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Abstract. Throughout this paper the actions of groups on
graphs with inversions are allowed. An element g of a group G is
called inverter if there exists a tree X where G acts such that g
transfers an edge of X into its inverse. A group G is called accessible
if G is finitely generated and there exists a tree on which G acts
such that each edge group is finite, no vertex is stabilized by G, and
each vertex group has at most one end.

In this paper we show that if G is a group acting on a tree
X such that if for each vertex v of X, the vertex group Gv of v
acts on a tree Xv, the edge group Ge of each edge e of X is finite
and contains no inverter elements of the vertex group Gt(e) of the

terminal t(e) of e, then we obtain a new tree denoted X̃ and is called

a fiber tree such that G acts on X̃. As an application, we show that
if G is a group acting on a tree X such that the edge group Ge for
each edge e of X is finite and contains no inverter elements of Gt(e),
the vertex Gv group of each vertex v of X is accessible, and the
quotient graph G�X for the action of G on X is finite, then G is
an accessible group.
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Introduction

The theory of groups acting on trees without inversions known Bass-
Serre theory is introduced in [2] and [10], and with inversions is introduced
in [9]. The concepts of the fibers of groups acting on trees without
inversions were introduced in ([2], p. 78). In this paper we generalize such
concepts to the case where the actions of groups on trees with inversions
are allowed, and have applications. This paper is divided into 3 sections.
In section 1, we introduce the concept of groups acting on trees with
inversions. In section 2, we use the results of section 1 to obtain new trees
called the fibers of groups acting on trees with inversions. In section 3,
we use the results of section 2 to have applications.

1. Groups acting on trees

We begin with general background. A graph X consists of two disjoint
sets V (X), (the set of vertices of X) and E(X), (the set of edges of X),
with V (X) non-empty, together with three functions ∂0 : E(X) → V (X),
∂1 : E(X) → V (X), and η : E(X) → E(X) is an involution satisfying
the conditions that ∂0η = ∂1 and ∂1η = ∂0. For simplicity, if e ∈ E(X),
we write ∂0(e) = o(e), ∂1(e) = t(e), and η(e) = e. This implies that
o(e) = t(e), t(e) = o(e), and e = e. The case e = e is allowed. For the
edge e, o(e) and t(e) are called the ends of e, and ē is called the inverse
of e. By a path P of X we mean a sequence y1, ..., yn of edges of X
such that t(yj) = o(yj+1) for j = 1, . . . , n − 1. P is reduced if yi+1 6= yi,
i = 1, . . . , n − 1.

The origin o(P ) and the terminal t(P ) of P are defined as o(P ) = o(y1),
and t(P ) = t(yn). There are obvious definitions of subgraphs, circuits,
morphisms of graphs and Aut(X), the set of all automorphisms of the
graph X which is a group under the composition of morphisms of graphs.
For more details, the interested readers are referred to [2], [9], and [10].
We say that a group G acts on a graph X, (or X is a G-graph) if there is
a group homomorphism φ : G → Aut(X). In this case, if x ∈ X (vertex
or edge) and g ∈ G, we write g(x) for (φ(g))(x). Thus, if g ∈ G, and
y ∈ E(X), then g(o(y)) = o(g(y)), g(t(y)) = t(g(y)), and g(y) = g(y).
The case the actions with inversions are allowed. That is; g(y) = y is
allowed for some g ∈ G, and y ∈ E(X). In this case we say that g is an
inverter element of G and y is called an inverted edge of X.

If X and Y are G-graphs, and µ : V (X) → V (Y ) is a map, then µ is
called G-map if µ(g(x)) = g(µ(x)) for all x ∈ V (X).



R. M. S. Mahmood 231

Convention. If the group G acts on the graph X and x ∈ X, (x is a
vertex or edge), then

1. The stabilizer of x, (or the x group) denoted Gx is defined to be the
set Gx = {g ∈ G: g(x) = x}. It is clear that Gx 6 G, and if x ∈ E(X),
and u ∈ {o(x), t(x)}, then Gx = Gx and Gx 6 Gu.

2. The orbit of x denoted G(x) and is defined to be the set G(x) =
{g(x) : g ∈ G}. It is clear that G acts on the graph X without inversions
if and only if G(e) 6= G(e) for any e ∈ E(X).

3. The set of the orbits G�X of the action of G on X is defined
as G�X = {G(x) : x ∈ X}. G�X forms a graph called the quotient
graph of the action of G on X, where V (G�X) = {G(v) : v ∈ V (X)},
E(G�X) = {G(e) : e ∈ E(X)}, and if e ∈ E(X), then o(G(e)) = G(o(e)),
t(G(e)) = G(t(e)), and G(e) = G(e). The map p : X → G�X given by
p(x) = G(x) is an onto morphism of graphs. If X is connected, then
G�X is connected.

4. The set of elements of X fixed by G is the set XG ={x∈X : Gx= G}.

Definition 1. Let G be a group acting on a tree X with inversions and
let T and Y be two subtrees of X such that T ⊆ Y , and each edge of
Y has at least one end in T . Assume that T and Y are satisfying the
following.

(i) T contains exactly one vertex from each vertex orbit.

(ii) Y contains exactly one edge y(say) from edge orbit if G(y) 6= G(y)
and exactly one pair x, x from each edge orbit if G(x) = G(x). Then

(1) T is called a tree of representatives for the action of G on X,

(2) Y is called a transversal for the action of G on X.

For simplicity we say that (T ; Y ) is a fundamental domain for the
action of G on X.

For the existence of fundamental domains we refer the readers to [5].
For the rest of this section, G is a group acting on a tree X with inversions,
and (T ; Y ) is a fundamental domain for the action of G on X.

The properties of T and Y imply the following that for any v ∈ V (X)
there exists a unique vertex denoted v∗ of T and an element g (not unique)
of G such that g(v∗) = v; that is, G(v∗) = G(v). Moreover, if v ∈ V (T ),
then v∗ = v.

Definition 2. For each y ∈ E(Y ), let [y] be an element of G chosen as
follows.

(a) if o(y) ∈ V (T ), then [y]((t(y))∗) = t(y), [y] = 1 in case y ∈ E(T ),
and [y](y) = y if G(y) = G(y),
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(b) if t(y) ∈ V (T ), then [y](o(y)) = (o(y))∗, [y] = [y]−1 if G(y) 6= G(y),
and [y] = [y] if G(y) = G(y).

Proposition 1. G is generated by Gv and [e], where v runs over V (T )
and e runs over E(Y ).

Proof. See Lemma 4.4 of [9].

The proof of the following proposition is clear.

Proposition 2. For each edge y ∈ E(Y ),let [y][y] = δy. Then δy = 1 if

G(y) 6= G(y), and δy = [y]2 ∈ Gy if G(y) = G(y). Moreover [y] /∈ G(t(y))∗ ,

if y /∈ E(T ).

Definition 3. For each y ∈ E(Y ), let +y be the edge +y = y if o(y) ∈
V (T ), and +y = [y](y) if t(y) ∈ V (T ).

It is clear that if G(y) = G(y) or y ∈ E(T ), then G+y = Gy. Further-
more, if x and y are two edges of Y such that +x = +y, then x = y or
x = y.

Definition 4. By a word w of G we mean an expression of the form
w = g0, g0 ∈ Gv, v ∈ V (T ), or, w = g0.y1.g1...yn.gn, n > 0, yi ∈ E(Y ) for
i = 1, . . . , n such that the following hold.

(1) g0 ∈ G (o(y1))∗ ,
(2) (t(yi))

∗ = (o(yi+1))∗, for i = 1, 2, . . . , n − 1,
(3) gi ∈ G (t(yi))∗ , for i = 1, 2, . . . , n.
We define o(w) = (o(y1))∗ and t(w) = (t(yn))∗. If o(w) = t(w) = v,

then w is called a closed word of G.
We have the following concepts related to the word w defined above.
(i) The value of w is denoted by [w] and defined to be the element of

[w] = g0[y1]g1...[yn]gn of G.

(ii) w reduced if either n = 0 and g0 6= 1, or else n > 0 and w contains
no subword of the following forms:

yi.gi.yi if gi ∈ G+(yi), and + yi+1 = + (yi) , i = 1, . . . n.

(iii) For each i, i = 1, . . . , n, let wi = g0.y1.g1...yi−1.gi−1with conven-
tion w1 = g0.

Definition 5. For g ∈ G and e ∈ E(Y ) let [g; e] be the ordered pair
[g; e] = (gG+e; +e).
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Remark 1. If w is a reduced word of G and y ∈ E(Y ), no confusion will
be confused by [w], the value of w, and the ordered pair [[w]; y].

Proposition 3. Let w = g0.y1.g1...yn.gn and w′ = h0.x1.h1...xm.hm

be two reduced words of G such that o(w) = o(w′), t(w) = t(w′), and

[w] = [w′]. Then m = n and, [[wi]; yi] = [[w′
i]; xi] for i = 1, . . . , n.

Proof. We have [w′][w]−1 = 1. Let w̃ = g−1
n δ−1

yn
.yn...g−1

1 δ−1
y1

.y1.g−1
0 .

It is clear that w̃ is a reduced word of G and [w̃] = [w]−1. Then w0 =
w̃w′ = g−1

n δ−1
yn

.yn.....g−1
1 δ−1

y1
.y1.g−1

0 h0.x1.h1.....xm.hm is a word of G.
For each i = 0, 1, . . . , n, let

Li = g−1
i δ−1

yi
[yi] .....g−1

1 δ−1
y1

[y1] g−1
0 h0 [x1] h1... [xi] hi

with convention that L0 = g−1
0 h0. Since [y] [y] = δy for every y ∈ E(Y ),

therefore Li = g−1
i [yi]

−1 .....g−1
1 [y1]−1 g−1

0 h0 [x1] h1... [xi] hi. Moreover,
Li = g−1

i [yi]
−1 Li−1 [xi] hi. Since [w0] = 1, the identity element of G,

therefore by Corollary 1 of [8], w0 is not reduced. Since w̃ and w′ are
reduced, the only way that the indicated word w0 can fail to be reduced is
that m = n, and for i = 1, . . . , n, +xi = +yi = +yi and Li−1 ∈ G+(xi) =
G+(yi).

The case Li−1 ∈ G+(xi) = G+(yi) implies that [wi]
−1[w′

i] ∈ G+(xi) =
G+(yi). Then [wi]G+(yi) = [w′

i]G+(xi). Consequently [[wi]; yi] = [[w′
i]; xi],

i = 1, . . . , n − 1. This completes the proof.

2. Fibers of groups acting on trees

We begin some general background taken from ([2], p. 78).

Definition 6. Let H be a subgroup of the group G and H acts on the set
X. Define ≡ to be the relation on G×X defined as (f, u) ≡ (g, v), if there
exists h ∈ H such that f = gh and u = h−1(v). It is easy to show that
≡ is an equivalence relation on G × X. The equivalence class containing
(f, u) is denoted by f ⊗H u. Thus, f ⊗H u =

{
(fh, h−1(u)) : h ∈ H

}
.

Consequently, if f ⊗H u = g⊗H v, then f = gh and u = h−1(v), h ∈ H.
So f ⊗H u = fh ⊗H h−1(u) for all h ∈ H.

Let g ∈ G and A ⊆ H. Define g ⊗H A = {g ⊗H a : a ∈ A}, and

G ⊗H X = {g ⊗H x : g ∈ G, x ∈ X} .

It is clear that 1⊗H x = h⊗H x for all h ∈ Hx, the stabilizer of x under the
action of H on X. It is easy to show that the rule f(g ⊗H x) = fg ⊗H x for
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all f, g ∈ G, and all x ∈ X defines an action of G on G⊗H X. The stabilizer
Gg⊗H

x of g ⊗H x under the action of G on G ⊗H X is Gg⊗H
x = gHxg−1

and the orbit G(g ⊗H x) of g ⊗H x under the action of G on G ⊗H X is
G ⊗H H(x) where H(x) is the orbit of x under the action of H on X.

Remark 2. x ∈ X means x is a vertex or an edge of X.

Definition 7. Let G be a group acting on a tree X and (T ; Y ) be a
fundamental domain for the action of G on X. For each v ∈ V (T ), let Xv

be a tree on which Gv acts; ( Xv could consist of the single vertex {v})
and let X̂ be the set X̂ = {[g; e] : g ∈ G, e ∈ E(Y )}, and X̃ be the set
X̃ = X̂ ∪ ( ∪

v∈V (T )
(G ⊗Gv Xv)).

The following lemma is a generalization of Corollary 4.9 of ([2], p. 18)
and is essential for the proof of the main result of this section.

Lemma 1. Let G be a group acting on a tree X and H be a finite subgroup

of G such that H contains no inverter elements of G. Then H is in Gv

for some v ∈ V (X).

Proof. If G acts on X without inversions, then G contains no inverter
elements and by ([2], p. 18) H is in Gv for some v∈V(X). Let G act on
X with inversions and g ∈ H be an inverter element. Then g(e) = e for
some e ∈ E(X). This implies that g(o(e)) = t(e). Now we show that
g /∈ Gv for any v ∈ V (X). If g ∈ Gv, then there is a unique reduced
path e1, e2, ..., en in X joining o(e) and v. Then g(e1), g(e2), ..., g(en)
is a unique reduced path in X joining g(o(e)) = t(e) and g(v) = v.
Then e, g(e1), g(e2), ..., g(en) is a path in X joining g(o(e)) = t(e) and
g(v) = v but not reduced because X is a tree. Therefore e = g(e1) and
g(e2), ..., g(en) is a reduced path in X joining t(e) and v. Thus, the vertices
t(e) and v are joined in X by two distinct reduced paths. This contradicts
the assumption that X is tree. This completes the proof.

Remark 3. In Lemma 1 if g ∈ G and e ∈ E(X) such that g(e) = e, then
g2(e) = g(e) = g(e) = e = e. This implies that g /∈ Ge and g2 ∈ Ge.

If Ge = {1}, then the subgroup H = {1, g} is finite, but H is not
contained in Ge for any v ∈ V (X).

Theorem 1. Let G be a group acting on a tree X and (T ; Y ) be a

fundamental domain for the action of G on X. For each v ∈ V (T ), let

Xv be a tree on which Gv acts such that for each e ∈ E(X), o(e) ∈ V (T ),
the stabilizer Ge is in a vertex stabilizer (Go(e))w, w ∈ V (Xo(e)).
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Then X̃ forms a tree and G acts on X̃. Furthermore, if G acts on X
with inversions, or for some v ∈ V (T ), Gv acts on Xv with inversions,

then G acts on X̃ with inversions.

Proof. For each edge e ∈ E(Y ) it is clear that o(+e) = (o(e))∗ ∈ V (T )
and G+y 6 G(o(y))∗ . By assumption there exists a vertex denoted ve such
that ve ∈ V (Xo(e)) and Ge 6 (Go(e))ve , where (Go(e))ve is the vertex
stabilizer of the vertex ve under the action of Go(e) on Xo(e). Now we

show that X̃ forms a graph. The set of vertices V (X̃) of X̃ is defined to
be the set V (X̃) = ∪

v∈V (T )
(G ⊗Gv V (Xv)) and the set of edges E(X̃) of

X̃ is defined to be the set E(X̃) = X̂ ∪ ( ∪
v∈V (T )

(G ⊗Gv E(Xv)). It is clear

that V (X̃) 6= φ and V (X̃) ∩ E(X̃) = φ. The ends and the inverses of the
edges of X̃ are defined as follows. Let g ∈ G, v ∈ V (T ), and e ∈ E(Xv).

Define the ends and the inverse of the edge g ⊗Gv e as follows.

t(g ⊗Gv e) = g ⊗Gv t(e), o(g ⊗Gv e) = g ⊗Gv o(e) and g ⊗Gv e = g ⊗Gv e,

where t(e), o(e), and e are the ends and the inverse of the edge e in Xv.
If e ∈ E(Y ), we define the ends and the inverse of the edge [g; e] as

follows. o[g; e] = g ⊗G(o(e))∗ ve, t[g; e] = g[e] ⊗G(t(e))∗ ve and [g; e] = [g[e]; e].

Then [g; e] = [g[e][e]; e] = [g; e] because [e][e] ∈ G+e. These definitions
show that X̃ forms a graph. For g ∈ G and v ∈ V (T ), let g ⊗Gv Xv =
{g ⊗v u : u ∈ Xv}. It is clear that the elements of g ⊗Gv Xv are distinct
and g ⊗Gv Xv forms a subtree of X̃, where V (g ⊗Gv Xv) = g ⊗Gv V (Xv)
and E(g ⊗Gv Xv ) = g ⊗Gv E(Xv). Then g ⊗Gv Xv = 1 ⊗Gv Xv, g ∈ Gv.
We observe that if g ∈ G, v ∈ V (T ), v1 and v2 are two vertices of V (Xv),
and P : e1, e2, ..., en is a reduced path in Xv joining v1 and v2 then it is
clear that g ⊗Gv P : g ⊗Gv e1, g ⊗Gv e2, ..., g ⊗Gv en is a reduced path in
g ⊗Gv Xv joining the vertices g ⊗Gv v1 and g ⊗Gv v2 of g ⊗Gv Xv. We call
g ⊗Gv P the reduced path in g ⊗Gv Xv joining the vertices g ⊗Gv v1 and
g ⊗Gv v2 in g ⊗Gv Xv induced by the reduced path in Xv joining v1 and
v2. We note that P could consist of a single vertex. Now we show that X̃
forms a tree. First we show that X̃ contains no loops.

For, if g ∈ G and e ∈ E(Y ) such that o[g; e] = t[g; e], then g ⊗G(o(e))∗

ve = g[e] ⊗G(t(e))∗ ve. This implies that (o(e))∗ = (t(e))∗ and [e] ∈ G(o(e))∗ .
If e ∈ E(T ) then [e] = 1 and the case (o(e))∗ = (t(e))∗ implies that o(e) =
t(e). So e is a loop. This is impossible because X is a tree. So e /∈ E(T ) and
[e] ∈ G(o(e))∗ . This contradicts Proposition 2. If g ∈ G and e ∈ E(Xv) such
that t(g ⊗G(t(e))∗ e) = o(g ⊗G(o(e))∗ e), then g ⊗G(t(e))∗ t(e) = g ⊗G(o(e))∗ o(e).
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This implies that t(e) = o(e). So e is a loop in Xv. This contradicts the
fact that Xv is a tree. Let g ∈ G and, u and v be two vertices of T . We
need to show that the subtrees 1 ⊗Gu Xu and g ⊗Gv Xv of X̃ are joined
by exactly one reduced path in X̃. By Lemma 2.7 of [7], there exists a
reduced word w = g0.y1.g1.....yn.gn of G such that o(w) = u, t(w) = v,
and [w] = g = g0[y1]g1.....[yn]gn. Then (o(y1))∗ = u, (t(yn))∗ = v, g0 ∈ Gu,
gi ∈ G(t(yi))∗ , i = 1, . . . , n.

Furthermore, (t(yi))
∗ = (o(yi+1))∗, and, vyi

and vyi+1
are in X(o(yi+1))∗

for i = 1, . . . , n − 1. For i = 1, . . . , n, let [wi] = g0[y1]g1.....[yi−1]gi−1

with convention that [w1] = g0, and let pi be the edge pi = [[wi]; yi].
Let Pi be the unique reduced path in [wi+1] ⊗G(o(yi+1))∗ X(o(yi+1))∗ join-

ing the vertices and [wi+1] ⊗G(o(yi+1))∗ vyi
and [wi+1] ⊗G(o(yi+1))∗ vyi+1

induced by the unique reduced path in X(o(yi+1))∗ joining the vertices
vyi

and vyi+1 for i = 1, . . . , n − 1. Let P be the sequence of edges
P : p1,P1, p2,P2, ..., pn−1,Pn−1, pn. We need to show that P is a unique
reduced path in X̃ joining the subtrees 1 ⊗Gu Xu and g ⊗Gv Xv.

o(p1) = o[[w1]; y1] = o[g0; y1] = g0 ⊗G(o(y1))∗ vy1 ∈ 1 ⊗Gu Xu,

t(pn) = t[[wn]; yn] = [wn][yn] ⊗G(t(yn))∗ vyn
= [wn][yn]gn ⊗G(t(yn))∗ vyn

= g ⊗Gv vyn
∈ g ⊗Gv Xv.

t(pi) = t[[wi]; yi] = [wi][yi] ⊗G(t(yi))∗ vyi
= [wi][yi]gi ⊗G(t(yi))∗ vyi

= [wi+1] ⊗G(o(yi+1))∗ vyi
= o(pi).t(pi) = [wi+1] ⊗G(o(yi+1))∗ vyi+1

= o(pi+1).

Thus, P is a path in X̃ joining the subtrees 1⊗Gu Xu and g⊗Gv Xv. Now
we show that P is reduced. Since the paths p1,p2, ..., pn−1 are reduced
and Y ∩ Xz = φ for all z ∈ V (T ), we need to show that pi+1 6= pi

for i = 1, . . . , n − 1. For if pi+1 = pi, then [g0[y1]g1.....[yi]gi; yi+1] =
[g0[y1]g1.....[yi−1]gi−1; yi].

This implies that giG+yi+1 = G+(yi) and +yi+1 = +(yi). So gi ∈
G+yi+1 .

This contradicts above that w is a reduced word of G. Hence P is a
reduced path in X̃ joining the vertices 1 ⊗G(o(y1))∗ vy1 and g ⊗Gv vyi

.

Now we show that P is unique.

Let Q : q1,Q1, q2,Q2, ..., qm−1,Qm−1, qm be a reduced path in X̃ joining
the vertices 1 ⊗G(o(y1))∗ vy1 and g ⊗Gv vyi

, where qj = [aj ; xj ], aj ∈ G,
xj ∈ E(Y ), j = 1, . . . , m, and Qi is defined similarly as Pi above. We
need to show that Q = P . We have o[a1; x1] = 1 ⊗Gu vy1 , t[ai; xi] =
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o[ai+1; xi+1], [ai+1; xi+1] 6= [ai; xi] for i = 1, . . . , n − 1, and t[am; xm] =
g ⊗Gv vyn

. This implies that a1 ⊗G(o(x1))∗ vx1 = 1 ⊗Gu vy1 , ai[xi] ⊗G(t(xi))∗

vxi
= ai+1 ⊗G(o(xi+1))∗ vxi+1 , ai+1G+xi+1 6= ai[xi]G+xi

or xi+1 6= +xi, and

am[xm] ⊗G(t(xm))∗ vxm = g ⊗Gv vyn
. Consequently (o(x1))∗ = u, (t(xi))

∗ =
(o(xi+1))∗, (t(xm))∗ = v, a1 = h0 ∈ Gu, ai+1 = ai[xi]hi, hi ∈ G(t(xi))∗ and
g = am[xm]hm, hm ∈ Gv. We get the word w′ = h0.x1.h1.....xm.hm such
that o(w′) = u, t(w′) = v, and [w′] = g. w′ is reduced because xi+1 6= +xi

or hi /∈ G+xi
. By Proposition 3 we have m = n and [[wi]; yi] = [[w′i]; xi],

i = 1, . . . , n − 1. So Q = P . Consequently X̃ forms a tree. If G acts on
X with inversions, then there exists y ∈ E(Y ) such that G(y) = G(y)
and [y](y) = y. Then +y = +y and [1; y] = [[y]; y] = [y][1; y]. So the
element [y] transfers the edge [1; y] into its inverse [[y]; y]. If v ∈ V (T )
and Gv acts on Xv with inversions, there exist g ∈ Gv and e ∈ E(Xv)
such that g(e) = e. The definition of ⊗ implies that g ⊗Gv e = 1 ⊗Gv e.
Then g ⊗Gv e = g(1 ⊗Gv e) = 1 ⊗Gv e = 1 ⊗Gv e. Consequently, G acts
on X̃ with inversions. This completes the proof.

Corollary 1. Let G, X, and Xv, v ∈ V (T ) be as in Theorem 1. For

each e ∈ E(X), let Ge be finite and contains no inverter elements of

Gt(e). Then the conclusions of Theorem 1 hold. Moreover, the mapping

µ : V (X̃) → V (X) given by µ(g ⊗Gv w) = g(v), for all w ∈ Xv is

surjective, and is a G-map.

Proof. Since Ge is finite and contains no inverter elements of Gt(e),
therefore by Lemma 1, there exists a vertex w ∈ V (Xt(e)) such that

Ge 6 (Gt(e))w. Then by Theorem 1, G acts on X̃, and if G acts on X with
inversions, or for some v ∈ V (T ), Gv acts on Xv with inversions, then
G acts on X̃ with inversions. Now if f, g ∈ G, and u, w ∈ V (Xv) such
that f ⊗Gv u = g ⊗Gv w, then g−1f ∈ Gv. This implies that g−1f(v) = v,
or equivalently, f(v) = g(v). Then µ(f ⊗Gv u) = µ(g ⊗Gv w), and µ
is well-defined. If v ∈ V (X), and u ∈ V (Xv), then it is clear that
µ(1 ⊗Gv u) = v. So µ is surjective. If f, g ∈ G, v ∈ V (X) and u ∈ V (Xv),
then µ(f(g ⊗Gv u)) = µ(fg ⊗Gv u) = fg(v) = f(µ(g ⊗Gv u)). This implies
that µ is surjective, and is a G-map. This completes the proof.

Corollary 2. Let G, X, and Xv, v ∈ V (T ) be as in Corollary 1. If the

stabilizer of each edge of Xv is finite, then the stabilizer of each edge of

X̃ is finite.

Proof. E(X̃) = X̂ ∪ ( ∪
v∈V (T )

(G ⊗Gv E(Xv))). Let g ∈ G, v ∈ V (T ), p ∈

E(Xv), and e ∈ E(Y ). It is clear that the stabilizer Gg⊗Gv p of the edge
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g ⊗Gv p under the action of G on X̃ is Gg⊗Gv p = g(Gv)pg−1, where (Gv)p

is the stabilizer of the edge p under the action of Gv on Xv. Since (Gv)p

is finite, therefore Gg⊗Gv p is finite. Similarly, that the stabilizer G[g;e]

of the edge [g; e] under the action of G on X̃ is G[g;e] = gG+eg−1. This
completes the proof.

Now we end this section the following definition.

Definition 8. Let G be a group acting on a tree X and (T ; Y ) be a
fundamental domain for the action of G on X. For each v ∈ V (T ), let Xv

be a tree on which Gv acts, and for each e ∈ E(Y ), let Ge be finite and
contains no inverter elements of Gt(e). Then X̃ is called a fibered G-tree
of base X and fibers Xv, v ∈ V (T ).

3. Accessibility of groups acting on trees

For the study of the concepts of the ends of groups we refer the readers
to ([1], p. 17), or ([2], p. 124, 126), or ([11], p. 171).

The number of the ends of a group G is denoted by e(G).
A finitely generated group G is called accessible on the tree X if G

acts on X and satisfies the following.
1. XG = φ,
2. Ge is finite for any e ∈ E(X),
3. e(Gv) 6 1 for all v ∈ V (X).
A group is G called accessible if there exists a tree X on which G is

accessible on X.
If G is an accessible group on the tree X, then by Proposition 7.4

([2], p. 132), there exists a tree X ′ such that G acts on X ′ and G is not
accessible on X ′. In this case we say that G is inaccessible.

The main result of this section is the following theorem.

Theorem 2. Let G be a group acting on the tree X such that for each

edge e of X, Ge is finite and contains no elements of Gt(e), and for each

vertex v of X, Gv is an accessible, and the quotient graph G�X is finite.

Then G is an accessible group, and G is inaccessible on X.

Proof. The accessibility of Gv, v ∈ V (X) implies that Gv is finitely
generated. Since the quotient graph G�X is finite, therefore similar to
the proof of Theorem 4.1 of [2, p. 15], we can show that G is finitely
generated. Let (T ; Y ) be a fundamental domain for the action of G on
X. Then there exists a tree Xv on which Gv acts such that XGv

v = φ,
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(Gv)y is finite for every y ∈ E(Xv), and e(Gv) 6 1. The condition Ge is
finite and contains no inverter elements of Gt(e), e ∈ E(Y ) implies that

G acts on the fiber tree X̃. If g ∈ G and u ∈ V (Xv) such that Gg⊗Gv u =
g(Gv)ug−1 = G, then (Gv)u = Gv. This contradicts the condition that
XGv

v = φ. So X̃G = φ. If e ∈ E(Y ) and p ∈ E(Xv), v ∈ V (X), then
Ge and (Gv)p are finite. Then for every g ∈ G, G[g;e] = gG+eg−1 and
Gg⊗Gv p = g(Gv)pg−1 are finite. For g ∈ G, v ∈ V (T ) and u ∈ V (Xv),
e(Gg⊗u) = e(g(Gv)ug−1) = e((Gv)u) 6 1. This implies that G is accessible
on X̃. Consequently G is accessible. If G is accessible on X, then for
every v ∈ V (T ), e(Gv) 6 1. Since Gv is accessible, then by Theorem 6.10
of ([2], p. 128), e(Gv) > 2. Contradiction. So G is inaccessible on X. This
completes the proof.

Now we apply Theorem 2 to tree product of groups A =
∏

∗

i∈I(Ai; Uij =
Uji) of the groups Ai, i ∈ I, with amalgamation subgroups Uij , i, j ∈ I
introduced in [3], and to a new class of groups called quasi-HNN groups
introduced in [4], and defined as follows.

Let G be a group, I and J be two indexed sets such that I ∩J = φ and
I ∪ J 6= φ. Let {Ai : i ∈ I}, {Bi : i ∈ I}, and {Cj : j ∈ J} be families of
subgroups of G. For each i ∈ I, let φi : Ai → Bi be an onto isomorphism
and for each j ∈ J , let αj : Cj → Cj be an automorphism such that α2

j is
an inner automorphism determined by cj ∈ C and cj is fixed by αj ; that
is, αj(cj) = cj and α2

j (c) = cjcc−1
j for all c ∈ Cj .

The group G∗ of the presentation
〈
gen(G), ti, tj | rel(G), tiat−1

i = φi(a), tjcc−1
j = αj(c),

t2
j = cj , a ∈ Ai, c ∈ Cj

〉
,

where i ∈ I, j ∈ J , or simply,

G∗ =
〈
gen(G), ti, tj | rel(G), tiAit

−1
i = Bi, tjCjt−1

j = Cj ,

t2
j = ci, i ∈ I, j ∈ J

〉

is called a quasi HNN group of base H and associated pairs (Ai, Bi),
and (Cj , Cj) of subgroups of G.

The tree product A =
∏

∗

i∈I(Ai; Uij = Uji) of the groups Ai, i ∈ I,
acts on the tree X without inversions defined as follow.

V (X) = {(gAi, i) : g ∈ A, i ∈ I},

and E(X) = {(gUij , ij) : g ∈ A, i, j ∈ I}.
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If y is the edge y = (gUij , ij), then o(y) = (gAi, i), t(y) = (gAj , j),
and y = (gUji, ji). A acts on X as follows.

Let f ∈ A. Then f((gAi, i)) = (fgAi, i) and f((gUij , ij)) = (fgUij , ij).

If v = (gAi, i) ∈ V (X) and y = (gUji, ij) ∈ E(X), then the stabilizer
of v is Av = gAig

−1=̃Ai, a conjugate of Ai, and then the stabilizer of y is
Ay = gUijg−1=̃Uij , a conjugate of Uij . The orbit of v is A(v) = {(agAi, i) :
a ∈ A, i ∈ I}, and the orbit of y is A(y) = {(agUij , ij) : a ∈ A, i, j ∈ I}.

So the quotient graph A�X is finite if I is finite. This leads the
following proposition as an application to Theorem 2.

Proposition 4. Let A =
∏

∗

i∈I(Ai; Uij = Uji) be a tree product of the

groups Ai, i ∈ I, such that Ai is accessible, and Uij is finite and contains

no inverter element of Ai for all i, j ∈ I. If I is finite, then A is accessible.

A free product of groups with amalgamated subgroup is a special
case of tree product of the groups, we state the following corollary of
Proposition 4.

Corollary 3. Let A = ∗cAi, i ∈ I, be the free product of the groups Ai,

i ∈ I with amalgamation subgroup C such that Ai is accessible, and C is

finite and contains no inverter element of Ai for all i, j ∈ I. If I is finite,

then A is accessible.

It is shown in [6] that the quasi-HNN group

G∗ =
〈
gen(G), ti, tj | rel(G), tiAit

−1
i = Bi, tjCjt−1

j = Cj ,

t2
j = ci, i ∈ I, j ∈ J

〉

acts on the tree X with inversions defined as follow.

V (X) = {gG : g ∈ G∗}, and E(X) = {(gBi, ti), (gAi, ti), (gCj , tj)},

where g ∈ G∗, i ∈ I,and j ∈ J . For the edges (gBi, ti), (gAi, ti), and
(gCj , tj), i ∈ I, j ∈ J , define o(gBi, ti) = o(gAi, ti) = o(gCj , tj) =
gG, t(gBi, ti) = gtiG, t(gAi, ti) = gt−1

i G, and t(gCj , tj) = gtjG, and

(gBi, ti) = (gtiAi, t−1
i ), (gAi, t−1

i )=(gt−1
i Bi, ti), and (gCj , tj)=(gtjCj , tj).

G∗ acts on X as follows. Let f ∈ G∗. Then for the vertex gG
and the edges (gBi, ti), (gAi, t−1

i ), and (gCj , tj) of X, define f(gG) =
fgG, f(gBi, ti) = (fgBi, ti), f(gAi, t−1

i ) = (fgAi, t−1
i ), and f(gCj , tj) =

(fgCj , tj).
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The action of G∗ on X is with inversions because the element tj ∈
G∗ maps the edge (Cj , tj) to its inverse (Cj , tj); that is, tj(Cj , tj) =
(tjCj , tj) = (Cj , tj)

The stabilizer of the vertex v = gG is, G∗
v = gGg−1, a conjugate of G,

the stabilizers of the edges (gBi, ti), f(gAi, t−1
i ), and (gCj , tj) are gBig

−1,
conjugates of Bi, gAig

−1, a conjugate of Ai, and gCjg−1, a conjugate of
Cj respectively, for all i ∈ I, and all j ∈ J .

The orbits of gG, (gBi, ti), f(gAi, t−1
i ), and (gCj , tj) are {fG : f ∈

G∗}, {(fBi, ti) : f ∈ G∗}, and {(fCj , tj) : f ∈ G∗}. Then the quotient
graph G∗�X is finite if I ∪J is finite. This leads the following proposition
as an application to Theorem 2.

Proposition 5. Let G∗ be the quasi-HNN group

G∗ =
〈
gen(G), ti, tj | rel(G), tiAit

−1
i = Bi, tjCjt−1

j = Cj ,

t2
j = ci, i ∈ I, j ∈ J

〉

such that G is accessible, Ai, Bi, and Cj are finite and contain no inverter

elements of G. If I ∪ J is finite, then G∗ is accessible.

By taking J = φ in the group G∗ defined above, yields the the following
corollary of Proposition 5.

Corollary 4. Let G∗ be the HNN group

G∗ =
〈
gen(G), ti | rel(G), tiAit

−1
i = Bi, i ∈ I

〉

such that G is accessible, Ai, and Bi are finite and contain no inverter

elements of G. If I is finite, then G∗ is accessible.
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