MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

NATIONAL UNIVERSITY "ODESSA MARITIME ACADEMY™

Gorb S.I., Nikolskyi V.V., Shapo V.F., Khniunin S.H.

Programming controllers in the integrated
development environment

TRAINING MANUAL

PRACTICE

Odessa — 2017

UDC 001.8 (075.8)

I' 67 Gorb S.I., Nikolskyi V.V., Shapo V.F., Khniunin S.H. Programming
controllers in the integrated development environment: training

manual. Practice. — Odessa: National University '"Odessa Maritime
Academy", 2017. - 164 p.

Programming of controllers was considered using laboratory benches
developed by a group of universities within the framework of the project TEMPUS
544010-TEMPUS-1-2013-1-DE-TEMPUS-JPHES — "Trainings in Automation
Technologies for Ukraine" (TATU). These benches are distinguished by a full set
of advanced technologies that are used in automation systems and modular
construction, minimal set of technical means for organizing comprehensive training
in the use of controllers, adaptation of equipment for the organization of learning
process.

The PC Worx development environment was chosen as the programming
environment.

Examples of solving the problems of technological processes automation of
different complexity are given.

The tutorial is intended for bachelors, specialists and masters of disciplines
"information technology", "mechanical engineering", "electrical engineering",
"automation and instrument engineering", "transport", as well as postgraduate
education of engineers providing design and operation of automation systems
(including marine systems).

Approved by the Academic Council of the National University "Odessa Maritime
Academy" as a training manual for disciplines "Automation and Computer-Integrated
Technologies", "River and Maritime Transport", minutes dated October 27, 2016, No. 3.

Approved by the Academic Council of Post Graduate Institute of Specialists in Maritime
and Inland Water Transport (Odessa) as a training manual for specialists and masters of
disciplines "information technology", "mechanical engineering", "electrical engineering",
"automation and instrumentation, "transport", minutes dated October 28, 2016, No. 3.

Reviewers: V.Y. Voropaeva, Candidate of Technical Sciences, Associate Professor, Vice-
Rector for Scientific and Pedagogical Work of Donetsk National Polytechnic
University;
L.I. Klyuchnik, Candidate of Technical Sciences, Professor, Head of
Department of design and operation of electronic devices of Kharkov National
University of Radio Electronics;
R.A. Shaporin, Candidate of Technical Sciences, Associate Professor, Head of
Department of Computer Intelligent Systems and Networks of Odessa National
Polytechnic University.

ISBN 978-966-7591-73-1

© S.I. Gorb, V.V. Nikolskyi, V.F. Shapo, S.H. Khniunin, 2017

2

Contents
INTRODUCTION 4

1. TRAINING LABORATORY FACILITIES TATU SMART LAB

1.1. TATU Smart Lab hardware 5
1.2. Hardware module "Programmable controllers and PROFINET" 8
1.3. "PROFIBUS" hardware module 24
1.4. Hardware Module "Process Modeling" 30
1.5. Switching of hardware modules 34

2. CONTROLLERS SOFTWARE

2.1. AUTOMATIONWORX Software Suite environment 38
2.2. Hardware requirements for the AUTOMATIONWORX Software
Suite environment 41

2.3. Installing the AUTOMATIONWORX Software Suite environment 42

3. PC WORX INTEGRATED DEVELOPMENT ENVIRONMENT

3.1. PC Worx interface and modes of operation 50
3.2. Creating a new project 56
3.3. Configuring PC Worx when working with ILC 151

GSM/GPRS controller 67

3.4. Configuring PC Worx when working with AXC 3050 controller 76

4. PROGRAMMING IN PC WORX INTEGRATED DEVELOPMENT
ENVIRONMENT

4.1. Function Block Diagram (FBD) 97
4.2. Ladder Diagram (LD) 118
4.3. Structured Text (ST) 127

5. EXAMPLES OF CONTROL SYSTEMS PROJECTS

5.1. Simulation model of ship auxiliary boiler control system 143
5.2. Control system for reciprocating compressor unit 145
5.3. Scarecrow for airports and gardens 156
CONCLUSION 159
ANNEX. Elements of the LD language according to IEC 61131-3 160
List of references 163

INTRODUCTION

Controllers are a present-day element base of process automation systems.
Currently, they are assembled on microcircuit die and they perform the functions
of microcomputer. Apart from processor, inside a single chip various memory
devices (RAM and ROM), I/O ports, communication interfaces, timers, system
clock and peripheral devices are mounted, that allow the components to work and
interact with each other and external devices using special microprograms stored
inside the controller. This enables the use of controllers in various applications,
from power plants to household appliances.

Controller that contains an operating system and software and has standard
input and output signals is called programmable. The term "Programmable Logic
Controller" 1s also used, which appeared when programmable controllers were
used to control sequential logic operations. These controllers had only binary
inputs and outputs, where values of the signals could correspond only to logical
zero or logical unit. Present-day programmable controllers have analog inputs and
outputs and in addition to logical operations are able to perform almost any
arithmetic operations and implement complex control laws. Therefore, the use of
the term "logical" in the name of programmable controllers can be considered
obsolete.

Compared to microprocessors with unconditional logic, programmable
controllers have more prospects in "alternative" control systems, especially if the
latter require adaptation to controlled objects. Whenever programmable controllers
are used, the time for designing, creating and configuring control systems is
reduced. They can also be considered the most advanced means of process
automation among unified systems.

The world's largest producers of programmable controllers are Allen-Bradley,
Omron, Schneider Electric, Siemens, Advantech, Delta, VIPA, Mitsubishi
Electric, WAGO 1/0, Phoenix Contact, Segnetics, Fastwel, Owen, Kontat and
Tecon.

During training of specialists in disciplines "information technology",
"mechanical engineering", "electrical engineering", "automation and instrument
engineering", "transportation" knowledge and skills in programming controllers,
organization of data transmission in digital control networks, including wireless,
real-time process control and integration of control systems using devices from
different manufacturers should be provided. This will allow specialists to design,
develop, operate and repair modern automation systems, as well as to organize
pre-project work on the automation of various technological processes and plants.

In the proposed training manual only questions of programming controllers
are considered. In this case, PC Worx was chosen as the integrated development
environment — it has good functionality and quite a lot of elements, similar to
other programming environments.

1. TRAINING LABORATORY FACILITIES TATU SMART LAB

1.1. TATU Smart Lab hardware

TATU Smart Lab (TSL) is a flexibly configurable mobile set of devices for
teaching modern automation technologies. It contains devices from different
manufacturers and was developed within the framework of Industry 4.0 (the
fourth stage of industrial revolution). It is a German public-private program in
which large German IT companies create fully automated industries where
individual devices and their nodes can communicate with each other and
consumers using wireless data transmission technologies.

TSL allows studying a number of modern technologies for building
automation systems. Within the framework of TATU project, these technologies
are divided into the following training modules.

1. Programming controllers in the PC Worx integrated development
environment and hardware-independent CoDeSys development environment.

2.Use of PROFINET and Modbus TCP standards and integration of
automation systems with PROFIBUS networks.

3. Wireless data transmission technologies.

4. Management of real-time processes.

5. Introduction to real time data exchange standard OPC DA.

The first training module is focused on exploring the PC Worx integrated
development environment, offered by Phoenix Contact for programming and
modeling automation systems. This software is aimed at devices and modules
manufactured by Phoenix Contact. Other companies that develop programmable
controllers also produce their own programming environments, designed only for
proprietary models of programmable controllers. Typically, development
environments are distributed on a paid basis, but there are also "limited" editions
with limited capabilities that can be obtained for free.

Integrated development environments provide the use of libraries of standard
elements and procedures, quick input of standard elements, convenient debugging
of programs with control of input values and step-by-step execution of programs,
visualization of programs with comments of its modules, loading programs into
controllers.

CoDeSys (COntroller DEvelopment SYStem) development environment is
distributed by 3S-Smart Software Solutions GmbH (Kempten, Germany) for free
and works with many models of programmable controllers produced by different
manufacturers.

PC Worx and CoDeSys support all five programming languages of the third
version of the International Standard of the International Electrotechnical
Commission (IEC) 61131-3, which was released in 2012:

IL — Instruction List (a text language similar to assembler. It is rarely used by
applications engineers);

FBD — Function Block Diagram (graphical language using function blocks
that are "written" in other languages.) Typical function blocks include filter,
trigger, PID controller, timer, pulse generator, etc. Its specific feature is illustrative
purpose);

LD — Ladder Diagram (graphical language that forms logical conditions and
result of operation in the form of electrical circuit, through which the current either
flows or does not flow. The circuit consists of contacts and coils of
electromagnetic relays. For performing arithmetic operations, it contains function
blocks of operations of addition, multiplication, average computation, etc. It is
convenient for specialists who are used to trace a signal on a ladder diagram in
case of debugging programs and equipment fail, but it is inconvenient for
implementing complex algorithms, since it does not support functions and
programs);

SFC — Sequential Function Chart (graphical high-level language, which
allows describing technological process as transitions between sets of states. It is
intended for programming the sequence of actions at specified intervals or when
certain events occur. SFC is based on mathematical apparatus of networks; it is
rarely used);

ST — Structured Text (a high-level text language that contains constructions
of the type IF ... THEN ... ELSE, WHILE ... DO, Boolean and arithmetic operators
that are similar to classical programming languages and are the closest to Pascal; it
1s convenient for implementing complex algorithms) .

In Russia the IEC 61131-3 standard is implemented as State Standard R IEC
61131-3-2016 "Programmable controllers. Part 3. Programming Languages". The
latter can be used as a translation of IEC 61131-3 into Russian.

CoDeSys has also a number of implemented extensions to the IEC 61131-3
specification, the most significant of which is the support of object-oriented
programming.

The programs (projects) compiled into machine code are loaded into
controller. CoDeSys includes a set of software tools for preparing and debugging
programs, compilers, configurators, visualization editors, etc. The project created
in CoDeSys can be stored on computer or in programmable controller.

The enhanced professional version of this development environment is called
CoDeSys Professional Developer Edition. It is distributed under license and
includes support for UML class and state diagrams, connection of Subversion
version control system (distributed freely), static analyzer and code profiler.

The second training module was designed for studying modern data transfer
technologies PROFINET and Modbus.

PROFINET can use the TCP/IP (Transmission Control Protocol/Internet
Protocol) network protocols and real-time Ethernet. TCP/IP protocols allow
managing automation devices remotely over the Internet.

Modbus can be used for data transmission through serial communication lines
and through networks using TCP/IP protocols (Modbus TCP). Developed by
Modicon, it is supported by a non-profit organization Modbus-IDA. The
advantage of this technology is that virtually all control and monitoring systems
have software drivers for working with Modbus.

PROFIBUS networks, which belong to the previous generation of data
transmission networks, are considered in the training module. At the same time,
they have a wide scope of application and are supported in millions of automation
devices that have been installed worldwide over the past 20 years (since the early
1990s). PROFIBUS network technologies are largely based on Ethernet
technologies and industrial Ethernet implementations, which are the most popular
all over the world.

The third training module provides a wide range of technologies for wireless
data transmission. This direction is extremely important in connection with the
widespread introduction of wireless networks in recent years.

In the fourth training module tools for real-time process management are
studied: real-time operating systems, software and hardware systems for building
real-time systems, applied and system software, hardware solutions.

The fifth training module covers the main approaches used for real-time data
exchange in networks within the framework of the OPC group of standards (OLE
— Object Linking and Embedding for Process Control, implementation and linking
of objects for process control). OPC technology defines two types of software:
OPC server that directly communicates with devices, and OPC client that receives
data from the OPC server and passes control commands to the OPC server.
Software developers can organize data acquisition for processing from various
external technological systems via unified interface. Thus, it is possible to avoid
binding to specific models of equipment of specific manufacturers, and the data
exchange processes are simplified and unified.

OPC DA (Data Access) is one of the eight standards included in the OPC
group. OPC DA is used much more often than other group standards, as it
provides modes of synchronous and asynchronous real-time data exchange with
programmable controller, human-machine interface systems, numerical control
systems and distributed control systems.

TSL consists of three hardware modules, each of which i1s housed in a
separate portable box (suitcase), designed to study specific topics and can be used
independently of the rest. TSL modules, their interaction and possible cable
connection are shown in Fig. 1.1.

Fig. 1.1. The structure of TSL hardware modules and their connection to computer

1.2. Hardware module ""Programmable controllers and PROFINET"

The first hardware module (Fig. 1.2) is called "Programmable Controllers and
PROFINET", since it contains two programmable controllers (AXC 3050 and ILC
151 GSM/GPRS), PROFINET I/O devices, managed network switch and wireless
access point for wireless LAN.

This hardware module can be used for studying a wide range of topics, from
basic programming of controllers in PC Worx to working with data transfer
technologies developed on the basis of Ethernet technology and wireless data
transmission technologies. Two programmable controllers can communicate using
TCP/IP or Modbus TCP data transfer protocols. The PROFINET I/O devices can
only be connected to the AXC 3050 controller and the ILC 151 GSM/GPRS Inline
controller does not have PROFINET functionality. Thus, the devices and
technologies implemented in this module allow studying the material of training
modules 1, 2 and 3.

Fig. 1.2. Appearance of the first TSL hardware module "Programmable controllers
and PROFINET"

Fig. 1.3 shows the connection diagram of devices in the first hardware
module.

Fig. 1.3. Connecting devices in the first TSL hardware module "Programmable
controllers and PROFINET"

The AXC 3050 programmable controller (Fig. 1.4) can work with Ethernet
family networks and the Axioline F local bus, which supports any Ethernet-based
data transfer protocols. The Axioline station can be created by connecting
Axioline modules to the controller. The Axioline F local bus, described in more
detail below, can be used for the sequential installation of various modules
(devices) one closely to the other.

. \micrﬂUSB

SDMC

Fig. 1.4. Controller AXC 3050: X1, X2, X3 — interfaces for connecting to Ethernet
family (8-pin RJ45 connectors); SDMC (Secure Digital Memory Card — a slot for
connecting flash cards such as Secure Digital); MicroUSB — a connector for
connecting USB devices, hidden under a paper tag for information labels; ALB —
AxioLine bus

Fig. 1.5 shows the connection of supply voltages.

al MH‘-E%;. b'l Fig. 1.5. Contacts pin map on remote panel: al, a2 (red
' terminals) — supply voltage 24 V DC; contacts bl, b2

=
a2 \“éér/ b2 (blue terminals) — grounding

The AXC 3050 controller can be fully configured and programmed in one of
five programming languages in accordance with IEC 61131-3 standard with PC
Worx when connected over Ethernet network.

The AXC 3050 controller has built-in interfaces for connecting devices over

10

Ethernet network. It allows you to configure the controller using TCP/IP or UDP
(User Datagram Protocol) protocols.

The controller has three integrated Ethernet ports X1, X2, X3 (see Fig. 1.4).

Using function blocks [P USEND (sending user data via TCP/IP protocol)
and IP_URCYV (receiving user data via TCP/IP protocol) in PC Worx, it is possible
to organize data exchange (i.e., values of variables corresponding to the measured
process parameters and physical quantities) between the controllers. This approach
allows implementing distributed and configurable automation solutions.

By using the AX OPC server (Object Linking and Embedding for Process
Control, a collection of software technologies that provide a single interface for
managing automation objects and technological processes), the controller is
accessible over Ethernet network and can be used in software visualization
packages.

The PROFINET technology can be implemented by connecting to the
Ethernet interfaces of the AXC 3050 controller. The PROFINET controller is
always available when connected via the 8-pin RJ45 connector of the X3 interface.
The PROFINET functionality can be activated on the Ethernet interfaces X1, X2,
X3 (see Fig. 1.4). By default, this function is disabled and can be activated in
PC Worx.

Modbus TCP technology can also be implemented by connecting to the
Ethernet interfaces of the AXC 3050 controller. This controller can act as a
Modbus client, and can be configured as a MODBUS TCP server when using its
corresponding function blocks.

At the bottom of the AXC 3050 controller there is communication interface
with the local Axioline F bus (see Fig. 1.4) for connecting various modules.

Up to 63 devices can be connected to the controller. The actual number of
devices depends on the total current consumption of all devices, which should not
exceed the maximum current that the controller provides to the local bus.

Due to the Web-based management interface integrated into the controller,
the user can visualize the status and diagnostic information from the controller in
the browser.

The AXC 3050 controller is equipped with two USB interfaces (see Fig. 1.4).

The AXC 3050 controller has internal memory. It can be used for storing
programs and configurations for a custom project. If the internal memory is
insufficient for the created application, the AXC 3050 can work with external
memory in the form of SD format flash memory (Secure Digital) or USB-drive.

The controller has 4 MB of internal memory for program storage, and 8 MB
of memory for data storage; 128 kB is used for storing data after power off. The
minimum controller cycle time is 1 ms, the number of control tasks performed
simultaneously is 16.

The ILC 151 GSM/GPRS controller (Fig. 1.6) is a small, scalable, modular
controller with integrated ports for connecting Ethernet and Interbus networks and
an integrated quad-band modem.

11

Fig. 1.6. ILC 151 GSM/GPRS controller

The controller can be configured and programmed in PC Worx using Ethernet
connection in all five programming languages in accordance with IEC 61131-3.
The connection to the Ethernet network is done via a twisted-pair cable, and
TCP/IP and UDP/IP data protocols are used to access the controller.

Built-in communication functions allow you to exchange data over Ethernet
network. Using function blocks IP_ USEND (sending user data via TCP/IP
protocol) and IP_ URCYV (receiving user data via TCP/IP protocol) in PC Worx, it
1s possible to organize data exchange (i.e., values of variables corresponding to the
measured process parameters and physical quantities) between controllers. This
approach allows implementing distributed and configurable automation solutions.

When using the AX OPC server, the controller is accessible over Ethernet
network and can be used in various visualization packages.

The Modbus TCP communication protocol can be enabled via the Ethernet
interfaces of the ILC 151 GSM/GPRS controller. The controller can act as a
Modbus client.

The local Inline bus and the remote Interbus bus are activated via the
appropriate connection. In this case, the developer can create a full Interbus
system (maximum four levels of remote bus), using the controller as a distributed
one.

The I/0 level is connected to this controller via Interbus bus.

The controller can work with external memory in the form of SD format flash
memory. It can be used for storing programs and configurations for a custom
project. This external memory is optional and is not required for normal operation
of controller.

12

GSM-modem, integrated in this controller, allows you to perform the
following functions:

sending and receiving SMS;

control of remote controller via GPRS (General Packet Radio Service) or
CSD (Circuit Switched Data);

permanent GPRS connection for working with this protocol without
executing programs.

The TCP/IP connection in the user project must use the appropriate function
blocks. PC Worx has built-in communication function blocks
MOBILE CONNECT, SMS SEND and SMS RECEIVE to implement
communication by sending SMS over the GSM network using the ILC 151
GSM/GPRS controller.

PC Worx has a standard GPRS_CONNECT function block for setting up a
GPRS connection with the ILC 151 GSM/GPRS controller. The TCP/IP blocks
allow the transfer of data over a GPRS connection using the TCP/IP protocol.

The ILC 151 GSM/GPRS controller has only two analog outputs.

In order to extend the capabilities of the controller, the following additional
hardware modules can be used.

The IB IL DO 4-ME module (Fig. 1.7) has 4 digital outputs. The following
abbreviations are used for the module labeling: IB — InterBus, IL — InLine, DO —
Digital Output, ME — Machine Edition (designed for engineering, positioning and
motion control).

Fig. 1.7. The appearance of the IL DO 4-ME module of the ILC 151 GSM/GPRS
Interbus controller bus

The module has 4 outputs 24 V, 500 mA DC. It is designed to output digital
signals and has the following characteristics:

13

connection for 4 digital actuators;

connection of actuators by two- and three-wire technologies;

rated output current 500 mA;

total module current 2 A;

outputs are protected from short circuit and overload;

diagnostic and status indicators.

The IB IL AI 4/U-PAC module (Fig. 1.8) has 4 analog inputs. The following
abbreviations are used for the module labeling: IB — InterBus, IL — InLine, Al —
Analogue Input.

Fig. 1.8. The appearance of the IB IL Al 4/U-PAC module of the ILC 151
GSM/GPRS Interbus controller bus

The module has 4 inputs for connecting sources with varying voltage or
current. Its characteristics are as follows:

4 analog, bipolar input channels;

connection of sensors by two-wire technology;

ranges of voltages from 0 to 10 V and from —10 V to +10 V;

generation of average values at the inputs;

updating data at inputs every 250 ms;

diagnostic and status indicators.

The IB IL AO 2/UI-PAC module (Fig. 1.9) has 2 outputs for outputting
analog signals with varying currents and voltages. Its characteristics are as
follows:

connection of actuators by two-wire circuit;

ranges of currents change from 0 to 20 mA, from 4 to 20 mA and from -20 to
+20 mA;

ranges of voltage change from 0 to 10 V and from —10 to +10 V;

diagnostic and status indicators.

14

Fig. 1.9. The appearance of the IB IL AO 2/UI-PAC module of the Interbus ILC
151 GSM/GPRS controller bus

Bus connector AXL F BK PN Axioline F (Fig. 1.10) combines the
PROFINET network with the Axioline F system. Bu using it up to 63 Axioline F
devices can be connected to the existing PROFINET network. Its characteristics:

2 Ethernet ports and an integrated switch;

typical cycle time for the local Axioline F bus is 10 ms;

support of PROFINET RT (Real Time) and IRT (Isochronous Real Time);

support of PROFIsafe standard (extension of PROFIBUS and PROFINET
technologies, by which it's possible to create freely programmable security functions
and exchange the necessary input and output data with safe input-output devices);

the minimum PROFINET cycle time for RT and IRT 1s 250 ms;

the execution time in the bus coupler is negligible;

firmware can be updated;

MRP (Media Redundancy Protocol) client, which ensures reliable operation
of the network regardless of topology and even failing of some cables;

settings are managed in the browser;

I & M (Identification and Maintenance) functions;

access of different users to the device through the network;

diagnostic and status indicators.

The PC Worx 6.30 version allows you to configure PROFINET devices and
contains an online description of the functions of devices with technical data and
configuration file (if several versions of configuration files are available, you need
to make sure that the version of the file corresponds to the version of the hardware
and firmware).

15

Fig. 1.10. Bus connector AXL F BK PN Axioline F for PROFINET

Modern I/O modules perform many functions that have previously been
performed only by controllers. To perform these functions, the devices require
setting during system installation, maintenance and parameterization. Therefore, it
1s necessary to have accurate and complete information about the devices: the type
of functions to be performed, the number of inputs/outputs, the range of variables,
the units of measurement, the default values that identify the device parameters,
etc. PROFIBUS offers several approaches for the unified description of devices.
The simplest is the use of GSD text files containing general and device-specific
information. The GSD file is loaded into the PROFIBUS Configurator
configuration tool and is used when it is installed.

The AXL F BK PN Axioline F has a web server that creates the required
pages for web-based management and, if necessary, loads them into the browser.
Web-based management can be used to access static information (technical data,
MAC address) or dynamically changing information (IP address, status
information).

Access to the device's web server can be obtained by using an IP address if it
is properly configured. The home (main) web page of the device is downloaded
after entering the address in the following format: http://IP address (for example,
http://192.36.133.58).

Bus connector supports the Simple Network Management Protocol (SNMP)
for controlling devices in IP networks using TCP and UDP protocols. SNMP
supports routers, switches, servers, workstations, printers, modem racks, etc.

To extend the capabilities of the AXC 3050 controller, additional modules
can be connected to the AXL F BK PN Axioline F bus coupler when building
complex automation systems. The modules included in the TSL package are
described below.

16

The AXL F DI8/1 DO8/1 1H module (Fig. 1.11) 1s used for digital input and
output; it has 8 inputs (24 V DC) and 8 outputs (24 V DC), maximum current
500 mA, single-wire connection technology.

Fig. 1.11. Module AXL F DI&/1 DO8&/1 1H

The module is designed to work as part of the Axioline F station and is used
for acquiring and outputting digital signals. Time filters at the inputs can be
adjusted to increase the immunity to noise. A 100 ms time filter makes it possible
to implement a counter function with the maximum frequency 5 kHz. The outputs
are protected against short circuits and overloads.

Characteristics of the input subsystem:

8 input signals;

24V, 2,4 mA direct current;

connection of sensors using single-wire technology;

time filters can be tuned to three possible incremental values — less than 100
ms, 1000 ms and 3000 ms;

the maximum frequency of the inputs is 5 kHz.

Characteristics of the output subsystem:

8 output signals, 24 V, 500 mA direct current;

connection of actuators based on a single-wire circuit.

The minimum module update time is less than 100 ms. There are diagnostic
and status indicators available.

The AXL F Al4 U 1H analog input module (Fig. 1.12), intended for use
inside the Axioline F station, serves for the input of analog voltage signals and has
an integrated power supply unit for sensors.

17

Fig. 1.12. Module AXL F Al4 U 1H

Module characteristics:

4 analog bipolar input channels for connecting voltage signals;

two-, three- and four-wire connection of sensors;

ranges of input voltages from 0 to 10 V, from —10 to +10 V, from 0 to 5 V
and from -5 to +5 V;

simultaneous polling of all channels using the simultaneous sampling
function;

high coefficient of transient attenuation between channels due to separate
signal circuits;

high immunity to interference caused by electromagnetic radiation;

status and diagnostic indicators.

The AXL F AO4 1H analog output module (Fig. 1.13) is intended for use
within the Axioline F station. It serves for the output of analog voltage and current
signals.

Fig. 1.13. Module AXL F AO4 1H
18

Module characteristics:

4 analog output channels for connecting voltage or current signals;

bipolar voltage outputs, unipolar current outputs;

two-wire connection of actuators;

voltage ranges from 0 to 10 V, from —10 to +10 V, from 0 to 5 V and from -5
to+5V;

current ranges from 0 to 20 mA and from 4 to 20 mA;

outputs are protected from short circuits;

specification is saved in the device's own memory;

status and diagnostic indicators.

Siemens ET 200S is a peripheral I/O device that works with the PROFINET
IO protocol. It consists of the IM151-3 PN interface module, power module,
digital input module, two digital output modules inserted in the terminal module.

ET 200S distributed I/O system is a modular DP-slave system with flexible
configuration for connection to signal processing in the central controller or in the
PROFINET IO network. ET 200S has an IP 20 protection rating.

The IM151-3 PN interface module (Fig. 1.14) with an integrated two-port
switch connects the ET 200S to the PROFINET IO network. The device name and
backup data can be stored on a memory card. It supports Ethernet services such as
ping, arp (two standard Windows command line utilities), Net diagnostics
(SNMP)/MIB-2, LLDP (Link Layer Discovery Protocol) and has built-in LEDs
for device status diagnostics. The network topology in which LLDP is used can be
obtained from control computer by sequential traversing and polling of each
device.

Fig. 1.14. Bus coupler Siemens
IM151-3 PN HF PROFINET

19

Up to 63 modules can be connected to IM151-3 PN. Communication in
isochronous real-time mode (IRT) can be organized. The minimum update time in
IRT mode is 250 ms. The maximum length of the bus connection is 2 m.

The IM151-3 PN HF interface module allows updating the firmware using
memory card or via the PROFINET IO bus. During operation the following
interrupts are allowed:

diagnostic;

working process;

for adding/removing modules;

maintenance.

The maximum addressing space for I/O data is 256 bytes.

The module is connected to the bus from the rear panel; the maximum length
of the bus 1s 2 m.

Terminal modules TM-P15S23-A1 and TM-E15S26-A1 (Fig. 1.15)
implement electrical and mechanical communication of the I/O modules with the
interface module and the end module.

Fig. 1.15. Terminal modules TM-P15S23-A1
(left) and TM-E15S26-A1 (right)

The installed I/O module outputs signals to terminals 1 — 16, A3, A4, A7, A8,
All, A12, Al15, Alé6.

The required terminal module is selected depending on the voltages necessary
for the application. The AUXI1 secondary bus is integrated into the terminal
modules (it can be supplied with auxiliary supply voltage up to ~230 V or used as
PE protective earth). Secondary bus can be used as a guiding protective bar or for
supplying additional voltage.

Characteristics of TM-P15S23-A1:

provision of new voltage group for the next TM-P terminal module;

20

three mounting types — mounted by screwing, spring retention and fast
connect without dismantling;

solid firm AUXI1 bus with electrical connection to the next group of voltages
on the left;

access to the AUXI1 bus voltage from terminals A4 and AS.

Characteristics of TM-E15S26-A1:

universal terminal module for all electronic modules 15 mm wide;

three mounting types — mounted by screwing, spring retention and fast
connect without dismantling;

solid firm AUX1 bus with electrical connection to the next group of voltages
on the left;

access to the AUX1 bus voltage from terminals A4, A8 and A3, A7.

The ET 200S PM-E DC24YV distributed I/O module (Fig 1.16) monitors the
feeding voltage at all electronic modules. The feeding voltage is supplied by
means of the terminal module TM-P.

Fig. 1.16. Distributed module ET 200S for power supply
I/0 PM-E DC24V

Electronic modules, excluding 2DI AC120V ST, 2DI AC230V ST, 2DO
AC24..230V/1A, can be used in the voltage group of the PM-E DC 24V power
supply module. The current status of the power supply module is stored in the
status byte in special memory area (Process Image of the Inputs, PII), because
direct access to the I/O modules is not possible. It is updated independently or
when the voltage failure diagnostics is enabled. The PM-E DC 24V power supply
module can be used for self-disconnecting (fault-protected) modules. Temperature
range was expanded for vertical installation: 0 — 55 °C.

The characteristics of the modules connected to the ET 200S PM-E DC24V
are listed below.

Module 8DI DC 24V has 8 digital inputs; the nominal input voltage is 24 V
DC; allows connecting two-wire sensors; isochronous operations are supported.

21

Module 8 DO DC 24V/0.5A has 8 digital outputs; the output current is 0,5 A
per output (channel), the total current is 4 A; the nominal load voltage is 24 V DC;
integrated short-circuit protection; isochronous operations are supported. The
module is compatible with solenoid valves, DC contactors, indicating systems.

Module 2 AT STANDARD U has 2 outputs for measuring voltage with the
following input ranges: £10 V with resolution capability 13 bits + sign bit, +5 V
with resolution capability 13 bits + sign bit, 1 — 5 V with resolution capability
13 bits. There is also isolation from the load voltage L+. Voltage up to 5 V AC
(Soft Start) is allowed. Temperature range was expanded for vertical
installation: 0 — 50 °C.

Module 2 AO U has 2 outputs for output voltage with an output range of
+10 V for resolution capability 13 bits + sign, 1 — 5 V with resolution capability
12 bits. There is also isolation from the load voltage L+. Temperature range was
expanded for vertical installation: 0 — 50 °C.

FL SMCS 8TX-PN (Smart Managed Compact Switch) is an intelligent,
controlled, compact Ethernet industry standard switch (Fig. 1.17). The device does
not use a fan, but it has reduced power consumption and meets all industry
standards in terms of electromagnetic compatibility, temperature conditions,
mechanical load and ensuring the highest possible level of availability.
Redundancy of the network topology can be created with the help of STP
(Spanning Tree Protocol), RSTP (Rapid STP - advanced, accelerated
implementation of the STP protocol), MRP. There are special stickers on the
device for writing comments for each port.

Fig. 1.17. FL SMCS 8TX-PN switch
22

Web server and SNMP agent are provided for diagnostics, maintenance and
configuration via the network. Terminal access point can be used to transfer data
over short distances.

Port mirroring can be used for monitoring traffic on network connections or
as an important service function.

Features and applications of the switch:

maximum performance of all ports up to 1 Gbit/s;

increased network performance by filtering traffic (local traffic is not
transferred to the external network and the amount of data in the network
segments is reduced);

simple expansion of the network and its configuration;

unification of cable network segments with different data rates;

automatic detection of data rates of 10, 100 or 1000 Mbit/s with autocrossing
of RJ45 ports;

flexible use of fiber optic modules in SFP slots (Small Form-factor Pluggable
— industry standard for modular compact transceivers for data transmission). SFP
modules are used to connect a network device card (switch, router) to an optical
fiber or unshielded twisted pair;

increased availability due to the use of redundant data paths with the
minimum switching time and the use of the RSTP protocol, as well as the
definition of the fast ring update mode (rapid detection of ring topology,
expansion of RSTP protocol);

support of various topologies and cell structures, as well as ring topologies
with an emergency determination of the presence of a ring;

configuring the switch in a web-based management system via SNMP or
locally via the RS232 interface;

port mirroring;

determining the topology and use of LLDP protocol;

address allocation by BootP protocols (Bootstrap Protocol), DCP (Discovery
and Configuration Protocol, used for configuring device names and IP addresses in
small and medium-sized applications without installing a DHCP server on
PROFINET networks) or statically;

Support of MRP protocol as a client (thus the MRP ring can be created using
any switch ports);

the switch can be used in the PROFINET environment;

settings can be easily changed by using the Smart mode.

Wireless access point FL WLAN EPA (EPA — Ethernet Port Adapter) is a
high-performance interface between the Ethernet and PROFINET cable and
wireless networks (Fig. 1.18). Transparent protocol is used to transfer data to the
second layer (L2) of the OSI model (Open System Interconnection, a seven-level
open system interconnection model designed to standardize devices and data
transmissions from different manufacturers), which allows easy integration with
the networks that are based on industrial Ethernet (PROFINET and Modbus/TCP).

23

FL WLAN EPA complies with Class A PROFINET requirements and has a
PROFIsafe profile to avoid data transmission failures.

FL WLAN EPA is certified for compatibility with wireless LANs of IEEE
802.11 b/g/n standard operating at 2,4 GHz. This standard is supported by
stationary computers and laptops, mobile wearable devices, bar code scanners,
RFID tags readers, weighing systems.

Fig. 1.18. Wireless Access Point FL WLAN EPA

WLAN (IEEE 802.11 b/g/n/a) is a standard wireless technology that provides
reliable data transmission where there are metal objects and in environments with
high levels of interference. WLAN has become the standard for wireless
transmission of control data in automation networks. Factoryline wireless LANs
are optimized as part of the standard for process automation.

1.3. "PROFIBUS" hardware module

The second hardware module contains three PROFIBUS I/O devices, a
PROFINET proxy for I/O for PROFIBUS DP technology with an integrated
switch and a wireless access point (Fig. 1.19). This module can be used for
studying the PROFIBUS technology. It can be used in combination with the first
hardware module or directly with a controller running on PROFINET or
PROFIBUS technologies.

24

Fig. 1.19. Second hardware module TSL "PROFIBUS"

Fig. 1.20 shows the connection diagram of devices in the second hardware
module.

Fig. 1.20. Connection diagram of devices in the second hardware module TSL
"PROFIBUS"

25

In the second hardware module the following devices are installed.

The FLL NP PND-4TX PB proxy system with built-in 4-port RJ45 switch
(Fig. 1.21) has the following characteristics:

support of PROFINET 1/0 devices;

Ethernet 10/100Base-T (X) for twisted pair;

built-in PROFINET 10 proxy for PROFIBUS;

support of negotiation with Class B PROFINET;

built-in managed four-port switch;

class 1 PROFIBUS DP master device;

PROFIBUS DP master connection with the speed of up to 12 Mbps
(connection via copper cable and RS-485 standard);

full configuration using PC Worx;

connection of the PROFIBUS DP system to the PROFINET IO controller;

use in small control devices for easy integration of existing PROFIBUS DP
solutions in the PROFINET network.

Fig. 1.21. Proxy system FL. NP PND-4TX PB with built-in switch

The PROFIBUS DP proxy system can be configured with PC Worx.

Parameterized memory simplifies the replacement of devices if the
PROFINET 1O controller does not support automatic device discovery based on
the topology. Port mirroring can be used for packet analysis.

The second hardware module has the wireless access point FLL. WLAN
EPA, similar to the first hardware module.

Bus coupler AXLL F BK PB Axioline F (Fig. 1.22) connects the
PROFIBUS network and the Axioline F. It can connect up to 63 Axioline F
devices to the existing PROFIBUS network.

26

Fig. 1.22. Axioline F bus coupler for PROFIBUS DP

Main characteristics of the bus coupler:

the connection is setup using 9-pin D-SUB Female connectors;

physical interface RS-485 is used;

in case master devices of classes 1 and 2 are installed, PROFIBUS DP-V1
mode is used (the DP-VO sub-standard is used for cyclic data exchange and
diagnostics, DP-V1 is used for acyclic and cyclic data exchange and alarm
processing, DP-V2 is used for mode synchronization and data exchange between
the subordinated units of equipment);

autodetection of the data transmission speed in the range of 9,6 kbit/s — 12
Mbit/s is performed;

coded rotary switches are used for setting PROFIBUS addresses;

support of dynamic configuration;

PROFIBUS addresses in the range 0 — 126 are supported;

the device description is stored in the GSD file;

I & M (Identification and Maintenance) functions.

The Axioline F bus coupler for PROFIBUS DP has the same plug-in modules
as the AXL F BK PN bus connector for PROFINET in the first hardware module.

The IL PB BK DI8 DO4/EF-PAC bus coupler for PROFIBUS DP
(Fig. 1.23) has 8 digital inputs and 4 digital outputs. It is necessary for connecting
PROFIBUS DP devices with the Inline installation system. In addition, it is used
for collection and output of digital signals. The bus coupler allows connecting 61
Inline devices to any point in the existing PROFIBUS DP network. The bus
coupler and Inline series devices form one station with a maximum of 63 devices
connected to the local bus. The input and output devices of the bus coupler are the
first and second local bus devices.

27

Fig. 1.23. Inline bus coupler for PROFIBUS DP

Characteristics of the bus coupler:

connection to PROFIBUS is carried out with the help of 9-pin D-SUB Female
connectors;

physical interface RS-485 for PROFIBUS is used;

up to 61 additional Inline-devices can be connected;

up to 16 PCP devices can be connected (Port Control Protocol, which in IP
networks controls the redirection of incoming data packets in the router). The
router filters data packets or works in accordance with the NAT (Network Address
Translation) mechanism, allowing IP-networks to resolve IP-addresses of transit
packages). This makes it easier to manage and configure network traffic so that
systems located behind NAT devices or firewalls are reachable via Internet (i.e.
they can also function as servers), which is necessary for many applications;

PROFIBUS DP/VI1 class 1 and 2 master devices can be used;

autodetection of the data transmission speed in the range of 9,6 kbit/s — 12
Mbit/s is performed;

coded rotary switches are used to set PROFIBUS addresses;

PROFIBUS addresses in the range 0 — 126 are supported;

the device description is stored in the GSD file;

I & M (Identification and Maintenance) functions;

there are 8§ digital inputs and 4 digital outputs;

autodetection of the local bus speed (500 kbit/s or 2 Mbit/s);

calling of 10-Link firmware — version 2.0 and higher (IO-Link is the first
standardized input/output technology that allows data exchange at all levels — from
control system to the lowest level of automation).

The device is approved for use in the zone of two potentially explosive areas.
The PROFIBUS bus coupler configures the station and controls the data exchange
with the PROFIBUS master. It also supports the power supply to the connected
Inline terminals. PROFIsafe I/O modules can also be used.

28

The bus coupler can work with the same plug-ins as the ILC 151 GSM/GPRS
controller discussed in 1.2.

The IL PB BK DI8 DO4/EF-PAC Inline bus coupler has only 2 analog
outputs that are connected to the terminal.

The IM151-1 HIGH FEATURE interface module (Fig. 1.24) has the
following characteristics:

It connects the ET200S I/O peripheral device to the PROFIBUS DP network
via the RS 485 interface;

Simatic 7 limits are eliminated for the maximum length of parameter (usually
244 bits);

the maximum address space is 244 bytes for inputs and 244 bytes for outputs;

it can be used as a slave device DPV0 or DPV1;

the maximum number of serviced modules 1s 63;

the maximum length of the bus is 2 m;

support of the service option and using of status byte for power modules;

it can be synchronized with PROFIBUS DP cycles;

firmware can be updated via PROFIBUS DP using Siemens Simatic Step 7
HW Config;

the data exchange is performed in accordance with Siemens Safety-related I-
slave-I-slave technology for PROFIBUS DP;

it can be used as DPV1 for Y-switching technology;

ProfiSafe modules are used.

Fig. 1.24. Interface module IM151-1 HIGH
FEATURE

This interface module works with the same plug-in modules as the Siemens
PROFINET IM151-3 PN HF bus coupler described in cl. 1.2.

29

1.4. Hardware Module "Process Modeling"

The third hardware module (Fig. 1.25) is intended for modeling of technological
processes. Models should be developed in CoDeSys of 3.x versions and loaded
into the EtherCAT EC2250 controller. The graphical interface can be seen in the
browser by entering the link http://xxx.xxx.xxx.xxx:8080/webvisu.htm, where
xxx.xxx.xxx.xxx 1s the IP address of the EtherCAT EC2250 controller. For
visualization it's possible also use the built-in graphic terminal Ethernet ET1007
WT. This module also allows you to study the programming of controllers in
CoDeSys of 3.x versions.

Fig. 1.25. The third hardware module TSL "Process Modeling"

The third hardware module has various analog and digital inputs and outputs,
as well as buttons that can be used for testing and simulating the operation of a
highly complex control system. Analog inputs/outputs are located on the left and
are connected to terminal X7 (Fig. 1.26). Each button has a built-in LED that is
connected to the digital output. Nonlocking keys in rows SA and SB are connected
to terminal X3. Keys in rows SC and SD are the usual locking keys, connected to
terminal X4. Thus, the devices and technologies implemented in this module allow
studying the material of training modules 1, 4 and 5.

30

Fig. 1.26. Location of physical inputs and outputs

Fig. 1.27 shows the connection diagram of devices in the third hardware
module.

Fig. 1.27. Connection diagram of devices in the third TSL hardware module
"Process Modeling"

The connection table is shown in Fig. 1.28.

In the third hardware module the following devices are installed.

Compact controller EC2250 EtherCAT (Fig. 1.29) has a short cycle time
and 1s designed for hard real-time systems. The controller uses a high-performance
scalable ARM processor with Cortex TM-A9 core and frequency of 800 MHz.

EtherCAT is an Ethernet based bus standardized by SEMI (Semiconductor
Equipment and Materials International), IEC and ISO. The principle of operation
of EtherCAT differs significantly from other Ethernet based solutions. In the
EtherCAT network a single Ethernet packet includes the input and output data of
several devices. Real bandwidth usage can reach more than 90 %. EtherCAT is
much faster than traditional buses and industrial Ethernet based solutions. The
typical EtherCAT cycle time is 50 ... 250 ms, while in traditional buses 5 ... 15 ms
are required for each update.

31

Hardware module 3, connector X;
(8 digital outputs, 8 digital inputs)

Hardware module 3, connector X4
(8 digital outputs, 8 digital inputs)

Signal | Contact number | Visualization/

name | in connector X5 |control element
Qutput 0 1 LED Sa1
Qutput 1 2 LED Sx2
Qutput 2 3 LED Sx3
Qutput 3 4 LED Sp4
Qutput 4 5 LED Sg1
Qutput 5 B LED Sg2
Qutput 6 7 LED Sg3
Qutput 7 8 LED Sg4
Input 0 13 Button Sa1
Input 1 14 Button S2
Input 2 15 Button Sx3
Input 3 16 Button Sp4
Input 4 17 Button Sg1
Input 5 18 Button Sp2
Input 6 19 Button Sp3
Input 7 20 Button Sgd

ov 11,12, 23, 24

24V 9,10, 21, 22

Signal | Contact number | Visualization/

name | in connector X4 |control element
Qutput 0 1 LED Sc1
QOutput 1 2 LED S:2
Output 2 3 LED S¢3
Output 3 4 LED Sq4
Qutput 4 5 LED Sp1
Qutput 5 6 LED Sp2
Qutput 6 7 LED Sp3
Output 7 8 LED Sp4
Input 0 13 Button S¢1
Input 1 14 Button 52
Input 2 15 Button Sg3
Input 3 16 Button Sc4
Input 4 17 Button Sp1
Input 5 18 Button Sp2
Input 6 19 Button Sp3
Input 7 20 Button Sp4

ov 11,12, 23, 24

24V 9,10, 21, 22

Fig. 1.28. Connection of digital inputs and outputs (keys Sal, Sa2, Sa3, Sa4, Sgl,
Sg2, Sg3, Sg4 are locking, keys Sc1, Sc2, Sc3, Sc4, Spl, Sp2, Sp3, Sp4 are nonlocking)

Fig. 1.29. Compact controller EC2250 EtherCAT

32

A lot of digital and analog inputs and outputs, as well as built-in
programming languages for working with version 3 CoDeSys, are located in the
controller itself. Together with the CoDeSys SoftMotion package, complex
applications for controlling multi-axis actuators can be operated. The device
integrates the following communication interfaces: Ethernet, EtherCAT, CAN, RS
232 and RS 485. PROFINET, BACnet and Modbus protocols are available.
EC2250 uses CoDeSys, Web Visu and the corresponding Ethernet terminals for
visualization.

CoDeSys SoftMotion is a functional set of motion control tools built into the
development environment and the CoDeSys execution system. It controls motions
from the simplest displacements along one axis to the complex multidimensional
interpolation of advanced systems with numerical program control (NPC).

The EC2250 controller has 32 digital inputs/outputs and 18 analog
inputs/outputs and supports the following:

programming, visualization, communication, motion control in CoDeSys and
SoftMotion,;

master modes in EtherCAT and CANopen technologies;

serial data transfer interfaces;

use of extension cards.

In the third hardware module the EC2250 controller is used primarily for
process modeling.

Ethernet terminal ET1007 WT (Fig. 1.30) was designed specifically for
visualization in CoDeSys — it has simple control and high speed of operation. It
can work with various equipment, perform CoDeSys web visualization or target
CoDeSys visualization with the help of VNC protocol (Virtual Network
Computing — system of remote access to resources (for example, desktop) using
the RFB (Remote Frame Buffer) protocol. It does not matter if the visualization
data comes from Berghof controller or from any other controller that works with
CoDeSys. The performance and memory capacity of the terminal allow quick
change of the pages of the visualization project.

Fig. 1.30. Ethernet terminal
ET1007 WT (as an example,
arbitrarily selected controls
and visualization tools that
can be implemented in a
specific project, are shown)

33

The terminal receives data over the Ethernet interface at the speeds of 10/100
Mbps. Entering IP address and HTTP address ensures a simple and quick
connection to the CoDeSys controller (visualization server). The Ethernet terminal
visualizes the file running on the EC2250.

The terminal has high brightness (more than 400 cd/sq. m.).

To operate the target visualization the "Target-Visualization" option located
on the "General" tab of the CoDeSys system must be activated in the system
settings. If allowed in the target file, this option can be turned on or off by the
user.

1.5. Switching of hardware modules

To ensure physical connections of devices of hardware modules, Centronics IEEE
488 connector with 24 outputs is used (Fig. 1.31). Each set of 8 digital inputs and
outputs is connected to the pins of connector in accordance with the requirements
of IEEE 488.

Fig. 1.31. 24-pin Centronics IEEE 488 connector

Also a 15-pin D-Sub connector 1s used (Fig. 1.32).

Fig. 1.32. 15-pin D-Sub connector

Up to 6 analog signals are connected to the D-Sub connector. The analog-to-
digital conversion is performed at resolution capacity of 12 bits. The sample rate is
0,5 kHz.

Only the third hardware module can be connected to other modules by
standard cables, as their inputs and outputs are mounted symmetrically. Fig. 1.33
shows an example of using Centronics connectors for connecting hardware
modules. Fig. 1.34 shows an example of using D-Sub connectors for connecting
hardware modules.

34

Hardware modules 1 and 2 (8 digital inputs,
8 digital outputs)

Hardware module 3 (8 digital outputs,
8 digital inputs)

Input 0 1 g——— Quiput 0 1
Input 1 2 ¢—— OQutput 1 2
Input 2 3 - Output 2 3
Input 3 4 jgp—————— Qutput 3 4
Input 4 5 4—— Cutput 4 5
Input 5 6 g——— OQutput 5 6
Input 6 7 |g——— Output & 7
Input 7 8 ——————— Output 7 8
Output 0 13 —— | Input0 13
Output 1 14 —— Input 1 14
Output 2 15 - Input 2 15
Output 3 16 — Input 3 16
Output 4 17 —— Input4 17
Output 5 18 ——»| Input5 18
Output 6 19 ————» Inputt 19
Qutput 7 20 ————— Input? 20
oV 11,12, 23, 24 ov 11,12, 23, 24
24V 9,10, 21, 22 24V 9, 10,21, 22

Fig. 1.33. Contacts pin map when connecting hardware modules using
Centronics connectors

Hardware modules are connected to each other using standard cables packed
with TSL in accordance with the diagram shown in Fig. 1.1. These cables can also
be used for connecting other external devices that do not have IP addresses.
Devices that have IP addresses are connected to RJ45 ports of Ethernet switches
using a standard twisted-pair cable of category 5 and higher.

35

Hardware modules 1 and 2 (2 analogue Hardware module 3 (2 analogue

inputs, 4 analogue outputs) outputs, 4 analogue inputs)
Input 0 1 g——— Output 0 1
Input 1 2 - Qutput 1 2
oV 3 oV 3
Not used 4 Not used 4
Not used 5 Not used 5
ov 6 ov 6
Output 0 7 —— | Input0 7
Output 1 8 —— = Input 1 8
Not used 9 Not used 9
Not used 10 Not used 10
Not used 11 Not used 11
Not used 12 Not used 12
Not used 13 Not used 13
Qutput 2 14 —— [nput 2 14
Output 3 15 ——# Input3 15

Fig. 1.34. Contacts pin map when connecting hardware modules using
D-Sub connectors

In order to work through the tasks within this training manual, two standard
cables are used (Fig. 1.35) for connecting the first and the third hardware modules
("Programmable Controllers and PROFINET" and "Process Modeling").

In the first hardware module (see Fig. 1.2) the slots located under the ILC 151
controller or under the AXC 3050 controller are used, and in the third hardware
module (see Fig. 1.25) — the slots X4 and X7 are used.

36

After the modules are switched, the controls located in the third hardware
module become available.

Fig. 1.35. Cables for connecting hardware modules

Test questions

1. What hardware modules does the TATU Smart Lab training laboratory
facilities consist of?

2. What data transfer technologies are used in the TATU Smart Lab training
laboratory facilities?

3. What are the bus connectors used for?

4. What local buses are used for connecting peripherals to controllers?

5. What interfaces are used for connecting peripherals to the TATU Smart
Lab training laboratory facilities?

6. What are the differences between the controllers used in the TATU Smart
Lab training laboratory facilities?

7. How can wireless data transmission in the TATU Smart Lab training
laboratory facilities be organized and what are the differences of these methods?

8. What software development tools can be used when working with the
TATU Smart Lab?

9. What hardware is used in the TATU Smart Lab training laboratory
facilities for simulating the operation of external equipment?

10. What is the purpose of the Ethernet terminal ET 1007 WT?

37

2. CONTROLLERS SOFTWARE

2.1. AUTOMATIONWORX Software Suite environment

The AUTOMATIONWORX Software Suite environment was developed by
Phoenix Contact and is a package of coordinated programs for configuring and
programming controllers, diagnostics of I/O modules, as well as tools for creating
controllers Web-interface.

AUTOMATIONWORX Software Suite includes the following components:

PC Worx;

PC Worx Express;

Config+;

Diag+;

Diag+ NetScan;

Visut;

WebVisit;

AX OPC Server.

PC Worx is universal software for project development and is suitable for all
Phoenix Contact process control devices.

Depending on the number of supported process inputs/outputs, one of two
software versions can be used: PC Worx BASIC or PC Worx PRO.

The software supports the following functions:

compiling network topologies using the Drag & Drop method;

controlling the device using the integrated configuration and addressing
PROFINET (the standard for building automation networks based on the Ethernet
network technology with real-time mode and using the TCP/IP protocol),
PROFIBUS (the previous generation technology that uses the principle of
master/slave and data transmission rate from 9,6 kbit/s to 12 Mbit/s), INTERBUS,
as well as Modbus-TCP;

testing programs in the early stages using the simulation function;

diagnostics of all components of the system;

multiple users with password protection;

conducting several projects and comparing projects.

The software contains:

catalogs of devices and modules;

controller change assistant in case of the change of models.

PC Worx Express is a free, simplified version of PC Worx. It supports
modular mini controllers of 100 and 1000 series, as well as programmable
controllers PC Worx SRT with programming languages ST and LD according to
IEC 61131-3. The maximum number of input-output data is 128 kB.

38

PC Worx Express supports the following: features for diagnostics of control
points or individual programming stages, for example, debugging of libraries and
structure; making changes to the program while the controller is running;
comfortable control of the device by the PROFIBUS, INTERBUS and also
Modbus-TCP integrated configuration and addressing; quick commissioning and
programming using an extensive collection of standard libraries.

Config+ is software for configuring the INTERBUS network. It performs the
following functions:

data reading and comparison of actual and project topologies;

assigning addresses automatically or by Drag & Drop method;

parameterization of several leading connection blocks and modules in one
project;

assigning IP addresses using the BootP server;

parameterization of devices regardless of the manufacturer by means of the
FDT/DTM concept;

configuring the settings of multiple devices using the MDC wizard;

monitoring of wiring control;

diagnostics of INTERBUS networks by graphical indication of errors in the
network topology, text messages with tips for troubleshooting errors, displaying
device states online, providing statistical data on the quality of the transmission,
storing comments on error messages;

Config+ software has an integrated Diag+ diagnostic tool for troubleshooting.

Diag+ is diagnostic software for PROFINET and INTERBUS, which reports
both network errors and the current status of control devices. It includes the
following diagnostic functions:

start and stop of data transfer via INTERBUS;

acknowledgment of INTERBUS error messages;

bypassing, enabling and disabling of INTERBUS modules;

displaying error messages with tips for their elimination and detailed
information about the type of device and its status;

output of color characters for indication of errors and device states;

quality control of fiber optic lines transmission for preventive diagnostics;

comparison and processing of time-varying LWL diagnostic data packets;

creation of reception protocols as a PDF file;

connection to other software tools, for example, to visualization tools;

display of saved messages from the messages archive of the control device;

overview of the topology of Ethernet/PROFINET devices in the form of two-
dimensional graphics;

displaying message about the availability of Ethernet/PROFINET devices;

management of individual user rights for various users.

39

Diag+ NetScan is software for cyclic diagnostics of INTERBUS networks. It
provides synchronous monitoring of INTERBUS networks with several
connection modules/control devices. For example, continuous monitoring of
transmission quality in all optical channels of the system can be carried out. It is
possible to control low-level buses connected via systems interface devices.
Moreover, a 32-bit application with the programming interface as an ActiveX
control element can be included.

Main functions of the software:

execution of basic commands (start/stop/...);

input of data on the bus structure;

recognition/presentation of alarm conditions (text messages from the
database);

storage of diagnostic information in flash memory or memory for controller
parameters;

diagnostics of fiber-optic channels (transmission quality control);

cyclical reading of diagnostic data from all controllers or INTERBUS
controllers of the same network (the number of control groups is unlimited);

mapping of the network structure, where all the controllers (INTERBUS
control devices) of one system are visually displayed as a tree structure (detailed
diagnostic information is triggered by the button click);

simultaneous monitoring of up to 10 controllers/INTERBUS control
devices.

Visut is visualization software which provides expanded monitoring by
displaying diagrams or setting values for alarms. It also allows registering and
logging all process parameters and exchanging data with databases or enterprise
resource planning systems.

Visualization elements can be selected using Drag & Drop function. Data can
be viewed using a web client, such as a mobile phone. The software can work both
on the ARM platform and with multiprocessor server systems.

WebVisit is a software tool for visualization of devices and processes in the
network. It helps to create graphical interfaces without programming, which
allows for visual control of works at the factory and onsite. The free version of
WebVisit 6 Express allows organizing visualization on the basis of web
technologies. Moreover, up to 10 visualization pages can be created and up to 60
process variables can be used.

The biggest advantage of WebVisit is that it is a graphical editor itself (Java
or HTML programming is not required). WebVisit visualization pages can be
displayed in any standard browser.

40

AX OPC SERVER is communication interface for SCADA-system with
OPC support and control system based on PC Worx. OPC (OLE for Process
Control) is a family of software technologies that provide a single interface for
managing automation objects and technological processes. The AX OPC server
provides all OPC DA clients with variables of controllers, programmed with PC
Worx. The interface provides the ability to access local and global data. Variable
names are automatically synchronized with the current project.

Main functions:

support of standard OPC functions, as well as all additional interfaces
(according to OPC specification DA 1.0a and DA 2.04/2.05);

simultaneous support of several control devices;

built-in client for OPC testing and diagnostics.

The following types of controllers are supported: ILC Ixx, AXC 1xxx, ILC
3xx, AXC 3xxx, RFC 4xx, PC Worx RT BASIC/SRT.

The following standard data types are supported: BOOL, BYTE, INT, DINT,
UINT, SINT, USINT, UDINT, WORD, DWORD, REAL, LREAL, STRING,
TIME (according to IEC 61709).

The following user data types are supported: ARRAY OF, STRUCTS,
ARRAY OF STRUCT, STRUCT in STRUCT (according to IEC 61131-3).

2.2. Hardware requirements for the AUTOMATIONWORX Software Suite
environment

The AUTOMATIONWORX Software Suite environment requires the following
hardware:

RAM - at least 2 GB;

processor — at least Pentium 4/Celeron 1.6 GHz;

interfaces — COM-port, Ethernet (PCI for the INTERBUS-Master main board
in a personal computer);

monitor resolution — XGA (1024 x 768).

Also, operating system — MS Windows 7 and higher — is required.

The following functions are supported:

languages — German, English, French, Italian, Spanish, Chinese;

browsers — Internet Explorer 8 and higher, Opera.

41

2.3. Installing the AUTOMATIONWORX Software Suite
environment

The AUTOMATIONWORX Software Suite environment can be installed from
installation discs or from Phoenix Contact official website -

www.phoenixcontact.com. In the latter case, the sequence of actions is as
follows.

1. In the "Products" section, select the "Software" section (Fig. 2.1).

Fig. 2.1. Phoenix Contact component page

2. In the "Category" section, select "Programming" (Fig. 2.2).

Fig. 2.2. Category selection

3. In the new window, expand the item "Product list Programming" (Fig. 2.3).
42

Fig. 2.3. Software selection

4. In the "Downloads" section, check the items and additional components
necessary for downloading the AUTOMATIONWORX Software Suite
environment (Fig. 2.4).

Fig. 2.4. Window for selecting the required software version

5. Confirm the terms of the license agreement by clicking on the "Download"
button and wait for the download to finish (Fig. 2.5).

Fig. 2.5. Location of the downloaded installation file
43

The downloaded archive shown in Fig. 2.5 can be unzipped using WinZip or
WinRAR. Let us consider the option of unzipping the archive using WinRAR
(Fig. 2.6).

Fig. 2.6. WinRAR window

As it's possible to see from the figure, the archive contains
AUTOMATIONWORX Software Suite version 1.82 and its additional
components. In order to start the installation, unpack them to a separate folder.
After the program is extracted, Setup.exe is launched.

In the first window the installation wizard will prompt you to select the
language (Fig. 2.7).

Fig. 2.7. Language selection

During the next step of installation the wizard checks the availability of
WinPcap on the computer and suggests its installation in case of absence (Fig. 2.8
and 2.9).

44

AUTOMATIONWORX Software Suite 2015 1.82 - InstallShield Wizard {1+ WinPcap 4.13 Setup = B [

Ty AUTOMATIONWORX Software Suite 2015 1.82 requires the following items to be k() 4 License Agreement
L= installed on your computer. Click Install to begin installing these requirements. ! _|_n caP Please review the license terms before installing WinPcap 4.1.3.
Status Requirement Press Page Down to see the rest of the agreement.

Pending WinPcap [copyright (c) 1999 - 2005 NetGroup, Politecnico di Torino (Ttaly).

(e)
Copyright (c) 2005 - 2010 CACE Technologies, Davis (California).
Copyright (c) 2010 - 2013 Riverbed Technology, San Francisco (California).
All rights reserved.

1| »

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of ~

If you accept the terms of the agreement, click I Agree to continue. You must accept the
agreement to install WinPcap 4.1.3.

| Install H Cancel ‘ | < Back ‘l IAgree]| Cancel ‘

Fig. 2.8. WinPcap selection window and Fig. 2.9. License agreement
installation

WinPcap supplements the standard functions of the Win32 family operating
systems with the ability to receive and transmit data over the network, bypassing
the operating system protocol stack and interacting directly with the network
adapter of the computer, and also provides high-level API applications with low-
level processes management. WinPcap consists of three components: packet
capture device driver (pasket.vxd), low-level dynamic library (packet.dll), and
high-level static library (libpcap).

During the next step it is recommended to check the automatic startup box for
the WinPcap driver at booting (Fig. 2.10).

Fig. 2.10. Checking the automatic startup box

After the WinPcap installation is complete, the installation wizard returns to
the AUTOMATIONWORX Software Suite installation and prompts you to review
and accept the terms of the license agreement (see Fig. 2.11).

45

Phoenix Contact - AUTOMATIONWORX Software Suite 2015 1.82 X

License Agreement .
Flease read the fallowing license agreement carefully. I -~

Enduser License Agreement
Software License Agreement

M »

Important note:

By installing, copying or using this software product in any other way,
you consent to the following terms. If you do not agree to these terms,
please do not install this software product but return the software and
all accompanying material (including printed material and packaging)
within 30 days to receive a full reimbursement. If you purchase or have -

Q)] acceptthe terms of the license agreement Erint

| do not acceptthe terms of the license agreement

‘ < Back ‘ Tlext > ‘ ‘ Cancel ‘

Fig. 2.11. AX SW Suite 1.82 license agreement window

If necessary, the location of this software can be changed by clicking the

"Change" button (Fig. 2.12).
During the next step of the software installation the list of installed

applications is selected (Fig. 2.13).

Fig. 2.12. Selecting the location folder Fig. 2.13. Selecting software
for AX SW Suite 1.82 components

After that the process of copying and installing files on the computer will
begin. After the process is completed, security settings should be configured
(Fig. 2.14).

46

5, AUTOMATIONWORX Software Suite - Security settings X

Set the user groups and users respectively applying the program.

Select users/groups

Users Groups &
1 Bce
["] HomeGroupUsers [lus_usRs

[AarukmcTpaTopel

[]rocTm

[] KpunTorpaguueckne onepatopel

[] Onepatopel apxusa

[] Onepatopsl HacTpoikn ceTi

[] OnbiTHEIE NonbzoBaTEMM

[] Nonezoeatenu

["] Nonszoeatenn DCOM

["] NonbsoeaTenm xypHanos npomssoan. .
["] NonszoeaTenw cuctemHoro MmoHnTopa
["] Nonezoeatenm ynanenHoro pasoyero ..
["] Pennukartop

|:| YutaTenu xypHana coSsITHA

o Detugserteers, =

m

[] Others (enter separated by commas)

Fig. 2.14. Configuring of security settings

When installation is complete, the final window of the installation wizard
appears (Fig. 2.15).

Fig. 2.15. The final window of the installation wizard

The next stage is the installation of additional components. For this purpose
run the file AX Software Suite X.XX AddOn_Vl.exe (Fig. 2.16).

47

Fig. 2.16. Installing additional components

Before completing the installation of additional components security settings
shown in Fig. 2.14 should be configured.

At the end of installation the "Phoenix Contact" folder containing references
to the software being a part of AUTOMATIONWORX Software Suite will be
created in the Start menu (Fig. 2.17).

Fig. 2.17. Start menu
48

Test questions

1. What is the purpose of the PC Worx development environment?

2. What are the hardware requirements for the AUTOMATIONWORX
Software Suite environment?

3. What is the purpose of WinPcap?

4. Which folder is selected for the location of the AUTOMATIONWORX
Software Suite environment?

5. What folder contains the links to the software being a part of
AUTOMATIONWORX Software Suite?

49

3. PC WORX INTEGRATED DEVELOPMENT ENVIRONMENT

3.1. PC Worx interface and modes of operation

The PC Worx development environment has a standard Windows interface. The
title indicates the name of the software and the name of the project. If the project
was not saved and its name did not change, the program will have the appearance
presented in Fig. 3.1. The color of the title bar indicates whether the program is
active or running in the background.

Fig. 3.1. PC Worx interface

Below the title, the top menu is displayed. Depending on the mode of
operation, certain menu items may not be available.

Let us consider each menu item in the programming mode.

"File" — allows to create, open, save, close and delete projects. In addition,
the menu item contains commands and print settings, as well as print preview.

This menu item contains commands for exporting and importing projects,
which can be exported to a CSV file containing comments and descriptions.

In order to increase the security of the project, password protection is
provided ("Enter password ...").

"Edit" contains the commands necessary for editing: copying, cutting or
pasting, searching and replacing text lines in the text. Depending on the active
editor, the respective commands for working with objects are activated.

50

"View" is used to display or hide various windows and user interface
controls (project tree, message window, cross-reference window, etc.), as well as
the state and switching between program modes.

"Project" is used for inserting data and declaring POU libraries. It also
contains the command for comparing the current project with another project.

"Build" consists of various commands for starting the compilation of the
project after editing, displaying errors found during compilation, building cross-
references and deleting declared unused local variables.

"Objects" is available in the editor mode. The sub-menu "Variable" can be
used for inserting new variables into the list of the current POU. When editing
graphic worksheets, menu sub-items are available for inserting and editing graphic
objects, such as connectors, jumps, contacts, coils, etc. Depending on the graphic
language used, some sub-menus may be inactive.

Depending on the type of worksheet (graphic or text), "Layout" contains
elements for scaling and adjusting the sheet size, displaying page boundaries or
grid, setting auto-scrolling speed and object size.

"Online" contains commands for debugging the project, managing dialog
resource and activating display mode.

In the "Extras" menu item it's possible to call the dialog boxes "Shortcut
Keys" and "Options" and additional tools, such as the editor "Pagelayout Editor".
Dialog Boxes: "Shortcut Keys" allows you to define your own keyboard shortcuts
or default key combinations; "Options" provides the ability to customize menus,
toolbars, text editors and text colors. Using the menu items "Export Options ..."
and "Import Options ..." it's possible to export the current settings to an XML file
on the local computer.

"Window" is used for placing windows and symbols on the screen and
closing all open windows with one click.

"?" contains commands for using the Help option.

Toolbars are located under the top menu. The number of toolbars can be set
by the user. Using the items of these toolbars the user can access the frequently
used functions of the program. These functions can also be called up through the
menu or through predefined shortcuts.

By default, all toolbars are visible. The user can hide or show the toolbar
using the "Options" tab of the dialog box.

When you hover the mouse over the symbol, it's possible to see a brief
description of this item displayed as a tooltip.

Each panel can be pulled, docked to other panels in another position and
moved.

To open a workspace sheet, double-click the associated sheet icons in the
project tree. These sheets can be edited using a graphical or text editor.

51

By default, the working display area has the value "Workbook Style" — when
you open multiple sheets, a shortcut is assigned to each opened sheet. In order to
activate a certain sheet, click on the corresponding tab or go to opened sheets by
repeatedly pressing <Ctrl> + <TAB>.

In order to maximize the workspace (it is useful when working with a small
display), it's possible to hide unused windows by clicking the appropriate button
on the toolbar.

The message window "Message Window" displays the detected errors and
warnings of the compiler.

One of the main advantages of the "Message Window" window is the ability
to directly access a worksheet in which errors were found during compilation.

In order to display the message window, select "Message Window" in the
"View" menu item. If the "Message Window" window is closed, it will
automatically appear when compilation starts. The user can customize the message
window by resizing it and moving it to another location on the screen.

The status bar "Status bar" displays various messages when the user is
working with the programming environment.

The left part of the status bar displays messages about the operations that are
being performed or system messages. If you place the cursor on top of the symbol
icon or menu item (without performing the operation), a short description of the
function from the selected character or menu item will be displayed in the status
bar.

When working in the graphical editor the field to the right shows the position
of the cursor, and when working in the text editor — the current row and column.
Under the cursor free space on hard disk is displayed. If there is not enough disk
space, this field is colored red.

When sending a project to a programmable controller (upload/download), the
progress indicator shows the progress of the operation and is displayed in the
status bar.

Different modes of the programming environment are indicated by the
different colors of the status bar:

gray indicates that the work is done offline, i.e. there is no connection
between the programming system and the controller;

green indicates that the connection is established and data can be
uploaded/downloaded;

red indicates errors.

During operation, PC Worx allows switching to different modes of operation.
Modes are switched by the top menu "View" or using a group of buttons on the
toolbar SECEmE S

The interface of the IEC Programming mode is shown in Fig. 3.2.

52

Fig. 3.2. Basic interface of the IEC Programming operating mode

This interface consists of four main windows. The name of each window 1is
indicated at the top or on the left.

"Project Tree Window" has a tree structure and serves to organize the
program and project management. It consists of the following branches:

"Libraries" — includes project libraries;

"Data Types" — serves for declaring data types;

"Logical POUs" — stores the main program and programs added by the user;

"Physical Hardware" — contains the configuration of the elements, global and
network variables.

The contents of the selected branches "Project Tree Window" is displayed in
the central part and is called the "Working display area". The white field in Fig.
3.2 1s called the "WorksSheet" of the main program. At the bottom of the working
display area it's possible to see the tabs that display the contents of the "Project
Tree Window". Switch tabs by clicking the mouse or using the keyboard by
repeatedly pressing <Ctrl>+ <TAB>.

The tabs at the bottom of the Project Tree Window allow sorting the contents
of the window. When you hover the mouse pointer over the tab (without pressing
a button), a tooltip appears that shows the name of the displayed branch.

For this and other windows it's possible to use the automatic hiding function
#, located in the title bar. When activated, the window will be automatically
hidden if it is not used.

53

The "Edit Wizard" window is located on the right side of the interface. It lists
the functions used for programming in the FBD language.

Elements are installed in the worksheet from the Edit Wizard by simply
dragging them to the workspace.

All elements of the language are grouped together. The group selection is
possible in the drop-down menu under the window title. It includes the following
sections.

The group "<all FUs and FBs>" contains all functions. The color of the
elements is as follows:

red denotes system elements (Firmware);

blue denotes library items (Library);

user elements are displayed in green.

These colors are the default system colors and can be changed by the user
with the help of the "Options" dialog box.

In the "Function blocks" group only the functional blocks of the colors
described above are highlighted.

The "Functions" group contains only functions.

The "Network Templates" group offers already saved network templates that
can be inserted into the current sheet.

The "String FUs" group offers only string functions.

The "Favorites" group contains the blocks added to the "Favorites" by the user.

The "Type conv. FUs" group contains conversion functions, such as the
"Bool" type in "Integer" or "Bool" in "Word".

At the bottom "Message Window" described earlier is located.

The next mode of operation is Bus Configuration. Its interface is shown in
Fig. 3.3.

Fig. 3.3. Basic Bus Configuration interface
54

In the "Bus Structure" window, which has a tree structure, the list of devices
used in the project is displayed. The detailed information on each selected device
is displayed in the central part of the "Device Detail" window. At the bottom of
the "Device Detail" window tabs that display properties by section are located.

The "Device Catalog" window is a constantly updated catalog of devices
from both Phoenix Contact and the third-party manufacturers.

The "Module Catalog" window is the catalog of modular devices.

The Process Data interface is shown in Fig. 3.4.

i Fle Edt View Prolect Buld Orline Extras ?

i) 6 OE:BRSxm [i iBREaEOE - @ 5 283
: Process Data Assignment Av[
Symbols V¥ ariables = @ UMTITLED
= ILC 151 GSMJGPRS 192.168.1.20
= ‘@ STD_CNF : eCLR !) Resourc:
= STD_RES: ILC151G5M_40
& Pt - R STD_RES ILC151GSM_40
Systern Variables J}:E} # MODELS_CLT
=g S¥D TSK : DEFALLT = i #IVTERBUS 0.0
= @ II'Iain .I Main #1IBIL24D04-MED . 1
Dlefault #2IBIL AOZJUI-PACD . 2
At #3IBILAT4JU-PACD. 3
Touch Display
Unconnected
Symbol/Yariable Data Type Process Data Item Description Device Process Data Item jiin} Data Type Byte Bit Address Symbo..
1_0_3_AI_1_VOLTAGE WORD # 3B IL AL 4/U-P.., #21.. Channel 1: Parameters
1. 0_2 CHANMEL_1_OQUTP... WORD #21... Channel 2: Parameters
Q_0_2 CHANNEL_1_OUT... WORD #2IBILAC ZiUL-,. #21., Channel 1} Qutput walus
Q_0_2_CHAMNEL_Z_OUT... WORD #2161 AD 2UL-... #21.. Channel 2: Qutput value
. Channel 1: Parameters
#21... ~Aled
#21.. ~A064 Q R 0.0
218 IL AQ ZJUI-PACD . 211
< 2|6 >
E!BRequired nenory for Program Code: 332 bytes
2 oReq‘uired nenory for Retain Data: 0 bytes
oReq‘uired wemory for the Application Image: 35012 bytes
3 ﬂPredicted uenory usage for Data: 1654 bytes
E ﬂProcess for Dovmload Changes and Download Bootproject ended for resource 'STD_CNF.STD _RES' at l2.11.2015 11:32:33
-3
%. \Build I:r\ Emars ;\'Warnings ;'\'Info f{' PLC Ermors I}\'Print I:r\ ulti-User I:r\ Bus Configurater ;r\'FDTI,f
For Help, press F1 i =266

Fig. 3.4. Basic Process Data interface

It is the mode of working with data. All data is displayed in the "Process Data
Assignment" window and is divided into four parts. In the upper right-hand
quarter the devices connected to the controller using this or that protocol are
displayed. The lower part shows the variables that are in the connected blocks.
The variables that are to be used in the project are added to the project by dragging
them to the left side of the window (it is described in detail in specific examples in
the following sections).

55

Test questions

1. By what color of the status bar are the modes of programming environment
distinguished?

2. List the main operating modes of PC Worx.

3. How is the function of displaying/hiding various windows and Ul controls
implemented?

4. How is project protection with a password implemented?

5. How can help system be called?

6. What information is displayed in the status bar?

7. List the main interface windows when the program is running in Bus
Configuration mode.

3.2. Creating a new project

In order to create a new automation system project consistently perform the
following steps.

1. Select File — New Project from the menu (Fig. 3.5).

Fig. 3.5. The window for creating a new project

In the appearing window (Fig. 3.6) on the General tab select the Project
Wizard item.

56

Fig. 3.6. Selection window for the Project wizard

Then consistently follow six stages, described with the help of six separate
windows.
In the first stage (Fig. 3.7) specify the project name (in this case,
st project 1) and the folder where the project files will be stored.

Fig. 3.7. Name and storage folder for the project

The second stage is to select the name of the program to be created and the
programming language to be used (Fig. 3.8).

57

Fig. 3.8. The window for entering the name of the program and the programming
language

In the third stage (Fig. 3.9) select the name of the hardware configuration you
are creating and the family of processors based of which a particular controller is
built.

Fig. 3.9. The window for selecting the name of the configuration and the
family of processors

In the fourth stage select the model of the controller you are using from the
drop-down list (see Fig. 3.10).
58

Fig. 3.10. Controller model selection window

In the fifth stage (Fig. 3.11) enter the name of the task and select its type from
the drop-down list.

Fig. 3.11. The window for entering the name of the task and selecting its type
59

In the sixth stage a window appears on the screen (Fig. 3.12) which lists the

previously selected properties and characteristics of the project.

Fig. 3.12. Window containing the properties and characteristics of the project

If necessary, by pressing the "Back" button, it's possible to return to the

previous stages and make the necessary changes.

After clicking the "Finish" button and loading PC Worx, the Project Tree

window appears (Fig. 3.13), which lists all the elements of the project.

! Project Tree Window I T |
=23 Project : C\Users \Public’\Documents\PC WORX\Projects’st_project_1
([Libraries

=3 Data Types
sys_flag_types™
=-£3 Logical POUs
=-[0] Untitled™
[i] UntitledT
Untitled\/*
Untitled*
=3 Physical Hardware*
=3 Configuration : eCLR"
=53 Resource : AXC3050 55°
i Tasks
4y Global_Variables™
il 10_Configuration®

Fig. 3.13. Project Tree window with the listed project elements

60

The created program contains three parts: Untitled — the program itself in the
selected programming language; UntitledV - description of variables; UntitledT —
text comments.

PC Worx contains standard functions and function blocks that the automation
system developer can use to create his projects. So, the PC Worx version
6.30.1202, released at the end of 2015, contains 247 functions, logically divided
into 11 groups, and 113 functional blocks logically divided into 21 groups. In
addition to standard functions and function blocks, it's possible to use additional
free and paid libraries. The latter allow adding very complex devices to the created
projects. For example, the Resy+ library can be used for automation of water, gas
and energy facilities, Powerworx library — for automation of networks with low
and medium voltage.

Also, any previously created project can be used as a library when creating a
new project.

You can add a library to the existing project in two ways.

1. Select the Project menu item, then click Add library, and in the dropped
submenu (Fig. 3.14) select either User library or Firmware library.

Fig. 3.14. Adding a library using the main menu

2. In the Project Tree Window (Fig. 3.15) place the cursor over the
"Libraries" line, right-click and select Insert in the appearing context menu. Then
select either the User library or Firmware library.

61

Fig. 3.15. Adding a library using the context menu

If you select Firmware library, specify the path to the file with the extension
FWL (FirmWare Library), which contains a description of the specialized original
library (Fig. 3.16).

The possible path to the corresponding folder is shown in Fig. 3.17.

Free and paid libraries are stored in files with mwt and mwe extensions. For
example, in Fig. 3.18 the file WirelessTechnology V1 06.mwt contains a free
library for expanding the possibilities of working with wireless data transmission

technologies.
62

Fig. 3.16. Selection of a specialized original library

Fig. 3.17. The path to the file containing the specialized original library
63

Fig. 3.18. Selecting a library file

If you select the library that is run in the same version of PC Worx as the
project itself (or there are slight differences between the versions), after clicking
the Include button the project will be completed with the selected library. If the
library 1s executed in an older version of PC Worx (the combination V1 _06 in the
file name means its version number is 1.06), after clicking the Include button the
window shown in Fig. 3.19 will appear. This window allows converting the library
to a newer format.

Fig. 3.19. Notification window for converting a library to a newer format
64

After clicking the "Yes" button a warning window appears indicating that
after conversion the library cannot be run with previous versions of PC Worx
(Fig. 3.20).

Fig. 3.20. Warning about the impossibility of further use of the library in previous
versions of PC Worx

If you confirm the conversion by clicking the "Yes" button, the Libraries tab
will be added with the name of the library added to the project (Fig. 3.21).

: Project Tree Window 2 oa
== Project : C:\Users\Public®Documents ' PC WORX\Projects'tatu2_fbd
=3 Libraries

@ Wireless Technology_V1_06"
=53 Data Types
sys_flag_types™

Fig. 3.21. Library added to the automation project

In order to get the list of function blocks and functions available in the added
library, select the <WirelessTechnology V1 06> line in the Edit Wizard window
(Fig. 3.22). The specified window is located by default in the upper right part of
the screen.

: Edit Wizard n v
Group:
[{Favnrites> -]

<all FUs and FB=>
<ol PO _03x
<Favarites:
<tatuz_fbds

IwfiirelezsT echnology 1 06>

Function blocks
Functions

Metwork, Templates
String FU g

Tope cory. Fls

Fig. 3.22. Selecting the connected libraries window
65

The list of elements (functions and function blocks) available in this library
will appear on the screen (Fig. 3.23).

: Edit Wizard 1w
Group:

<wiirelezs T echnology W1_06: -
Hame Drezcription

ET_FL_MOD_IO_AF V110
BT _FL_MOD_I0_DIAG V110
BT _FLM_DI_16_%1_00

BT FLM DIO_8 & V1 0

BT ILE_ADIO_2 2 w1 01

M FL BT _COEX_wLAN W1_10
M FL BT Connection_%1_00
M FL_BT_Diag_v1_00

EFL BT EPA W1 04

M FL BT Security 1 00

& FL wLAN Connection %100
& FL_wWLAN_Diag W1 00

W FL_wWLAN_EPA W1 04

;| FL wWLAN Security %100
& FL_WLAN Setting ¥1_00

& ME_TCP_Client_1_20

;| MT_ReadnputReg ¥1_20
& MT_wiiteMultifeg_1_20

& SetMaxASS_W1_00

Fig. 3.23. List of selected library elements

Test questions

1. How can the Project Wizard be started and what are the benefits of
using it?

2. How can the folder for saving the files of the created project be specified?

3. How can the base programming language be selected in the project?

4. How can the family of processors used in the controller be selected?

5. How can the controller family and model be selected?

6. How can the characteristics of the created project before the completion of
the work of the Wizard be selected?

7. What elements appear in the created project after the completion of the
work of the Wizard?

8. What do the letters "T" and "V" mean in the names of the elements of the
created project?

9. How can a library created in another project be added to the project?

66

3.3. Configuring PC Worx when working with ILC 151 GSM/GPRS
controller

Before configuring PC Worx the computer and the controller must be physically
connected using a patch cord. On the computer side the cable should be connected
to the network interface card, and from the ILC 151 GSM/GPRS controller to the
RJ45 interface on the front panel (Fig. 3.24).

Fig. 3.24. Connecting the ILC 151 controller

In order to run PC Worx select the path: Start => All Programs => Phoenix
Contact => AUTOMATIONWORX Software Suite 2015 1.82 => PC WORX
6.30.1202. If the information window appears (Fig. 3.25) with the warning that the
program will work in demo mode, you either have to agree to this mode or contact
the distributor to purchase the license.

PC WORX

WARNING - DEMO MODE
Your PC WORX is running with limited resources.
Please contact your distributor for a full license.

Fig. 3.25. Demo mode warning
67

In order to create a new project select File => New project, as described in
3.2 (Fig. 3.26).

Fig. 3.26. New project creation tab

After that select the tab with the required ILC 1xx controller class (Fig. 3.27),
highlight ILC 151 GSM/GPRS Rev. > 00/4.10 in the controller list and press the

OK button.

New Project

AXC 3ooc | ILC 100 | ILC 29x | ILC 3xx | PCWORK BT | RFC 400 | S-hdd| 4

3

Template ~

FILC 151 ETH Rew. > 00/4.10

FILC 151 ETH Rew. > 010/4.20

FILC 151 ETH Rew. > 010/4.30

FILC 151 ETHMC Rew. > 004410
FILC 151 ETHMC Rew. > 0074.20
TYILC 151 ETHC Rew. > 00/4.30
FILC 150 GEM/GPRS Rew. > 01/3.90
Ll ILC 151 GSM/GPRS Rew. > 00/4.10
FILC 151 GEM/GPRS Rew. > 00/4.20
FILC 151 GEM/GPRS Rew. > 004430
FYILC 155 ETH Rev. > 01/3.50

SYILC 156 ETH Rew. > 01/3.90
SYLCI70ETH 2T Rew. > 01/3.90 W

Cancel

Fig. 3.27. Controller selection window

For some time the program performs internal configuration of the selected
controller. Then View => Bus Configuration (in earlier versions of Interbus
Connections) should be selected in the top menu.

68

After switching to this mode the interface shown in Fig. 3.28 appears. The
Device Details window in the Project tab included at the bottom of the window
shows general information about the project.

: Bus Structure 2 4 [|]|; Device Details
m UNTITLED \Project,
EI] gc 151 GSM/GPRS 192.168. Project name Value
Resource -
"R STD_RES ILC151GSM_42 E zrojed flame UNTITLED
9 # MODBUS_CLT reator TWRNZF
£ # INTERBUS 0. 0 o Computer name at project creation | PXCSW-D0115
Touch Display B | MULTIPROG version at project cre... | 5.530.10200.0
Unconnected B | PC WORX version at project creati... | PC WORX 6.30.1202
B | Creation date 2015-08-14T08:57:25+01.00
D | Last editor 1
o Computer name at last project bac..| YX-TABLE
i Device Catalog L oamd B | MULTIPROG version at last project .| 5.50.10200.0
-1 Phoenix Contact B | PC WORX version at last project b... | PCWORX 6.30.1202
(103 Universal B | Date of last project backup 2016-01-07T14:17:14+02:00
B | Domain Postfix
% o Template for DNS name creation .
: D | First IP Address 192.168.002 === 192.168.1.20
= J Al | O | Last IP-Address 192.168.0.754
: Module Catalog L a@ O | Subnetmask 255.255.255.0
D | Default Gateway
v X D | Use DHCP No
< All | & Project |

Fig. 3.28. Project Properties

By default, the IP Address of the project is set to the same as that of the

controller — 192.168.0.2. It should be changed: 192.168.0.20.

In order to configure the controller, the ILC 151 GSM/GPRS controller
having a tree structure should be highlighted in the Bus Structure window, as
shown in Fig. 3.29.

i Bus Structure 2 & [|| : Device Details
=% UNTITLED ILC 151 GSM/GPRS 192.168.0.2 \IP Settings\,
EI- Mame Value
esource -
Rsorsiosious ||| g -
MODBUS_CLT 5 - — .
£ # INTERBUS 0. 0 Functional description Inline Controller for Ethernet Netw...
= Touch Display 0 | Device type PLC
[Unconnected D | Device family ILCxx
0 | Order number 2700977
—— + 2 =/l B | Revision 00/4.10
-1 Phoenix Contact G Station Name
23 Universal B | Device Name
L X B | Module Equipment ID
0 | DNS Name ILC151GSM1
= Al O | MAC Address
i Module Catalog 1 af O | Ip Address 192.168.0.2
L X ‘ D | Subnetmask 255.255.255.0
< Al %I? IP Settings [EJ Extended Settings | # Communication CPU Service Editor

Fig. 3.29. ILC 151 GSM/GPRS features
69

The Project tab in the Device Details window will be replaced with several
tabs. The first tab (IP Settings) informs about the configured controller should be
entered. MAC Address written on the front panel of the controller (00-A0-45-8D-
27-C3), should be entered as shown in Fig. 3.30. Then IP Address should be

entered in accordance with the documentation — 192.168.1.20, as shown i1n

Fig. 3.31.

[£

¢ Bus Structure L x|
=& UNTITLED

B ILC 151 GSM/GPRS 192.168.0.2

OE:BERSxm - [i iGEEEEGOE |

: Device Details

ILC 151 GSM/GPRS 192.168.0.2 \IP Settings',

R Name Value
=R Resource B -
P Vend Ph Contact
- R STD_RES ILC151GSM_40 - enoor Oenix -ontac
MODBUS._CLT Designation ILC 151 GSM/GPRS
A% # INTERBUS 0. 0 B | Functional description Inline Controller for Ethernet Netw...
..[d Touch Display D | Device type PLC
8 Unconnected B | Device family ILC T3¢
D | Order number 2700977
Device Caiog =2l B | Revision 00/4.10
--I:I Phoenix Contact 0 Station Name
-3 Universal B | Device Name
x B | Module Equipment ID
.
B | DNS Name ILCT5TGSM1
<) Al B | MAC Address 00-A0-45-8D-27-C3
! Module Catalog 1 am O | Ip Address 192.168.0.2
LoX ‘ D | subnetmask 255.255.255.0
= Al & |P Settings |[EJ Extended Settings | # Communication CPU Service Editor
Fig. 3.30. Entering MAC Address
: Bus Structure 4 & [|f Device Details
=-@% UNTITLED ILC 151 GSM/GPRS 192.168.0.2 \IP Settings\,

=Bl ILC 151 GSM/GPRS 192.168.0.2

. R Name Value
=R Resource E -
[Vend Ph Contact
"R STD_RES ILC151GSM_40 - Snoor OSniX Lomac
n} # MODBUS._CLT Designation ILC 151 GSM/GPRS
: A% # INTERBUS 0. 0 B | Functional description Inline Controller for Ethernet Metw...
‘..B Touch Display O | Device type PLC
8 Unconnected O | Device family ILCTxx
O | Order number 2700977
Device Caiog =2l B | Revision 00/4.10
--[:I Phoenix Contact D | station Name
+-3 Universal 0 | Device Name
x 0 | Module Equipment ID
*
B | DNS Name ILCT51G5M1
<Al O | MAC Address 00-AD-45-8D-27-C3
: Module Catalog E O | 1P Address 192 . 168 . 1 .20
L X ‘ D | subnetmask 255.255.255.0
7 Al ® |P Settings [Ed Extended Settings | # Communication CPU Service Editor

Fig. 3.31. Entering IP Address

70

After that it is recommended to go to the Communication tab of the Device
Details window (as shown in Fig. 3.32) to check the connection between the
personal computer and the controller.

i Device Details L wvE
ILC 151 GSM/GPRS 192.168.0.2 \Communication',

Interface Type ~
=8 ILC 151 GSM/GPRS Sencelioniians
=4 Communication Path Manual Input v
e E,themﬂ IP Address
B2 Station Name
192 . 168 . 1 .20 v
Subnet Mask:
255 . 255 . 255 . 0
Gateway Address:

[use virtual LAN

Resource: STD_RES

Test Apply Help -

& |P Settings | [EJ Extended Settings 4 Communication CPU Service Editor | $2 Terminal Points | % Bus interfaces Date « | »

Fig. 3.32. Communication check window

Here in the Interface Type section the list of interfaces used by the controller
works is listed. The right part of the window shows the IP Address entered in the
[P Settings tab.

In order to check the connection with the controller, press the Test button.
The result is reported on the Resource: STD_RES progress bar.

If the response is positive, the progress bar will turn green as shown in Fig.
3.33. Otherwise, the progress bar will be red.

: Device Details E x|
ILC 151 GSM/GPRS 192.168.0.2 \Communication',

Interface Type ~

=0 ILC 151 GSM/GPRS Connection Name
Ell Communication Path Manual Input v

-} Ethernet

L& Station Name

IP Address
192 . 168 . 1 . 20 w

Subnet Mask:
255 . 255 . 255 . 0

Gateway Address:

[Juse virtual LAN

& |P Settings | [EJ Extended Settings & Communication CPU Service Editor | $% Terminal Points | & Bus interfaces | B Datg « | »

Fig. 3.33. Successful completion of communication test
71

The next stage of configuring is the connection of additional modules. In
order to do this, select the Connected INTERBUS item in the View top menu

(Fig. 3.34).

| iR

Offline

: Connected INTERBUS

Selected Control System

Key

The following colors and characters

indicate the result for the comparison
of the physically connected bus
configuration and the configured bus
configuration:

ID-Code and process
data length of the

devices are different.

ID-Code and process
data length of the

devices are identical.

This device is not
available in the
configured bus
configuration.

Device has not been

<]

Offline

2w @

~

Configf + PCWorx O@1N

Fig. 3.34. Connected INTERBUS window

In the Selected Control System section the drop-down menu is opened as
shown in Fig. 3.35. There it's possible to select the connected controller ILC 151
GSM/GPRS (192.168.1.20).

i Connected INTEREUS

ax v 3 e E
Selected Control System
Offline
Offline

ILC 151 GSM/GPRS (192.165.1.20)

Fig. 3.35. Selecting the ILC 151 GSM/GPRS controller

The system will detect the presence of three modules (Fig. 3.36).

-5 Connected INTERBUS
Y X
Selected Control System
ILC 151 GSM/GPRS (192.168.1.20)

=@l ILC 151 GSM/GPRS
~§91 189/4
g2 9164
L3 127764

Fig. 3.36. Detecting of plug-in modules

72

The names of additional modules can be found on the front panel of each of
them. They are presented in Fig. 3.37.

C

Fig. 3.37. Appearance of the modules: a — IB IL 24 DO 4-ME;
b—1B IL AO 2/UI-PAC; ¢ — IB IL Al 4/U-PAC

73

The blue color of the displayed modules shows that they have not yet been
imported into the project. By right-clicking the mouse it's possible to activate the
drop-down menu (Fig. 3.38), where it's possible to select the Import to Project
item.

_E Connected INTERBUS
Qi mAGR
Selected Control System
ILC 151 GSM|GPRS (192.168.1.20)

E@mm’@

Import to Project

- ;@ 2 Apply Device/Segment

Update View F5
Create Configuration Frame
Alarm Stop

Display Key F3

Fig. 3.38. Importing additional modules into the project

After that the wizard is enabled. By answering the questions when selecting
additional modules, the latter are colored in green. The final window of the wizard
is shown in Fig. 3.39.

_E Connected INTERBUS e x|
T E

Selected Control System

ILC 151 GSM/GPRS (192.168.120) Select Device
@ 1.C 151 GSMIGPRS Information to the searched device
= 591 189/ 4; A suitable entry for the following component could not be found. Please select a device which matches
- the searched ane.
52 9164
""" ‘@ 127164 Name Analog local bus device with Input and Output
Ident Code 127
Process Data Length 64
Device Type Ident Code Process Data Length
IBIL Al4/-PAC 127 64
1B IL Al4/U-PAC 127 64
IBST24 Al4fl 127 64
IB ST 24 BAI &/l 127 64
IB ST 24 BAI /U 127 64 v
£ >
D Automatically apply to further devices of this type. Cancel

74

Fig. 3.39. Window for importing the additional modules
ILC 151 GSM/GPRS controller with the additional modules has been

configured. In order to start programming you need to switch to this mode. Select
the "[EC Programming" item in the View top menu and the interface takes the
appearance shown in Fig. 3.40.

Fig. 3.40. PC Worx interface in the IEC Programming mode

Test questions

1. How can a new project be created?

2. How can the controller configuration mode be entered?

3. Where is the information on the controller MAC address displayed?

4. How can the connection between the personal computer and the
programmable controller be checked?

5. How can the additional modules be added when configuring the controller?

75

3.4. Configuring PC Worx when working with AXC 3050 controller

In order to work with the AXC 3050 controller in PC Worx a new project should
be created: after starting PC Worx in the File menu select New Project or click the
corresponding icon in the toolbar. In the appearing dialog box (Fig. 3.41) select
the AXC 3xxx tab, and in the appearing list select the line "AXC 3050 Rev. >
01/5.50"(or a newer version of the controller software).

Fig. 3.41. Selection window of the type of controller and its software version

The initial controller default settings are displayed in the Device Details
window (Fig. 3.42). This information about the controller is displayed if the line
with the project name (if it has already been saved) or the UNTITLED line (if the
project has not been saved) is selected in the Bus Structure window (Fig. 3.43).

The AXC 3050 controller has three MAC addresses: the base one, indicated
in the factory label of the, and two additional ones. Each of them can be assigned
to one of the three Ethernet interfaces (X1, X2 and X3). Due to the three
independent interfaces the AXC 3050 controller can be wused in
Ethernet/PROFINET networks for managing branched and complex automation
systems. Assignment is performed according to the scheme given in Table 3.1.

Table 3.1
Distribution of MAC addresses of the AXC3050 controller
Interface Address Example
X1 00.A0.45.XX.XX.XX 00.A0.45.B0.B3.97

X2 00.A0.45.XX.XX. XX + 02hex | 00.A0.45.B0.B3.99
X3 00.A0.45.XX.XX.XX + 04hex | 00.A0.45.B0.B3.9B

76

v oo D 7]

UMTITLED \Project’,
Project name Value
[| Project name UNTITLED
[| Creator pyl29
O Computer name at project creation PYRAEDDET
[| MULTIPROG version at project creation 5.48.592.6
[| PCWORX version at project creation PC WORX 6.30.767
(% | Creation date 2014-02-10T10:48:08+01:00
[| Last editor pyxl29
[| Computer name at last project backup PYRAEDDET
[| MULTIPROG version at last project backup 548.592.6
[| PCWORX version at last project backup PC WORX 6.30.767
[| Date of last project backup 2014-02-10T10:48:31+01:00
[| Domain Postfix
[| Template for DNS name creation
[| FirstIP Address 192.168.0.2
[0 | LastIP-Address 192.168.0.254
(% | Subnetmask 255.255.255.0
[| Default Gateway
[| Use DHCP No
[| Certificate information
[| Organization PHOEMIY CONTACT GmbH Co. KG
O Organizational Unit
[| Lecality Blornberg
[| State or Province Mordrhein-Westfalen
O | Country DE
B Project |

Fig. 3.42. Standard settings of the AXC3050 controller

: Bus Structure i I |

=% UNTITLED
=-f¢ AXC 3050 192.168.0.2
: EIR Resource
. L..R STD_RES AXC3050_55
AJ-CIIZI # Axicline
-HH PROFINET

. L.88 £ MODBUS_CLT

..... Unconnected

Fig. 3.43. Bus Structure window

77

00.A0.45 is the first part of MAC address, which is the same for all devices of
the same manufacturer; it consists of six hexadecimal characters or 24 bits;
XX.XX.XX is the second part of MAC address, which is unique to the particular
device of the specified manufacturer and also consists of six hexadecimal
characters or 24 bits.

You can assign the IP address that depends on the project to the
corresponding Ethernet interface (X1, X2 or X3) depending on the MAC address.
This is done in PC Worx by the BootP server.

Operation with the AXC 3050 controller depends on which of the three
Ethernet interfaces is used for connecting the remaining devices of the network.
Each of the three interfaces must have its own unique for the local network IP
address. In this case the IP addresses of interfaces X1, X2 and X3 must be in
different subnets as shown in Table 3.2 (the first two bytes of the address should
match, and the third must be different).

To operate the AXC 3050 controller in the PROFINET controller (master)
mode, the IP address must be assigned to the X3 interface.

To operate the AXC 3050 controller in the PROFINET device (slave) mode,
the IP address must be assigned to any of the X1, X2 or X3 interfaces. The
operating mode of the AXC 3050 controller as a PROFINET device must be
enabled in the PC Worx (by default it is disabled).

Computer with PC Worx installed 1s connected to the AXC 3050 controller
using the X3 interface.

Table 3.2
Assigning IP addresses to controller Interfaces

Interface IP address Subnet mask
X1 192.168.1.2 255.255.255.0
X2 192.168.2.2 255.255.255.0
X3 192.168.0.2 255.255.255.0

X1, X2, and X3 interfaces of the AXC 3050 controller can be assigned IP
addresses when connecting the computer via Ethernet or USB interfaces.

The advantage of assigning IP addresses via the USB interface is that you do
not need to perform any network settings of the personal computer. You need to
connect via the PROG (X4) USB interface to the computer running PC Worx (the
USB driver for the controller must be installed on the computer). The computer
will automatically detect the presence of a programmable controller. Then in PC
Worx switch to the Bus Configuration window using the View menu item, select
the AXC 3050 controller in the device list, and then select the Extended Settings
tab in the Device Details window (Fig. 3.44).

78

AXC 3050 192.168.0.2 \Extended Settings',

{3 Extended Settings

: Metwork Settings
LANL (x1) @ Manual definition of the TCP/IP settings
5] LANZ (%2) IP Address:
LANS (x3)
| SNMP Agent 12 1 . 2 =
Use of external 5D card Subnet Mask:
%] Copy / Update function J55 . 355 355
=| PROFIMET device activation
PROFINET device interface Gateway Address:

5| PROFIMET Device input-outpt

(") Usage of a BootP Server

(") Usage of a DHCP Server ’ Send]
DMS name
axc-30501 ’ Send]

Real-time Clock Settings
Time:

21:52:29 = l Systemn Time]

Date:
2 wman 2006, 2 | Send |

Settings
’ Read]

Activate Metwork Settings

’ Restart Controller]

FTP

’ Open FTP Folder on Device]

: 2
Offline

| B P Settings.| E Extended Settings | A Communication | CPU Service Editor | gg Terminal Points | b Bus interfaces |

4| 1 r

Fig. 3.44. Controller settings when connected to computer via USB

After that, select the interface (for example, X1) in the left part of the
window, and in the right part of the window manually assign the IP address and
subnet mask, then repeat these actions for the X2 and X3 interfaces (see Fig. 3.44).
Then press the upper button Send (see Fig. 3.44) to save the settings in the
controller memory. In the appearing dialog box (Fig. 3.45) select the USB
interface. After the message "Service executed successfully" appearing on the
green background, click the Restart Controller button to activate the network
settings.

79

: Device Details
A 3050192168.0.2 \Communication®,

Interface Type
=6 AXC 3050 Connection Mame -
—J Communication Path |M3”U3|I”P'Jt "|
. -4 UsSBinterface IP Address
-4 LANL (1) 182 e . 0 . 2 v [w
Lo LANZ (X2)
- ﬂ LANZ (3 Subnet Mask:
i % Station Mame 255 . 2% . 255 0
Gateway Address:
usze virtual LAN

Resource: STD_RES

Test | Apph Help

Fig. 3.45. Functional check of the controller settings

On the Communication tab it's possible to see a list of interfaces that allow
exchanging data between the computer and the controller. After selecting the
desired interface and pressing the Test button (the settings should be correct) the
message "Service executed successfully" appears on the green background.

[P addresses can also be assigned using a BootP server in the Ethernet
networks (using the Bootstrap protocol). The AXC 3050 controller, which acts as
a BootP client, sends a Boot Request broadcast request over the network via one
of the Ethernet interfaces (X1, X2 or X3). The MAC address of the sending device
is sent along with the Boot Request request to uniquely identify the device. If the
BootP server is activated in PC Worx, PC Worx sends a Boot Reply response on
the network to inform the AXC 3050 controller about its IP address and subnet
mask. In this case, the BootP server must "know" the MAC address sent by the
BootP client. For this MAC address in PC Worx a corresponding IP address and
subnet mask must be assigned.

After the IP data is successfully transferred to the AXC 3050 controller, PC
Worx sends the appropriate confirmation message.

By default, the BootP protocol is enabled in the controller. The IP addresses
that are assigned to the controller are also sent over TCP/IP as the corresponding
[P addresses that can be selected in PC Worx. After assigning the IP address PC
Worx automatically establishes the connection with the controller via the TCP/IP

protocol.
80

In order to set [P addresses in PC Worx do the following:
switch to the Bus configuration window;

select the AXC 3050 controller;

select the IP Settings tab in the Device Details window;
enter MAC address of the controller (Fig. 3.46).

i Device Details
AXC 3050192168.0.2 \IP Settingsh,

Mame Yalue
O | Vendor Phoenix Contact
(4 | Designation AXC 3050
[| Functional description Axiocontrol Controller for Axicline F IO Sys...
[| Device type PLC
[| Device family AKX 00
[| Order number 2700989
(3 | Revision 01/5.50
O | Station Name
I Device Mame
[| Module Equipment ID
0 | LANL (x1)
(3 | DNSName axc-30501
[| MAC Address 00-A0-45-B0-B3-97
[| IP Address 192.168.1.2
[| Subnetmask 255.,255.255.0
[| Default Gateway
O | Lamz (x2)
(9 | DNSName axc-30502
[| MAC Address 00-A0-45-B0-B3-99
O | IP Address 192.168.2.2
[| Subnetmask 255.255.255.0
[| Default Gateway
0O | LANZ (3)
[| DNSName axc-30303
[| MAC Address 00-A0-45-B0-B3-9B
[| IP Address 192.168.0.2
[| Subnetmask 255,255.255.0
[| Default Gateway
@ IP Settings IE Extended Settingsl A Communication | CPU Service Editor 88 Terminal

Fig. 3.46. Entering MAC address of the AXC 3050 controller

MAC address printed on the controller itself and starting with the
hexadecimal characters "00.A0.45." must be assigned to the Ethernet
interface XI.

81

In order to perform the configuration using the BootP server, select Extras
from the PC Worx main menu, and then BootP/SNMP/TFTP-Configuration ...
(Fig. 3.47).

Fig. 3.47. Configuring the controller using the BootP server

The BootP server is activated by pressing the corresponding button
(Fig. 3.48).

Fig. 3.48. Activating the BootP server
82

Then perform a "cold" restart of the controller: turn off the power and turn it
on again in two seconds.

The controller will receive the IP address assigned for it in the project. In the
"Bus Configurator" tab of the message window at the bottom of the screen the
message will appear shown in Fig. 3.49.

Fig. 3.49. Message confirming the successful launch of the BootP server

Now the IP address is permanently stored in the external flash memory of the
controller. The described process should be repeated for all Ethernet interfaces if
they require assigning IP addresses.

Next, deactivate the BootP server by clicking the appropriate button
(Fig. 3.50).

Fig. 3.50. Deactivating the BootP server

PC Worx allows the use of modules connected to the controller via the
Axioline bus (a new version of the I/O bus used in all AXC family controllers) to
work in the project. In order to do this, select the line "Axioline" in the "Bus
Structure" window and by right-clicking on it select "Read Axioline" in the

appearing context menu (Fig. 3.51).
83

: Bus Structure LN |
=@ UNTITLED -
—_] ¢ AXC 3050192 .168.0.2
—H‘ Resource
. L. STD_RES AXC3050 55
Hﬁ PROFIM Exchange Data r
.48 £ maoD Read Axioline
Unconnect) _))
Copy Device Ctrl+C
Copy with Subdevices Ctrl+T

i Project Tree Window

-3 Project : C:\Prog Lt Ctrl+X

[Ubraries Paste as Child Ctrl+B

=23 DEI Types Paste as Sibling Ctrl+V
sys_flag S
+-[23 Logical POL Eplace

: % Eﬁh’ﬁé‘fy‘g; Blind out Device Ctrl+Shift+D

-5 §T[Deactivate Bus
=@ Delete Delete
- Edit Device Representation... Ctrl+E

Print Bus ...
LE)
ﬁ Refresh View 5

Fig. 3.51. Preparing for reading the parameters of the modules connected to the
controller

The Axioline local bus supports any data transfer protocols based on the
Ethernet family networks. It can be used for sequential installation of various
modules (devices) one closely to another, allows connecting up to 63 devices, and
has a typical cycle time of about 10 ms.

The list of all modules connected to the controller via the Axioline bus is
displayed in the opening "Read Axioline" window (Fig. 3.52). Black color
indicates the parameters of the modules that were not read by the PC Worx
project. Green stands for the modules that are already been used in the project
(their data has been read before).

If the "Re-insert all modules" option is enabled, the modules which data has
already been read and entered into the project will be entered into the project again
by re-reading. This data will be written "over" the old one.

If you answer positively to the question "Read Axioline []Do you want to
delete all configured" Axioline modules and accept the connected modules?" the
parameters of the devices connected to the Axioline bus will be read and added to
the PC Worx project.

The identified devices connected to the controller via the Axioline bus with their
default configuration are displayed in the "Bus Structure" window. Detailed
information on each device is displayed on the right side of the window (Fig. 3.53).

84

Fig. 3.52. Results of reading the parameters of the modules connected to the
controller

Fig. 3.53. Adding Axioline devices connected to the bus to the PC Worx project

Let us consider configuring of the AXC 3050 controller, which is used as a
PROFINET controller with the connected PROFINET BK bus coupler.

85

In order to use the AXC 3050 controller in the PROFINET network, it must
be connected via the X3 Ethernet interface and be enabled in Worx mode as a
PROFINET device.

To recognize devices connected to the PROFINET network in PC Worx,
select the "Extras — PROFINET Configuration" menu item (Fig. 3.54). Then select
the network interface card that is used for accessing the PROFINET network
devices (Fig. 3.55).

Eile Edit View Project Build GﬂlinE|E}_rtrasiI
D & Pagelayout Editor
Create OPC Visualization File

Reset DA-Addresses

Bus Structure
_..§ UMNTITLED PROFIMNET Cenfiguration ...
_'] AXC 3000 192.168.0.2 BootP/SNMP/TFTP-Configuration ...
- R Resource
P Check S St
. L.R STD_RES AXC3050_55 ~=neck source storages
L # Axioline ihnrtc uts...
.28 PROFINET Options...
L2 2 MODBUS_CLT Export Options...
/3| Unconnected Import Options...

Fig. 3.54. Selecting the PROFINET network setup option

Fig. 3.55. Selecting the network interface card that provides connection to the
PROFINET network

Devices can also be selected from the device catalog if you are sure that they
are connected to the network.

To read data about devices connected to the PROFINET network, in the
context menu appearing after right-clicking on the PROFINET line in the "Bus
Structure" window select the "Read PROFINET ..." item (Fig. 3.56).

86

u

=i UNTITLED

=¥ AXC 3050 192.168.0.2

Project Tree Window
243 Project : C:\Prog
(] Libraries
Ela Data Types
i sys_flac
-2 Logical POL
-8 Physical Ha
C-&% 5TD_C

=8 ST

EIR Rescurce
. L. STD_RES AXC3050_55
..... b # fxicline

HH PROFIMNET

Fig. 3.56. Selecting the option of reading the PROFINET network device data

Read PROFIMET...
Exchange Data

Copy Device

Copy with Subdevices
Cut

Paste as Child

Paste as Sibling

Replace

Blind out Device
Deactivate Bus
Delete

Edit Device Representation...

Print Bus ...

Refresh View

Ctrl+C
Ctrl+T
Ctrl+X
Ctrl+B
Ctrl+V

Ctrl+5hift+D

Delete
Ctrl+E

F5

In a few seconds in the appearing window (Fig. 3.57) the list of devices that

were found in the PROFINET network is displayed.

Fig. 3.57. List of PROFINET devices found in the network

87

Select the Axioline PROFINET AXL F BK PN BK module and add it to the
project as a PROFINET device by clicking on the "Insert" button.
When the "Select PROFINET device description" window appears, to select

from the list the device which name and firmware version correspond to the device
actually installed (Fig. 3.58).

Fig. 3.58. Selecting the device with the corresponding firmware

If the name of the PROFINET device to be added has not yet been given, PC
Worx will give out a corresponding request.

Similarly, by pressing the Insert button add all devices from the list to the
project (see Fig. 3.57) and then click the "Close" button.

The PROFINET devices added to the project are displayed in the "Bus
Structure" window (Fig. 3.59). Their characteristics can be seen by selecting the
"PROFINET Settings" tab. For added devices, PC Worx automatically sets IP
addresses. They can also be set by selecting the "PROFINET Stationnames" tab
(see Fig. 3.59).

The parameters of the PROFINET devices can be seen by selecting the
"Device parameters" tab (Fig. 3.60).

88

Fig. 3.59. Components and settings of the bus coupler connected to the
PROFINET network

Fig. 3.60. Characteristics of the bus coupler connected to the PROFINET network
89

By selecting the "PROFINET Stationnames" tab (see Fig. 3.60), it's possible
to assign the name and IP address to the PROFINET device that was selected in
the Bus Structure window (Fig. 3.61, b, tags B and C).

b

Fig. 3.61. Changing the name and addresses of the bus coupler
90

In this case the AXL F BK PN module (tag A in Fig. 3.61, a) belonging to the
PROFINET BK device already has the name "axl-f-bk-pn-1", but does not have
the IP address. In order to assign it to the device, selected in the "Bus structure"
window, press the "Assign IP" button (tag D in Fig. 3.61, b). The result of this
procedure is displayed in a separate window of PC Worx (Fig. 3.62).

Fig. 3.62. Assigning IP Address to the bus coupler

The AXC 3050 controller can function as a PROFINET device, but this
function is disabled by default. It can be turned on/off in PC Worx in one of the
three Ethernet interfaces (X1, X2, X3) regardless of whether the AXC 3050 is
running as a PROFINET controller.

In order to enable this function, you need to establish a USB or Ethernet
connection between the AXC 3050 and the computer running PC Worx. Below it's
possible to see how to enable the function by using a USB connection.

In the left part of the "Device Details" window select "PROFINET Device" in
the "Extended Settings" (Fig. 3.63), and on the right side — "LANI (X1)"
interface.

Then click the "Send" button in the right part of the window, and in the
"Settings Communication Path" dialog (Fig. 3.64) confirm the choice of the USB
interface by clicking "OK".

After successful completion of the operation the status window shown in Fig.

3.65 will appear.
91

Fig. 3.63. The first step of the procedure for selecting the connection interface
between personal computer and controller

Fig. 3.64. Selecting USB interface for data exchange between personal computer
and controller

Fig. 3.65. Status window showing the successful completion of the operation
92

In the left part of the "Device Details" window select the "PROFINET device
activation" item in the "Extended Settings" (Fig. 3.66) and in the right part of the
"Settings" window — "PROFINET device activated".

Fig. 3.66. Activating PROFINET device

In order to establish the connection, click the "Send" button on the right side of
the "Settings" window. In the "Settings Communication Path" dialog box confirm the
USB connection by clicking the "OK" button (see Fig. 3.64). The successful
establishment of connection will be shown in the status window (see Fig. 3.65).

In order to activate the settings made, the AXC 3050 controller should be
restarted. Click the "Restart Controller" button in the "Activate Network Settings"
window and confirm the request to restart the controller with the "Yes" button.

In the "Settings Communication Path" dialog box confirm the selected USB
connection or other connection by pressing the "OK" button (see Fig. 3.64).
Confirmation of successful connection start is displayed in the status window (see
Fig. 3.65).

The BF (Bus Fail) LED flashes during successful operation, indicating the
availability of the established communication and the absence of connection to the
PROFINET IO controller.

Now it's possible to work with the AXC 3050 controller as with the
PROFINET device in the PC Worx project.

In order to read the data from the PROFINET network in PC Worx, the
Ethernet network interface card through which it's possible to access PROFINET
devices in the network must be selected in the "Extras, PROFINET Configuration"
menu. In addition, the IP address must be assigned at least to the X1 interface (as
it was described above).

Let us consider the example of adding the AXC 3050 controller to the project
as a PROFINET device.

In order to perform the example, the following settings should be used.

For the upper level controller RFC 470 PN 3TX: IP address of LAN 1.1/1.2 —
192.168.1.100; subnet mask 255.255.255.0; name of the PROFINET device
rfc-470-pn-1e-9d-e0.

93

For the AXC 3050 controller operating as a PROFINET device: IP address
192.168.1.2; subnet mask 255.255.255.0; name of the PROFINET device i1s
axc-30501.

In PC Worx the data in the AXC 3050 controller as a PROFINET device can
be entered under the following conditions:

in PC Worx the AXC 3050 controller function as a PROFINET device should
be activated;

"PROFINET Device" interface of the AXC 3050 controller should be
selected;

controller and PROFINET devices should be installed (controller AXC 3050
and other PROFINET devices in accordance with the application/project);

PROFINET controller should be configured in accordance with the
application/project.

The sequence of actions is as follows.

In the "Bus Structure" window (Fig. 3.67) in the PROFINET context menu
which is called by the right mouse button click select "Read PROFINET".

Fig. 3.67. Start the process of reading the data on PROFINET devices

The "Read PROFINET" dialog box displays the PROFINET devices detected
in the network (Fig. 3.68).

In the PROFINET device list select the AXC 3050 controller and add it to the
project as a PROFINET device by pressing the "Insert" button (see Fig. 3.68).

If the "Select PROFINET device description" dialog box appears, select the
device description that corresponds to the AXC 3050 controller. If the PROFINET
device to be added to the project has not yet been assigned a name, it 1s offered to
assign it at this stage. If the name has already been assigned to the PROFINET
device, repeat the addition to the project of each additional PROFINET device that
was installed and detected in the network. After clicking the "Close" button (see
Fig. 3.68) the "Read PROFINET" window will be closed and the PROFINET
devices added to the project earlier will be displayed in the "Bus Structure"
window (Fig. 3.69, left part).

The characteristics of the PROFINET device will be displayed in the "Process
Data" tab of the "Device Details" window (Fig. 3.70). The AXC 3050 controller is
now available as a PROFINET device in the PC Worx project.

94

Fig. 3.68. List of PROFINET devices found in the network

Fig. 3.69. List of PROFINET devices added to the project

Similarly, other devices having different purposes and configurations can be added.
Since the AXC 3050 controller has three Ethernet interfaces, it can be used for
building complex branch automation systems based on Ethernet and PROFINET.
Using the AXC 3050 controller as a PROFINET controller in a two-level network is
shown in Fig. 3.71, where PROFINET BK bus coupler operates in PROFINET

device mode with Axioline I/O modules connected.
95

Fig. 3.70. Characteristics of the PROFINET device

Fig. 3.71. Using the AXC 3050 controller in branch automation systems: A —
controller operates in the PROFINET controller mode; B — PROFINET BK bus
coupler works in PROFINET mode

When implementing remote management all devices used in the PC Worx
project should have unique IP addresses allocated by Internet service provider and
system administrator.

96

4. PROGRAMMING IN PC WORX INTEGRATED
DEVELOPMENT ENVIRONMENT

4.1. FBD (Function Block Diagram)

The FBD language is the graphical programming language of the IEC 61131-3
standard. Library case sets and its own blocks are used for programming, also
written in FBD or other languages of the IEC 61131-3 standard. Programming
includes connecting ready-made components. The result is the graphical
representation of the program.

When choosing a variable name the following rules should be observed:

variable names must begin with a letter;

letters of only the Latin alphabet must be used in variable names;

variable names should consist only of letters, digits and the underscore " ";

variable names cannot repeat reserved words;

variable names must be unique within their scope;

variable names are undemanding to the register.

When creating variables it is recommended to make names as informative as
possible.

The main data types used in PC Worx are listed in Table 4.1. TIME variable
can be specified by days (d), hours (h), minutes (m), seconds (s), milliseconds
(ms) and their combinations.

When creating variables it is necessary to choose the optimal type of data in
accordance with the tasks to be solved, and adhere to the following
recommendations:

the range of values should lie within the required limits if the value is
constant and will not change. If during the execution of the program the variable
changes its values, it is required to provide such a type of data, the range of which
will not go beyond the necessary limits;

memory size allocated to each variable must be minimal,

it should be remembered that operations with integer values are performed
faster than with real values.

When using a graphical editor, it's possible to define variables in one of the
following ways:

insert variables that have been declared in advance;

insert new variables in the worksheet code and declare them using the
"Variable Properties" dialog box.

In the FBD language variables are inserted unconnected during the
declaration, or already connected to a function or function block. In the first case,
the variable appears with two connecting points on the sheet. Then it can be
connected to other objects by "dragging" (using "Drag & Drop" function) or by
using the connection mode.

97

Table 4.1

Data types
Size Assigned
Data type Description bytes Range of values initial
value
BOOL [Logical 1 Oorl 0
SINT |Short integer 8 from —128 to127 0
INT |Integer 16 from —32 768 to 32 767 0
DINT |Long integer 32 from —2 147 483 648 0
to 2 147 483 647
USINT |Unsigned short integer | 8 from 0 to 255 0
UINT |[Unsigned integer 16 from 0 to 65 535 0
UDINT |Unsigned long integer | 32 from 0 to 4 294 967 295 0
REAL |Real numbers 32 from —3,402823466 E+38 0.0
to —1,175494351 E-38
and
from +1,175494351 E-38
to +3,402823466 E+38
LREAL [Long real numbers 64 from ~ —1,798 E+308 0.0
to ~—2,225 E-308
and
from ~ +2,225 E-308
to ~+1,798 E+308
TIME |Time variable 32 from 0 ... to 4 294 967 295 ms 0
BYTE (8-bit hexadecimal| 8 from 0 to 255 0
number (from 16#00 to 16#FF)
WORD |16-bit hexadecimal| 16 from 0 to 65 535 0
number (from 16#00 to 16#FFFF)
DWORD|16-bit hexadecimal| 32 from 0 to 4 294 967 295 0
number (from 16#00 to 16#FFFFFFFF)

In the FBD language variables are inserted unconnected during the
declaration, or already connected to a function or function block. In the first case,
the variable appears with two connecting points on the sheet. Then it can be
connected to other objects by "dragging" (using "Drag & Drop" function) or by
using the connection mode.

In order to create a variable click the left mouse button on the worksheet. In
this case, the section will appear in the upper Object menu, where you should
select the Variable item (Fig. 4.1).

98

Fig. 4.1. Creating a new variable

After that, the window with the properties of the created variable will appear
on the screen (Fig. 4.2).

Fig. 4.2. Variable properties window
99

The purpose of the fields in this window is as follows.

Name is the name of the variable. It is possible to introduce a new variable
name or select a variable already existing in the system — select the variable from
the list in the drop-down menu to the right of the name.

Data Type is the data type of the variable. Type can be entered from the
keyboard or selected from the drop-down list on the right.

Usage allows selecting the type of variable usage: locally (only within one
POU section; VAR, VAR _INPUT or VAR OUTPUT is declared) or globally (in
the entire project area; VAR _GLOBAL or VAR _EXTERNAL is declared in each
POU where it is used).

Initial value — allows entering the initial value of the variable, i.e. the value
that will be assigned to the variable upon initial initialization.

I/O address is the address assigned to the variable.

Description is the description of the variable that is displayed as a tooltip
when you hover the mouse cursor over a variable (Fig. 4.3).

In_1
Data type: BOOL
(*lnput variable®)

Fig. 4.3. Using description function to describe the variable

Using the Definition scope section of the variable properties window, it's
possible to select variables from different sections of the system.

As an example, create the program consisting of the input and output
variables (Fig. 4.4).

&In1l-e & QOut @

Fig. 4.4. Creating two variables

Each variable has two connections — on the right and on the left. The In 1
variable will simulate a switch or a sensor. It will send a signal to the circuit, so the
connection of the variable will be on the right. The Out variable will simulate the
actuator. The program will control this variable, so the variable connection will be on
the left. Connect them as shown in Fig. 4.5 by pressing the left mouse button.

In 1I—0ut
Fig. 4.5. Connected variables

The program has been created. In order to compile the program select the
Make item in the top Build menu (Fig. 4.6) or press the F9 hotkey.

100

Euild'ijects Layout Online Extras Window ?

[Make F9

i Patch POU Alt+F9

£l compile Worksheet Shift+F9

Rebuild Project Ctrl+F9
LIS B3 S T = Fig. 4.6. Selecting the program
Remove unused variables and FB instances compilation path

After that in the information window of the Message Window it's possible to

observe the process of compiling the program (Fig. 4.7). At the end of the process
it's possible to see the number of Errors and Warnings.

? —————————— Generating specific Code for RESCURCE STD _RES —-———--—---—
[} Creating data templates ...

Processing code ...

Proceszsing data ...

Creating task info ...

Creating initialization code ...

w0 Error(s), 0 Warning(s)

i Massaga Window

\Build A Errors }\Warnings .}\. Info I}\PLC Errors .}\. Print .}\. Multi-User .}\. Bus Configurator }\FDT/

Fig. 4.7. Message Window

If the number of Errors in the program is different from zero, such a program
cannot be loaded into the controller. It is necessary to fix all the errors and compile
the program again, having achieved zero errors.

A certain number of Warnings is allowed. In this case the program can be
loaded into the controller, but the performance will be reduced.

The next step is to load the program into the controller. Choose Project Control
in the top Online menu. The STD RES window will appear on the screen (Fig. 4.8).

Fig. 4.8. STD RES window
101

In the STD RES window click the Download button. The download window
will appear. In the Project section set the Include Bootproject check box, as shown
in Fig. 4.9, and click the Download button.

Fig. 4.9. Download window

At the bottom of the program it's possible to see the progress of the project
loading into the controller (Fig. 4.10).

Downloadiing project... 14%
Fig. 4.10. Downloading of the program

The blue and green colors of the LED indicate a successful download. The
red color indicates an error.

After downloading the program it should be started. Press the Cold button in
the STD RES window (see Fig. 4.8) and then select the Debug item in the top
Online menu. The running program is shown in Fig. 4.11.

In_.1——O0ut
0 0

Fig. 4.11. Running program
102

The variables are colored blue and numeric values are displayed below them.
In this case the signal of the In 1 sensor is zero and the actuator is turned off. To
change the state of the sensor, double click on the input variable In_1. A window
appears showing the state of the variable (Fig. 4.12).

Fig. 4.12. Variable state window

To change the state of this variable, press the Overwrite button. The In 1
variable will change its state. If the type of the variable is Bool, the current state,
which is equal to zero, will change to the opposite one, and the program will take
the form shown in Fig. 4.13.

In_.1—O0ut
1 1

Fig. 4.13. Changing the state of the input variable

It's possible to see from Fig. 4.13 that the change of the state of the input
variable In 1 affected the output variable Out and the control device turned on.

As an example, consider an electrical diagram — the analog of the work of this
program (Fig. 4.14). Here the In 1 variable is represented as a switch with
normally open contacts. The Out variable is represented by the load. In the initial
enclosed, current starts to flow in the circuit and the load turns on.

To stop the program, press the Stop button in the STD RES window, and
then select the Debug item in the top Online menu.

103

Fig. 4.14. Electrical diagram — the analogue of the completed program

Logical operations of the FBD language can be found in the Edit Wizard
window (Fig. 4.15).

: Edit Wizard L wpm
Group:

Functions -
Mame Description -
W ABS Truncation of Sign

| ACOS Arc Cosine =
& ADD Additian [
®ADD_T_T TIME-Addition N

Bitwise AMD

W ASIN Arc Sine

W ATAMN Arc Tangent

WEIT_TEST Load a Single Bitfrom AMY_BIT

W COLD_RESTART Performs a Cold Restart

;| Cos Cosine

o D Divigion

;| OMN_T_Al TIME by ANY_INT Divdisian
W|OMN_T_AMN TIME by ANY_MNUIK Division
®OMN_T_R TIME by REAL Division

&;ED Equal: =

& E-F Exponent

W EXFT Exponentiation

& GE Greater Than Equal: >=

W GT Greater Than : »

®LE Less Than Equal: <- - Fig. 4.15. Edit Wizard
‘| LI P window

This window is located on the right side of the screen. If otherwise, it's
possible to turn it on by selecting the Edit Wizard item from the top View menu or
by selecting the icon «. on the control panel. At the top of this window it's
possible to use the drop-down menu (Fig. 4.16), which allows selecting the
functions grouped by sections or full list.

104

<all Flls and FBEs>

<Favorites?

<UMNTITLED?

Function blacks

Functions

Metwark Templates

String Fls Fig. 4.16. Function groups of the Edit Wizard

Type conv. Fls window

Examine the basic logic functions.
Select the AND function, as shown in Fig. 4.15, and transfer it to the working
area. The function will be obtained as shown in Fig. 4.17.

&

Fig. 4.17. The AND function

In the basic version, this function has two inputs on the left and one output on
the right. Create two input variables and one output variable (Fig. 4.18).

&In 1l-2 o e Out ¢

eIn 2w Fig. 4.18. The AND function with
unconnected variables

Connect the variables to the function and compile, load and run the program
(Fig. 4.19).

AND
In_1— ——Out
0 0
In_ 2—
0 Fig. 4.19. Operation of the AND function

After starting the program fill out the Table 4.2 by changing the values of the
In 1 and In 2 input variables. Display the numeric values in the Out column
corresponding to the combination of the input parameters.

105

Table 4.2
Truth table for the AND function

In 1|In 2| Out
0 0 0
0 1 0
1 0 0
1 1 1

Next take the OR function and repeat the previous steps — create the program
(Fig. 4.20), run it and fill in the Table 4.3.

OR
In 1— —Qut
In 2—

Fig. 4.20. Program using the OR function

Table 4.3
Truth table for the OR function

In 2| Out

e
>—atr—aOO|b
[S—Y

— o= O|

0
1
1
1

Then create the program using the NOT function (Fig. 4.21) and fill in the
corresponding truth table (Table 4.4).

NOT
In_1 —CQut
Fig. 4.21. Program using the NOT function

Table 4.4

Truth table for the NOT function

In 1| Out
0 1
1

106

The next step is to create the program of the "NAND" operator by combining
the two functions. In order to do this, send a signal from the output of the "AND"

function to the input of the "NOT" function, as shown in Fig. 4.22. Fill in the
Table 4.5.

AND NOT
In_1— —CQut
In 2—
[N

Fig. 4.22. Combination of two blocks

Table 4.5
Truth table for the NAND function

In 2| Out

e
r—ar—t00|b
[S—Y

— o=

1
1
1
0

In the FBD language it is not necessary to use the individual NOT block for
output inversion. Let us create the program according to Fig. 4.23.

AND NOT
In_1—&— —Out

AND

——Qut2

Nﬁ

Fig. 4.23. Modified program

Open the properties of the bottom AND function by double clicking on it. At
the bottom in the Format Parameters section the table will be displayed. Mark the
Out output parameter in the Negated column in this table, as shown in Fig. 4.24.

107

Fig. 4.24. Properties of the AND function

Press the OK button and the program will appear as shown in Fig. 4.25. The
lower AND function at the Out2 output will display the inversion icon. When you
start the program, both functions will work the same.

" AND) NOT
In_1—»— —Out
In_2—+»
a
AND
c—Qut2
Fig. 4.25. Using inversion

In addition to inversion of the output parameter, it's possible to invert the input in
the same way. Operators on the diagram shown in Fig. 4.26 will work in the same way.
Also, if necessary, it is possible to add the required number of inputs (Fig.
4.27). In order to do this, select the input IN2 in the function properties of the
Format Parameters section and press the Duplicate button the required number of

times, as shown in Fig. 4.28.
108

NOT (AND] NOT
In_1 —CQut
In_2+L

AND
Qut2

Fig. 4.26.

(" AND |
In 1—
In 2—
In_3—
In_4——1

Using inversion at the input and output

D—CQut2

Fig. 4.27. Using the four-way AND

function

Fig. 4.28. The AND function with four inputs

109

The order of execution (priority) of logical operations in a complex logical
expression is as follows.

1. Logical negation (inversion).

2. Logical multiplication (conjunction).

3. Logical addition (disjunction).

4. Logical consequence (implication).

5. Logical equivalence.

Parentheses are used for changing the order of operations. Also, they are
recommended for using in complex expressions to reduce the likelithood of
subjective programming errors.

Assuming that the first and third hardware modules are connected as
specified in 1.5, consider the correspondence of control elements of the third
hardware module to PC Worx variables: switch to the IEC Programming mode
and go to the global variables section in the Project tree Window (Fig. 4.29). The
input global variables are highlighted in red.

File Edit Wiew Project Buld Layout Online Extras Window 7

DAL U o F aa MEFEFS«m- - { iz (B=6HB608
i Project Tree Window 2 w [- | Type | Usage |Descrimi0n |
Project : CADoeuments and Setti MASTER_DIAG_PARAM_Z_... [BYTE WAR_GLOBAL |Extended master diagnostic parameter registel
(3 Libraries COP_DI&AG_STATUS_REG_ ... \BOOCL WAR_GLOBAL |Runtime error (contral processar]
A Dta Types COP_DIAG_STATUS_REG_... |BOOL WAR_GLOBAL |Fatal error (control processor)
sys_Hlag_types COP_DIAG_STATUS_REG_.. |BOOL WAR_GLOBSL WWarning (control processor)
{3 Logioal POUs COP_DIAG_STATUS_REG_.. |BOGL VAR _GLOBAL |Power on (cortrol processar)
= (0] Main] COP_DIAG_STATUS_REG_... (BOOL WaR_GLOBAL |Rurtime system RUM
MainT COP_DIAG_STATUS_REG_.. [BOCL WAR_GLOBAL |Runtime system STOP
Mairi COP_DIAG_STATUS_REG_.. [BOOL WAR_GLOBAL |Runtime system HALT
@ Main COP_DIAG_STATUS_REG_ .. |BOCL VAR_GLOBAL |Rurtime system LOADING
@8 Physical Hardware COP_DIAG_STATUS_REG_.. |BOOL WAR_GLOBAL |Runtime system DEBUG
= Gl STD_CNF el COP_DI&G_STATUS_REG_ .. |BOGL VAR_GLOBAL |Rurtime system READONLY
=@ STD_RES : ILCT51E COP_DIAG_PARAM_REG |WWORD YAR_GLOBAL |Diagnostic parameter register of the control pr
=Gl Tasks COP_DIAG_PARAM_ 2 REG [WORD WOR_GLOBAL |Extended diagnostic parameter register of the
=(0] STD_TSK: COP_CPU_LOAD WARNNG | BOGCL VAR _GLOBAL | The cortroller is spproaching its processor ca
= Main: M o - WORD WAR_GLOBAL |Local inputs
. Ma | B NBOARD_INPUT_BITD WAR_GLOBAL |Local input IN1
i3 Global Varia.. ONBOARD_NPUT_BITA WAR_GLOBAL |Local input N2
[l 10_Configurat... ONBOARD_IMPUT_BIT2 WAR_GLOBAL |Local input IN3
OMBEOLRD_IHFUT_BIT3 BOGL VAR _GLOBAL |Local input IMNe
OMBOARD_IMFLIT_BIT4 BOGL VAR_GLOBAL |Local input NS
OMBEOARD_IHFUT_BITS VAR _GLOBAL |Local input ING
OMBOARD_INPUT_BITE VAR_GLOBAL |Local input IN7
OMEOARD_HFUT_BITT VAR _GLOBAL |Local input ING <
< 2 £ | — e T } '
& W @ & MainMain Maint:Main | z2] Maint:STD... 5] Glohal ari .

Fig. 4.29. Input global variables

These variables correspond to the block of eight switches selected in
Fig. 4.30.

In this section there are also output global variables (Fig. 4.31), which
correspond to the LEDs marked in red in Fig. 4.32.

110

Fig. 4.30. Block of switches of input global variables in the third hardware module

File Edit Wiew Projeck Build Lawout Online Extras Window ?

ENE L U e aa MEL.BHEe~m H iz Bl) (B) (] &=
: P75 515 : :
: Pro-]ect Tree Window 3w D Name | Type | Usage |Descripti0n [A]
F'm|e§t : ;:\Documents ahd Settif ONBOARD_INPUT_BITE BOOL WAR_GLOBAL |Local ingput INT
(3 Libraries OMBO&RD_INPLIT_BIT? BOGL WAR_GLOBAL |Local input ING
{3 Data Types OMBOARD_INPUT_BITE BOCL WAR_GLOBAL |Local input IN3
£ys_flag_tupes OMNBOARD_IMPUT_BITS BOOL WAR_GLOBAL |Local input IM10
2 Logical POUs ONBOARD_IMPUT_BIT10 BOGL WAR_GLOBAL | Local input IN11
=-[d] Main] OMBOARD_IMPUT_BIT11 BOOL WaR_GLOBAL |Local input IM12
MainT ONBOARD_INPLIT_BIT12 BOGL WAR_GLOBAL |Local input IN1 3
Wit/ OMBOARD_INPLIT_BIT13 BOGL WAR_GLOBAL |Local input IN14
@] Main OMBOARD_INFLIT_BIT14 BOGL VAR_GLOBAL |Local input IN15
&8 Physical Hardware o — = BIOOL WAR_GLOBAL |Local input INTE
=@8 STD_CNF: el MBOARD_OUTPUT_BITD WAR_GLOBAL |Local cutput OUITY
=@ STD_RES : ILCT51G OMNBOSRD_OUTPUT_BIT1 B0 WAR_GLOBAL |Local output OUT2
=@ Tasks " |oMBOARD_OUTPUT_BITZ |BOO WAR_GLOBAL |Local output OUTS
=[0] 5TD_TSK: OMBOARD_OUTPUT_BITS WAR_GLOBAL |Local output OUT4
=0 Main : I - = BOCL WAR_GLOBAL |Reaftime clock battery capacty low
) Ma RTC_DATA,_|NYALID BOOL VAR _GLOBAL |Realtime clack data invalid
Global Varia... FLASHC ARD_PRESENT BOGL VAR _GLOBAL |Phoenix Contact 50 card inserted L
|0_Configurat... ONBOARD_OUTPUT_OWER.. |BOCL VAR _GLOBSL |Local 0 cverload 1
POWER_SLIPPLY _MAIN_CK | BIOCL WAR_GLOBAL |24 % main supply voltage OK
POWER_SLIPPLY _MPLITS_OHK |BOCL VAR_GLOBAL |24V Iocal input supply O
POWER_SUPPLY _OUTPUTS... BOCL VAR_GLOBAL |24V local autput supply OK (bits 0...3)
KEY_S\WTCH_RESET BOGL VAR _GLOBAL | Startistop switch in MRESET position
KEY_SWITCH_STOP BOGL WAR_GLOBAL | Startistop switch in STOP postion vl
(€] [Lw] [£ B TR | e T (2]
& U E P Mainctain Maint:Main |55 Mair/:5TD... Global Mari..

Fig. 4.31. Output global variables
111

Fig. 4.32. Block of LEDs of output global variables in the third hardware module

Create the program consisting of input and output variables (Fig. 4.33, a).

ONBOARD_INPUT _BITO —OMNBOARD_QUTPUT BIT3 |

a

CMNBOARD_INFUT _BITO FONBOARD_OUTPUT_BITS |

0 0
b
OMNBOARD_IMNPUT _BITO HOMBOARD_OUTPUT BITS |
1 1
c

Fig. 4.33. Program for working with bit variables: a — source program; b — input
element in the disabled state; ¢ — input element in enabled state

After startup the program will read the state of the input switch and transmit
the information to the output LED (Fig. 4.33,). When the switch is pressed the
state of the input variable will change, which will be displayed on the output LED,
as shown in Fig. 4.34.

112

Fig. 4.34. The result of the program (LED turned on)

In order to use analog controls in the program, first connect them in the PC

Worx shell. Switch to the Process Data mode and select the connected block

responsible for input/output of analog information IB IL Al 4/U-PAC 0.3. In the
lower part the variables included in this block will be represented. By selecting the
necessary variables with the mouse and dragging them, they are set in the system
(Fig. 4.35). The variables are initialized by selecting the Build/Make item.

EFHE Edit Wiew Project Builld Online Extras #

D) & ME=ERS xm- A iz BEEzZzOE i o 2@
: Process Data Assignment L x|
Symbolz A ariables = % UMTITLED

= =8 STO_CNF : eCLR
= ‘@& STD_RES : ILC151GSM_40
Default
System Yariables
= lﬁl STD_TSK ; DEFALLT

= Bl ILC 151 GSMIGPRS 152 168.1.20
=-f Resource
R STO_RES ILC15165M_40
48 # MODBUS_CLT
= # IMTERBUS 0., 0

== El Wain : Main F#LlIBIL24DO4-MED, 1
Default #2IBIL A0 2/UI-PACO, 2
auto #3IBILAL4/U-PACO, 3
Touch Display
Unconnected
Symbolfvariable Drata Type Process Data Ikem Description Device Process Data Ikem jile) Data Type Byte.Bit Address Symbo.,
_0_3_AI 1 MOLTAGE \WORD # 3IBIL AT 4)U-P.., #21.. Channel 1: Parameters I WORD 0.0
I 0_2 CHAMMEL_1_OUTP... WORD #2 L. Channel 2 Parameters I WORD 2.0
Q_0_Z_CHAMMEL_1_OUT... WORD # 216 IL A Z{UI-... #21... Channel 1: Output value 1 WORD 4.0
Q_0_2_CHAMMEL_2_OUT... WORD #2IBIL AD 2/UT-... #21L.. Channel 2: Output valus I WORD .0
. Channel 1: Parameters Q WORD 0.0
o

Channel 2! Parameters

WIORD 2.0

IR,
#2I6IL AQ2/UTI-PACO, 21

Fig. 4.35. Connecting analog variables to the project

113

Create the program where the connected analog variables will be used (Fig.
4.36).

[03 Al 1 VOLTAGE 02 CHANMEL_1 QUTRPUT _VALUE

=0 0_2_CHANNEL_2_OUTPUT _WALUE |

Fig. 4.36. Analog information display program

After the program starts the numerical values of the variables (Fig. 4.37),
which are read from the controller and transferred to the indicators will appear
(Fig. 4.38).

[0= A1 WOLTAGE _0_2_CHANMNEL_1 QUTPUT _WALUE
16#3510 16#3510

HO_0_2 CHAMMEL_2_CUTPUT_VALUE |

16#3510

Fig. 4.37. Example of the running program

Fig. 4.38. The signal transmitted from the potentiometer to the indicators

114

If for example you want to connect a proportional-integral-derivative (PID)
controller to the project, you should use a standard library containing the function

block that has the PID name.

In order to add it to the project, select the line "Function blocks" in the Edit
Wizard window, which by default is in the upper right corner of the screen

(Fig. 4.39).

: Edit Wizard
Group:

E A

Function blocks

<all FUs and FB=»
<hxl POV _03:
<Favaritess

<tatud fhds

Function blocks
Functionz

Metwork. Templates
Strirng FU g

Type cony. Flsg

Fig. 4.39. Selecting the standard function block library

In the appearing list of function blocks (Fig. 4.40) select the line that contains
the name of the PID function block with its PID Control description and drag the
selected function block to the project working area.

: Edit Wizard
Group:

Function blocks

Mame

& MOBILE_COMMECT
W PACK

W PCP_CLIENT
4 PCP_COMNNECT
& PCP_READ

& PCP_SERVER
& PCP WRITE
HFFDI_READ

& POI_WRITE
FEFID

W PLC_STOP

i PULSE_CH1

3 PULSE_CH?
FER_TRIG

D ezcription

Switch-on and Parameterization of the Mobile Fadio Mod
Converts Data

Sendz PCP zervices and receives their acknowledgemer
Connection establizhment to a PCP device

Reads data from PCF block objects

Receives PCF zemvices and zends their responzes
Wirites data to PCP block objects

Feads data from PO block, objects

Wirites data to PO block objects

FID Contral

Stopz the PLC

Local Pulze/Direction Output Channel 1

Local Pulze/Direction Output Channel 2

Rizing Edge Detection

Fig. 4.40. Selection of the PID function block

The window will appear shown in Fig. 4.41.

115

Fig. 4.41. The window for entering the initial parameters of the PID controller
function block added to the project

To create the PID controller in the project, agree with the proposed
characteristics and click OK. The PID controller added to the project is shown in
Fig. 4.42.

PID_1
- 510 5
#— ENABLE XOUT =
«— AUTO
1 Fig. 4.42. The PID controller in the PC Worx project:
*— SP ENABLE - starts the controller (BOOL); AUTO —
o X0 determines the mode of operation — automatic (TRUE)
« = or manual (FALSE); PV — input signal (REAL); SP —
set point (REAL); X0 — offset of the controller output
= R signal (REAL); KP — proportional gain (REAL); TR —
«— TD integration time (REAL); TD — derivative time
o CYCLE (REAL); CYCLE - block recalculation time (TIME);
\) XOUT - inverted output of the controller (REAL)

116

To view and change the parameters of the PID controller, double click on the
function block with the left mouse button. The opening window is shown in
Fig. 4.43.

Fig. 4.43. PID-controller settings window

Individual work

Create a program in FBD (Functional Block Diagram) to calculate the
following logical expression (do not simplify the expression):

Y =(X3+X2)-X1.

Fill in the truth table (Table 4.6) and check the values obtained.
Use the switches of the third hardware module as input signals X7, X2, X3.
Use the LED of the third hardware module as the output signal Y.

117

Truth table

Input signals Output signal

No. X1 P ng X0 p % & Check
1 0 0 0

2 0 0 1

3 0 1 0

4 0 1 1

5 1 0 0

6 1 0 1

7 1 1 0

8 1 1 1

Test questions

. List the main data types that are used in PC Worx.

. What information is stored by the INT data type?

. How can a new variable be created?

. What is the Initial value parameter responsible for?

. How can a program be downloaded to the controller?

. How can the downloaded program be started?

. How can the state of a variable when the program is running be changed?
8. How can the analog variables from IB IL Al 4/U-PAC 0.3 be connected to

the project?

O\ DN B~ W=

4.2. Ladder Diagram (LD)

Ladder diagram is a graphical language using standardized graphic symbols for
relay contact circuits. It is suitable for building logical switches, with which chains
of any complexity can be created.

The LD program is clear and represents logical operations as an electrical
circuit with closed and open contacts. The flow or absence of current in this circuit
corresponds to the result of a logical operation (unit — if current flows, zero — if
current does not flow).

There are normally closed and normally open contact elements in electrical
circuits:

—-| |— normally open contact;
—|/ | normally closed contact;
—()— actuator, which is called a coil;

—(/)— actuator simulating the connection to the normally closed contacts of
the relay winding.
118

Contacts and coils can have linked variables. The contacts do not change the
value of the bound variable, only the link state on the right is changed depending
on the linked variable.

The coil copies the state of the link to the left to the link on the right without
changing and stores the corresponding state function or the left link transition in
the corresponding linked variable.

A complete list of the elements of Ladder Diagram is given in the Annex.

If the diagram contains several chains, they are executed in each cycle from
bottom to top. This means that the upper chain will receive the values of the
variables from the lower chain only in the next cycle. However, the order of the
circuits can be changed using labels and transitions.

The program is created in the following sequence.

1. After configuring the controller select the working window in PC Worx.

2. In the Project Tree Window select Logical POUs/Main* (Fig. 4.44).

3. Place the cursor in the Worksheet area.

4. In the main menu select the Object tab, which contains the LD operators
(see Fig. 4.44).

Fig. 4.44. Window to start working with LD
119

The program should be started from Contact Network (Fig. 4.45).

001 Co0o Coo1 |
I | | ™

Fig. 4.45. Basic components of Ladder Diagram

At the initial stage the program consists of only three elements — poles 001,
contact C000 and actuator C001.

If you try to compile this Build/Make program, error messages will appear in
the Message Window (see Fig. 4.46).

? Main

N - Generating IEC Code -----———-

. Collecting POUs used by RESCURCE 'STD RES' ...

'ﬁ Generating IEC code for RESCURCE 'STD RES' ...

i M2 Error(s), 0 Warning (=)

E \Euild (ﬂ Errors }\IWamings }\I Info APLC Errors }\I Print }\I Multi-User }\I Bus Configurator }\FDT/

Fig. 4.46. Error messages

In order to detail the errors received, switch to the Errors tab in the Message
Window (see Fig. 4.47).

E!gi'ﬁ?ariable "Main:C000" not found!
2 3 variable "Main:c001l' neot found!

i Message Window

\ Build } Errors .f{» Warnings .;\. Info ;\PLG Errors .;\. Print ;\I Multi-User }\I

Fig. 4.47. Opening the Errors tab

Messages mean that variables C000 and C001 are not found. To test it, go to
the variables section and make sure that the variables are only on the screen, not in
the system. To initialize the variables, double-click on the C000 contact to open
the variable input interface. Enter the name of the contact here, for example, In_1.
Select the data type BOOL (Fig. 4.48) and click OK. Similarly, the actuator C001
named Out will be renamed.

120

Fig. 4.48. Variable input interface

To check the newly entered variables, go to the variables section. To do this,
the Logical POUs section opens in the Project Tree Window. The entered
variables will be present in the list (Fig. 4.49).

i Project Tree Window awl -
. . MName | Type Usage | Description
=23 Project: C:\ProgramData\Phoenix Contaci = Default
i g S:tr:”TeySpes In_1 BOOL VAR_EXTERNAL
sys_flag_types Out BOOL VAR_EXTERMAL

-3 Logical POUs
=-[0] Main®
[i] MainT
MainV/
@ Main
=& Physical Hardware*
=-&8 STD_CNF : IPC_40*
=-&8 STO_RES : RFC430ET*
£-88 Tasks
=-[0) STD_TSK:DEFAULT
=-{0) Main: Main*
MainV
i Global_Variables
|0_Configuration®

Fig. 4.49. Window with the variables list
121

After that the program will be compiled without errors and after running the
program will work as shown in Fig. 4.50.

001

‘ In_1 Out

Fig. 4.50. Program operation at the initial stage

The blue color of the contact indicates its status. It corresponds to the "low
level" (0) and the open contact status. At that, the current along the circuit between
poles 001 does not flow and the actuator is switched off (also of blue color). The
next step is to change the status of the contact. To do this, double-click on the
contact (when the program is running) opening the status window (Fig. 4.51).

Fig. 4.51. Variable status window

In order to change the status, press the Overwrite button. The program will
change the mode of operation: the contact and the coil are colored red (Fig. 4.52).
This corresponds to logical "1" and means that the contact is closed. Therefore, the
current between the poles 001 flows through the closed contact In 1 and turns on
the actuator Out.

001

‘ In_1 Out

Fig. 4.52. Changing the operating mode of the program
122

This example illustrates the operation of the basic scheme.

Consider examples of adding supplementary elements using the example of
parallel and serial connection of several elements.

Example 1. For parallel inclusion select the element with respect to which the
commutation will be carried out by the mouse. Select In_1, open the top Object
menu and select Contact Below (Fig. 4.53).

Fig. 4.53. Adding a contact to the scheme
The scheme will change, as shown in Fig. 4.54.

001

In 1 Out |
|_. g e ‘

=
| |

Fig. 4.54. Added new contact in the scheme

It can be seen that the newly appeared element is named C002 and is not
included in the variable table. Double click to open the interface of the variable
and rename this contact, assigning the name In_2. Compile and run the program.
Then, changing the values of variables In 1 and In 2, fill in the truth table

(Table 4.7).
123

Table 4.7
Truth table for parallel connection of contacts

In 1|In 2| Out
0 0 0
0 1 1
1 0 1
1 1 1

Example 2. Conduct circuit switching and connect the contacts in series, as
shown in Fig. 4.55.
ut |

Fig. 4.55. Sequential connection of contacts in the scheme

001 In 1
—

-5

—N

MO
J

Run the program and fill in the truth table (Table 4.8).

Table 4.8
Truth table for serial connection of contacts

In 2| Out

e
Hr—OO|b
[S—Y

— o= O
—_— O OO

Example 3. Consider inverting operations. To do this, modify the circuit and
return to basic scheme (Fig. 4.56).

001

e =]
=3
B el
O
| -
—t

Fig. 4.56. Basic scheme of the program
124

Double-clicking on the In 1 contact opens the properties window. Change the
type of the Type —-| / I— element at the bottom of the Contact/Coil section, as
shown in Fig. 4.57. After this, the circuit will change and take the form shown in
Fig. 4.58.

Fig. 4.57. Changing the contact properties

001 In 1 out |
|f | ™y
| | Sy |

Fig. 4.58. Changing the contact type

Run the program and fill in the truth table with a normally closed contact
(Table 4.9).

125

Table 4.9
Truth table for normally closed contact

In 1| Out
1 1
0 0

Example 4. In the next step make changes to the scheme and remove the
inversion from the contact "In 1", and then set the inversion to the actuator Out.
The resulting scheme is shown in Fig. 4.59.

00|1 In 1 Out |
| | D, |

Fig. 4.59. Changing the type of actuator

Run the program and fill the truth table at the inverting of the actuator (Table
4.10).

Table 4.10
Truth table for inversion of the actuator

In 1| Out

0 1
1 0

Having analyzed the work of the resulting schemes with inversion of the
contact and the coil and based on the filled truth tables, it can be concluded that
the operation of the entire scheme as a whole is affected by inversion of various
elements.

Individual work
Create a program in Ladder logic to calculate the next logical expression with
the input signals X7, X2, X3 and the output signal Y:
Y=X1+X2-X3.

The expression should not be simplified. Fill in the truth table (Table 4.11). Check
the received values.

126

Table 4.11

Truth table
Input signals Output signal

No. X1 P ng X2 p v & Check
1 0 0 0

2 0 0 1

3 0 1 0

4 0 1 1

5 1 0 0

6 1 0 1

7 1 1 0

8 1 1 1

Test questions

1. When is it advisable to use the Ladder Diagram?

2. List the elements used in the Ladder Diagram.

3. How can be a new LD element set on the work area?

4. What state corresponds to the blue color of the element?

5. How is the inversion of the Ladder Diagram element carried out?

4.3. Structured Text (ST)

Structured Text is a high-level programming language, which is syntactically close
to the classical Pascal language. It can be used in basic programs, in the body of
functions or function blocks (FBDs), for describing actions within program
elements written in SFC and Flow Chart languages. Structured Text is intended for
programming complex algorithms.

Many ST keywords (for example, AND, OR, NOT, IF, THEN, ELSE,
WHILE, etc.) found in other programming languages are obvious and familiar, so
the program code has good readability and allows quick understanding of the
programs written by other developers.

When you enter keywords, delimiters and comments, a syntax check is
performed. When a keyword, delimiter or comment is found, they are highlighted
in color. When you enter unauthorized keywords (syntax errors), they are also
highlighted in color. According to IEC 61131-3, keywords must be entered with
uppercase characters. Spaces and tabs do not affect the syntax.

Expressions in the ST consist of operands and operators. An operand can be a
constant, a variable, a structured variable, a function call, an output of a function
block, or a direct address.

127

The data types that variables can have are described in par. 4.1 and
Table 4.1.

Expressions of the ST programming language must end with semicolons. One
line can contain several expressions, which are separated from each other by
semicolons.

The data types of the operands processed in the expression must be the same.
When working with data of various types, data types are first converted. For
example, in expression

r3 :=r4 + SIN(INT _TO_REAL(l));

the integer variable il (data type INT) is first converted to a real variable (data
type REAL), and then added to the real (REAL) variable r4 (":=" is the assignment
operator).

TIME data type is the exception if variables are used with arithmetic
operators "*" (multiplication) and "/" (division). The value of the TIME data type
can be processed together with the value of the ANY NUM data type (the generic
designation of any numeric data types). The result of such an expression will have
the TIME data type. For example, in expression

tl =12 * 14 ;

variable t2 (TIME data type) is multiplied by the integer variable 4, and the result
is assigned to the variable t1 with the TIME data type.

An expression using different operators is evaluated in the order specified by
the rule of precedence of operators. The operator with the highest precedence in
the expression will be executed first, then the operator with the next higher
precedence will be executed, etc., until the computation is completed. Operators
with equal precedence are executed from left to right, as written in the expression.
This order can be changed with parentheses.

ST operators are listed in Table 4.12.

During exponentiation the value of the first operand (base) is raised to the
power of the value of the second operand (exponent), for example:

OUT :=1IN1 ** IN2 ;

With the help of the NOT operator the bitwise inversion of the operand is
performed, for example:

OUT := NOT IN1 ;

If INT = 1100110011, then after performing the inversion the variable OUT
will be 0011001100.

128

ST programming language operators

Table 4.12

Operator Operation Operand Example | Priority
: 11
) Parentheses Expression (A+B)/C (highest)
FUNCNA-
ME (listof | Callinga |Expression, constant, variable, direct
actual function |address of data type ANY MAXX, Y)| 10
parameters)
Variable address indicator (operator is A
A Dereference used to get the value of the variable) R ?
) Expression, constant, variable, direct
a Negation 1 {dress of data type ANY NUM A, - A 8
Expression, constant, variable, direct
NOT Complement address of data type ANY BIT NOTC 8
Expression, constant, variable, direct
ok Exponentiation |address of data type REAL (base), A**B 7
ANY NUM (exponent)
Expression, constant, variable, direct
* Multiply |address of data type ANY NUM or|A*B, A * B 6
TIME
.. Expression, constant, variable, direct
/ Divide address of data type ANY NUM A/B, A/B 6
Expression, constant, variable, direct
MOD Modulo address of data type ANY NUM AMODB 6
Expression, constant, variable, direct
+ Add address of data type ANY NUM orlA+B, A +B 5
TIME
Expression, constant, variable, direct
- Subtract |address of data type ANY NUM or|A-B, A -B 5
TIME
<, >, <=, . Expression, constant, variable, direct
>= = <> Comparison address of data type ANY ELEM A<B,A>B 4
Expression, constant, variable, direct{ A&B,
&, AND | Boolean AND address of data type ANY BIT A&B 3
) Expression, constant, variable, direct
XOR Exclusive OR address of data type ANY BIT A XOR B 2
Expression, constant, variable, direct 1
OR Boolean OR address of data type ANY BIT AORB (lowest)

129

In the MOD operator the value of the first operand is divided by the value of
the second operand, and the remainder of the division is returned as a result. For
example, in expression

OUT := IN1 MOD IN2 ;

the OUT variable will be equal to 2 when IN1 = 12 and IN2 = 5.

When using the comparison operator "more than" the value of the first
operand is compared with the value of the second operand. If the first operand is
greater than the second, the result is logical unit. If the first operand is less than or
equal to the second operand, the result is logical zero. For example, in expression

OUT :=IN1>10;

the OUT variable will be equal to 1 if IN1> 10, otherwise it is equal to O.

n.n

Similarly, relational operators "less", "greater than or equal to", "less than or
equal to", "equal", "not equal" are performed.

When using the AND operator (logical AND, logical multiplication
operation) the "AND" logical operation is performed between the operands. For

example, using the expression

OUT :=INI1 AND IN2 AND IN3 ;
or
OUT =INI & IN2 & IN3 ;

the OUT variable is equal to 1 if all variables IN1, IN2 and IN3 are 1, otherwise
OUT is equal to 0.

When using the OR operator (logical "OR", logical addition operation), the
"OR" logical operation is performed between the operands. For example, in
expression

OUT :=INI1 OR IN2 OR IN3 ;

the OUT variable is equal to 1 if at least one of the variables IN1, IN2, IN3 is
equal to 1.

With variables that have BYTE and WORD data types operations are
performed bitwise.

When using the XOR operator (eXclusive "OR"), the "exclusive OR"
operation is performed between the operands. For example, in expression

OUT :=INI1 XOR IN2 ;

the OUT variable is equal to 1 if the variables IN1, IN2 are not equal. If the
variables IN1 and IN2 have the same state (both are equal to 0 or 1), the OUT
variable will be equal to 0.

130

When using three or more operands, the XOR operator works as follows: if
the number of variables having the value "1" is odd, the result of the operation is
1, otherwise the result is 0. For example, if

OUT :=INI1 XOR IN2 XOR IN3 XOR IN4 XOR INS5;

the OUT variable will be equal to 1 if the odd number of operand variables (1, 3 or
all 5) is equal to 1.

The following expressions are available in ST:

assignment;

declaration of variables VAR ... END VAR;

declaration of function blocks;

commands IF ... THEN ... END IF;

ELSE;

ELSIF ... THEN;

CASE ... OF ... END_CASE;

FOR ... TO ... BY ... DO ... END FOR;

WHILE ... DO ... END WHILE;

REPEAT;

EXIT;

RETURN;

In the assignment operator A: = B; both variables should have the same data
type.

The VAR ... END VAR construct is used for declaring function blocks and
direct addresses if they are not applied to the default data types.

The keyword VAR is entered once at the beginning of the section of the
project code. All function blocks and direct addresses that differ from the default
data types must be declared in this section. The keyword END VAR completes
the declaration of variables.

Declaration of function blocks and direct addresses applies only to the current
section. If the same type of function block or the same address is used in another
section, the function block type or address must be declared again.

In the function block declaration each block name is assigned the name of the
block instance necessary to identify the function block in the project. The instance
name must be unique for the entire project. When specifying the names of
instances, the letter case does not matter (lowercase is equated to capital letters).
The instance name must satisfy the formal requirements for the name otherwise an
error message will appear.

After entering the instance name, enter the type of function block, for
example CTD DINT, ROL WORD, SIN REAL.

131

With generalized types of function blocks (for example, MUX, SEL), the data
type is not specified. It will be determined by the data type of the actual
parameters. If the actual parameters consist of constants, the INT data type will be
accepted for the function block.

Any number of instance names can be declared for function blocks.

The example of the declaration of function blocks is given below.

VAR
RAMP_ UP, RAMP DOWN, RAMP X: TON ;
COUNT: CTU DINT;
CLOCK: SYSCLOCK :
PULSE: TON :
END VAR

In this example, RAMP _UP, RAMP DOWN, RAMP X, PULSE are
instances of TON function blocks; COUNT and CLOCK are input signals.

In the direct address declaration each used direct address, that has data type
other than the default, is assigned the selected data type. For example:

VAR
AT %QW1: WORD ;
AT %IW15: UINT ;
AT %ID45: DINT ;
AT %QD4: TIME ;
END VAR ;

The construct IF ... THEN ... END IF allows organizing the conditional
check. Statement block is executed if the condition is met (or the statement
specified in the condition results in logical 1), which is specified after the IF
keyword. The keyword THEN is between the condition and the statement being
executed. The keyword END IF is placed at the end of the construct. For
example:

IF A>B THEN
C := SIN(A) * COS(B) ;
B:=C-A;

END IF ;

If the FLAG variable in the following expression is equal to logical 1, this
segment of the program will also be executed.

IF FLAG THEN
C :=SIN(A) * COS(B) ;
B=C-A;

END IF;

132

In the IF NOT ... THEN ... END IF construct the NOT keyword is used to
invert the condition. For example:

IF NOT FLAG THEN
C := SIN(A) * COS(B) ;
B:=C-A;

END IF :

This section of code will be executed if the FLAG variable has the value
equal to logical 0.

In order to test complex conditions, any IF ... THEN ... END IF constructs
can be embedded into each other.

The keyword ELSE always follows the keywords IF ... THEN, ELSIF ...
THEN or CASE.

If the keyword ELSE follows the keyword THEN or ELSIF, the statement
after the ELSE keyword (or statement block) will be executed if all previous
conditions that are checked after the IF or ELSIF keywords are not executed (or
the result is logical 0). For example:

IF A>B THEN
C :=SIN(A) * COS_REAL(B);
B=C-A;
ELSE
C=A+B;
B=C*A;
END IF;

With the help of the keyword ELSIF the ELSIF ... THEN construct allows
organizing a more complex test. If the condition after the IF keyword is not
executed or its test result is logical 0, and the condition specified after the ELSIF

1s executed (or its test result is logical 1), then the statement block specified after
the keywords ELSEIF and THEN will be executed. For example:

IF A>B THEN
C := SIN(A) * COS(B) :
B := SUB(C, A) ;
ELSIF A=B THEN
C := ADD(A, B) ;
B := MUL(C, A) ;
END IF :

In order to test complex conditions, it's possible to embed any number of
statements IF ... THEN ... ELSIF ... THEN ... END_IF into each other. For example:

133

IF A>B THEN
IF B=C THEN
C :=SIN(A) * COS(B) ;
ELSE
B :=SUB(C, A) ;
END IF ;
ELSIF A=B THEN
C:=ADD(A,B);
B :=MUL(C,A);
ELSE
C:=DIV(A,B);
END IF;

The CASE ... OF ... END_CASE construct allows selecting the statement or
statement block from the list of statements, depending on the value of the selection
variable that should have INT data type. Each statement or group has a label that
contains integer, several integer numbers separated by commas (ANY INT data
type) or integer values range (the lower and upper limits of the range must be
specified). The statement (statement block) will be executed only when the label
name matches the value of the selection variable. The OF keyword opens the
beginning of the list of labels.

The statement (statement block) after the keyword ELSE will be executed if
the selection variable does not match any of the above labels and was not found in
any range of labels.

The keyword END CASE means the end of this construct. For example:

CASE SELECT OF
1, 5: C :=SIN(A)*COS(B) ;
2: B =C-A;
6..10: C:=A+B;
ELSE B :=C*A;
C:=A/B;
END CASE ;

The FOR ... TO ... BY ... DO ... END FOR construct is used for organizing
loops with a known number of repetitions. The keyword FOR is in the header of
the loop and starts the execution of the loop body. The keyword END FOR is in
the last line of the construct and completes the loop. The number of repetitions is
determined by the start and end values of the cycle parameters and the control
variable. The start and end values and the control variable must have the same data

type (DINT or INT) and cannot be changed while the loop is running.
134

The FOR keyword changes the value of the control variable from the initial
value specified in the header of the loop to the final value. The default value of the
control variable increment is 1. At the beginning of each loop repetition it is
checked whether the upper limit of the control variable change is reached. If the
upper limit is exceeded, the loop is automatically terminated otherwise the loop
body is executed again.

The DO keyword indicates the end of the loop header and the beginning of
the loop body. Terminating the loop can be performed ahead of time using the
keyword EXIT. The keyword END FOR completes the loop construct. For
example, this cycle will be executed 50 times:

FOR1:=1TO 50 DO
C:=C*COS(B);
END FOR ;

When I =51, the loop will be terminated.

If you want to use an increment that is not equal to 1, it's possible to specify it
with the BY keyword. The increment value, the start and end value of the control
variable must have the same data type (DINT or INT). If the increment is positive,
the control variable will change from a lower value to a larger value (the lower
limit should be less than the upper limit). If the increment is negative, the control
variable will change from a larger value to a lower value (the lower limit should
be greater than the upper limit). For example:

FORI:=1TO 10 BY 2 DO
C:=C*COS(B);
END FOR ;

In this case, the loop will be executed 5 times, and the control variable will
take the values 1, 3,5, 7, 9. If I = 11, the loop will be terminated.
Loop

FORI1:=10TO 1 BY -1 DO
C:=C*COS(B);
END FOR ;

will be executed 10 times, and the control variable will take the values 10, 9, 8, 7,
6,5,4,3,2, 1. If =0, the loop will be terminated.
In the loop

FORI:=10TO 1 BY J DO
C:=C*COS(B);
END FOR ;

135

the variable J must be defined before the start of the cycle. If it is greater than 0,
the cycle will be executed only once. The number of times for the loop to be
executed J < 0, depends on the value of the variable J. For example, if J] = —4, the
loop will be executed at I =10, I =6, 1 =2, 1.e. 3 times. If] = 2.5, the loop will
be executed at [=10,[=7.5,1=5,1=2.5, 1. e. 4 times, and for I = 0 the loop will
be terminated.

If in the example

FORI1:=1TO 10 BY] DO
C:=C*COS(B);
END FOR ;

the value of the increment is negative (J <0), the cycle will be executed only once
(forI=1).

An eternal loop may occur if the increment is 0. In these cases the appropriate
error message is generated. For example:

FORI:=1TO 10 BY 0 DO
C:=C*COS(B);
END FOR ;

FORI1:=1TO 10 BY J DO
C=C*COSB);
END FOR;

In the second example the error occurs when J = 0.

The WHILE ... DO ... END WHILE construct allows arranging a loop with a
previously unknown number of repetitions. As long as the condition after the
WHILE keyword is correct (true), the expressions that are the body of the loop are
satisfied. If the condition is initially violated (false), the loop is not executed at all.
As soon as the condition ceases to be true, the loop is terminated.

The early termination of the loop can be performed using the keyword EXIT.

The END_WHILE keyword terminates the loop. For example:

WHILE var <= 20 DO
var ;= var + 4;
END WHILE ;

If the variable var in this example, which must be specified before the start of
the loop, is negative or greater than 20, the loop will not be executed at all. So,
with the initial value var = 5, the loop will execute when var =5, 9, 13, 17. With
var = 21, the loop will be terminated.

136

The REPEAT ... UNTIL ... END REPEAT construct also allows organizing a
cycle with a previously unknown number of repetitions. The cycle will be
executed at least once. The condition for repeating the cycle is indicated after the
keyword UNTIL. The cycle is repeated until the condition specified after the
keyword UNTIL is violated.

The cycle can be terminated in advance with the use of the keyword EXIT.
The construction ends with the keyword END REPEAT. For example:

var :=—1
REPEAT
var :=var + 2
UNTIL var >= 101
END REPEAT;

The EXIT keyword is used for organizing the early termination from the
FOR, WHILE and REPEAT loops.

If the EXIT keyword is inside the embedded loop, then an early termination
occurs exactly from the cycle in which the keyword EXIT is located. After the
early termination of the loop using the EXIT keyword, the first statement which is
outside the left loop is executed, that is, after the keywords END_FOR,
END WHILE or END REPEAT. For example:

SUM:=0;
FORI1:=1TO 3 DO
FOR J:=1TO 2 DO
IF FLAG=1 THEN EXIT;
END IF;
SUM :=SUM +J ;
END FOR ;
SUM :=SUM +1;
END FOR;

If the FLAG variable is 0, the SUM variable will be 15 (1+ (1+2) + 2 + (1+2)
+ 3 + (1+2)) after the end of the loop. If the FLAG variable is set to 1, the SUM
variable will be 6 (1 + 2 + 3) after the end of the loops (an early termination will
be performed from the inner loop and the J variable will not be added to the
accumulated amount).

By using the RETURN keyword an early exit from function, function block
or program is performed, similar to using the EXIT keyword.

When processing and storing large amounts of data, it is advisable to use
arrays. In order to create them, use the keyword ARRAY, and for declaration — the
keywords TYPE ... END TYPE. Below is an example of declaring one-
dimensional and two-dimensional arrays.

137

TYPE

AR 1 4 W :ARRAY [1..4] OF WORD;
AR 1 8 1 4 W:ARRAY [1.8] OF AR 1 4 W;
END TYPE

The one-dimensional array AR 1 4 W consists of four elements having the
elements, each of which is the previously declared one-dimensional array
AR 1 4 W, consisting of four elements. It follows that this two-dimensional
array can be represented in the form of 8 rows of 4 elements (columns) in each,
that is, a total of 32 elements having the WORD data type.

When accessing the ARRAY variable arrays, pointers (line and column
numbers) can contain constants, integer variables of type ANY INT and
statements formed with their joint use, for example:

varl[i] =8 ;
var2.tree[4] ;= var3 ;
var4[1+i+j*5] =4,

Function blocks are called by the statement that consists of the name of the
block instance and the list of values in parentheses (actual parameters) that will be
substituted for the formal parameters (the names of the input signals). If the formal
parameter is not assigned a value, then when the function block instance is called,
the initial value of the variable or input signal, defined in the PC Worx Variable
Editor, is used. If the initial value of the variable or input signal is not specified,
the default value (0) is used.

Each instance of a function block can be called only once. If the function
block has no inputs or the inputs are not parameterized, the function block is
called before its outputs are used in other operations.

Before calling a function block, it must be declared using the VAR ...
END_ VAR construct.

The example of the function block call is given below.

CLOCK ();
COUNT (CU:=CLOCK.CLK3, R:=RESET, PV:=100 + VALUE) ;
PULSE (IN:=COUNT.Q, PT:=T#18S);

Here CLOCK () — is the name of the function block instance, CLOCK.CLK3 and
RESET — are formal parameters, COUNT.Q and PT — are real parameters.

The outputs of function blocks can be used in conjunction with variables
intended only for reading data from them. For example:

OUT :=COUNT.Q;
ACT := COUNT.CV;
138

Here COUNT - is the name of the function block instance, Q and CV — are formal
parameters, OUT and ACT — are real parameters.

Comments are allowed in the Structured Text. They start with the symbols
"(*" (opening parenthesis and asterisk) and end with the symbols "*)" (asterisk
and closing parenthesis). Between these two pairs of characters an arbitrary
comment in any language can be entered. Comments can be placed in any program
position and are highlighted in green (Fig. 4.60). When you add a function block, a
template is automatically created, in which the variable names and data types are
displayed as comments.

Fig. 4.60. Function block templates

Fig. 4.61 shows an example of the program in the FBD language, and Fig.
4.62 shows its equivalent in the ST language.

AND
Inl

In2

"~ OR]
Cutl

In3 \

Fig. 4.61. The scheme (program) of the project in the FBD language

Fig. 4.62. The program in ST

Fig. 4.63 shows the functional block of the electronic low-pressure switch
that i1s triggered (logical unit appears at the output of RND), when the current
pressure Ps exceeds the specified upper limit value RND Hi. If the current
pressure is below the specified minimum value, the relay does not work (logic
zero at the output of RND).

139

RND_1

r RND ™
Pz Ps RMD b——
RMD_Low: RMD_Low
RHD_Hi RMD_Hi

Fig. 4.63. Function block that implements
the electronic low-pressure switch

Fig. 4.64 shows the corresponding ST program.

Fig. 4.64. The program that implements
the electronic low-pressure switch

In order to add the ST program to an open project, do the following.

1. Right-click on the Logical POUs line (Fig. 4.65).

2. In the appearing context menu select the Insert item, and then in the
expanded window select the Program item.

i Project Tree Window x|
=-£3 Project : C\Users\Public'Documents PC WORX\Projects\tatu2_fbd
([Libraries
=3 Data Types
=] sys_flag_types
== | Logical PO -
=-[0] Untitled Insert 1] Program...
m Uit L E Function...
L E Function Block...
@ Ut Expand Al
B8 Physical Ha A POl group...
=52 Configu Hap !
- Res
E Properties...

Fig. 4.65. Adding the ST program to an open project
140

The window will appear shown in Fig. 4.66.

Fig. 4.66. The window for selecting the name of the program and the
programming language

In this window select the ST language, type the name of the created program
in the Name field (here st prog 1) and click OK. The newly created st prog 1
will appear in the list of programs used in the project (Fig. 4.67). The created
program contains 3 parts: st prog 1 — the program itself in the ST language;
St prog 1V — description of variables; St prog 1T — text comments.
Similarly, it's possible to add an arbitrary number of programs in different
programming languages to the project, which are allowed to be used in PC Worx.
141

: Project Tree Windaow 2 400

=43 Project : C:\Users\Public®Documents ' PC WORX\Projects\tatu2_fbd
(7 Libraries
=-£3 Data Types
zvs_flag_types
=23 Logical POUs
=-[@] Untitled
[i] UntitledT
UntitledV
[T] Untitled
=l @ st prog_1°
m st prog 1T
st_prog_ 1V*
st prog 1"
=458 Physical Hardware
=8 Corfiguration : eCLR
=53 Resource ; AXC3050 55
giE Tasks
[y Global_Variables
IO Corfiguration

Fig. 4.67. The Project Tree window containing the previous and added items

Test questions

1. What are the advantages of Structured Text for programming controllers?

2. What software constructs (operators, keywords) allow checking the
conditions in Structured Text; what are the differences between them?

3. What are the fundamentally different types of loops that can be used in
Structured Text?

4. How does the FOR loop work?

5. How does the WHILE loop work?

6. How does the REPEAT loop work?

7. How is the function block called in Structured Text?

8. How is the function called in Structured Text?

9. How are one-dimensional and two-dimensional arrays declared in
Structured Text?

142

5. EXAMPLES OF CONTROL SYSTEMS PROJECTS

5.1. Simulation model of ship auxiliary boiler control system

The control system model is designed for a ship auxiliary boiler equipped with a
fuel injection system of "Monarch" type. The model was created using the Phoenix
Contact ILC 130 ETH programmable controller. A schematic diagram of control
system is shown in Fig. 5.1. The program of the ILC 130 ETH controller is written
in the FBD language (Fig. 5.2).

Fig. 5.1. Schematic diagram of the automatic position control system of auxiliary
boiler: I — starting unit; II — programmed control unit; 1 — alarm; 2, 3, 4 — pressure
relay; 5 — terminal box; 6, 7 — floating level sensors; 8, 9 — feeding pumps; 10 —
ignition transformer; 11 — fuel injectors; 12, 13 — fuel valves; 14 — fuel supply

pump; 15 — bypass valve; 16 — fan; 17 — photo sensor; 18 — damper servo piston
143

Fig. 5.2. Controller program in the FBD language

Visualization of the technological process is carried out in the form of a web-
site in the WebVisit editor (Fig. 5.3).

Fig. 5.3. Process visualization window
144

The software component of the computer system is a web server built into the
control device. Depending on certain conditions, visualization of variables in the
web browser is performed using a Java applet that is downloaded from the control
device server and executed in the client browser that supports Java.

Fig. 5.4 shows the block diagram of computer-integrated management by
Phoenix Contact tools.

Fig. 5.4. The structure of computer-integrated management
by Phoenix Contact tools

5.2. Control system for reciprocating compressor unit

The MAK-FV6 marine refrigeration system is used for cooling the provision
storerooms by the air cooling system when the refrigerant evaporates in the air
coolers, being a closed and hermetically sealed system (Fig. 5.5).

The operational monitoring system for current assessment and subsequent
technical diagnosis is implemented on the basis of a personal computer. Such a
system operates in "soft" real time, which leads to loss of information about the
state of the refrigeration system. To provide operation in "hard" real time, a
monitoring system based on the Inline ILC 130 ETH programmable controller is
offered.

145

= i
7t/
\1H

<

p—
—

Y

< |
"'*"I“
[¢ V0 4]
- <
3 4
,/_
" .__.:1 2

Fig. 5.5. Block diagram of refrigeration system:
1 — condenser; 2 — compressor; 3 — pressure switch; 4 — recuperative heat
exchanger; 5 — filter-drier; 6 — filters; 7 — humidity detectors; 8 — solenoid valves;
9 — thermostatic valves; 10 — temperature switch; 11 — air coolers

Compressor specifications: grade — FV6; type — single-stage piston return
flow vertical stuffing; number of cylinders — 2; cylinder diameter: 67.5 mm; piston
stroke 50 mm; cooling capacity 6,000 kcal/h; refrigeration agent — Freon R-134a;
boiling point 15 °C, condensation temperature 30 °C (under standard conditions).
Freon unit is designed to cool two provision storerooms and allows maintaining
the different temperature in them.

Two pressure sensors EWPAO030 by Eliwell Controls srl (Fig. 5.6, a) are used
for continuous pressure measurement on the suction side and the compressor
discharge. The main characteristics of the sensors: measuring range 0 — 30 bar;
output signal 4 — 20 mA; supply voltage of the sensor 8 — 28 V; wiring diagram —
two-wire; operating temperature —20 ... +80 °C; pressure measurement error = 1%
at 0 +50 °C and + 2,5 % at temperatures below 0 and above +50 °C; protection
degree 1P65.

146

To obtain information about the temperature in the cooled rooms, as well as
in the characteristic points of the refrigerator cycle, NTC thermistors by Semitec
were used (Fig. 5.6, b). This model belongs to the category of high-precision
temperature sensors with the following parameters: thermistor resistance at a
temperature of 25 °C is kOhm; measuring range of the temperature is

=50 ... +150 °C.

a b
Fig. 5.6. Sensors used in the system: a — pressure EWPA030; » — NTC thermistor

A module made up of eight analog inputs IB IL Al 8/SF-PAC by Phoenix
Contact was used as a communication device with objects for receiving
information from sensors.

To obtain information on the state of refrigeration unit, the WP 04T operator
panel by Phoenix Contact was used, the main characteristics of which are
summarized in Table 5.1.

Table 5.1

WP 04T operator panel specifications
Screen 8.9 sm/3.5"-TFT
Screen resolution | 320 x 240 Pixel (QVGA)
Backlight LED
Number of colors | 65,536
CPU RISC ARM9™ CPU; 200 MHz
RAM 64 MByte SDRAM
Memory 32 MByte flash memory
Interfaces 2x USB Host 2.0
Network 1x Ethernet (10/100 MBit/s), RJ45
Operating system | Windows CE 5.0

147

The functional diagram of the monitoring system for the refrigeration system
is shown in Fig. 5.7. It additionally provides for the possibility of control.

Fig. 5.7. Functional diagram of control system

Below are the steps (segments) of the program developed in PC Worx.

To simulate the operation of the low-pressure switch (LPS) a function block
was constructed in the ST language that performs the same functions as its
physical analog. Fig. 5.8 shows the appearance of the block and its program code.

RND_1

ps—— 1 Ps

RMD_Low

RMD_Low

RND_HF———— RND_Hi

a b

Fig. 5.8. Low-pressure switch: a — LPS function block; & — program code of the
LPS block

The block has two configuration options: relay actuation pressure (RND_Hi)
and cut-off pressure (RND Low).
The input signal Ps for the block is the suction pressure of compressor, and
the output signal is generated depending on the set points.
148

The block simulating the operation of the high-pressure switch (HPS) is
formed similarly to the LPS block (Fig. 5.9).

RVD_2 1 IF Pk > RVD Hi THER
I oD 2 RVD := FALSE;
3 ELSE
RVD_Hi————— RVD_Hi 4 RVD := TRUE;
5 END IF;:
a b

Fig. 5.9. High-pressure switch: a — HPS function block;
b — program code of the HPS block

The input signal Pk for the block is the discharge pressure of compressor.
The block has one configuration options — relay actuation pressure (RVD Hi).
The block generates the output signal if the discharge pressure value exceeds the
set point value.

The operation of the high temperature relay (HTR) unit is similar to that of
the LPS unit. The only difference is that the temperature value on the discharge
side of the compressor is used as the input signal Tk. The HTR block also has two

configuration options, namely the actuation temperature T Hi and the cut-off
temperature T Low.

HT5_2

Tk
T_Low
T_Hi

a b

Fig. 5.10. High temperature relay: a — HTR function block;
b — program code of the HTR unit

Thermostat is a temperature relay with a thermal bulb and a capillary tube
made of stainless steel or copper. The temperature that the thermostat maintains
must correspond to the set average temperature (set point). The thermostat has an
unregulated differential.

In order to simulate the operation of thermostat, a functional unit was
constructed (Fig. 5.11, @) for maintaining the set temperature in the cooled rooms
by acting on the solenoid valves on the fluid line of the compressor before the

149

thermal expansion valve, and starting and stopping the evaporator fans. The
thermostat is able to maintain the set temperature in two provision storerooms.
The fans are switched on and off together with the operation of the solenoid valves
(Fig. 5.11, b).

Termostat_1

Termostat

Power: Power Solenoid_1 Solenoid_1
T_Kam_1 T _Kam_1 Vent_1 Fan_1
T_Kam_2 T_Kam_2

Solenoid_2 Solenoid_2

T Hi 1 T Hi 1 Vent_2 Fan_2
T_Low_1 T_Low_1

T_Hi 2 T_Hi_2
T_Low_2 T Low_2

a b

Fig. 5.11. Thermostat: a — thermostat function block; 5 — block program code in
FBD language

The input signals for the "Thermostat" block are the air temperature in the
chambers T Kam 1 and T Kam 2, as well as the power supply signal to the
power circuit Power.

The output signals are the signals for opening the solenoid of the first
chamber Solenoid 1 and the solenoid of the second chamber Solenoid 2.
Simultaneously with the opening of the solenoids, commands are issued for
starting the fans of the first and second chambers (Fan_1 and Fan_2, respectively).

The values of the actuation temperature T Hi_1 and T Hi 2, as well as the
cut-off temperature T Low 1 and T Low_2 (respectively for chamber No. 1 and
chamber No. 2) are used as the thermostat settings.

The algorithm of the block operation is the following: when the power is
supplied to the power circuit, the thermostat will continuously compare the current
temperature in the chamber with the settings. If the temperature in the chamber is
higher than the set point T Hi, the control signal for opening the solenoid valve
and starting the fans in the corresponding provision storeroom are generated by the
unit. When the temperature in the chamber falls below the set point T Low, the
thermostat closes the solenoid valve and stops the fans.

According to the FBD operation algorithm of refrigeration unit, a functional
unit is created that starts and stops the compressor in manual and automatic modes
(Fig. 5.12).

150

Komp_3
Kormp]
——] Start Komp

Komp
—1 Stop

— timer

Fig. 5.12. Compressor start-stop block

The program code of this block is shown in Fig. 5.13.

SR_1
Start: SET1 Q1| s Komp
0

Stop— RESET

mn 0

PT ET
0.000

Komp timer.

0 25.000

—
RVD: RESET1
1

Fig. 5.13. The program code of the compressor start-stop unit

Input data for the operation of the unit are Start and Stop signals of the
compressor, timer setting for the temporary shutoff in case of low suction
pressure, as well as protecting signal in case of low RND suction pressure, high
RVD discharge pressure and high refrigerant vapor pressure on the compressor
discharge side Tn. At the output of the block a signal is generated to start the
compressor Komp.

The program of the unit performs the following algorithm: after receiving the
command to start the compressor (by pressing the "Start" button), the low-pressure
switch delay timer is started for 25 s and the prelaunch check of the compressor
protection from high temperature and high discharge pressure is carried out.
Provided that the protection parameters are within the permissible limits, the

151

compressor starting signal is sent to the Komp output, which closes the contacts of
the compressor drive starter. 25 seconds after start-up the compressor low-pressure
protection is automatically activated.

Also, this program implements the start-stop algorithm of the compressor by
the LPS signal. When the suction pressure drops below the cut-off setting
RND Low, the LPS will turn off the compressor. If the suction pressure rises to
the RND_Hi setting, the LPS will activate the compressor again.

The LPS delay timer is only activated if the compressor is started manually.

The compressor protection circuit is an integral part of the compressor start-
stop circuit (Fig. 5.14).

Fig. 5.14. The program of the compressor start-stop circuit in conjunction with the
protection and signaling circuit: RND 1 — LPS; RVD 2 — HPS; HTS 2 — HTR;
Komp 3 — compressor start-stop block; Signal 1 — indication block of compressor
shutdown cause

The protection system includes LPS, HPS and HTR. The main task of these
relays 1s to prevent the compressor from operating at hazardous conditions and to
prevent an emergency situation. The task of the relay is to immediately stop the

compressor unit when these conditions are reached.
152

The start-stop program of the compressor (Fig. 5.14) is designed in such a
way that when high-pressure protection is activated, the compressor stops and its
subsequent start-up will only be possible in manual mode.

When low-pressure protection is triggered, the compressor stops and
automatically starts up when the suction pressure rises above the set value.

High discharge temperature protection stops the compressor when the
discharge temperature is above the temperature allowable for normal operation of
the compressor T Hi. When the temperature drops to the normal value T Low, the
compressor automatically starts.

The signaling for the cause of the compressor stop is carried out by the
"Signal" function block (Fig. 5.15). The block provides an indication of the reason
for stopping the compressor when the following conditions occur and then
displays this information on the operator panel and turns on the alarm:

the "Stop" button was pressed;

LPS was triggered;

HPS was triggered,;

HTR was triggered.

F_TRIG_1 RS_1

Knmp—4—| CLK QI SET Q1 Stop_ON
1

RESET1

%

[]

Stop
]

R5_2

*>

CT 0 O

3 O3 O O

SET Q1 RVD_ON

[]

RESET1

RVD

RS_3

SET a1 RND_ON

RESET1

RND

RS_4

SET a1 HTS_ON

RESET1

Tn

Fig. 5.15. Program code of the "Signal" block
153

Visut+ has a graphical interface for intuitive and simple control of the
refrigeration unit. It provides for information exchange between the controller and
the operator.

At first, the operator is given the opportunity to enter all the necessary
settings (Fig. 5.16) for the proper functioning of protection system. The list of
these settings includes: LPS actuation pressure; LPS cut-off pressure; HPS
actuation pressure; HPR actuation temperature; HTR cut-off temperature.

|\'_£ Visu+ - [Fun] - Demo mede Lime sbear T pyn

PHA (Low) | 0,00 [MNa
PHA (High) | 0,00 [MNa

PBA (High) [0.00 [MMa

PBT (Low) | 0,0 | °C

PBT (Low) | 0,0 | °C

Main Screen | Parameters | Thermostat| Alarm Settl'ngs|

[YVisu+ - [Rund - Degidn

JIABNREHE BCACKIEAHKMA

TeMrepatypa BCackBaHs

[IaEnetite HardaT aHmna

TeMaepaTypa HarHaT aHkHs

Flaperper

FlepeoxiamgeHe

Temnepatypa B Kamepe N1

Tempepatypa 8 Kamepe NE2

Main Screen | Parameters |§§Thermostat | Alarm Settings |

c J d

Fig. 5.16. Graphical interface: a — window for entering the settings of
protection system; b — main window of graphical interface; ¢ — window for
indicating the parameters of refrigeration system; d — thermostat operation

window

The page for entering protection settings has limited access in order to protect
it from unauthorized changes.

154

In addition to entering the required settings, the operator is able to start and
stop the compressor in manual mode, using the graphical interface (Fig. 5.16, b).
In the same window information is displayed on the current state of the
compressor operation, as well as the reason for stopping it (manually by the
operator or when the protection is triggered).

The display of the suction pressure and temperature, the compressor
discharge pressure and temperature, the superheat and supercooling of the
refrigerant is carried out in real time (Fig. 5.16, ¢).

In addition, the current temperature parameters in the provision
storerooms, information on the position of the solenoid valves and the operation
of the fans of the air coolers (Fig. 5.16, d) are displayed on the screen. Also, the
operator can set the temperature values that must be maintained in each
provision storerooms.

As a result, using the obtained processing data with the help of the CoolPack
software package, in the coordinates i-lgP the loops of the refrigerating unit are
built (Fig. 5.17). The analysis of the graphs proved the advantage of using a
programmable controller, since the results of its operation are the closest to the
calculated (ideal) values.

Fig. 5.17. Refrigeration unit loops: 1 — loop calculated by the system on the basis

of a personal computer; 2 — theoretical loop; 3 — loop calculated by the system
based on a programmable controller

155

5.3. Scarecrow for airports and gardens

The project was designed taking into account the dangers posed by birds in
airports and in the fields. Fig. 5.18 shows the block diagram of the scarecrow
control system and Fig. 5.19 is the schematic model including linear motion
motors, signal tower, base platform with motion sensors, ground drive and limit
switches.

Fig. 5.20 shows the connection diagram of limit switches to the
programmable controller.

For signaling about the triggered sector and the current status of the
Scarecrow, the visualization panel WP 04T is used. Program segment is shown in
Fig. 5.21.

GSM / GPRS

— @

Mobile telephone

ILC 150

Cable

WEB

GERS

Ethernet

Fig. 5.18. Schematic block diagram of the scarecrow control system
156

Fig. 5.19. Schematic model of scarecrow

Fig. 5.20. Connection diagram of limit switches

Fig. 5.22 shows the operating program of the "Scarecrow". Since ILC 150
GSM/GPRS controller was used, this object was controlled using a mobile phone
via SMS messages. For this purpose, Mobile Connect and SMS Receive blocks
were used in the program.

157

Fig. 5.21. Alarm program in the WP 04T panel created in WebVisit

Fig. 5.23. Program created with FBD language in PC Worx
158

CONCLUSION

The material presented in the training manual cannot fully cover all the issues
of programming controllers, as the development tools and hardware components
are dynamically developing. Some models are used for less than a year. Therefore,
the main focus of the training manual is on conceptual provisions that should
allow further independent learning of programming.

Along with the examples of control system projects given in Section 5 it is
recommended to get acquainted with the software solutions described in papers
[2 — 4], including the implementation of the transport delay link, fan speed control
and alarm system construction.

It should also be noted that the emerging trend of unification of project
development tools facilitates their learning, and therefore the transition from one
tool to another should not cause great difficulties.

159

ANNEX

Elements of the LD language according to

IEC 61131-3

Description and Symbol

Explanation

Static contacts

Normally open contact

K 3k 3k

—

The state of the left link is copied to the
right link if the state of the associated
Boolean variable (indicated by "***") is
ON. Otherwise, the state of the right link is
OFF

Normally closed contact

%k %k %k

—/

The state of the left link is copied to the
right link if the state of the associated
Boolean variable is OFF. Otherwise, the
state of the right link is OFF

Transition-sensing contacts

Positive transition-sensing
contact

kK

— P

The state of the right link is ON from one
evaluation of this element to the next when a
transition of the associated variable from
OFF to ON 1s sensed at the same time that
the state of the left link is ON. The state of
the right link shall be OFF at all other times

Negative transition-sensing
contact

%k %k sk

—IN

The state of the right link is ON from one
evaluation of this element to the next when a
transition of the associated variable from
ON to OFF is sensed at the same time that
the state of the left link is ON. The state of
the right link shall be OFF at all other times

160

Description and Symbol

Explanation

Compare contact (typed)

<operand1>

<cmp>
I DT

<operand2=

The state of the right link is ON from one
evaluation of this element to the next when
the left link is ON and the <cmp> result of
the operands 1 and 2 is true. The state of the
right link shall be OFF otherwise. < cmp>
may be substituted by one of the compare
functions that are valid for the given data
type. DT is the data type of both given
operands.

Example:

mtvaluel

.

intvalue2

If the left link is ON and (intvaluel >
intvalue2) the right link switches to ON.
Both intvaluel and intvalue2 are of the data

type INT

Compare contact, (overloaded)

<operand1=>

I <cmp> I

<operand2>

The state of the right link is ON from one
evaluation of this element to the next when
the left link is ON and the <cmp> result of
the operands 1 and 2 is true. The state of the
right link shall be OFF otherwise. <cmp>
may be substituted by one of the compare
functions that are valid for the operands data
type. The rules defined in 6.6.1.7 shall

apply.
Example:
valuel
4| <> |7
value2

If the left link is ON and (valuel <> value?2)
the right link switches to ON

161

Description and Symbol

Explanation

Momentary coils

Coil The state of the left link is copied to the
si¢ sk 3k associated Boolean variable and to the right

: : link
Negated coil The state of the left link is copied to the

kKoK

AC/)i

right link. The inverse of the state of the left
link is copied to the associated Boolean
variable, that 1s, if the state of the left link 1s
OFF, then the state of the associated
variable is ON, and vice versa

Latched coils

Set (latch) coil
KKK

ACSF

The associated Boolean variable is set to the
ON state when the left link 1s in the ON
state, and remains set until reset by a
RESET coil

Reset (unlatch) coil

KKK

4@)7

The associated Boolean variable is reset to
the OFF state when the left link is in the ON
state, and remains reset until set by a SET
coil

Transi

tion-sensing coils

Positive transition-sensing coil

%k %k %k

4@)7

The state of the associated Boolean variable
1s ON from one evaluation of this element to
the next when a transition of the left link
from OFF to ON is sensed. The state of the
left link is always copied to the right link

Negative transition-sensing coil

kK kK

—ND—

The state of the associated Boolean variable
1s ON from one evaluation of this element to
the next when a transition of the left link
from ON to OFF is sensed. The state of the
left link is always copied to the right link

162

List of references

1.PC WORX 6. IEC 61131-Programming. — Blomberg: Phoenix Contact
GmbH & Co. KG, 2010. — 442 p.

2. bypues A.I'. IlporpamMmmHoe oOecriedeHUE CHUCTEM YIPABJICHUS.
Brinonnenue cemectpoBoi (KOHTPOJBHOM) paOOThl: METOAMYECKUE yKa3aHUs. —
15 c. // Coopuuk "Meromuueckue ykazanus". — Beimn. 3. — Bomkckwuit: BITH
(punman) BonrI'TY, 2016; [DnexkTponnslii pecypc] CD-ROM.

3. bypue A.I. [IlporpamMHOe oOecreueHME CHUCTEM YIIPaBIICHHUS.
JlaGopaTopHbIil MPaKTUKyM: METoIW4Yeckue ykazaHus. — Yacte 2. — 29 c. //
Coopuuk "Metonnueckue ykazanus'. — Boin. 3. — Bomkckuit: BIIN (dunuan)
BoarI'TVY, 2016; [Qnextponnsiil pecypc| CD-ROM.

4. bypues A.I., CesactessHoB b.I'. Ilporpammuas peanuzanus
TEXHOJIOTMUECKOM CUTHAJIM3AIMM Ha MPOMBIIUICHHBIX KOHTpoJuiepax Phoenix
Contact: meroguueckue ykazanus. — 12 c. // Coopuuk "Meroanueckue yka3aHus'".
— Bemm. 3. — Bomkckuit: BITU (bumman) BoarI'TY, 2016; [DnexTpoHHbIN pecypc]
CD-ROM.

5. demenkoB H.II. fI3plIkm mporpaMMHUpOBaHUs MPOMBIIIICHHBIX
KOHTpoJuiepoB: yueoHoe mocodue /Ilox pen. K.A. Ilynkosa. — M.: U3n-Bo MI'TY
uM. H.O. baymana, 2004. — 172 c.

6. Hukonsckuii B.B., Ouepersnbiii 10.A., Tanacuituyk M.M1. MoHUTOpUHT
Cy/IOBOM XOJIOAWJIbHOM TEXHUKHM C MCIOJb30BAaHUEM MPOTPAMMHUPYEMBIX
agornueckux koHTposuiepoB (ITJIK) // CynoBele 3HepreTHuecKrne YCTaHOBKH:
Hay4H.-TexH. c0. — 2014. — Brin. 34. — Onecca: OHMA. — C. 41 - 52.

7. IletpoB U.B. IIporpammupyemsie KOHTposuiepbl. CTaHAApTHBIE SA3BIKA U
npuémel pukiIaaHoro nporpammupoBanus /Ilog pea. npod. B.I1. JIssikoHosa. —
M.: COJIOH-IIpecc, 2004. — 256 c.

163

VIIK 001.8 (075.8)

67 I'op6 C. 1., Hikombcekuit B. B., Illamo B. ®., Xuwonuin C. T.
[IporpamyBaHHSI KOHTpPOJIEPIB B 1HCTPYMEHTAJILHOMY CEPEIOBHIII: HaBYAIbHHMA
nocionuk. — Oneca: HY "OMA", 2017. — 164 c¢. AHI1. MOBOIO.

[IporpamyBaHHS KOHTPOJIEPIB PO3TIISIHYTO 3 BUKOPUCTAHHSM J1a00paTOPHUX
CTEH/IB, sIKI PO3pOOJICHI TPYIOI0 YHIBEPCHTETIB y pamkax mnpoekty TEMPUS
544010-TEMPUS-1-2013-1-DE-TEMPUS-JPHES — "Trainings in Automation
Technologies for Ukraine" (TATU). Lli crenan BiApi3HAIOTHCS MOBHUM HaOOpOM
MEPCIIEKTUBHUX TEXHOJIOT1H, 0 BUKOPUCTOBYIOTHCS B CHCTEMax aBTOMATH3allii,
MOJAYJBHICTIO TOOYAOBU, MiHIMAJIbHUM HA0OpOM TEXHIYHMX 3aco0IB s
oprasizailii KOMIUIEKCHOTO HaBYaHHS BUKOPHUCTAHHIO KOHTPOJIEPIB, aJanTarli€ro
oOJyiaTHaHHSI 71 OpTaHi3allii HaBYaJbHOTO MPOIIECy .

VY gKOoCTi THCTPYMEHTAJIBHOTO CEPeIOBUIIA 0OPAHO CEPEIOBHUIIE PO3POOKHU
npoekTiB PC Worx. HaBeneni mnpukianum pilieHHs 3agad aBTOMaTH3alli
TEXHOJIOTTYHUX MPOIECIB PI3HOT CKIAAHOCTI.

[Ipu3Hauenuii Ayia MATOTOBKM OakayaBpiB, (paxiBIliB 1 MaricTpiB ramy3ei
3HaHb "iHQopMaliliHI TexHoJorii", '"MexaHiuHa iHXKeHepif", "eleKTpuYHa
imkeHepia', "aBTomaTuzamis Ta mpuianoOyayBaHHs", "TpaHcmopt', a TaKoX
MICIASAUIUIOMHOT OCBITH 1H)KEHEpiB, 10 3a0e3meuyioTh TPOSKTYBaHHS 1
EKCILTyaTallilo CUCTEM aBToMaTH3allli (y TOMY YUCI1 CYyTHOBHUX).

Gorb S.I., Nikolskyi V.V., Shapo V.F., Khniunin S.H. Programming
controllers in the integrated development environment: training manual.
Practice

Published in the author's edition within the framework of the project TEMPUS
544010-TEMPUS-1-2013-1-DE-TEMPUS-JPHES — "Trainings in Automation
Technologies for Ukraine" (TATU)

Cover Design Trubitsyn A.A.

[Mianucano mo apyky 11.05.2017. Apyx nudposuii. Ilanip odceernuii. I'apaitypa Times
New Roman. ®opmar 60x84/16. Ym. apyk. apk. 9,53. Tupax 300. 3amoBnenns Ne 17-
06-13

Hamionanpauit yHiBepcuteT "Opnechka Mopchka akaaemisa'. Ceigonrso JIK Nel292 Bin
20.03.2003. 65029, m. Oneca, Byn. Higpixcona, 8

Ten./dakc: +38 (0482) 34-14-12

pablish-r@onma.edu.ua

164

