On fibers and accessibility of groups acting on trees with inversions

Rasheed Mahmood Saleh Mahmood*

Communicated by V. A. Artamonov

Abstract. Throughout this paper the actions of groups on graphs with inversions are allowed. An element g of a group G is called inverter if there exists a tree X where G acts such that g transfers an edge of X into its inverse. A group G is called accessible if G is finitely generated and there exists a tree on which G acts such that each edge group is finite, no vertex is stabilized by G, and each vertex group has at most one end.

In this paper we show that if G is a group acting on a tree X such that if for each vertex v of X, the vertex group G_{v} of v acts on a tree X_{v}, the edge group G_{e} of each edge e of X is finite and contains no inverter elements of the vertex group $G_{t(e)}$ of the terminal $t(e)$ of e, then we obtain a new tree denoted \widetilde{X} and is called a fiber tree such that G acts on \widetilde{X}. As an application, we show that if G is a group acting on a tree X such that the edge group G_{e} for each edge e of X is finite and contains no inverter elements of $G_{t(e)}$, the vertex G_{v} group of each vertex v of X is accessible, and the quotient graph G / X for the action of G on X is finite, then G is an accessible group.

[^0]
Introduction

The theory of groups acting on trees without inversions known BassSerre theory is introduced in [2] and [10], and with inversions is introduced in [9]. The concepts of the fibers of groups acting on trees without inversions were introduced in ([2], p. 78). In this paper we generalize such concepts to the case where the actions of groups on trees with inversions are allowed, and have applications. This paper is divided into 3 sections. In section 1, we introduce the concept of groups acting on trees with inversions. In section 2, we use the results of section 1 to obtain new trees called the fibers of groups acting on trees with inversions. In section 3, we use the results of section 2 to have applications.

1. Groups acting on trees

We begin with general background. A graph X consists of two disjoint sets $V(X)$, (the set of vertices of X) and $E(X)$, (the set of edges of X), with $V(X)$ non-empty, together with three functions $\partial_{0}: E(X) \rightarrow V(X)$, $\partial_{1}: E(X) \rightarrow V(X)$, and $\eta: E(X) \rightarrow E(X)$ is an involution satisfying the conditions that $\partial_{0} \eta=\partial_{1}$ and $\partial_{1} \eta=\partial_{0}$. For simplicity, if $e \in E(X)$, we write $\partial_{0}(e)=o(e), \partial_{1}(e)=t(e)$, and $\eta(e)=\bar{e}$. This implies that $o(\bar{e})=t(e), t(\bar{e})=o(e)$, and $\overline{\bar{e}}=e$. The case $\bar{e}=e$ is allowed. For the edge $e, o(e)$ and $t(e)$ are called the ends of e, and \bar{e} is called the inverse of e. By a path P of X we mean a sequence y_{1}, \ldots, y_{n} of edges of X such that $t\left(y_{j}\right)=o\left(y_{j+1}\right)$ for $j=1, \ldots, n-1$. P is reduced if $y_{i+1} \neq \bar{y}_{i}$, $i=1, \ldots, n-1$.

The origin $o(P)$ and the terminal $t(P)$ of P are defined as $o(P)=o\left(y_{1}\right)$, and $t(P)=t\left(y_{n}\right)$. There are obvious definitions of subgraphs, circuits, morphisms of graphs and $\operatorname{Aut}(X)$, the set of all automorphisms of the graph X which is a group under the composition of morphisms of graphs. For more details, the interested readers are referred to [2], [9], and [10]. We say that a group G acts on a graph X, (or X is a G-graph) if there is a group homomorphism $\phi: G \rightarrow \operatorname{Aut}(X)$. In this case, if $x \in X$ (vertex or edge) and $g \in G$, we write $g(x)$ for $(\phi(g))(x)$. Thus, if $g \in G$, and $y \in E(X)$, then $g(o(y))=o(g(y)), g(t(y))=t(g(y))$, and $g(\bar{y})=\overline{g(y)}$. The case the actions with inversions are allowed. That is; $g(y)=\bar{y}$ is allowed for some $g \in G$, and $y \in E(X)$. In this case we say that g is an inverter element of G and y is called an inverted edge of X.

If X and Y are G-graphs, and $\mu: V(X) \rightarrow V(Y)$ is a map, then μ is called G-map if $\mu(g(x))=g(\mu(x))$ for all $x \in V(X)$.

Convention. If the group G acts on the graph X and $x \in X,(x$ is a vertex or edge), then

1. The stabilizer of x, (or the x group) denoted G_{x} is defined to be the set $G_{x}=\{g \in G: g(x)=x\}$. It is clear that $G_{x} \leqslant G$, and if $x \in E(X)$, and $u \in\{o(x), t(x)\}$, then $G_{\bar{x}}=G_{x}$ and $G_{x} \leqslant G_{u}$.
2. The orbit of x denoted $G(x)$ and is defined to be the set $G(x)=$ $\{g(x): g \in G\}$. It is clear that G acts on the graph X without inversions if and only if $G(\bar{e}) \neq G(e)$ for any $e \in E(X)$.
3. The set of the orbits G / X of the action of G on X is defined as $G / X=\{G(x): x \in X\} . G / X$ forms a graph called the quotient graph of the action of G on X, where $V(G / X)=\{G(v): v \in V(X)\}$, $E(G / X)=\{G(e): e \in E(X)\}$, and if $e \in E(X)$, then $o(G(e))=G(o(e))$, $t(G(e))=G(t(e))$, and $\overline{G(e)}=G(\bar{e})$. The map $p: X \rightarrow G / X$ given by $p(x)=G(x)$ is an onto morphism of graphs. If X is connected, then G / X is connected.
4. The set of elements of X fixed by G is the set $X^{G}=\left\{x \in X: G_{x}=G\right\}$.

Definition 1. Let G be a group acting on a tree X with inversions and let T and Y be two subtrees of X such that $T \subseteq Y$, and each edge of Y has at least one end in T. Assume that T and Y are satisfying the following.
(i) T contains exactly one vertex from each vertex orbit.
(ii) Y contains exactly one edge y (say) from edge orbit if $G(y) \neq G(\bar{y})$ and exactly one pair x, \bar{x} from each edge orbit if $G(x)=G(\bar{x})$. Then
(1) T is called a tree of representatives for the action of G on X,
(2) Y is called a transversal for the action of G on X.

For simplicity we say that $(T ; Y)$ is a fundamental domain for the action of G on X.

For the existence of fundamental domains we refer the readers to [5]. For the rest of this section, G is a group acting on a tree X with inversions, and $(T ; Y)$ is a fundamental domain for the action of G on X.

The properties of T and Y imply the following that for any $v \in V(X)$ there exists a unique vertex denoted v^{*} of T and an element g (not unique) of G such that $g\left(v^{*}\right)=v$; that is, $G\left(v^{*}\right)=G(v)$. Moreover, if $v \in V(T)$, then $v^{*}=v$.

Definition 2. For each $y \in E(Y)$, let $[y]$ be an element of G chosen as follows.
(a) if $o(y) \in V(T)$, then $[y]\left((t(y))^{*}\right)=t(y),[y]=1$ in case $y \in E(T)$, and $y=\bar{y}$ if $G(y)=G(\bar{y})$,
(b) if $t(y) \in V(T)$, then $[y](o(y))=(o(y))^{*},[y]=[\bar{y}]^{-1}$ if $G(y) \neq G(\bar{y})$, and $[y]=[\bar{y}]$ if $G(y)=G(\bar{y})$.

Proposition 1. G is generated by G_{v} and $[e]$, where v runs over $V(T)$ and e runs over $E(Y)$.

Proof. See Lemma 4.4 of [9].
The proof of the following proposition is clear.
Proposition 2. For each edge $y \in E(Y)$, let $[y][\bar{y}]=\delta_{y}$. Then $\delta_{y}=1$ if $G(y) \neq G(\bar{y})$, and $\delta_{y}=[y]^{2} \in G_{y}$ if $G(y)=G(\bar{y})$. Moreover $[y] \notin G_{(t(y))^{*}}$, if $y \notin E(T)$.

Definition 3. For each $y \in E(Y)$, let $+y$ be the edge $+y=y$ if $o(y) \in$ $V(T)$, and $+y=y$ if $t(y) \in V(T)$.

It is clear that if $G(y)=G(\bar{y})$ or $y \in E(T)$, then $G_{+y}=G_{y}$. Furthermore, if x and y are two edges of Y such that $+x=+y$, then $x=y$ or $x=\bar{y}$.

Definition 4. By a word w of G we mean an expression of the form $w=g_{0}, g_{0} \in G_{v}, v \in V(T)$, or, $w=g_{0} \cdot y_{1} . g_{1} \ldots y_{n} . g_{n}, n>0, y_{i} \in E(Y)$ for $i=1, \ldots, n$ such that the following hold.
(1) $g_{0} \in G_{\left(o\left(y_{1}\right)\right)^{*}}$,
(2) $\left(t\left(y_{i}\right)\right)^{*}=\left(o\left(y_{i+1}\right)\right)^{*}$, for $i=1,2, \ldots, n-1$,
(3) $g_{i} \in G_{\left(t\left(y_{i}\right)\right)^{*}}$, for $i=1,2, \ldots, n$.

We define $o(w)=\left(o\left(y_{1}\right)\right)^{*}$ and $t(w)=\left(t\left(y_{n}\right)\right)^{*}$. If $o(w)=t(w)=v$, then w is called a closed word of G.

We have the following concepts related to the word w defined above.
(i) The value of w is denoted by $[w]$ and defined to be the element of

$$
[w]=g_{0}\left[y_{1}\right] g_{1} \ldots\left[y_{n}\right] g_{n} \text { of } G .
$$

(ii) w reduced if either $n=0$ and $g_{0} \neq 1$, or else $n>0$ and w contains no subword of the following forms:

$$
y_{i} \cdot g_{i} . \bar{y}_{i} \text { if } g_{i} \in G_{+\left(y_{i}\right)}, \text { and }+y_{i+1}=+\left(\bar{y}_{i}\right), i=1, \ldots n
$$

(iii) For each $i, i=1, \ldots, n$, let $w_{i}=g_{0} \cdot y_{1} \cdot g_{1} \ldots y_{i-1} \cdot g_{i-1}$ with convention $w_{1}=g_{0}$.

Definition 5. For $g \in G$ and $e \in E(Y)$ let $[g ; e]$ be the ordered pair $[g ; e]=\left(g G_{+e} ;+e\right)$.

Remark 1. If w is a reduced word of G and $y \in E(Y)$, no confusion will be confused by $[w]$, the value of w, and the ordered pair $[[w] ; y]$.

Proposition 3. Let $w=g_{0} \cdot y_{1} \cdot g_{1} \ldots y_{n} \cdot g_{n}$ and $w^{\prime}=h_{0} \cdot x_{1} \cdot h_{1} \ldots x_{m} \cdot h_{m}$ be two reduced words of G such that $o(w)=o\left(w^{\prime}\right), t(w)=t\left(w^{\prime}\right)$, and $[w]=\left[w^{\prime}\right]$. Then $m=n$ and, $\left[\left[w_{i}\right] ; y_{i}\right]=\left[\left[w_{i}^{\prime}\right] ; x_{i}\right]$ for $i=1, \ldots, n$.

Proof. We have $\left[w^{\prime}\right][w]^{-1}=1$. Let $\widetilde{w}=g_{n}^{-1} \delta_{y_{n}}^{-1} \cdot \bar{y}_{n} \ldots g_{1}^{-1} \delta_{y_{1}}^{-1} \cdot \bar{y}_{1} \cdot g_{0}^{-1}$.
It is clear that \widetilde{w} is a reduced word of G and $[\widetilde{w}]=[w]^{-1}$. Then $w_{0}=$ $\widetilde{w} w^{\prime}=g_{n}^{-1} \delta_{y_{n}}^{-1} \cdot \bar{y}_{n} \ldots . . g_{1}^{-1} \delta_{y_{1}}^{-1} \cdot \bar{y}_{1} \cdot g_{0}^{-1} h_{0} \cdot x_{1} \cdot h_{1} \ldots . x_{m} \cdot h_{m}$ is a word of G.

For each $i=0,1, \ldots, n$, let

$$
L_{i}=g_{i}^{-1} \delta_{y_{i}}^{-1}\left[\bar{y}_{i}\right] \ldots . g_{1}^{-1} \delta_{y_{1}}^{-1}\left[\bar{y}_{1}\right] g_{0}^{-1} h_{0}\left[x_{1}\right] h_{1 \ldots\left[x_{i}\right] h_{i} .}
$$

with convention that $L_{0}=g_{0}^{-1} h_{0}$. Since $[y][\bar{y}]=\delta_{y}$ for every $y \in E(Y)$, therefore $L_{i}=g_{i}^{-1}\left[y_{i}\right]^{-1} \ldots . g_{1}^{-1}\left[y_{1}\right]^{-1} g_{0}^{-1} h_{0}\left[x_{1}\right] h_{1} \ldots\left[x_{i}\right] h_{i}$. Moreover, $L_{i}=g_{i}^{-1}\left[y_{i}\right]^{-1} L_{i-1}\left[x_{i}\right] h_{i}$. Since $\left[w_{0}\right]=1$, the identity element of G, therefore by Corollary 1 of [8], w_{0} is not reduced. Since \widetilde{w} and w^{\prime} are reduced, the only way that the indicated word w_{0} can fail to be reduced is that $m=n$, and for $i=1, \ldots, n,+x_{i}=+\overline{\overline{y_{i}}}=+y_{i}$ and $L_{i-1} \in G_{+\left(x_{i}\right)}=$ $G_{+\left(y_{i}\right)}$.

The case $L_{i-1} \in G_{+\left(x_{i}\right)}=G_{+\left(y_{i}\right)}$ implies that $\left[w_{i}\right]^{-1}\left[w_{i}^{\prime}\right] \in G_{+\left(\overline{x_{i}}\right)}=$ $G_{+\left(\overline{y_{i}}\right)}$. Then $\left[w_{i}\right] G_{+\left(y_{i}\right)}=\left[w_{i}^{\prime}\right] G_{+\left(x_{i}\right)}$. Consequently $\left[\left[w_{i}\right] ; y_{i}\right]=\left[\left[w_{i}^{\prime}\right] ; x_{i}\right]$, $i=1, \ldots, n-1$. This completes the proof.

2. Fibers of groups acting on trees

We begin some general background taken from ([2], p. 78).
Definition 6. Let H be a subgroup of the group G and H acts on the set X. Define \equiv to be the relation on $G \times X$ defined as $(f, u) \equiv(g, v)$, if there exists $h \in H$ such that $f=g h$ and $u=h^{-1}(v)$. It is easy to show that \equiv is an equivalence relation on $G \times X$. The equivalence class containing (f, u) is denoted by $f \otimes_{H} u$. Thus, $f \otimes_{H} u=\left\{\left(f h, h^{-1}(u)\right): h \in H\right\}$.

Consequently, if $f \otimes_{H} u=g \otimes_{H} v$, then $f=g h$ and $u=h^{-1}(v), h \in H$. So $f \otimes_{H} u=f h \otimes_{H} h^{-1}(u)$ for all $h \in H$.

Let $g \in G$ and $A \subseteq H$. Define $g \otimes_{H} A=\left\{g \otimes_{H} a: a \in A\right\}$, and

$$
G \otimes_{H} X=\left\{g \otimes_{H} x: g \in G, x \in X\right\}
$$

It is clear that $1 \otimes_{H} x=h \otimes_{H} x$ for all $h \in H_{x}$, the stabilizer of x under the action of H on X. It is easy to show that the rule $f\left(g \otimes_{H} x\right)=f g \otimes_{H} x$ for
all $f, g \in G$, and all $x \in X$ defines an action of G on $G \otimes_{H} X$. The stabilizer $G_{g_{\otimes_{H}}} x$ of $g \otimes_{H} x$ under the action of G on $G \otimes_{H} X$ is $G_{g_{\otimes_{H}}} x=g H_{x} g^{-1}$ and the orbit $G\left(g \otimes_{H} x\right)$ of $g \otimes_{H} x$ under the action of G on $G \otimes_{H} X$ is $G \otimes_{H} H(x)$ where $H(x)$ is the orbit of x under the action of H on X.

Remark 2. $x \in X$ means x is a vertex or an edge of X.
Definition 7. Let G be a group acting on a tree X and $(T ; Y)$ be a fundamental domain for the action of G on X. For each $v \in V(T)$, let X_{v} be a tree on which G_{v} acts; (X_{v} could consist of the single vertex $\{v\}$) and let \widehat{X} be the set $\widehat{X}=\{[g ; e]: g \in G, e \in E(Y)\}$, and \widetilde{X} be the set $\widetilde{X}=\widehat{X} \cup\left(\underset{v \in V(T)}{\cup}\left(G \otimes_{G_{v}} X_{v}\right)\right)$.

The following lemma is a generalization of Corollary 4.9 of ([2], p. 18) and is essential for the proof of the main result of this section.

Lemma 1. Let G be a group acting on a tree X and H be a finite subgroup of G such that H contains no inverter elements of G. Then H is in G_{v} for some $v \in V(X)$.

Proof. If G acts on X without inversions, then G contains no inverter elements and by ([2], p. 18) H is in G_{v} for some $\mathrm{v} \in \mathrm{V}(\mathrm{X})$. Let G act on X with inversions and $g \in H$ be an inverter element. Then $g(e)=\bar{e}$ for some $e \in E(X)$. This implies that $g(o(e))=t(e)$. Now we show that $g \notin G_{v}$ for any $v \in V(X)$. If $g \in G_{v}$, then there is a unique reduced path $e_{1}, e_{2}, \ldots, e_{n}$ in X joining $o(e)$ and v. Then $g\left(e_{1}\right), g\left(e_{2}\right), \ldots, g\left(e_{n}\right)$ is a unique reduced path in X joining $g(o(e))=t(e)$ and $g(v)=v$. Then $\bar{e}, g\left(e_{1}\right), g\left(e_{2}\right), \ldots, g\left(e_{n}\right)$ is a path in X joining $g(o(e))=t(e)$ and $g(v)=v$ but not reduced because X is a tree. Therefore $e=g\left(e_{1}\right)$ and $g\left(e_{2}\right), \ldots, g\left(e_{n}\right)$ is a reduced path in X joining $t(e)$ and v. Thus, the vertices $t(e)$ and v are joined in X by two distinct reduced paths. This contradicts the assumption that X is tree. This completes the proof.

Remark 3. In Lemma 1 if $g \in G$ and $e \in E(X)$ such that $g(e)=\bar{e}$, then $g^{2}(e)=g(\bar{e})=\overline{g(e)}=\overline{\bar{e}}=e$. This implies that $g \notin G_{e}$ and $g^{2} \in G_{e}$.

If $G_{e}=\{1\}$, then the subgroup $H=\{1, g\}$ is finite, but H is not contained in G_{e} for any $v \in V(X)$.

Theorem 1. Let G be a group acting on a tree X and $(T ; Y)$ be a fundamental domain for the action of G on X. For each $v \in V(T)$, let X_{v} be a tree on which G_{v} acts such that for each $e \in E(X), o(e) \in V(T)$, the stabilizer G_{e} is in a vertex stabilizer $\left(G_{o(e)}\right)_{w}, w \in V\left(X_{o(e)}\right)$.

Then \tilde{X} forms a tree and G acts on \tilde{X}. Furthermore, if G acts on X with inversions, or for some $v \in V(T), G_{v}$ acts on X_{v} with inversions, then G acts on \widetilde{X} with inversions.

Proof. For each edge $e \in E(Y)$ it is clear that $o(+e)=(o(e))^{*} \in V(T)$ and $G_{+y} \leqslant G_{(o(y))^{*}}$. By assumption there exists a vertex denoted v_{e} such that $v_{e} \in V\left(X_{o(e)}\right)$ and $G_{e} \leqslant\left(G_{o(e)}\right)_{v_{e}}$, where $\left(G_{o(e)}\right)_{v_{e}}$ is the vertex stabilizer of the vertex v_{e} under the action of $G_{o(e)}$ on $X_{o(e)}$. Now we show that \widetilde{X} forms a graph. The set of vertices $V(\widetilde{X})$ of \widetilde{X} is defined to be the set $V(\tilde{X})=\underset{v \in V(T)}{\cup}\left(G \otimes_{G_{v}} V\left(X_{v}\right)\right)$ and the set of edges $E(\widetilde{X})$ of \tilde{X} is defined to be the set $E(\tilde{X})=\widehat{X} \cup\left(\underset{v \in V(T)}{\cup}\left(G \otimes_{G_{v}} E\left(X_{v}\right)\right)\right.$. It is clear that $V(\widetilde{X}) \neq \phi$ and $V(\widetilde{X}) \cap E(\widetilde{X})=\phi$. The ends and the inverses of the edges of \widetilde{X} are defined as follows. Let $g \in G, v \in V(T)$, and $e \in E\left(X_{v}\right)$.

Define the ends and the inverse of the edge $g \otimes_{G_{v}} e$ as follows.
$t\left(g \otimes_{G_{v}} e\right)=g \otimes_{G_{v}} t(e), o\left(g \otimes_{G_{v}} e\right)=g \otimes_{G_{v}} o(e)$ and $\overline{g \otimes_{G_{v}} e}=g \otimes_{G_{v}} \bar{e}$,
where $t(e), o(e)$, and \bar{e} are the ends and the inverse of the edge e in X_{v}.
If $e \in E(Y)$, we define the ends and the inverse of the edge $[g ; e]$ as follows. $o[g ; e]=g \otimes_{G_{(o(e))^{*}}} v_{e}, t[g ; e]=g[e] \otimes_{G_{(t(e))^{*}}} v_{\bar{e}}$ and $\overline{[g ; e]}=[g[e] ; \bar{c}]$. Then $\overline{\overline{[g ; e]}}=[g[e][\bar{e}] ; \bar{e}]=[g ; e]$ because $[e][\bar{e}] \in G_{+e}$. These definitions show that \widetilde{X} forms a graph. For $g \in G$ and $v \in V(T)$, let $g \otimes_{G_{v}} X_{v}=$ $\left\{g \otimes_{v} u: u \in X_{v}\right\}$. It is clear that the elements of $g \otimes_{G_{v}} X_{v}$ are distinct and $g \otimes_{G_{v}} X_{v}$ forms a subtree of \tilde{X}, where $V\left(g \otimes_{G_{v}} X_{v}\right)=g \otimes_{G_{v}} V\left(X_{v}\right)$ and $E\left(g \otimes_{G_{v}} X_{v}\right)=g \otimes_{G_{v}} E\left(X_{v}\right)$. Then $g \otimes_{G_{v}} X_{v}=1 \otimes_{G_{v}} X_{v}, g \in G_{v}$. We observe that if $g \in G, v \in V(T), v_{1}$ and v_{2} are two vertices of $V\left(X_{v}\right)$, and $P: e_{1}, e_{2}, \ldots, e_{n}$ is a reduced path in X_{v} joining v_{1} and v_{2} then it is clear that $g \otimes_{G_{v}} P: g \otimes_{G_{v}} e_{1}, g \otimes_{G_{v}} e_{2}, \ldots, g \otimes_{G_{v}} e_{n}$ is a reduced path in $g \otimes_{G_{v}} X_{v}$ joining the vertices $g \otimes_{G_{v}} v_{1}$ and $g \otimes_{G_{v}} v_{2}$ of $g \otimes_{G_{v}} X_{v}$. We call $g \otimes_{G_{v}} P$ the reduced path in $g \otimes_{G_{v}} X_{v}$ joining the vertices $g \otimes_{G_{v}} v_{1}$ and $g \otimes_{G_{v}} v_{2}$ in $g \otimes_{G_{v}} X_{v}$ induced by the reduced path in X_{v} joining v_{1} and v_{2}. We note that P could consist of a single vertex. Now we show that \widetilde{X} forms a tree. First we show that \widetilde{X} contains no loops.

For, if $g \in G$ and $e \in E(Y)$ such that $o[g ; e]=t[g ; e]$, then $g \otimes_{G_{(o(e))^{*}}}$ $v_{e}=g[e] \otimes_{G_{(t(e))^{*}}} v_{\bar{e}}$. This implies that $(o(e))^{*}=(t(e))^{*}$ and $[e] \in G_{(o(e))^{*}}$. If $e \in E(T)$ then $[e]=1$ and the case $(o(e))^{*}=(t(e))^{*}$ implies that $o(e)=$ $t(e)$. So e is a loop. This is impossible because X is a tree. So $e \notin E(T)$ and $[e] \in G_{(o(e))^{*}}$. This contradicts Proposition 2. If $g \in G$ and $e \in E\left(X_{v}\right)$ such that $t\left(g \otimes_{G_{(t(e))^{*}}} e\right)=o\left(g \otimes_{G_{(o(e))^{*}}} e\right)$, then $g \otimes_{G_{(t(e))^{*}}} t(e)=g \otimes_{G_{(o(e))^{*}}} o(e)$.

This implies that $t(e)=o(e)$. So e is a loop in X_{v}. This contradicts the fact that X_{v} is a tree. Let $g \in G$ and, u and v be two vertices of T. We need to show that the subtrees $1 \otimes_{G_{u}} X_{u}$ and $g \otimes_{G_{v}} X_{v}$ of \widetilde{X} are joined by exactly one reduced path in \widetilde{X}. By Lemma 2.7 of [7], there exists a reduced word $w=g_{0} \cdot y_{1} \cdot g_{1} \ldots . y_{n} . g_{n}$ of G such that $o(w)=u, t(w)=v$, and $[w]=g=g_{0}\left[y_{1}\right] g_{1} \ldots .\left[y_{n}\right] g_{n}$. Then $\left(o\left(y_{1}\right)\right)^{*}=u,\left(t\left(y_{n}\right)\right)^{*}=v, g_{0} \in G_{u}$, $g_{i} \in G_{\left(t\left(y_{i}\right)\right)^{*}}, i=1, \ldots, n$.

Furthermore, $\left(t\left(y_{i}\right)\right)^{*}=\left(o\left(y_{i+1}\right)\right)^{*}$, and, $v_{y_{i}}$ and $v_{\bar{y}_{i+1}}$ are in $X_{\left(o\left(y_{i+1}\right)\right)^{*}}$ for $i=1, \ldots, n-1$. For $i=1, \ldots, n$, let $\left[w_{i}\right]=g_{0}\left[y_{1}\right] g_{1} \ldots . .\left[y_{i-1}\right] g_{i-1}$ with convention that $\left[w_{1}\right]=g_{0}$, and let p_{i} be the edge $p_{i}=\left[\left[w_{i}\right] ; y_{i}\right]$. Let P_{i} be the unique reduced path in $\left[w_{i+1}\right] \otimes_{G_{\left(o\left(y_{i+1}\right)\right)^{*}}} X_{\left(o\left(y_{i+1}\right)\right)^{*}}$ joining the vertices and $\left[w_{i+1}\right] \otimes_{G_{\left(o\left(y_{i+1}\right)\right)^{*}}} v_{\bar{y}_{i}}$ and $\left[w_{i+1}\right] \otimes_{G_{\left(o\left(y_{i+1}\right)\right)^{*}}} v_{y_{i+1}}$ induced by the unique reduced path in $X_{\left(o\left(y_{i+1}\right)\right)^{*}}$ joining the vertices $v_{\bar{y}_{i}}$ and $v_{y_{i+1}}$ for $i=1, \ldots, n-1$. Let P be the sequence of edges $P: p_{1}, P_{1}, p_{2}, P_{2}, \ldots, p_{n-1}, P_{n-1}, p_{n}$. We need to show that P is a unique reduced path in \tilde{X} joining the subtrees $1 \otimes_{G_{u}} X_{u}$ and $g \otimes_{G_{v}} X_{v}$.

$$
\begin{aligned}
o\left(p_{1}\right) & =o\left[\left[w_{1}\right] ; y_{1}\right]=o\left[g_{0} ; y_{1}\right]=g_{0} \otimes_{G_{\left(o\left(y_{1}\right)\right)^{*}}} v_{y_{1}} \in 1 \otimes_{G_{u}} X_{u}, \\
t\left(p_{n}\right) & =t\left[\left[w_{n}\right] ; y_{n}\right]=\left[w_{n}\right]\left[y_{n}\right] \otimes_{G_{\left(t\left(y_{n}\right)\right)^{*}}} v_{\bar{y}_{n}}=\left[w_{n}\right]\left[y_{n}\right] g_{n} \otimes_{G_{\left(t\left(y_{n}\right)\right)^{*}}} v_{\bar{y}_{n}} \\
& =g \otimes_{G_{v}} v_{\bar{y}_{n}} \in g \otimes_{G_{v}} X_{v} . \\
t\left(p_{i}\right) & =t\left[\left[w_{i}\right] ; y_{i}\right]=\left[w_{i}\right]\left[y_{i}\right] \otimes_{G_{\left(t\left(y_{i}\right)\right)^{*}}} v_{\bar{y}_{i}}=\left[w_{i}\right]\left[y_{i}\right] g_{i} \otimes_{G_{\left(t\left(y_{i}\right)\right)^{*}}} v_{\bar{y}_{i}} \\
& =\left[w_{i+1}\right] \otimes_{G_{\left(o\left(y_{i+1}\right)\right)^{*}}} v_{\bar{y}_{i}}=o\left(p_{i}\right) \cdot t\left(p_{i}\right)=\left[w_{i+1}\right] \otimes_{G_{\left(o\left(y_{i+1}\right)\right)^{*}}} v_{y_{i+1}} \\
& =o\left(p_{i+1}\right) .
\end{aligned}
$$

Thus, P is a path in \tilde{X} joining the subtrees $1 \otimes_{G_{u}} X_{u}$ and $g \otimes_{G_{v}} X_{v}$. Now we show that P is reduced. Since the paths $p_{1,}, p_{2}, \ldots, p_{n-1}$ are reduced and $Y \cap X_{z}=\phi$ for all $z \in V(T)$, we need to show that $p_{i+1} \neq \bar{p}_{i}$ for $i=1, \ldots, n-1$. For if $p_{i+1}=\bar{p}_{i}$, then $\left[g_{0}\left[y_{1}\right] g_{1} \ldots .\left[y_{i}\right] g_{i} ; y_{i+1}\right]=$ $\left[g_{0}\left[y_{1}\right] g_{1} \ldots . .\left[y_{i-1}\right] g_{i-1} ; \bar{y}_{i}\right]$.

This implies that $g_{i} G_{+y_{i+1}}=G_{+\left(y_{i}\right)}$ and $+y_{i+1}=+\left(\bar{y}_{i}\right)$. So $g_{i} \in$ $G_{+y_{i+1}}$.

This contradicts above that w is a reduced word of G. Hence P is a reduced path in \widetilde{X} joining the vertices $1 \otimes_{G_{\left(o\left(y_{1}\right)\right)^{*}}} v_{y_{1}}$ and $g \otimes_{G_{v}} v_{\bar{y}_{i}}$.

Now we show that P is unique.
Let $Q: q_{1}, Q_{1}, q_{2}, Q_{2}, \ldots, q_{m-1}, Q_{m-1}, q_{m}$ be a reduced path in \widetilde{X} joining the vertices $1 \otimes_{G_{\left(o\left(y_{1}\right)\right)^{*}}} v_{y_{1}}$ and $g \otimes_{G_{v}} v_{\bar{y}_{i}}$, where $q_{j}=\left[a_{j} ; x_{j}\right], a_{j} \in G$, $x_{j} \in E(Y), j=1, \ldots, m$, and Q_{i} is defined similarly as P_{i} above. We need to show that $Q=P$. We have $o\left[a_{1} ; x_{1}\right]=1 \otimes_{G_{u}} v_{y_{1}}, t\left[a_{i} ; x_{i}\right]=$
$o\left[a_{i+1} ; x_{i+1}\right],\left[a_{i+1} ; x_{i+1}\right] \neq\left[\overline{a_{i} ; x_{i}}\right]$ for $i=1, \ldots, n-1$, and $t\left[a_{m} ; x_{m}\right]=$ $g \otimes_{G_{v}} v_{\bar{y}_{n}}$. This implies that $a_{1} \otimes_{G_{\left(o\left(x_{1}\right)\right)^{*}}} v_{x_{1}}=1 \otimes_{G_{u}} v_{y_{1}}, a_{i}\left[x_{i}\right] \otimes_{G_{\left(t\left(x_{i}\right)\right)^{*}}}$ $v_{\bar{x}_{i}}=a_{i+1} \otimes_{G_{\left(o\left(x_{i+1}\right)\right)^{*}}} v_{x_{i+1}}, a_{i+1} G_{+x_{i+1}} \neq a_{i}\left[x_{i}\right] G_{+x_{i}}$ or $x_{i+1} \neq+\bar{x}_{i}$, and $a_{m}\left[x_{m}\right] \otimes_{\left.G_{\left(t\left(x_{m}\right)\right)^{*}}\right)} v_{\bar{x}_{m}}=g \otimes_{G_{v}} v_{\bar{y}_{n}}$. Consequently $\left(o\left(x_{1}\right)\right)^{*}=u,\left(t\left(x_{i}\right)\right)^{*}=$ $\left(o\left(x_{i+1}\right)\right)^{*},\left(t\left(x_{m}\right)\right)^{*}=v, a_{1}=h_{0} \in G_{u}, a_{i+1}=a_{i}\left[x_{i}\right] h_{i}, h_{i} \in G_{\left(t\left(x_{i}\right)\right)^{*}}$ and $g=a_{m}\left[x_{m}\right] h_{m}, h_{m} \in G_{v}$. We get the word $w \prime=h_{0} \cdot x_{1} \cdot h_{1} \ldots . . x_{m} \cdot h_{m}$ such that $o\left(w^{\prime}\right)=u, t\left(w^{\prime}\right)=v$, and $[w \prime]=g . w^{\prime}$ is reduced because $x_{i+1} \neq+\bar{x}_{i}$ or $h_{i} \notin G_{+x_{i}}$. By Proposition 3 we have $m=n$ and $\left[\left[w_{i}\right] ; y_{i}\right]=\left[\left[w_{i}\right] ; x_{i}\right]$, $i=1, \ldots, n-1$. So $Q=P$. Consequently \widetilde{X} forms a tree. If G acts on X with inversions, then there exists $y \in E(Y)$ such that $G(y)=G(\bar{y})$ and $y=\bar{y}$. Then $+y=+\bar{y}$ and $\overline{[1 ; y]}=[[y] ; \bar{y}]=[y][1 ; y]$. So the element $[y]$ transfers the edge $[1 ; y]$ into its inverse [$[y] ; y]$. If $v \in V(T)$ and G_{v} acts on X_{v} with inversions, there exist $g \in G_{v}$ and $e \in E\left(X_{v}\right)$ such that $g(e)=\bar{e}$. The definition of \otimes implies that $g \otimes_{G_{v}} e=1 \otimes_{G_{v}} \bar{e}$. Then $g \otimes_{G_{v}} e=g\left(1 \otimes_{G_{v}} e\right)=1 \otimes_{G_{v}} \bar{e}=\overline{1 \otimes_{G_{v}} e}$. Consequently, G acts on \widetilde{X} with inversions. This completes the proof.

Corollary 1. Let G, X, and $X_{v}, v \in V(T)$ be as in Theorem 1. For each $e \in E(X)$, let G_{e} be finite and contains no inverter elements of $G_{t(e)}$. Then the conclusions of Theorem 1 hold. Moreover, the mapping $\mu: V(\widetilde{X}) \rightarrow V(X)$ given by $\mu\left(g \otimes_{G_{v}} w\right)=g(v)$, for all $w \in X_{v}$ is surjective, and is a G-map.

Proof. Since G_{e} is finite and contains no inverter elements of $G_{t(e)}$, therefore by Lemma 1, there exists a vertex $w \in V\left(X_{t(e)}\right)$ such that $G_{e} \leqslant\left(G_{t(e)}\right)_{w}$. Then by Theorem $1, G$ acts on \widetilde{X}, and if G acts on X with inversions, or for some $v \in V(T), G_{v}$ acts on X_{v} with inversions, then G acts on \widetilde{X} with inversions. Now if $f, g \in G$, and $u, w \in V\left(X_{v}\right)$ such that $f \otimes_{G_{v}} u=g \otimes_{G_{v}} w$, then $g^{-1} f \in G_{v}$. This implies that $g^{-1} f(v)=v$, or equivalently, $f(v)=g(v)$. Then $\mu\left(f \otimes_{G_{v}} u\right)=\mu\left(g \otimes_{G_{v}} w\right)$, and μ is well-defined. If $v \in V(X)$, and $u \in V\left(X_{v}\right)$, then it is clear that $\mu\left(1 \otimes_{G_{v}} u\right)=v$. So μ is surjective. If $f, g \in G, v \in V(X)$ and $u \in V\left(X_{v}\right)$, then $\mu\left(f\left(g \otimes_{G_{v}} u\right)\right)=\mu\left(f g \otimes_{G_{v}} u\right)=f g(v)=f\left(\mu\left(g \otimes_{G_{v}} u\right)\right)$. This implies that μ is surjective, and is a G-map. This completes the proof.

Corollary 2. Let G, X, and $X_{v}, v \in V(T)$ be as in Corollary 1. If the stabilizer of each edge of X_{v} is finite, then the stabilizer of each edge of \widetilde{X} is finite.
Proof. $E(\tilde{X})=\widehat{X} \cup\left(\underset{v \in V(T)}{\cup}\left(G \otimes_{G_{v}} E\left(X_{v}\right)\right)\right)$. Let $g \in G, v \in V(T), p \in$ $E\left(X_{v}\right)$, and $e \in E(Y)$. It is clear that the stabilizer $G_{g \otimes_{G_{v}} p}$ of the edge
$g \otimes_{G_{v}} p$ under the action of G on \widetilde{X} is $G_{g \otimes_{G_{v}} p}=g\left(G_{v}\right)_{p} g^{-1}$, where $\left(G_{v}\right)_{p}$ is the stabilizer of the edge p under the action of G_{v} on X_{v}. Since $\left(G_{v}\right)_{p}$ is finite, therefore $G_{g \otimes_{G_{v}} p}$ is finite. Similarly, that the stabilizer $G_{[g ; e]}$ of the edge $[g ; e]$ under the action of G on \widetilde{X} is $G_{[g ; e]}=g G_{+e} g^{-1}$. This completes the proof.

Now we end this section the following definition.
Definition 8. Let G be a group acting on a tree X and $(T ; Y)$ be a fundamental domain for the action of G on X. For each $v \in V(T)$, let X_{v} be a tree on which G_{v} acts, and for each $e \in E(Y)$, let G_{e} be finite and contains no inverter elements of $G_{t(e)}$. Then \widetilde{X} is called a fibered G-tree of base X and fibers $X_{v}, v \in V(T)$.

3. Accessibility of groups acting on trees

For the study of the concepts of the ends of groups we refer the readers to ([1], p. 17), or ([2], p. 124, 126), or ([11], p. 171).

The number of the ends of a group G is denoted by $e(G)$.
A finitely generated group G is called accessible on the tree X if G acts on X and satisfies the following.

1. $X^{G}=\phi$,
2. G_{e} is finite for any $e \in E(X)$,
3. $e\left(G_{v}\right) \leqslant 1$ for all $v \in V(X)$.

A group is G called accessible if there exists a tree X on which G is accessible on X.

If G is an accessible group on the tree X, then by Proposition 7.4 ([2], p. 132), there exists a tree X^{\prime} such that G acts on X^{\prime} and G is not accessible on X^{\prime}. In this case we say that G is inaccessible.

The main result of this section is the following theorem.
Theorem 2. Let G be a group acting on the tree X such that for each edge e of X, G_{e} is finite and contains no elements of $G_{t(e)}$, and for each vertex v of X, G_{v} is an accessible, and the quotient graph G / X is finite. Then G is an accessible group, and G is inaccessible on X.

Proof. The accessibility of $G_{v}, v \in V(X)$ implies that G_{v} is finitely generated. Since the quotient graph G / X is finite, therefore similar to the proof of Theorem 4.1 of [2, p. 15], we can show that G is finitely generated. Let $(T ; Y)$ be a fundamental domain for the action of G on X. Then there exists a tree X_{v} on which G_{v} acts such that $X_{v}^{G_{v}}=\phi$,
$\left(G_{v}\right)_{y}$ is finite for every $y \in E\left(X_{v}\right)$, and $e\left(G_{v}\right) \leqslant 1$. The condition G_{e} is finite and contains no inverter elements of $G_{t(e)}, e \in E(Y)$ implies that G acts on the fiber tree \tilde{X}. If $g \in G$ and $u \in V\left(X_{v}\right)$ such that $G_{g \otimes_{G v} u}=$ $g\left(G_{v}\right)_{u} g^{-1}=G$, then $\left(G_{v}\right)_{u}=G_{v}$. This contradicts the condition that $X_{v}^{G_{v}}=\phi$. So $\widetilde{X}^{G}=\phi$. If $e \in E(Y)$ and $p \in E\left(X_{v}\right), v \in V(X)$, then G_{e} and $\left(G_{v}\right)_{p}$ are finite. Then for every $g \in G, G_{[g ; e]}=g G_{+e} g^{-1}$ and $G_{g \otimes_{G_{v}} p}=g\left(G_{v}\right)_{p} g^{-1}$ are finite. For $g \in G, v \in V(T)$ and $u \in V\left(X_{v}\right)$, $e\left(G_{g \otimes u}\right)=e\left(g\left(G_{v}\right)_{u} g^{-1}\right)=e\left(\left(G_{v}\right)_{u}\right) \leqslant 1$. This implies that G is accessible on X. Consequently G is accessible. If G is accessible on X, then for every $v \in V(T), e\left(G_{v}\right) \leqslant 1$. Since G_{v} is accessible, then by Theorem 6.10 of ([2], p. 128), $e\left(G_{v}\right) \geqslant 2$. Contradiction. So G is inaccessible on X. This completes the proof.

Now we apply Theorem 2 to tree product of groups $A=\prod_{i \in I}^{*}\left(A_{i} ; U_{i j}=\right.$ $U_{j i}$) of the groups $A_{i}, i \in I$, with amalgamation subgroups $U_{i j}, i, j \in I$ introduced in [3], and to a new class of groups called quasi- $H N N$ groups introduced in [4], and defined as follows.

Let G be a group, I and J be two indexed sets such that $I \cap J=\phi$ and $I \cup J \neq \phi$. Let $\left\{A_{i}: i \in I\right\},\left\{B_{i}: i \in I\right\}$, and $\left\{C_{j}: j \in J\right\}$ be families of subgroups of G. For each $i \in I$, let $\phi_{i}: A_{i} \rightarrow B_{i}$ be an onto isomorphism and for each $j \in J$, let $\alpha_{j}: C_{j} \rightarrow C_{j}$ be an automorphism such that α_{j}^{2} is an inner automorphism determined by $c_{j} \in C$ and c_{j} is fixed by α_{j}; that is, $\alpha_{j}\left(c_{j}\right)=c_{j}$ and $\alpha_{j}^{2}(c)=c_{j} c c_{j}^{-1}$ for all $c \in C_{j}$.

The group G^{*} of the presentation

$$
\begin{aligned}
\left\langle\operatorname{gen}(G), t_{i}, t_{j}\right| \operatorname{rel}(G), t_{i} a t_{i}^{-1}=\phi_{i}(a), t_{j} c c_{j}^{-1} & =\alpha_{j}(c) \\
t_{j}^{2} & \left.=c_{j}, a \in A_{i}, c \in C_{j}\right\rangle
\end{aligned}
$$

where $i \in I, j \in J$, or simply,

$$
\begin{aligned}
& G^{*}=\left\langle\operatorname{gen}(G), t_{i}, t_{j}\right| \operatorname{rel}(G), t_{i} A_{i} t_{i}^{-1}=B_{i}, t_{j} C_{j} t_{j}^{-1}=C_{j} \\
& \\
&\left.t_{j}^{2}=c_{i}, i \in I, j \in J\right\rangle
\end{aligned}
$$

is called a quasi $H N N$ group of base H and associated pairs $\left(A_{i}, B_{i}\right)$, and $\left(C_{j}, C_{j}\right)$ of subgroups of G.

The tree product $A=\prod_{i \in I}^{*}\left(A_{i} ; U_{i j}=U_{j i}\right)$ of the groups $A_{i}, i \in I$, acts on the tree X without inversions defined as follow.

$$
\begin{aligned}
V(X) & =\left\{\left(g A_{i}, i\right): g \in A, i \in I\right\} \\
\text { and } E(X) & =\left\{\left(g U_{i j}, i j\right): g \in A, i, j \in I\right\} .
\end{aligned}
$$

If y is the edge $y=\left(g U_{i j}, i j\right)$, then $o(y)=\left(g A_{i}, i\right), t(y)=\left(g A_{j}, j\right)$, and $\bar{y}=\left(g U_{j i}, j i\right)$. A acts on X as follows.

Let $f \in A$. Then $f\left(\left(g A_{i}, i\right)\right)=\left(f g A_{i}, i\right)$ and $f\left(\left(g U_{i j}, i j\right)\right)=\left(f g U_{i j}, i j\right)$.
If $v=\left(g A_{i}, i\right) \in V(X)$ and $y=\left(g U_{j i}, i j\right) \in E(X)$, then the stabilizer of v is $A_{v}=g A_{i} g^{-1} \cong A_{i}$, a conjugate of A_{i}, and then the stabilizer of y is $A_{y}=g U_{i j} g^{-1} \cong U_{i j}$, a conjugate of $U_{i j}$. The orbit of v is $A(v)=\left\{\left(a g A_{i}, i\right)\right.$: $a \in A, i \in I\}$, and the orbit of y is $A(y)=\left\{\left(a g U_{i j}, i j\right): a \in A, i, j \in I\right\}$.

So the quotient graph A / X is finite if I is finite. This leads the following proposition as an application to Theorem 2.

Proposition 4. Let $A=\prod_{i \in I}^{*}\left(A_{i} ; U_{i j}=U_{j i}\right)$ be a tree product of the groups $A_{i}, i \in I$, such that A_{i} is accessible, and $U_{i j}$ is finite and contains no inverter element of A_{i} for all $i, j \in I$. If I is finite, then A is accessible.

A free product of groups with amalgamated subgroup is a special case of tree product of the groups, we state the following corollary of Proposition 4.

Corollary 3. Let $A=*_{c} A_{i}, i \in I$, be the free product of the groups A_{i}, $i \in I$ with amalgamation subgroup C such that A_{i} is accessible, and C is finite and contains no inverter element of A_{i} for all $i, j \in I$. If I is finite, then A is accessible.

It is shown in [6] that the quasi- $H N N$ group

$$
\begin{aligned}
G^{*}=\left\langle\operatorname{gen}(G), t_{i}, t_{j}\right| \operatorname{rel}(G), t_{i} A_{i} t_{i}^{-1}=B_{i}, t_{j} C_{j} t_{j}^{-1} & =C_{j} \\
t_{j}^{2} & \left.=c_{i}, i \in I, j \in J\right\rangle
\end{aligned}
$$

acts on the tree X with inversions defined as follow.

$$
V(X)=\left\{g G: g \in G^{*}\right\}, \text { and } E(X)=\left\{\left(g B_{i}, t_{i}\right),\left(g A_{i}, t_{i}\right),\left(g C_{j}, t_{j}\right)\right\}
$$

where $g \in G^{*}, i \in I$, and $j \in J$. For the edges $\left(g B_{i}, t_{i}\right),\left(g A_{i}, t_{i}\right)$, and $\left(g C_{j}, t_{j}\right), i \in I, j \in J$, define $o\left(g B_{i}, t_{i}\right)=o\left(g A_{i}, t_{i}\right)=o\left(g C_{j}, t_{j}\right)=$ $g G, t\left(g B_{i}, t_{i}\right)=g t_{i} G, t\left(g A_{i}, t_{i}\right)=g t_{i}^{-1} G$, and $t\left(g C_{j}, t_{j}\right)=g t_{j} G$, and $\overline{\left(g B_{i}, t_{i}\right)}=\left(g t_{i} A_{i}, t_{i}^{-1}\right), \overline{\left(g A_{i}, t_{i}^{-1}\right)}=\left(g t_{i}^{-1} B_{i}, t_{i}\right)$, and $\overline{\left(g C_{j}, t_{j}\right)}=\left(g t_{j} C_{j}, t_{j}\right)$.
G^{*} acts on X as follows. Let $f \in G^{*}$. Then for the vertex $g G$ and the edges $\left(g B_{i}, t_{i}\right),\left(g A_{i}, t_{i}^{-1}\right)$, and $\left(g C_{j}, t_{j}\right)$ of X, define $f(g G)=$ $f g G, f\left(g B_{i}, t_{i}\right)=\left(f g B_{i}, t_{i}\right), f\left(g A_{i}, t_{i}^{-1}\right)=\left(f g A_{i}, t_{i}^{-1}\right)$, and $f\left(g C_{j}, t_{j}\right)=$ $\left(f g C_{j}, t_{j}\right)$.

The action of G^{*} on X is with inversions because the element $t_{j} \in$ G^{*} maps the edge $\left(C_{j}, t_{j}\right)$ to its inverse $\overline{\left(C_{j}, t_{j}\right)}$; that is, $t_{j}\left(C_{j}, t_{j}\right)=$ $\left(t_{j} C_{j}, t_{j}\right)=\overline{\left(C_{j}, t_{j}\right)}$

The stabilizer of the vertex $v=g G$ is, $G_{v}^{*}=g G g^{-1}$, a conjugate of G, the stabilizers of the edges $\left(g B_{i}, t_{i}\right), f\left(g A_{i}, t_{i}^{-1}\right)$, and $\left(g C_{j}, t_{j}\right)$ are $g B_{i} g^{-1}$, conjugates of $B_{i}, g A_{i} g^{-1}$, a conjugate of A_{i}, and $g C_{j} g^{-1}$, a conjugate of C_{j} respectively, for all $i \in I$, and all $j \in J$.

The orbits of $g G,\left(g B_{i}, t_{i}\right), f\left(g A_{i}, t_{i}^{-1}\right)$, and $\left(g C_{j}, t_{j}\right)$ are $\{f G: f \in$ $\left.G^{*}\right\},\left\{\left(f B_{i}, t_{i}\right): f \in G^{*}\right\}$, and $\left\{\left(f C_{j}, t_{j}\right): f \in G^{*}\right\}$. Then the quotient graph G^{*} / X is finite if $I \cup J$ is finite. This leads the following proposition as an application to Theorem 2.

Proposition 5. Let G^{*} be the quasi-HNN group

$$
\begin{aligned}
G^{*}=\left\langle\operatorname{gen}(G), t_{i}, t_{j}\right| \operatorname{rel}(G), t_{i} A_{i} t_{i}^{-1}=B_{i}, t_{j} C_{j} t_{j}^{-1} & =C_{j} \\
& \left.t_{j}^{2}=c_{i}, i \in I, j \in J\right\rangle
\end{aligned}
$$

such that G is accessible, A_{i}, B_{i}, and C_{j} are finite and contain no inverter elements of G. If $I \cup J$ is finite, then G^{*} is accessible.

By taking $J=\phi$ in the group G^{*} defined above, yields the the following corollary of Proposition 5.

Corollary 4. Let G^{*} be the HNN group

$$
G^{*}=\left\langle\operatorname{gen}(G), t_{i} \mid \operatorname{rel}(G), t_{i} A_{i} t_{i}^{-1}=B_{i}, i \in I\right\rangle
$$

such that G is accessible, A_{i}, and B_{i} are finite and contain no inverter elements of G. If I is finite, then G^{*} is accessible.

References

[1] D. E. Cohen, Groups of cohomological dimension one, Springer Lecture Notes 245, 1972.
[2] W. Dicks and M. J. Dunwoody, Groups acting on graphs, Cambridge University Press, 1989.
[3] A. Karrass and D. Solitar, The subgroups of a free product of two groups with an amalgamated subgroup, Trans. Amer. Math. Soc., 150, 1970, pp.227-255.
[4] M. I. Khanfar and R. M. S. Mahmood, On quasi HNN groups, Kuwait J. Sci. Engrg. 29, 2002, no.2, pp.13-24.
[5] M. I. Khanfar and R. M. S. Mahmud, A note on groups acting on connected graphs, J. Univ. Kuwait Sci. 16, 1989, no.2, pp.205-208.
[6] R. M. S. Mahmood and M. I. Khanfar, On invertor elements and finitely generated subgroups of groups acting on trees with inversions. Int. J. Math. Math. Sci. 23, 2000, no.9, pp.585-595.
[7] R. M. S. Mahmood and M. I. Khanfar, Subgroups of quasi-HNN groups, Int. J. Math. Math. Sci. 31, 2002, no.12, pp.731-743.
[8] R. M. S. Mahmud, The normal form theorem of groups acting on trees with inversions. J. Univ. Kuwait Sci. 18, 1991, pp.7-16.
[9] R. M. S. Mahmud, Presentation of groups acting on trees with inversions, Proc. R. Soc. Edinb., Sect. A, 113, 1989, no.3-4, pp.235-241.
[10] J-P. Serre, Trees, Translated by John Stillwell, Springer-Verlag, 1980.
[11] C. T. C. Wall, Homological Group Theory, London Mathematical Society, Lecture Notes Series, vol.36, Cambridge University Press, Cambridge, 1979.

Contact information

R. M. S. Mahmood Department of Mathematics, Irbid National University, P. O. Box 2600, Irbid, Jordan. E-Mail(s): rasheedmsm@yahoo.com

Received by the editors: 16.04.2013
and in final form 07.11.2014.

[^0]: *The author would like to thank the referee for his(her) help and suggestions to improve the first draft of this paper.

 2000 MSC: 20E06, 20E086, 20F05.
 Key words and phrases: Ends of groups, groups acting on trees, accessible groups.

