blood

pumps, in S. M. Thesis, M. I. T , Mass, Cambridge.
258. Mekheimer, K.S., Haroun, M.H. and Elkot, M.A. (2011) Effects of magnetic field, porosity and

wall properties for anisotropically elastic multi-stenosis arteries on blood flow characteristics. Appl.
Math. Mech.-Engl. Ed., 32, 1047–1064.

259. Mekheimer, K.S. and Abd Elmabond, Y. (2014) Simultaneous effects of variable viscocity and
thermal conductivity on peristaltic flow in a vertical asymmetric channel. Canadien J. Phys., 92
(12), 1541–1555.

260. Mellor, G.L. (1966) Effects of pressure gradients on turbulent flow near a smooth wall. J. Fluid
Mech., 24 (2), 255–274.

261. Mellor, G.L. and Gibson, D.M. (1966) Equilibrium turbulent boundary layer. J. Fluid Mech., 24
(2), 225–253.

262. Meneveau, C., Lund, T.S. and Cabot, W.H. (1966) A Langrangian dynamic subgrid-scale model of
turbulence. J. Fluid Mech., 319 (1), 353–385.

263. Mhaisekar, A., Kazmierczak, M.J. and Banerjee, R.K. (2005) Steady conjugate heat transfer from
X-ray or laser-heated sphere in external flow at low Reynolds number. Num. Heat Transfer part A,
47, 849–874.

264. Miftakhof, R. and Ahkmadeev, N. (2007) Dynamics of intestinal propulsion. J. Theor. Biology, 246
(2), 377–393.

265. Miftakhov, R.N. and Wingate, D.L. (1994) Biomechanics of a small bowel motility. Med. Eng.
Phys., 16, 406–416.

266. Mingalev, S.V., Lubimov, D.V. and Lubimova, T.P. (2010) Pressure-driven peristaltic flow, 4th
France-Russia Conf. on New Achievement Materials and Environmental, Okt. 26–29, also in Book
Series: J. Phys. Conf. Ser. vol. 416, 012029, 2013.

267. Mironov, B.P., Vasechkin, V.N. and Yarugina, N.I. (1977) Effect of an upstream adiabatic zone on
heat transfer in a subsonic and supersonic downstream boundary layer at different flow histories, In:
Teplomassoobmen –V (Heat and Mass Transfer-V [Proceedings of the 5th All-Union Conference on
Heat and Mass Transfer]) Pt.1: 67–97. Minsk, [Engl. Transl.1977. Heat Transfer-Soviet Research
9: 57–65].

268. Misra, J.C., Sinha, A. and Shit, G.C. (2010) Flow of a biomagnetic viscoelastic fluid: application to
estimation of blood flow in arteries during electromagnetic hyperthermia, a therapeutic procedure
for cancer treatment. Appl. Math. Mech. Engl. Ed., 31, 1405–1420.

269. Misra, J.C. and Maiti, S. (2012) Peristaltic pumping of blood through small vessels of varying
cross-section. ASME J. Appl. Mech., 79 (6), 061003.

270. Mittra, T.K. and Prasad, S.N. (1973) On the influence of wall properties and Poiseuille flow in
peristaltic. Biomech., 6, 681–693.

271. Mohammad, K. (1987) Conjugated heat transfer from a radiating fluid in a rectangular channel,
Ph. D. Theses Akron Univ, OH.

272. Moin, P. and Mahesh, K. (1998) Direct numerical simulation: A tool in turbulence research. Annu.
Rev. Fluid Mech., 30, 539–578.

273. Mokhtar, A.A.E. and Haroun, M.H. (2008) A new model for study the effect of wall properties on
peristaltic transport of a viscous fluid. Commun. Nonlin Sci. Num. Simul., 13, 752–762.

274. Monin, A.S. and Yaglom, A.M. (1971) Statistical Fluid Mechanics, vol. I (ed. J. Lumley).
275. Moretti, P.M. and Kays, W.M. (1965) Heat transfer to a turbulent boundary layer with varying free

stream velocity and varying surface temperature-an experimental study. Int. J. Heat and Mass, 8,
1187–1202.

276. Moukalled, F. and Acharya, S. (1989) Improvements to incompressible flow calculation on a
non-staggered curvilinear grids. Numer. Heat Transfer part B, 15, 131–152.



�

� �

�

388 References

277. Mousazadeh, F., van Den Akker, H.E.A. and Mudder, F. (2013) Direct numerical simulation of
an exothermic gas-phase reaction in a packed bed with random particle distribution. Chem. Engin.
Sci., 100, 259–265.

278. Mustafa, M., Nina, S., Hayat, T. and Alsaedi, A. (2012) Influence of wall properties on the peri-
staltic flow of a nanofluid: analytic and numerical solutions. Int. J. Heat Mass Transfer, 55 (17–18),
4871–4877.

279. Muthu, P., Kumar, B.V.R. and Chandra, P. (2008) Peristaltic motion of micropolar fluid in circular
cylindrical tube: effect of wall properties. Appl. Math. Model, 32 (10), 2019–2033.

280. Nam, J.H. and Song, C.S. (2007) Numerical simulation of conjugate heat and mass transfer dur-
ing multi-dimensional freeze drying of slab-shaped food products. Int. J. Heat Mass Transfer, 50,
4891–4900.

281. Nguyen, H.D. and Chung, J.N. (1992) Conjugate heat transfer from a translating drop in an electric
field at low Peclet number. Int. J. Heat Mass Transfer, 35 (2), 443–456.

282. Niceno, B. and Sharabi, M. (2013) Large eddy simulation of turbulent heat transfer at supercritical
pressures. Nucl. Engin. Design, 261, 44–55.

283. Nicoud, F. and Ducros, F. (1999) Subgrid-scale modeling based on the square of the velocity gra-
dient tensor. Flow Turbul. Combust., 62, 183–200.

284. Nompelis, I., Drayna, T. and Candler, G.V. (2005) A parallel unstructured implicit solver for hyper-
sonic reacting flow simulation, AIAA Paper 2005-4867, June 2005.

285. Nowak, A.J., Biaecki, R.A., Fic, A. et al. (2002) Coupling of conductive, convective, and radiative
heat transfer in Czochralski crystal growith process. Comput. Material. Sci., 25 (4), 570–576.

286. Nowak, A.J., Biaecki, R.A., Fic, A. and Wecel, G. (2003) Analysis of fluid and energy transport in
Czochralski process. Comput. Fluid, 32, 85–95.

287. Nuxoll, E. (2013) BoiMEMSin drug delivery. Advan. Drug Delivery Rev., 65 (11–12), 1611–1625.
288. Olek, S., Elias, E., Wacholder, E. and Kaizerman, S. (1991) Unsteady conjugated heat transfer in

laminar pipe flow. Int. J. Heat Mass Transfer, 34 (6), 1443–1450.
289. Oliver, D.L.R. and Chung, J.N. (1987) Flow about a fluid sphere at low to moderate Reynolds

number. J. Fluid Mech., 177, 1–18.
290. Oliver, D.L.R. and Chung, J.N. (1990) Unsteady conjugate heat transfer from a translating fluid

sphere at moderate Reynolds numbers. Int. J. Heat Mass Transfer, 33, 401–408.
291. Oliveira, L.S. and Haghighi, K. (1998) Conjugate heat and mass transfer in convective drying of

porous media. Num. Heat Transfer, part A, 34 (2), 105–117.
292. Opheim, L.N. and Lund, W. (1977) Use of peristaltic mini-pumps automatic-analysis. Analytica

Chem. Acta, 90, 245–247.
293. Osada, H., Tsunoda, I., Matsuurra, M. et al. (1999) Investigation of ovum transport in the oviduct:

the dynamics of oviductal fluids in domestic rabbits. J. Int. Med. Research, 27 (4), 176–180.
294. Osman, F., Romics, I., Nyirady, P. et al., (2009) Ureteral motility, Acta Physiologica Hungarica

96 (4): 407–426.
295. Ozisik, M.N. (1958) Boundary Value Problem of Heat Conduction, Int. Textbook Company, Seran-

ton, Pennsylvania.
296. Pagliarini, G. and Borozzi, G.S. (1984) Thermal coupling in laminar double stream heat exchangers,

in Proc. Second National Conf. Heat Transfer, Bologna, Italy, pp. 103–113.
297. Pagliarini, G. and Barozzi, G.S. (1991) Thermal coupling in laminar flow double-pipe heat exchang-

ers. ASME J. Heat Transfer, 113 (3), 526–534.
298. Pan, J.P. and Loth, E. (2005) Detached eddy simulations for iced airfoils. J. Aircraft, 42 (6),

1452–1461.
299. Pandey, S.K. and Chaube, M.K. (2011) Peristaltic transport of a Maxwell fluid in a channel of

varying cross section induced by asymmetric waves: application to embryo transport within uterine
cavity. J. Mech. Med. Biology, 11 (3), 675–690.

300. Pandey, S.K. and Chaube, M.K. (2011) Study of wall properties on peristaltic transport of a couple
stress fluid. Meccanica, 46, 1319–1330.



�

� �

�

References 389

301. Panov, D. (1951) Handbook of Numerical Treatment of Partial Differential Equations 5th ed.(in
Russian) Isd. ANCCR, Moscow.

302. Papoutsakis, E. and Ramkrishna, D. (1981) Conjugated Graetz problems. Chem. Engng. Sci., 36
(8), 1381–1391.

303. Park, S.C., Park, N.S., Kim, D.G. et al. (2014) Physical properties of covered stent in gastric acid
environment: in vitro study. Polymer-Korea, 38 (3), 351–357.

304. Patankar, S.V. and Spalding, D.B. (1970) Heat and Mass Transfer in Boundary Layers, 2d edn,
Intertex, London.

305. Patankar, S.V. and Spalding, D.B. (1972) A calculation procedure for heat, mass and momentum
transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer, 15, 1787–1806.

306. Patankar, S.V. (1980) Numerical Heat Transfer and Fluid Flow, Taylor & Francis Boca Raton Fl.
307. Perelman, T.L., Levitin, R.S., Gdalevich, L.B. and Khusid, B.M. (1972) Unsteady- state conjugated

heat transfer between a semi-infinite surface and incoming flow of a compressible fluid- II. Deter-
mination of a temperature field and analysis of result. Int. J. Heat Mass Transfer, 15, 2563–2573.

308. Petukhov, B.S., Detlaf, A.A. and Kirilov, V.V. (1954) Experimental investigation of local heat trans-
fer from a plate to subsonic turbulent air flow. J. Engin. Phys. Thermod., 24, 1761–1772.

309. Piro, M.H. and Leitch, B.W. (2014) Conjugate heat transfer simulations of advanced research reac-
tor fuels. Nuclear Engin. Design, 274, 30–43.

310. Polyanin, A.D. and Manzhirov, A.V. (1998) Handbook of Integral Equations, CRC Press, Boca
Raton.

311. Pomeranzev, A.A. (1960) Heating a wall of the plate by a supersonic flow (in Russian). J. Engin.
Physics Thermodyn., 3 (8), 39–46.

312. Popovac, M. and Hanjalic, K. (2009) Vortices and heat flux around a wall-mounted cube cooled
simultaneously by a jet and a crossflow. Int. J. Heat Mass Transfer, 52, 4047–4062.

313. Pozzi, A. and Lupo, M. (1989) The coupling of conduction with forced convection in a plane duct.
Int. J. Heat Mass Transfer, 32 (7), 1215–1221.

314. Premachandran, B. and Balaji, C. (2006) Conjugate mixed convection with surface radiation from
a horizontal channel with protruding heat sources. Int. J. Heat Mass Transfer, 49, 3568–3582.

315. Qin, W.J., Xie, M.Z., Jia, M. et al. (2014) Large eddy simulation of in-cylinder turbulent flows in
a DISI gasoline engine. Appl. Math. Model, 38 (24), 5967–5985.

316. Raithby, G.D. and Hollands, K.G.T. (1975) A general method of obtaining approximate solution
to laminar and turbulent natural convection problems, In Advances in Heat and Mass Transfer, ed.
by T.F. Irvine, Jr., and J.P. Hartnett 11: 265–315, Academic Press, New York.

317. Ramis, M.K. and Jilani, G. (2009) Numerical study of a nuclear fuel element dissipating fission
heat into its surrounding fluid medium. Int. J. Heat Mass Transfer, 52, 5005–5012.

318. Rao, R. and Venkateshan, S.P. (1996) Experimental study on free convection and radiation in hor-
izontal fin arrays. Int. J. Heat Mass Transfer, 39, 779–789.

319. Rao, V.D., Naidu, S.V., Rao, B.G. and Sharma, K.V. (2006) Heat transfer from a horizontal fin
array by natural convection and radiation –a conjugate analysis. Int. J. Heat Mass Transfer, 49,
3379–3391.

320. Reviznikov, D.L. (1995) Coefficients of nonisothermicity in the problem of unsteady - state con-
jugate heat transfer on the surface on the blunt bodies. High Temperature, 33, 259–264.

321. Reynolds, W.C., Kays, W.M. and Kline, S.T. (1960) A summery of experiments on turbulent heat
transfer from nonisothermal flat plate. Tras. ASME, J. Heat Transfer ser. C, 4, 341–348.

322. Richtmyer, R.D. and Morton, K.W. (1967) Difference Methods for Initial Value Problems, Inter-
science Publ, New York.

323. Riera, W., Castillon, L., Marty, J. and Leboeuf, F. (2014) Inlet conditions effects on the tip clearance
flow with zonal detached eddy simulation. J. Turbomach. Transac. ASME, 136 (4), 041018.

324. Rizzetta, D.P. and Visbal, M.R. (2009) Large eddy simulation of plasma-based turbulent boundary
layer separation control, AIAA 39 Fluid Dyn. Conf. Exib. Locat. San Antonio, TX, Jun 22–25, 2009.



�

� �

�

390 References

325. Robertson, G.E., Seinfeld, J.H. and Leal, L.G. (1973) Combined forced and free convection flow
past a horizontal flat plate. AIChE J., 19, 998–1008.

326. Rosenbluth, K.H., Luz, M., Mohr, E. et al. (2011) Design an in-dwelling cannula for
convection-enhanced delivery. J. Neuroscien. Methods, 196 (1), 118–123.

327. Rotta, J.C. (1962) Turbulent boundary layer in incompressible flow. Progress in Aerospace Sci., 2,
1.

328. Roy, R., Rios, F. and Riahi, D.N. (2011) Mathematical models for flow of chime during gastroin-
testinal endoscopy. Appl. Math., 2, 600–607.

329. Rubtsov, N.A., Timofeev, A.M. and Ponomarev, N.N. (1987) On behavior of transfer coefficients
in direct differential methods of theory of radiative heat transfer in scattering media. Izv. SO SSSR
Ser. Tekhn. Nauka, 18, 3–8.

330. Rubtsov, N.A. and Timofeev, A.M. (1990) Unsteady conjugate problem of radiative-convective
heat transfer in a laminar boundary layer on a thin plate. Num. Heat Transfer, 17, 127–142.

331. Rubtsov, N.A. and Sinitsyn, V.A. (2004) Unsteady radiative-convective heat transfer in a flow emit-
ting, absorbing and scattering medium around an ablating plate. J. Appl. Mech. Technik. Phys., 45,
415–419.

332. Rumsey, C.B., Carter, H.,.S., Hastings, E.C. et al. (1969) Initial result from flight measurements of
turbulent heat transfer and boundary-layer transition at local Mach numbers near 15 (Reentry F ).
NASATM X-1856.

333. Sakiadis, B.C. (1961) Boundary layer behavior on a continuous solid surface, AJChE J. 7: part 1:
26–28, part 2: 221–225.

334. Sastrohartono, T., Jaluria, Y. and Karve, M.V. (1994) Numerical coupling of multiple-region sim-
ulations to study transport in a twin-screw extruder. Num. Heat Transfer part A, 25 (5), 541–557.

335. Schlatter, P., Orlu, R., Brethouwer, G. et al. (2009) Turbulent boundary layer up to Re𝜃 = 2500
studied through simulation and experiment. Phys. Fluids, 21, 051702.

336. Schlatter, P., Brethouer, G., Li, Q. et al. (2010) Simulations of spatially evolving turbulent boundary
layer up to Re𝜃 = 4300. Int. J. Heat Fluid Flow, 31 (3), 251–261.

337. Schley, D., Carare-Nnadi, R., Please, C.P. et al. (2006) Mechanism to explain the reverse perivas-
cular transport of solutes out of the brain. J. Theor. Biol., 238, 962–974.

338. Schlichting, H. (1951, 1968, 1979, 2000) Boundary layer Theory, McGraw-Hill, New York. Cita-
tions without year pertains to 1979 edition.

339. Schonfeld, T. and Rudgyard, M. (1999) Steady and unsteady flow simulation using hybrid solver
AVBP. AIAA, J., 37 (11), 1378–1385.

340. Schwertfirm, F. and Manhart, M. (2007) DNS of passive scalar transport in turbulent channel flow
at high Schmidt numbers. Int. J. Heat Flow, 28, 1204–1214.

341. Selverov, A.M. and Stone, H.A. (2001) Perestaltically driven channel flows with applications
toward micromuxing. Phisics Fluids, 13, 1837–1860.

342. Semba, T., Fujll, K. and Fujll, Y. (1970) Influence of peristaltic contraction of stomach on blood
flow through gastrosplenic vein. Hiroshima J. Med. Sci., 19 (20), 87–97.

343. Shah, R.K. and London, A.L. (1978) Laminar Flow Forced Convection in Ducts, Academic Press,
New York.

344. Shams, A., Roelofs, F., Komen, E.M.J. and Baglietto, E. (2013) Large eddy simulation of a nuclear
pebble bed configuration. Nucl. Engin.Design, 261, 10–19.

345. Shapiro, A.H., Jaffrin, M.Y. and Weinberg, S.L. (1969) Peristaltic pumping with long wavelengths
at low Reynolds number. J. Fluid Mech., 37, 799–825.

346. Shapiro, A.H. and Jaffrin, M.Y. (1971) Reflux in peristaltic pumping: is it determined by the Eule-
rian or Langrangian mean velocity. J. Appl. Mech., 38 (4), 1060–1062.

347. Sharma, A.K., Velusamy, K., Balaji, C. and Venkateshan, S.P. (2007) Conjugate turbulent natural
convection with surface radiation in air filled rectangular enclosure. Int. J. Heat Mass Transfer, 50,
625–639.



�

� �

�

References 391

348. Shcwing, A.M. and Candler, G.V. (2015) Detached eddy simulation of capsule wake flows and
comparison to wind-tunnel test data. J. Spacecraft Rockets, 52 (2), 439–449.

349. Sheremet, M.A. and Trifonova, T.A. (2013) Unsteady conjugate natural convection in a vertical
cylinder partially filled with a porous medium. Num. Heat Transfer, part A, 64 (12), 994–1015.

350. Shugan, I.V., Smirnov, N.N. and Legros, J.C. (2002) Streaming flows in a channel with elastic
walls. Phys. Fluids, 14, 3502–3511.

351. Shulman, Z.P. and Berkovskii, B.M. (1966) Boundary Layer of non-Newtonian Fluids (in Russian),
Nauka i Technika, Minsk.

352. Shur, M.L., Spalart, P.R., Strelets, M.K. and Travin, A.K. (2008) A hybrid RANS-LES approach
with delayed-DES and wall-modeled LES capabilities. Int. J. Heat Fluid Flow, 29, 1638–1649.

353. Shur, M.L., Spalart, P.R., Strelets, M.K. and Travin, A.K. (2011) A rapid and accurate switch from
RANS to LES in boundary layers using an overlap region. Flow Turbl. Comb., 86, 179–206.

354. Shvets, Y.I., Dorfman, A.S. and Didenko, O.I. (1975) Heat transfer between two countercurrently
flowing fluids separated by a thin wall. Heat Transfer- Soviet Research, 7 (4), 32–39.

355. Shvets, Y.I., Dorfman, A.S. and Didenko, O.I. (1975) Some characteristics of heat transfer between
two moving fluids separated by a wall containing heat sources. J. Heat Transfer-Soviet Research,
7, 25–31.

356. Simon, Y.H.O. (2004) A 3D turbulent conjugate heat- transfer model for freezing of food products.
J. Food Sci., 69, 224–231.

357. Sivasubramanian, J. and Fasel, H.F. (2015) Direct numerical simulation of transition in a sharp
cone boundary layer at Mach 6: fundamental breakdown. J. Fluid Mech., 768, 175–218.

358. Smagorinsky, J. (1963) General circulation experiments with the primitive equations. Mon. Weather
Rev., 91 (3), 99–164.

359. Smith, J.H. and Humphrey, J.A. (2007) Interstitial transport and transvascular fluid exhange during
infusion into brain and tumor tissue. Microvas. Resear., 73 (1), 58–73.

360. Sohal, M.S. and Howell, I.R. (1973) Determination of plate temperature in case of combined con-
duction, convection and radiation heat exchange. Int. J. Heat Mass Transfer, 16 (11), 2055–2066.

361. Sokolova, I.N. (1957) Plate temperature streamlined by supersonic flow (in Russian), in Theoretical
Aerodynamic Investigations, ZAGI, Oborongis, Moscow, pp. 206–221.

362. Solopov, V.A. (1972) Heat transfer in turbulent boundary layer incompressible fluid with vary-
ing pressure gradient and varying surface temperature. Izv. AN SSSR, Mech. Zhidcosti i Gasa, 5,
166–167.

363. Song, W.H. and Li, B.Q. (2002) Finite element solution of conjugate heat transfer problems with
and without the use of gap elements, Int. J. Num. Methods Heat Fluid Flow 12 : 81–99.

364. Song, W.H. and Lichtenberg, J. (2005) Thermo-pneumatic, single-stroke miropump. J. Micromech.
Microeng., 15, 1425–1432.

365. Spalart, P.R., Jou, W.H., Strelets, M. and Allmaras, S.R. (1997) Comments on the feasibility of LES
for wings, and on a hybrid RANS/LES approach First AFOSR Int. Conf. on DNS/LES, Ruston, LA,
Advenc. DNS/LES Greyden Press, Columbus. OH.

366. Spalart, P.R. (2000) Strategies for turbulence modeling and simulations. Int. J. Heat Fluid Flow,
21, 252–263.

367. Spalart, P.R., Deck, S., Shur, M. et al. (2006) A new version of detached-eddy simulation, resistant
to ambiguous drid densities. Theor. Comput. Fluid Dyn., 20, 181–195.

368. Spalart, P.R. (2009) Detached-eddy simulation. Annual Review Fluid Mech., 41, 181–202.
369. Spalding, D.B. and Pun, W.M. (1962) A review of methods for predicting heat transfer coefficients

for laminar uniform-property boundary layer flows. Int. J. Heat Mass Transfer, 5, 239–244.
370. Sparrow, E.M. (1958) Combined effects of unsteady flight velocity and surface temperature on heat

transfer. Jet Propulsion, 28, 403–405.
371. Sparrow, E.M. and Faghri, M. (1980) Fluid-to- fluid conjugate heat transfer for a vertical

pipe-internal forced convection and external natural convection. ASME J. Heat Transfer, 102 (3),
402–407.



�

� �

�

392 References

372. Squires, K.D. (2004) Detached-eddy simulation: current status and perspectives, in Direct and
Large-Eddy Simulation V (eds R. Friedrich and B. Geurts), Oliver Metais, pp. 465–481.

373. Srinivasulu, C. and Radhakrihnamacharya, G. (2002) Peristaltic transport in non-uniform channel
with elastic effects. Proc. Nat. Sci. India, 72, 279–288.

374. Srivastava, V.P. and Srivastava, L.M. (1997) Influence of wall elasticity and Poiseuille flow on
peristaltic induced flow of a particle-fluid mixture. Int. J. Engin. Sci., 35 (15), 1359–1386.

375. Srivastava, V.P. and Srivastava, R. (2009) Particulate suspension blood flow through a narrow
catheterized artery. Comput. Math. Applic., 58 (2), 227–238.

376. Starner, K.E. and McManus, H.N. Jr. (1963) An experimental investigation of free convection heat
transfer from rectangular fin arrays. ASME J. Heat Transfer, 85, 273–278.

377. Stein, C.F., Johansson, P.B., Bergh, J. et al. (2002) An analytical asymptotic solution to a conjugate
heat transfer problem. Int. J. Heat Mass Transfer, 45 (12), 2485–2500.

378. Sucec, J. (1987) Unsteady conjugated forced convective heat transfer in a duct with convection
from the ambient. Int. J. Heat Mass Transfer, 30 (9), 1963–1970.

379. Sugioka, K. and Tsukada, T. (2015) Direct numerical simulation of drag and lift forces acting on a
spherical bubble near a plane wall. Int. J. Multiphase Flow, 71, 32–37.

380. Sugita, R., Sugimura, E., Itoh, M. et al. (2003) Pseudolesion of the bile duct caused by flow effect:
A diagnostic pitfall of MR cholangiopancreatography. American J. Roentgenology, 180, 467–471.

381. Sunden, B. (1979) A coupled conduction-convection problem at low Reynolds number flow, Num.
Meth, Thermal Problems, Proceeding of the First International Conference, pp. 412–422, Swansea,
Wales, July 2–6.

382. Takabatake, S. and Ayukawa, K. (1982) Numerical study of two-dimensional peristaltic flows. J.
Fluid Mech, 122, 439–465.

383. Takagi, D. and Balmforth, N.J. (2011) Peristaltic pumping of rigid object in an elastic tube. J. Fluid
Mech., 672, 219–244.

384. Tang, D. and Rankin, S. (1993) Numerical and asymptotic solutions for peristaltic motion of non-
linear viscous flows with elastic free boundaries, SIAM J. Sci. Comput. 14 (6): 1300–1319.

385. Tao, Z., Wu, H.W., Chen, G.H. and Deng, H.Y. (2005) Numerical simulation of conjugate heat
and mass transfer processes within cylindrical porous media with cylindrical dielectric cores in
microware freeze-drying. Int. J. Heat Mass Transfer, 48, 561–572.

386. Tejeda-Martinez, A.E. and Jansen, K.E. (2004) A dynamic Smagorinsky model with dynamic deter-
mination of the filter width ratio, https:/www.scorec.rpi.edu/REPORTS/ 2004-4.pdf.

387. Tenchev, R.T., Li, L.Y. and Purkiss, J.A. (2001) Finite element analysis of coupled heat and mois-
ture transfer in concrete subjected to fire. Num. Heat Transfer, part A, 39 (7), 685–710.

388. Thomas, T.G. and Williams, J.J.R. (1999) Simulation of skewed turbulent flow past a surface
mounted cube. J. Wind Eng. Ind. Aerodyn., 81 (1–4), 347–360.

389. Thornber, B. and Drikakis, D. (2007) Large eddy simulation of shock-wave-induced turbulent mix-
ing. J. Fluid Engin. Transact. ASME, 129 (12), 1504–1513.

390. Timoshenko, S. (1974) Vibration Problems in Engineering, 4th edn, Wiley, New York.
391. Tong, P. and Vawter, D. (1972) An analysis of peristaltic pumping. ASME J. Appl. Mech., 39,

857–862.
392. Townsend, A.A. (1976) The Structure of Turbulent Shear Flow, Second edn, Cambridge University

Press, Cambridge.
393. Trp, A. (2005) An experimental and numerical investigation of heat transfer during technical grade

paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Solar
Energy, 79, 648–660.

394. Tseng, Y.H. and Ferziger, J.H. (2003) A ghost-cell immersed boundary method for flow in complex
geometry. J. Comput. Phys., 192 (2), 593–623.

395. Tsou, F.K., Sparrow, E.M. and Goldstein, R.J. (1967) Flow and heat transfer in the boundary layer
on a continuous moving surface. Int. J. Heat mass transfer, 10, 219–235.

http://www.scorec.rpi.edu/REPORTS/


�

� �

�

References 393

396. Uehara, Y. and Burnstock, G. (1970) Demonstration of “Gap Junctions” between smooth muscle
cells. J. Cell Biology, 44 (1), 215–217.

397. Vahidi, B., Fatouraee, N., Imanparast, A. and Moghadam, A.N. (2011) A mathematical simulation
of the ureter: effects of the model parameters on ureteral pressure/flow relations. J. Biomech. Eng.
Transact. ASME, 133 (031004), 9.

398. Vahidi, B. and Fatourace, N. (2012) A biomechanical simulation of uretral flow during peristalsis
using intraluminal morphometric data. J. Theor. Biology, 298, 42–50.

399. Vajravelu, K., Sreenadh, S. and Saravana, R. (2013) Combined influence of velocity slip, tem-
perature and concentration jump conditions on MHD peristaltic transport of a Carreau fluid in a
nonuniform channel. Appl. Math. Comput., 225, 656–676.

400. Vajravelu, K., Sreenadh, S., Sucharitha, G. and Lakshminarayana, P. (2014) Peristaltic transport of
a conducting Jeffrey fluid in an inclined asymmetric channel. Int. J. Biomath., 7 (6), 1450064.

401. Van Belleghem, M., De Backer, L., Janssens, A. and De Paepe, M (2012) Conjugate modeling
of convective drying phenomena in porous building materials, 6th European Thermal Sci. Conf.,
France, Sept. 4–7, Book Series: J. of Phys. Conf. Series, 395, article 012142.

402. Van Doormaal, J.P. and Raithby, G.D. (1984) Enhancements of the SIMPLE method for predicting
incompressible fluid flows. Numer. Heat Transfer, 7, 147–163.

403. Van Driest, E.R. (1956) On turbulent flow near a wall. J. Aeron. Sci., 23, 1007–1011.
404. Van Dyke, M.D. (1964) Perturbation Methods in Fluid Mechanics, Academic Press, New York.
405. Van Dyke, M.D. (1965) A Method of Series Truncation Applied to Some Problem in Fluid Mechan-

ics, Stanford University, report SUDAER 247
406. Van Nimwegen, A.T., Schutte, K.C.J. and Portela, L.M. (2015) Direct numerical simulation of

turbulent flow in pipes with an arbitrary roughness topography using a combined momentum-mass
source immersed boundary method. Comput. Fluid, 108, 92–111.

407. Vaszi, A.Z., Elliott, L.., Ingham, D.B. and Pop, I. (2004) Conjugate free convection from a ver-
tical plate fin with a rounded tip embedded in a porous medium. Int. J. Heat Mass Transfer, 47,
2785–2794.

408. Viskanta, R.V. and Abrams, M. (1971) Thermal interaction of two streams in boundary layer flow
separated by a plate. Int. J. Heat Mass Transfer, 14 (9), 1311–1321.

409. Viskanta, R. and Lankford, D.W. (1981) Coupling of heat transfer between two natural convection
systems separated by a vertical wall. Int. J. Heat Mass Transfer, 24 (7), 1171–1177.

410. Viswanath, R. and Jaluria, Y. (1993) Comparison of different solution methodologies for melting
and solidification problems in enclosures. Num. Heat Transfer part A, 24, 77–105.

411. Viswanath, R. and Jaluria, Y. (1995) Numerical study of conjugate transient solidification in an
enclosed region. Num. Heat Transfer part A, 27 (5), 519–536.

412. Vynnycky, M., Kimura, S., Kaneva, K. and Pop, I. (1998) Forced convection heat transfer from a
flat plate: the conjugate problem. Int. J. Heat Mass Transfer, 41 (1), 45–59.

413. Wang, H.S., Snan, F.L., Piao, Y. et al. (2015) IDDES simulation of hydrogen-fueled supersonic
combustion using flamelet modeling. Int. J. Hydrogen Energy, 40 (1), 683–691.

414. Wang, P. and Olbricht, W.L. (2011) Fluid mechanics in the perivascular space. J. Theor. Biol., 274,
52–57.

415. Wang, Q.H. and Jaluria, Y. (2004) Three-dimensional conjugate heat transfer in a horizontal channel
with discrete heating. ASME J. Heat Transfer, 126 (4), 642–647.

416. Wang, X.S., Dagan, Z. and Jlji, L.M. (1989) Conjugate heat transfer between a laminar impinging
liquid jet and solid disk. Int. J. Heat Mass Transfer, 32 (11), 2189–2197.

417. Wansophark, N., Malatip, A. and Dechauphai, P. (2005) Streamline upwind finite element method
of the conjugate heat transfer problems. Acta Mechanica Sinica, 21 (5), 436–443.

418. Wecel, G. (2006) BEM/FVM solution of the conjugate radioactive and convective heat transfer
problems. Arch. Comput. Mech. Engn., 13, 171–248.

419. Weinberg, S.L. (1970) A theoretical and experimental treatment of peristaltic pumping and its rela-
tion to uretral function, Ph. D. Thesis, M.I. T., Cambridge, Mass.



�

� �

�

394 References

420. Weinberg, S.L., Eckstein, E.C. and Shapiro, A.H. (1971) An experimentally study of peristaltic
pumping. J. Fluid Mech., 49, 461–479.

421. Wikipedia en. wikipedia.org/wiki/Direct_numerical_simulation
422. Wilcox, D.C. (1994, 2006) Turbulence Modeling for CFD, DCW Industries, Inc. La Canada, Cal-

ifornia.
423. Wu, X. and Moin, P. (2009) Direct numerical simulation of turbulence in a nominally

zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech., 630, 5–41.
424. Xiao, L.H., Xiao, Z.X., Duan, Z.W. and Fu, S. (2015) Improved delayed detached eddy simulation

of cavity-induced transition in hypersonic boundary layer. Int. J. Heat Fluid Flow, 51, 138–150.
425. Xiao, Z.X., Liu, J., Luo, K.Y. et al. (2013) Investigation of flows around a rudimentary landing gear

with advanced detached eddy simulation approach. AIAA J., 51 (1), 107–125.
426. Yamane, T. and Bilgen, E. (2004) Conjugate heat transfer in enclosures with openings for ventila-

tion. Int. J. Heat Mass Transfer, 40 (5), 401–411.
427. Yan, P., Cui, Y., Shi, L. and Zhu, J. (2014) Application of conjugate heat transfer and fluid network

analysis to improvement design of turbine blades with integrated cooling structures. Proceeding of
the Institution of Mechanical Engineering, part G-J. Aerospace Engin., 228 (12), 2286–2299.

428. Yan, W.M., Tsay, Y.L. and Lin, T.F. (1989) Transient conjugated heat transfer in laminar pipe flows.
Int. J. Heat Mass Transfer, 32 (4), 775–777.

429. Yan, W.M. (1993) Transient conjugated heat transfer in channel flows with convection from the
ambient. Int. J. Heat Mass Transfer, 36 (5), 1295–1301.

430. Yaniv, S., Jaffa, A.J., Eytan, O. and Elad, D. (2009) Simulation of embryo transport in a closed
uterine cavity model. Europ. J. Obst. Gynec. Rep. Biol., 144, s50–s 60.

431. Yi, M., Bau, H.H. and Hu, H. (2002) Peristaltically induced motion in a closed cavity with two
vibrating walls. Phys. Fluids, 14, 184–197.

432. Yin, F. and Fung, Y.C., (1969) Peristaltic waves in circular cylindrical tubes, J. appl. Mech. 36 (3):
579–587.

433. Yoo, S.Y. and Jaluria, Y. (2007) Conjugate heat transfer in an optical fiber coating process. Num.
Heat Transfer, part A, 51 (2), 109–127.

434. Yoo, S.Y. and Jaluria, Y. (2008) Numerical simulation of the meniscus in nonisothermal free surface
flow at the exit of a coating die. Num. Heat Transfer, part A, 53, 111–131.

435. Yoshimoto, S., Yamamoto, M. and Toda, K. (2007) Numerical calculations of pressure distribu-
tion in the bearing clearance of circular aerostatic thrust bearings with a single air supply inlet. J.
Tribology-Transact. ASME, 129 (2), 384–390.

436. Yoshinoa, H., Fujii, M., Zhang, X., Takeuchia, T., Toyomasua, T., Conjugate heat transfer from
an electronic module package cooled by air in a rectangular duct, http:/www.google.com/#hl=en&
source=hp&q(on+&btnG=Google+Search&aq=f&aqi=&oq=&fp=aa7ac5834e645580).

437. Younci, R. and Kocaefe, D., (2007) Numerical and experimental validation of heat and mass trans-
fer during heat treatment of wood, Proceedings of the 18th IASTED International Conference:
modeling and simulation, pp. 477–482, Montreal, Canada,.

438. Yu, W.S. and Lin, H.T. (1993) Conjugate problems of conduction and free convection on vertical
and horizontal flat plates. Int. J. Heat Mass Transfer, 36 (5), 1303–1313.

439. Yusoff, S., Mohamed, M., Ahmad, K.A. et al. (2009) 3-D conjugate heat transfer analysis of PLCC
packages mounted in-line on a printed circuit board. Int. Comm. Heat Mass Transfer, 36, 813–819.

440. Zhang, C., He, J., Zhu, Y. et al. (2015) Interface effects on the Kelvin wake of monohull ship
represented via a continuous distribution of sources. European Mech. J. B-Fluids, 51, 27–36.

441. Zhang, W. and Samtaney, R. (2016) Assessment of spanwise domain size effect on the transitional
flow past an airfoil. Comput. Fluid, 124, 39–53.

442. Zhang, X., Chen, Z. and Huang, Y. (2015) A wave-less microfluidic peristaltic method, Biomi-
crofluidics 9: 014118. pressure fluctuation in aerostatic bearings, J. Fluid and Structures 40: 42–51.

443. Zhu, J., Chn, H. and Chen, X. (2013) Large eddy simulation of vortex shedding and pressure fluc-
tuation in aerostatic bearing. J. Fluid Structures, 40, 42–51.

http://wikipedia.org/wiki/Direct_numerical_simulation
http://www.google.com/#hl=en&source=hp&q
http://www.google.com/#hl=en&source=hp&q


�

� �

�

References 395

444. Zhukauskas, A.A. and Shlanchyauskas, A.A. (1973) Heat Transfer in Turbulent Flow of Liquids
(in Russian), Mintas, Vilnyus.

445. Zhuzhgda, I.I. and Zhukauskas, A.A. (1962) Experimental investigation of heat transfer of a plate
in a laminar flow of liquid. Trudy Akad. Nauk Lit. SSR, ser. B 4, 117–126.

446. Zien, T.F. and Ostrach, S. (1970) A long wave approximation to peristaltic motion. J. Biomech., 3,
63–75.

447. Zinchenko, V.I., Efimov, K.N. and Yakimov, A.S. (2007) Investigation of the characteristics of
conjugate heat and mass transfer in spatial flow past a sphere-blunted cone and blowing-in of a gas
from the surface of bluntness. J. Engin. Phys. Thermophys., 80, 751–759.

448. Zuriz, C., Singh, R.P., Moini, S.M. and Henderson, S.M. (1979) Desorption isotherms of rough rice
from 10 to 40C∘. Trans. ASAE, St. Joseph, Michigan, 22 (2), 433–436.



�

� �

�



�

� �

�

Author Index

Abbas, Z., 235
Abbasi, F. M., 235
Abd-Alla, A. M., 235, 266
Abd Elmabond, Y., 278
Abdoli, A., 273
Abdullah, M. Z., 196
Abe, H., 173, 174, 280
Abo-Dahab, S. M., 235, 266
Abrams, M., 158
Abramzon, B. M., 136
Acharya, S., 369, 371
Achenbach, E., 288
Afanas’ev, V. N., 58
Ahmad, B., 235
Ahmad, K. A., 196
Ahn, J., 287
Akbar, N. S., 235
Akhmadeev, N., 242
Al-Amiri, A., 266
Al-Bakhit, H., 154
Aleksashenko. A. A., 148
Aleksashenko, V. A., 148
Alfredsson, P. H., 279
Ali, N., 235
Alin, N., 290
Allen, J., 277
Allmaras, S. R., 247
Alsaadi, F., 278
Alsaedi, A., 235, 241
Ambrok, G. S., 78

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine,
First Edition. Abram S. Dorfman.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.

Ameri, A., 188
Amin, M. R., 219
Anbumalar, V., 154
Andersson, H. I., 283
Antonia, R. A., 281
Argyropoulos, C. D., 247
Arici, M. E., 154
Arndt, R. E. A., 287
Asghar, S., 278
Ashrafian, A., 283
Atabek, H. B., 255, 256
Atwell, N. P., 341
Avci, M., 154
Avital, E. J., 290
Aydin, O., 154
Ayukawa, K., 231, 232, 259

Baek, S. J., 279
Baglietto, E., 286
Baiocco, P., 190, 191
Bajaj, C., 273
Balaji, C., 140, 141, 185
Baldwin, B. S., 336
Bali, T., 154
Baliga, B. R., 371
Balmforth, N. J., 242
Bamhard, M., 289
Banerjee, R. K., 141
Bang, B. W., 267
Bankiewicz, K. S., 273



�

� �

�

398 Author Index

Banks, J., 261
Barmpas, F., 202
Barozzi, G. S., 141, 154, 170, 171
Barton, C., 229
Batchelor, G. K., 302
Bathe, K. J., 242
Bau, H. H., 234
Baxter, L. T., 268, 269
Bazdidi-Tehrani, F., 287
Beckers, G., 278
Bejan, A., 172
Belessiotis, V., 219
Bellomi, P., 190, 191
Bensow, R. E., 290
Bergh, J., 128, 129, 148
Berkovskii, B. M., 29, 31, 35
Bernal, L. P., 278
Bertuzzi, A., 242
Besharatian, A., 278
Bhatt, B. S., 265
Bhattacharya, S., 276, 278
Biaecki, R. A., 154, 206–208
Bicanic, N., 205, 206
Bilgen, E., 154
Bird, R. B., 44, 308
Bishop, P. J., 144
Blasé, T. A., 200
Blocken, B., 219
Borde, I., 136
Barozzi, G. S., 141, 154, 170, 171
Bouris, D., 202
Bowlus, D. A., 164
Boyd, R. D., 154
Bradshaw, P., 131, 335, 341
Brasseur, J. G., 235
Brebbia, C. A., 364, 367, 368
Brethouwer, G., 279
Bringas, J., 273
Brosh, T., 283
Brssloff, N. W., 261
Bukhvostova, A., 283
Burdo, O. G., 219
Burn, J. C., 229
Burnstock, G., 242
Bykova, A. A., 242

Cabot, W. H., 246
Candler, G. V., 289, 292
Cao, Y., 273
Carare-Nnadi, R., 267
Carew, E. O., 242
Carlson, G. A., 278
Carmeliet, J., 219
Carslaw, H. S., 358
Carter, H. S., 289
Castillon, L., 291
Catton, I., 140
Cebeci, T., 131, 335
Chakraborty, N., 283
Chakraborty, S., 287
Chakravarty, S., 255
Champlain, A., 251
Chandra, P., 241
Chang, C. M., 202
Chang, K., 177
Chang, S. L., 278
Chapman, D., 83, 84
Chatterjee, D., 287
Chaube, M. K., 241, 273
Chen, G. H., 219, 235
Chen, J. K., 278
Chen, P., 217
Chen, Q., 273
Chen, X., 283
Chen, Z., 276, 283, 287
Cheng, L. K., 179, 277
Cheng, P., 202
Cheng, W. T., 202
Chida, K., 180, 181, 183
Chiruvella, R. V., 202
Chiu, K. C., 278
Chiu, W. K. S., 149, 302
Chn, H., 283
Cho, H. J., 267
Choi, C. Y., 154, 219
Choi, H., 287
Chowdhury, A. G., 255
Chrispell, J., 154
Chu, W. K., 235
Chun, H. J., 267
Chung, D., 287
Chung, J. N., 134–136, 140



�

� �

�

Author Index 399

Chung, S. H., 283
Clauser, F. H., 332
Coccarelli, A., 154
Cole, K. D., 140
Coles, D. E., 332
Comini, G., 179
Constantinescu, G. S., 287
Cotta, R. M., 142, 143
Croce, G., 189
Cui, Y., 196
Cummings, R. M., 252

Dagan, Z., 148
Dan, C., 283
Das, M. K., 140, 196
Davidenko, B. V., 132, 208, 217
Davie, C. T., 205, 206
Davis, E. J., 148, 202, 203, 219
De Backer, L., 219
De Bonis, M. V., 219
Dechauphai, P., 154
Deck, S., 248, 291
Defraeye, T., 219
Dehez, B., 278
Deng, H. Y., 219
Deng, X., 251, 261
De Paepe, M., 219
Detlaf, A. A., 56–58
Dewitt, D. P., 176, 185
Didenko, O. I., 118, 160
Dirven, S., 277
Divo, E., 154, 187
Dodoulas, I. A., 287
Dogan, T., 292
Dolinsky A. A., 148, 208, 213, 217
Dominguez, J., 364, 367, 368
Dong, P., 196
Dorfman, A. S., 9, 10, 15, 19, 20, 22,

24–26, 29, 30, 32, 34, 36, 37, 39, 51,
52, 54, 55, 57, 78, 83, 86, 103, 108,
111, 118, 122, 123, 132, 133, 148,
156, 157, 160, 166, 167, 169, 177,
181, 192–195, 208, 213, 217, 325,
334, 338, 343

Drake, R. M., 12, 13, 83, 84, 86, 323
Drayna, T., 289

Drikakis, D., 287
Du, S. W., 202
Duan, E., 423
Duan, Z. W., 291
Ducros, F., 286
Dulikravich, G. S., 273
Dunin, I. L., 137
Dunn, P. F., 261, 266

Eaton, R. P., 278
Eckert, E. R. G., 12, 13, 83, 84, 86, 323
Eckstein, E. C., 229, 262
Ede, A. J., 324, 325
Efimov, K. N., 196
Efraimsson, G., 292
Elad, D., 271, 273
Eldelyi, A., 353
Elias, E., 145, 147
Elkot, M. A., 255, 257
Ellahi, R., 241
Elliott, L., 179
El Qarnia, H., 306
El-Sayed, M. F., 274, 278
El-Semiry, R. D., 235, 266
Erdelyi, A., 353
Erk, S., 83
Esseghir, M., 202
Eytan, O., 271, 273

Faghri, M., 165
Fakheri, A., 154
Fang, J., 235
Farhoudi, M., 261
Fasel, H. F., 283
Fatouraee, N., 242
Fauci, L., 266
Favre, A., 284
Favre, T., 292
Fedorov, A. G., 173, 179
Fedorovich, E. D., 56–58
Ferriss, D. H., 341
Ferziger, J. H., 290
Fic, A., 206–208
Fillmer, W. D., 283
Fldabe, N. T. M., 274, 278
Fogelson, A. L., 261



�

� �

�

400 Author Index

Forsythe, J. R., 292
Fransson, J. H. M., 279
Fu, S., 291
Fujii, M., 196
Fujita, N., 266
Fujll, K., 229
Fujll, Y., 229
Fung, Y. C., 229–231, 234, 242, 266
Fureby, C., 290

Gad-el-Hak, M., 128, 129, 148
Gaffney, E. A., 273
Gao, T., 246, 283
Garzo, V., 283
Gavrilov, V., 266
Gawas, N. L., 219
Gdalevich, L. B., 103, 122
Germano, M., 246
Geurts, B. J., 283
Ghalichi, F., 251, 261
Ghaly, A. Y., 274, 278
Gibbings, J. C., 328
Gibson, D. M., 334, 335
Gicquel, L. Y. M., 285
Gilev, V., 266
Gill, W. N., 148
Ginevskii, A. S., 84
Goldstein, R. J., 32
Gorobets, V. G., 177
Gosman, A. D., 369
Grechannyy, O. A., 88, 92, 148, 177, 181,

208, 213
Grigull, U., 83
Grober, H., 83
Grotberg, J. B., 261
Guedes, R. O. C., 142, 143
Guidoin, R., 251
Gulzar, M. M., 235
Guo, Z. X., 200

Haghighi, K., 215
Hajmohammadi, M. R., 140
Hakeem, A. E., 235
Hanin, M., 229
Hanjalic, K., 196
Haroun, M. H., 241, 255, 257

Hassani-Ardekani, H., 261
Hastings, E. C., 289
Hattori, H., 283
Hayat, T., 235, 241, 272, 278
Hayday, A. A., 164
He, J., 291
He, M., 144
Heidmann, J., 187, 188
Henderson, S. M., 215
Henningson, D. S., 279
Hermeth, S., 285
Hickman, H. J., 148
Hirst, E. A., 332
Hollands, K. G. T., 163
Hopkins, W. G., 200
Horvat, A., 140
Hou, L. Y., 291
Houra, T., 283
Howell, I. R., 113, 115, 125, 136
Hrenya, C. M., 283
Hsieh, C. K., 219
Hsu, F. Y., 278
Hu, H., 234
Huang, C. E., 202
Huang, J. B., 296
Huang, Y., 276, 283
Humphrey, J. A., 273
Hussain, Q., 272
Hutch, J. A., 229
Hye, M. A., 261

Idrus, A. F., 196
Ikram, Z., 290
Imanparast, A., 242
Imtiaz, H., 180
Incropera, F. P., 176, 185
Ingham, D. B., 179
Inocura, N., 180
Ishibashi, Y., 292
Ishimoto, K., 273
Ishizuka, M., 174
Issa, R. I., 369
Ito, Y., 180
Itoh, M., 266
Ivakin, V. P., 51, 78
Ivanov, V. V., 137



�

� �

�

Author Index 401

Iwamoto, K., 283
Iwasaki, H., 174

Jadidi, M., 287
Jaeger, J. C., 338
Jaffa, A. J., 271, 273
Jaffrin, M. Y., 227–229, 231
Jahania, M. S., 273
Jain, R. K., 268
Jaluria, Y., 149, 183, 184, 188, 195, 196,

198, 199, 202, 219, 302
Jansen, K. E., 248, 249
Janssens, A., 219
Javed, M., 235
Jeen, Y. T., 267
Jensen, O. E., 261
Jeong, O. C., 278
Jeong, S., 267
Ji. B., 287
Ji, S., 242
Jia, M., 287
Jians, Y., 196
Jilani, G., 196
Jimenez-Lozano, J., 261, 266
Jlji, L. M., 148
Johansson, A. V., 279
Johansson, P. B., 128, 129, 148
Johnson, D. A., 338
Jones, T., 261
Jou, W. H., 247
Joukar, A., 273
Joyce, G., 179
Jsved, T., 235
Ju, Y. H., 148

Kaizerman, S., 145, 147
Kalyon, D. M., 202
Kanayama, K., 273
Kaneva, K., 126, 140, 303
Kang, B. H., 183, 184
Kang, S. G., 183, 184
Kanna. P. R., 140, 154, 196
Kant, R., 276, 278
Karadimou, D. P., 287
Karki, K., 371
Karniadakis, G. E., 283

Karvinen, R., 140
Karwe, M. V., 183, 184, 188, 196, 202
Kassab, A. J., 144, 154, 187
Katto, Y., 180, 181, 183
Kawai, T., 117, 232
Kawamura, F., 283
Kawamura, H., 173, 174, 280, 283
Kawano, K., 174
Kays, W. M., 12, 13, 26, 52–54, 57, 64,

84, 323
Kazmierczak, M. J., 141
Kestin, J., 343
Keum, B., 267
Khan, A. A., 235
Khanafer, K., 267
Khusid, B. M., 122
Kiamansouri, M., 287
Kim, C. D., 287
Kim, D. G., 287
Kim, E. S., 287
Kim, J., 281
Kim, K., 279
Kim, S., 287
Kimura, M., 232
Kimura, S., 126, 140, 303
King, L. S., 338
Kirilov, V. V., 56–58
Klebanoff, P. S., 336
Kline, S. T., 57, 64
Ko, R. S., 163, 164
Kocaefe, D., 196
Komen, E. M. J., 286
Konishi, S., 278
Kovalenko, E. A., 219
Kuchumov, A. G., 266
Kuerten, J. G. M., 283
Kumar, A. V. S., 154
Kumar, B. V. R., 241
Kumar, K., 278
Kuo, J. C., 154
Kutateladze, S. S., 13, 55, 57, 58, 187
Kuznetsov, G. V., 187
Kyriakis, N., 219

Lai, H. X., 140
Lakshminarayana, P., 235



�

� �

�

402 Author Index

Lamnatou, C., 219
Lankford, D. W., 162, 164
Laraufie, R., 248, 291
Lathman, T. W., 229
Laufer, J., 334
Lawal, A., 292
Leal, L. G., 127
Leboeuf, F., 291
Lee, D. H., 267
Lee, H. S., 267
Lee, J. H., 278
Lee, J. S., 287
Lee, K. T., 152–154
Lee, S. C., 267
Lee, T. S., 253, 254
Lee, W. C., 148
Legros, J. C., 238, 240–242
Leitch, B. W., 202
Leonard, A., 246
Leontev, A. I., 13, 51, 58, 78
Le Pape, A., 293
Levich, V. G., 308
Levitin, R. S., 103, 122
Lew, H. S., 256
Liao, W., 253, 254
Li, B. Q., 179
Li, C. H., 229
Li, L. Y., 205, 206
Li, M. J., 235
Li, Q., 279
Lighthill, M. J., 12
Lilly, D. K., 246
Lin, H. T., 130, 131, 140
Lin, P., 202
Lin, T. F., 154
Lindstedt, M., 140
Linge, F., 261
Lipovetskaya, O. D., 24–26, 51, 54, 55
Liu, D. M., 287
Liu, J. Y., 179, 291
Lock, G. S. H., 163, 164
Lofdahl, L., 128, 129, 148
Lomax, H., 336
Londhe, S. D., 154
London, A. L., 141, 149
Long, Z. K., 200

Loth, E., 292
Love, G., 247, 321, 322
Love, J. T., 278
Low, H. T., 253, 254
Loytsyanskiy, L. G., 86
Lu, T., 283
Lubimov, D. V., 241
Lubimova, T. P., 241
Ludwieg, H., 58
Luikov, A. V., 103, 148, 208, 215, 219
Luiz, C., 206
Lund, T. S., 246, 279
Lund, W., 278
Luo, K. Y., 291
Luo, X. W., 287
Luo, Z., 283
Luong, M. B., 283
Lupo, M., 148, 149
Luiz, C., 312
Luz, M., 273
Lykoudis, P. S., 241

Mahesh, K., 245
Mahfouz, F. M., 180
Maiti, S., 258, 259, 265, 266
Malatip, A., 154
Mancinelli, R., 242
Manhart, M., 283
Mansour, M. K., 154
Manzhirov, A. V., 353
Markatos, N. C., 247, 287
Marty, J., 291
Martyushev, S. G., 154
Masmoudi, W., 216
Matheou, G., 287
Matsuo, Y., 173, 174, 280
Matsuurra, M., 273
Mavko, B., 140
Mcgraw, R. A., 164
McGee, H. A., 282
McManus, Jr. H. N., 176
Meginniss, J. R., 229
Megraw, R. A., 164
Mekheimer, Kh. S., 255, 257, 278
Mellor, G. L., 24, 334, 335
Meneveau, C., 246



�

� �

�

Author Index 403

Mhaisekar, A., 141
Miftakhov, R. N., 242
Miklin, V. A., 51, 78
Milinchuk, S. L., 219
Minakami, K., 174
Minardi, A., 144
Mingalev, S. V., 241
Minkowycz, W. J., 179
Mironov, B. P., 13, 26, 51, 78
Misra, J. C., 258, 259, 265, 266
Mittermeyer, S., 273
Mittra, T. K., 237, 241
Miyaji, K., 292
Moghadam, A. N., 242
Mohamed, M., 196
Mohammad, K., 154
Mohd, Z., 196
Mohr, E., 273
Moin, P., 245, 246, 279
Moini, S. M., 215
Mokhtar, A. A. E., 241
Monin, A. S., 58, 336
Moretti, P. M., 13, 52–54
Morton, K. W., 135
Moukalled, F., 369
Mousazadeh, F., 281
Moussiopoulos, N., 202
Mudder, F., 281
Mujeebu, M. A., 196
Murthy, J. Y., 371
Mustafa, M., 241
Muthu, P., 241

Naby, A. E., 235
Nadeem, S., 235, 241
Nagano, Y., 283
Nagasaki, T., 180
Nagolkina, Z. I., 88, 92
Nah, J. W., 267
Naidu, S. V., 175, 325
Najafi, K., 278
Nakayama, Y., 273
Nam, J. H., 217
Nammakie, E., 273
Navarro-Martinez, S., 287
Nayak, M., 276, 278

Neevels, K. B., 261
Nguyen, H. D., 140
Niceno, B., 287
Nicoud, F., 286
Nina, S., 241
Niroomand-Oscuii, H., 261, 273
Nithiarasu, P., 154
Niu, J., 291
Nompelis, I., 289
Nonino, C., 179
Nourazar, S. S., 140
Novikov, V. G., 32, 181
Nowak, A. J., 206–208
Nussain, Q., 278
Nuxoll, E., 278
Nyirady, P., 266

Ohisa, T., 266
Olbricht, W. L., 267, 273
Olek, S., 145, 147
Oliver, D. L. R., 134–136
Oliveira, L. S., 215
Opheim, L. N., 278
Orlu, R., 279
Orszag, S. A., 283
Osada, H., 273
Osman, F., 266
Ostrach, S., 229
Ozisik, M. N., 142, 143, 346, 353, 359

Pacheco, R., 287
Pagliarini, G., 141, 154, 170, 171
Pan, J. P., 292
Panov, D., 361
Pandey, S. K., 241, 273
Papanicolaou, E., 219
Papoutsakis, E., 148, 172, 173
Park, N. S., 267
Park, S. C., 267
Parkes, T., 229
Patankar, S. V., 53, 58, 165, 174, 343, 362,

364, 369
Patel, D., 283
Paul, M. C., 261
Pearce, C. J., 206
Pedley, T. J., 242



�

� �

�

404 Author Index

Pei, D., 217
Peng, X. X., 287
Perelman, T. L., 103, 122
Perry, V. H., 267
Persson, T., 290
Pescatori, M., 242
Peterson, R. L., 278
Petukhov, B. S., 56–58
Piao, Y., 291
Piarce, C. J., 205, 206
Piomelli, U., 246
Piro, M. H., 202
Please, C. P., 267
Poinsot, T., 285
Polyanin, A. D., 353
Pomeranzev, A. A., 122
Ponomarev, N. N., 138, 139
Pop, I., 126, 140, 179, 303
Popov, V., 266
Popovac, M., 196
Portela, L. M., 283
Pozzi, A., 148, 149
Prakash, C., 371
Prasad, S. N., 237, 241
Prat, M., 216
Premachandran, B., 185
Pun, W. M., 21, 48, 49
Purkiss, J. A., 205, 206
Pushparaj, A., 154

Qarnia, H., 202
Qin, W. J., 287
Qureshi, M. U., 272

Radhakrishnamacharya, G., 241
Raithby, G. D., 163, 369
Ramis, M. K., 196
Ramkrishna, D., 148, 172, 173
Rankin, S., 241
Rao, B. G., 175, 325
Rao, C. G., 154
Rao, R., 176, 325
Rao, V. D., 175, 325
Raper, J. L., 289
Raynor, S., 229
Regirer, S. A., 242
Renard, N., 291

Reviznikov, D. L., 140
Reynolds, W. C., 57, 64
Riahi, D. N., 263, 266
Riaz, A., 241
Richards, C. J., 149, 302
Richardson, P. D., 343
Richez, F., 293
Richtmyer, R. D., 135
Riera, W., 291
Rigby, D., 188
Rios, F., 263, 266
Rizzetta, D. P., 287
Robertson, G. E., 127
Rodriguez, F., 187
Roelofs, F., 286
Romics, I., 266
Rosenbluth, K. H., 273
Rotta, J. C., 332
Roy, R., 263, 266
Rubesin, M., 83, 84
Rubtsov, N. A., 137–139, 196
Rudgyard, M., 285
Rumsey, C. B., 289
Ruocco, G., 219
Russo, E., 283
Ryu, H. S., 267

Sacheti, N. C., 265
Sadat-Hosseini, H., 292
Sagaut, P., 292
Sajid, M., 235
Sakiadis, B. C., 32, 181
Salinary, S., 242
Samartsev, V., 266
Samtaney, R., 283
Saravana, R., 241
Sarier, B., 206
Sastrohartono, T., 196
Satoh, K., 273
Savino, S., 179
Sayed, H. M., 274, 278
Schlatter, P., 279
Schley, D., 267
Schlichting, H., 12, 21, 49, 58, 66, 79, 80,

82, 97, 155, 250, 302, 303, 305, 309,
311, 315, 316, 318, 319, 322, 327,
328, 330, 337



�

� �

�

Author Index 405

Schonfeld, T., 285
Schutte, A., 292
Schutte, K. C. J., 283
Schwertfirm, F., 283
Seinfeld, J. H., 127
Seki, Y., 283
Selverov, K. P., 232, 233
Semba, T., 229
Sen, M., 128, 129, 148, 261, 266
Senatos, V. A., 88, 92
Seo, Y. S., 267
Sernas, V., 202
Shah, R. K., 141, 149
Shams, A., 286
Shapiro, A. H., 227–229, 231, 262
Sharabi, M., 287
Sharma, A. K., 140, 141
Sharma, K. V., 175, 325
Shcwing, A. M., 292
Sheikholeslami, M., 235
Sheremet, M. A., 141, 154, 187
Shi, L., 196
Shi, Z., 200
Shishov, E. V., 58
Shit, G. C., 259
Shlanchyauskas, A. A., 56–58
Shugan, I. V., 238, 240–242
Shulman, Z. P., 29, 31, 35
Shur, M., 248
Shvets, Y., 118, 160
Simon, Y. H. O., 219
Sinhg, H., 276, 278
Singh, R. P., 215
Sinha, A., 259
Sinitsyn, V. A., 196
Sivasubramanian, J., 283
Smagorinsky, J., 245
Smirnov, N. N., 238, 240–242
Smith, A. M. O., 273
Smith, J. H., 273
Snan, F. L., 291
Sohal, M. S., 113, 115, 125, 136
Sokolova, I. N., 103
Soliman, H. M., 179
Solopov, V. A., 53
Song, C. S., 217

Song, W. H., 179, 278
Spalart, P. R., 247, 248, 288, 343, 375
Spalding, D. B., 21, 48, 49, 53, 58, 165
Sparrow, E. M., 32, 35, 165
Spencer, W. J., 278
Squires, K. D., 247, 248, 279, 287
Sreenadh, S., 235, 241
Srinivasulu, Ch., 241
Srivastava, L. M., 241
Srivastava, R., 261
Srivastava, V. P., 241, 261
Starner, K. E., 176
Stein, C. F., 128, 129, 148
Steinthorsson, E., 154, 187
Stern, F., 292
Steward, W. E., 308
Stone, H. A., 232, 233
Strelets, M., 247, 248
Sucec, J., 151
Sucharitha, G., 235
Sugimura, E., 266
Sugioka, K., 283
Sugita, R., 266
Sun, H. S., 292
Sunden, B., 141
Sung, H. J., 278, 279
Svennberg, U., 290

Takabatake, S., 231, 232, 259
Takagi, D., 242
Takahashi, S., 266
Takeuchia, T., 196
Taler, J., 154
Tang, D., 241
Tao, Z., 219
Tarzmani, M. K., 261
Tejeda-Martinez, A. E., 248, 249
Tenchev, R. T., 205, 206
Thomas, T. G., 291
Thornber, B., 287
Timofeev, A. M., 137–139
Timoshenko, S., 243
Toda, K., 284
Tong, P., 229
Townsend, A. A., 332
Toyomasua, T., 196



�

� �

�

406 Author Index

Travin, A., 248
Trifonova, T. A., 141
Trp, A., 219
Tsay, Y. L., 154
Tseng, Y. H., 290
Tsou, F. K., 32
Tsukada, T., 283
Tsunoda, I., 273

Uehara, Y., 242
Um, S. H., 267
Urenda, R. S., 278

Vafai, K., 266
Vahidi, B., 242
Vajravelu, K., 235, 241
Van Belleghem, M., 219
Van Den Akker, H. E. A., 281
Vanden-Broeck, J. M., 246, 283
Van Doormaal, J. P., 369
Van Douville, Y., 251
Van Driest, E. R., 336
Van Dyke, M. D., 135, 233
Vajravelu, K., 241
Vanka, S. P., 371
Van Nimwegen, A. T., 283
Vasechkin, V. N., 13, 26
Vaszi, A. Z., 179
Vawter, D., 229
Velusamy, K., 140, 141
Venkatesh, S., 202, 203, 219
Venkateshan, S. P., 140, 141, 176, 325
Visbal, M. R., 287
Vishnevskii, V. K., 32
Viskanta, R., 158, 162, 164, 173, 179
Viswanath, R., 219
Vynnycky, M., 126, 140, 303

Wacholder, E., 145, 147
Wachs, A., 283
Wacks, D., 283
Walker, S., 364, 367, 368
Wang, H. S., 291
Wang, P., 267, 273
Wang, Q. H., 196
Wang, T. Y., 287

Wang, X. S., 148
Wang, Z., 246
Wansophark, N., 154
Watkinc, A. P., 369
Wecel, G., 140, 206–208
Weinberg, S. L., 228, 229, 231, 262
Weller, R. O., 267
Wilcox, D. C., 24, 58, 155, 244–249, 252,

284, 329, 331–334, 336, 337, 339,
341–343

Williams, J. J. R., 290, 291
Wilson, P. A., 287
Wingate, D. L., 242
Woodson, S. H., 292
Wrobel, L. C., 206
Wu, H. W., 219
Wu, X., 279
Wu, Y. L., 287

Xiao, L. H., 291
Xiao, Z. X., 291
Xiaolong, Y., 283
Xie, M. Z., 287
Xu, W., 277

Yaakob, Y., 196
Yaglom, A. M., 58, 336
Yakimov, A. S., 196
Yamamoto, M., 284
Yamane, T., 154
Yan, P., 196
Yan, W. M., 152–154
Yan, Y. Y., 140
Yang, C. J., 283
Yaniv, S., 271, 273
Yarugina, N. I., 13, 26
Ye, X., 273
Yi, M., 234
Yih, C. S., 229–231, 234, 266
Yilmazer, U., 202
Yin, F., 229
Yoo, C. S., 283
Yoo, S. Y., 198, 199
Yoshimoto, S., 284
Yoshinoa, H., 196
Younci, R., 196



�

� �

�

Author Index 407

Yu, F., 196
Yu, W. S., 130, 131, 140
Yue, G., 196
Yusoff, S., 196

Zaretsky, U., 273
Zhang, C., 283, 291
Zhang, H. B., 140, 154, 242
Zhang, W., 283
Zhang, X., 276

Zhang, Y., 273
Zheng, Q., 196
Zhu, J., 196, 283
Zhu, Y., 283, 291
Zhuzhgda, I. I., 78
Zhukauskas, A. A., 56–58, 78
Zien, T. F., 229
Zinchenko, V. I., 196
Zoby, E. V., 289
Zuriz, C., 215



�

� �

�



�

� �

�

Subject Index

Abel equation, 38, 43
Absorber, wetted-wall, 202–204
Accuracy of boundary conditions of third

kind, 73
estimation examples, 73–76

Adiabatic screws, 196–198
Adiabatic wall temperature, 38–40, 65–66,

306, 318
Air Force Office of Scientific Research

(AFOSR), 337, 341
Airy functions, 129
Albedo, 139
Algebraic turbulent models, 331–338

Baldwin-Lomax, 336
basic relations, 336

Cebeci-Smith, 335
basic relations, 335
intermittence influence formula, 336
Van Driest’s formula, 336

equilibrium turbulent flows, 332
basic relations, 332–334
Clauser’s defect layer (outer part), 333
gradient pressure parameter, 24
log layer (overlap region), 333
viscous sublayer (inner part), 333
Wilcox perturbation approach, 334

Mellor-Gibson, 24, 334–335
inner velocity profiles, 334

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine,
First Edition. Abram S. Dorfman.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.

outer velocity profiles, 335
viscosity, 334

Prandtl’s mixing-length, 331
Prandtl’s second formula for eddy

viscosity, 332
Algebraic turbulent models applicability,

339
Algebraic turbulent models applications,

337
boundary layer flows, 337

AFOSR data, 338
flows in channel and pipes, 337

comparison with laminar flows
(Hagen-Poiseuille), 337

isothermal and nonisothermal surfaces
heat transfer, 338

basic relations, 338
Alternating direct finite-difference method

(ADI), 135
Analytic function, 103, 301
Arbitrary Lagrangian-Eulerian formulation

(ALE), 242
Arrhenius equation, 191
Asymptotic solutions, 147
Averaged Navier-Stokes equation (RANS),

328
Favre averaging for compressible flow,

284



�

� �

�

410 Subject Index

Averaged Navier-Stokes equation (RANS)
(continued)

Reynolds averaging, 329
Reynolds stresses, 330

closure problem, 331
definition, 330
tensor presentation, 330

turbulence statistical models classifying,
331

Bases of elastic thin plate vibrations theory,
239

Basic turbulence parameters, 24
eddy viscosity, 24
thermal diffusivity, 24

Basset-Boussinesq-Oseen (BBO) equation,
262

Basset force, 262
Bernoulli equation, 301
Bessel function, 146
Binary phase diagram (lever rule), 201
Biology and medicine fluid flow models

applications, 251–273
biological transport, 267–273

bioheat transfer in human tissues, 272
in cerebral perivascular space, 267
embryo transport, 271
macromolecules transport, 268

blood vessels, 251–161
during electromagnetic hyperthermia,

259
magnetic field effect, 255
series, 253
small varying cross section, 258
stenosis, 251

disordered human organs, 261–267
bile flow in duct with stones, 265
chyme flow during gastrointestinal

endoscopy, 263
particle motion in ureter, 261

Boundary layer, 309–320
applicability history, 311
basic properties, 310–311
D’Alembert’s paradox, 309
displacement thickness, 316
equations derivation, 310

exact problem solutions, 315–320
dynamic and thermal self-similar

flows, 319
Hartree numerical solution,

319
flow on semi-infinite plate (Blasius),

315–317
Howarth numerical solution, 316
skin friction, 316
thickness estimation, 316

heat transfer on isothermal infinite
plate (Pohlhausen), 317–319

adiabatic wall temperature, 318
surface heat flux estimation, 318
thermal boundary layer thickness

estimation, 317
Karman-Pohlhausen integral method,

320–323, 343
approximate profiles, 320
basic equations for dynamic layer

321
basic equations for thermal layer,

321
comparison with exact data for

dynamic layer, 321
comparison with exact data for

thermal layer, 322
flows with pressure gradients, 322
heat transfer on nonisothermal

plate, 321
influence function deriving, 323
integral equations, 320
skin friction on a plate, 320

momentum thickness, 317
natural coordinates, 311
Prandtl-Mises and Gortler

transformations, 312–313
pros and cons, 311
similarity theory, 313–315

Boussinesq turbulent stresses expression,
331

comparison with laminar formula, 331

Cauchy-Riemann conditions, 301
Chaos theory principles, 249
Chapman-Rubesin viscosity law, 29
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Charts
applicability, 120–122

refining charts data, 120
thin assumption accuracy, 120

basic equations, 103–105
examples of solution, 108–115

aluminum plate, 111
copper pate, 111
radiating plate, 113
steel plate, 110

Coanda effect, 287
Complex variable function, 301
Computation fluid dynamics (CFD), 371
Computing flow and heat transfer

characteristics, 368–371
convection-diffusion equations

computing, 369
central-difference scheme, 370
hybrid scheme, 584
power-law scheme, 584
upwind scheme, 199, 370

pressure and velocity computing, 368
CVFDM, 368

staggered control volume, 369
CVFEM, 371

co-located momentum-
interpolation scheme, 372

triangular grids, 371
false diffusion, 370

Conjugate complex numbers, 349
Conjugate heat transfer

basic equations, 5–9
body and fluid domains, 5–7
boundary conditions, 7–9
definition, 1
effect of different factors, 220
methods of conjugation, 9–10
plate

charts for solutions, 106 (see also
Charts)

free convection past vertical and
horizontal, 130

heated from one edge, 3, 115
past both side, 118
past one side, 117
radiating in compressible flow, 136

singularities on the solid-fluid
interface, 103–106

examples, 105–106
thin and thermally thin definition, 7
with inner sources, 118

past bodies, 126–141
elliptical cylinder, 132
infinite slab with source, 128
rectangular slab, 126
translating fluid sphere, 134

channels and tubes, 141–154
dynamically and thermally developed

pipe flow, 145
finite length channel laminar flow, 149
parallel walls duct turbulent flow, 142
pipe fully developed laminar flow, 141
plane duct entrance laminar flow, 148
thick-walled channel laminar

flow, 144
unsteady in duct with laminar

flow, 151
unsteady in thick-walled pipe, 152

Conjugate peristaltic flow solutions
flow in channel with elastic walls, 238
perturbation series solution, 237

Convection-enhanced delivery, 267
Cooling systems

electronic packages, 185
emergency cooling in nuclear reactor,

192
rockets and reentry vehicle, 190
turbine blades and vanes, 187

film cooled system, 187–190
radial channel system, 189

Correlated quantities, 329
Creeping flows, 307

Oseen correction, 262, 308
Stokes flow past sphere, 308

Darcy law, 205
Desorption-sorption isotherm, 205, 209
Dialysis, 226
Diffusion coefficient, 208
Diffusion with convection and binding,

269
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Dimensionless numbers, 313–315
derivation (of basic in heat transfer), 314
physical sense, 314

Dirac delta function, 358, 365
Dirichlet problem, 8, 302
Drying

freeze, 217–219
porous material, 216
pulled continued material, 208

first period, 208
second period, 213

two parts of drying process, 211
wood board, 215

Duhamel integral, 10

Eckert number, 314
Eddy flow pattern in cavern by Batchelor,

177
Effect on heat transfer intensity of, 45–73

Biot number as conjugate parameter,
68–69

boundary conditions, 60–62
energy dissipation, 67
leading body edge, 64
Luikov numer as conjugate parameter,

123
nonNewtonian rheology, 66
past cylinder, linear temperature head, 67
past plate, linear temperature head, 64
pressure gradient, 49
second and higher temperature head

derivatives, 46
temperature head gradient, 46
time-variable temperature head, 58
turbulence, 50–58
turbulent Prandtl number, 57

Einstein notations, 298
Energy dissipation, 39, 67
Energy equation, 6–8

boundary conditions, 302
exact solutions, 306–307

adiabatic wall temperature, 306
Couette flow with heated wall, 306
temperature distribution in channel

and tube, 306–307
Engineering peristaltic flow models

applications, 232–235, 273–278

biomimetic swallowing robot, 277
effects of chemical reaction, heat and

mass transfer in tube, 274
microelectronic systems, 232–235, 276

flow in closet cavity, 234
flow in rectangular container, 232

micropuming system optimization, 276
valve-less microfluidic pumping method,

276
Enthalpy, 29
Enthalpy method, 201
1/2 Equation model, 338
Equilibrium turbulent boundary layer, 24,

332
Equivalent conduction problem, 76
Error functions, 344

solution examples, 344–345
infinite solid or isolated thin rod, 344
similarity variable, 344
superposition principle, 345

Euler’ equations, 309
Exercises

(1.1–1.32), 6–18
(1.33–1.47), 27–28
(1.48–1.75), 41–44
(2.1–2.33), 70–73
(2.34–2.82), 95–101
(3.1–3.38), 123–126
(5.1–5.19), 236–237
(5.20–5.31), 243
(5.32–5.44), 249–250

External flows, 102

Fairwater, 290
Faxen force, 262
Finned surfaces, 175–180

fin array on horizontal base, 175
finned surface in transverse flow, 177

First part summery, 219
different factors conjugation effect, 220
recommendations and statements, 221

Flame transfer function (FTF), 285
Flow in flexible tube, 256
Flow history, 21
Food processing, 217
Forces in basic laws (Newton, Fourier,

Fick), 295
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Friction velocity, 333
Froude number, 290

Galerkin’s method, 365
General boundary conditions, 73
Generalized Fourier series, 350–351
Genetically engineered subjects, 268
Gradient analogy, 78
Graphical potential flow presentation, 301
Grashof number, 314
Green’s function method, 358

expression conduction equation for, 358
Green’s approach idea, 358
Green’s identity, 360

one-dimensional solid with source,
359

Hagen-Poiseuille flow, 304
Harmonic function, 301
Harmonic mean, 199
Heat exchangers, 155

double-pipe, 170
Graetz problem, 173
microchannel heat sink, 173

Heat flux as integral
connection with series coefficients,

22–24
effects of Reynolds and Prandtl numbers,

25–26
exponents for laminar flow, 22
moving sheet, 32
turbulent flow, 26–27

Heat flux inversion, 82
Heat flux as series

coefficients for laminar flow, 19
limiting cases Pr → 0,Pr → ∞, 20

moving sheet, 32
non-Newtonian fluids, 29
turbulent flow, 24

Heat source number, 314
Helmholtz equation, 346
Historical-future data effect, 21
Homogeneous and inhomogeneous

problems, 345
Hyperbolic equation, 341
Hyperbolic functions, 358

IDDES and ZDES approaches, 248, 291
Industrial process simulation, 196–202

continuous wires casting, 200
optical fiber coating, 198
twin-screw extruder, 196

Inflection curve point, 83
Influence function, 12

approximate expressions, 12–13
definition, 12
general form, 16

Integral transforms, 353
applications, 358
Fourier integral transform, 353–356

basic relations, 353
infinite solid or insulated rod, 354
two-dimensional half plane sheet, 355

further reading for, 358
inversion in physical space, 353

artificial approach examples, 355, 358
using inverse transform Tablet, 355

Laplace integral transform, 356–358
basic relations, 356
finite length rod with insulated end,

357
semi-infinite solid or insulated rod,

356
Integral turbulence scale, 244
Internal flows, 141
Interstitial fluid (ISF), 268
Irrorational inviscid flow, 300
Isothermal heat transfer coefficient, 21, 24,

54

Keller’s finite-difference method, 131
Kelvin equation, 216
Kirhhoff transform, 188
Knudseh number, 303
Kolmogorov scale, 244
Kronecker delta, 299

Lagrangian and Eulerian field specification,
229

Leidenfrost number, 193
Levi-Civita symbol, 299
Lewis number, 211
Limiting Prandtl number cases, 323
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Liquidus and solidus, 201
Local similarity approach, 164

Mach number, 29
Magnetocaloric effect, 260
Mathematical and pure qualitative results

comparison, 266
Meniscus, 199
Moments method, 331, 365
Monoclonal antibodies, 268
Moving mesh, 290

Nabla, 297
Natural convection, 324–326

applications, 326
buoyancy force, 324
comparison with forced convection,

324–325
effect of radiation, 325–326
Rayleigh-Benard cells, 326
Rayleigh or Grashof as basic numbers,

324
Solution for horizontal fin array, 325
solution for vertical plate (Pohlhausen),

324
basic relations, 324

two types of solutions, 324
Navier-Stokes equation

channel flow simplifying, 239
eliminating pressure, 299
exact solutions, 303–307

stagnation point flow (Hiemenz flow),
304

steady flows in channel and tube, 304
two Stokes problem, 303

initial and boundary conditions, 302
Dirichlet problem solutions, 302

stream function form, 300
structure, 296
vector form, 297
vorticity form, 299

Neumann problem, 8
Nonisobarisity coefficient, 213
Nonisothermicity coefficient, 48
Non-Newtonian fluids, 29–32

apparent viscosity and conductivity, 30

boundary layer relations, 30
coefficients of universal functions in

series, 30–32
comparison to Newtonian, 31
dilatant (n > 1), 40
pseudoplastic (n < 1), 40

Normalization sign, 203
Numerical methods (classical), 361–372

methods classification, 363
by discretization, 363

boundary element (BEM), 364
control volume approach (CV),

364
CVFDM, 364
CVFEM, 364

finite-difference (FDM), 364
finite-element (FEM), 364

by using approximate methods, 364
weighted residual approach,

364–368
basic relations, 364
examples, 364–368
weighted function, 364

what method is proper: analytical or
numerical?, 361–363

Nusselt number, 314

One-dimensional model applicability, 166
One-equation turbulent models, 339

Baldwin-Barth model, 341
Bradshaw, Ferriss and Atwell model, 341
other models with Prandtl’s energy

equation, 340–341
Prandtl’s model, 340
Spalart-Allmaras, 341

One-and two-equation turbulent models
applicability, 343

Operator
definition, 238
Hamilton, 297
Laplace, 7, 297

Optimization problems examples, 86–95
Order of magnitude signs, 129
Orr-Sommerfeld equation, 230
Orthogonal eigenfunctions, 348

orthogonal property conditions, 349–350
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Sturm-Liouville problem, 348
formulation, 348–349

Oseen correction, 262, 308
Other works

Chapter 3, 140, 147, 154
Chapter 4, 179, 195, 202, 219
Chapter 5, 229, 235, 241
Chapter 6, 261, 266, 273, 278, 283, 287,

291
Overall heat transfer coefficient, 155–166

concurrent laminar flows, 155–159
concurrent turbulent flows, 158–159
countercurrent laminar flows, 160–162
flows separated by vertical plate,

162–165
flows in vertical pipe, 165–166

Partial differential equations
elliptical to hyperbolic transforming, 253
equations types, 8

Peclet number, 314
Peristaltic flow

comparison with heat transfer, 226
early investigations, 228–230
microelectronic systems applications

flow in closet cavity, 234
flow in rectangular container, 232

model formulation, 225
semi-conjugate approach, 230–237

Phase change coefficient, 209
Point collocation method, 365
Potential function, 300
Prandtl number, 314

turbulent, 24, 57
Pressure velocity, 335

Quasi-steady approximation, 122

Recovery factor, 29, 38–41
Relaxation means, 184
Results of different means comparing, 361
Rewetting process, 192–195
Reynolds analogy, 54
Reynolds number, 314
Royal Aeronautical Society, 311
Runga-Kutta method, 106

Saffman slip condition, 265
Semi-conjugate peristaltic flow solutions,

230
numerical solution, 231
perturbation series solution, 230
simple linear model, 228

Separation variables method, 345
one-dimensional unsteady problems,

347–351
Euler formula, 347, 349
Fourier series using, 347, 348
thin rod at given ends temperatures,

347
thin rod with insulated end, 348
thin rod with third kind boundary

conditions, 345–351
two-dimensional steady problems,

351–353
rectangular sheet at Dirichlet

boundary conditions, 351
rectangular sheet at mixed boundary

conditions, 352
two functions product solutions,

346–353
new variables using, 345–347

Sherwood number, 204
Similarity of transport equations, 295–297
Singular functions, 312
Software

PISO, 369
SIMPLE, 369
SIMPLEC, 369
SIMPLEM, 369
SIMPLER, 369

Special functions, 146
Starling effective pressure, 269
Stream lines, 300
Subdomains method, 366
Subgrid scales, 246
Successive over relaxation method, 150
Surface/volume ratio, 174

Taylor microscale, 244
Taylor series, 358, 362, 370
Technology processes, 202–219

heat and mass transfer in multiphase
processes, 202
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Technology processes, (continued)
concrete structure analysis, 205–206
crystal grows simulation, 206
wetted-wall absorber, 202

Temperature head deformation, 82
Temperature head as integral, 37–38
Temperature head as series, 36–37
Thermal treatment of continuous moving

materials, 180–185
boundary conditions for continuous

plate, 180
conjugate parameter, 181
two parts solution, 181–183
unsteady free convection effects, 183
velocity (external and plate) ratio effect,

182
Transition of laminar flow, 327–328

intermittence factor, 327
laminar and turbulent flows comparison,

328
reducing energy losses methods, 328

Tridiagonal matrix algorithm (TDMA), 150
Turbulence kinetic energy equation, 340

Kolmogorov equation, 342
Prandtl’s equation, 340
terms meaning, 340

Turbulence simulation methods, 244–248
deleted detached eddy simulation

(DDES), 248
detached eddy simulation (DES), 247
direct numerical simulation (DNS), 244
large eddy simulation (LES), 245
methods comparison, 244
three separation zones in ZDES, 248
wall modeling in LES (WMLES), 248
zonal detached eddy simulation (ZDES),

248
Turbulence simulation models applications,

278–292
detached eddy simulation (DES),

287–292
critical flows over sphere, 287

comparison with experiments, 288
reentry-F vehicle, 289
submerged submarine fairwater, 290

direct numerical simulation (DNS),
278–283

boundary layer at Reθ = 570–2560,
278

exothermic gas-phase reaction in
packed bed, 281

heat transfer in turbulent channel
flow, 280

turbulent Prandtl number estimation,
281

large eddy simulation (LES),
283–287

aerostatic bearings, 283
combustion chamber flame response,

285
nuclear reactor pebble bed, 286

Two-dimensional effects, 166–170
Two-equation turbulent models, 341

Kolmogorov model, 342
k − ω model, 342
k − ε model, 342
other models, 343

Two types transport mechanism, 295

Universal functions, 10
axisymmetric body, 35
compressible fluid, 28
definition, 10
differential form derivation, 13–15

(see also Heat flux as series)
friction coefficient, 78–82
general form for pressure gradients

flows, 15–16
integral form derivation, 10–13 (see also

Heat flux as integral)
inverse, 36–41
moving continuous sheet, 32–34
non-Newtonian fluids, 29–32
recovery factor, 38–41
turbulent flow for, 24–27
unsteady temperature distribution for,

34–35
vapor density, 210

Unsteady boundary layer equation, 6
Unsteady Navier-Stokes equation, 244
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Vapor in the air, 208
Variables

Blasius, 316
Dorodnizin-Illingworth-Stefartson, 28
dummy, 14
Falkner-Skan, 319
Gortler, 15, 23, 30, 312
Manbler-Stepanov, 35
Prandtl-Mises, 312
Prandtl-Mises-Gortler, 312
similarity, 344

Vector expressions
continuum equation, 298
curl, 297
diffusion equation, 298

divergence, 297
energy equation, 298
gradient, 297
substantial derivative, 298

Vibration Reynolds number, 239
Virtual mass, 262

Weak formulation, 366–367
FEM and BEM basic relations, 366
FEM and BEM features, 366–367

Wall law, 333

Zero equation models, 331
Zero heat transfer surface, 84–86
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