Algebra and Discrete Mathematics Volume **19** (2015). Number 2, pp. 229–242 © Journal "Algebra and Discrete Mathematics"

On fibers and accessibility of groups acting on trees with inversions

Rasheed Mahmood Saleh Mahmood*

Communicated by V. A. Artamonov

ABSTRACT. Throughout this paper the actions of groups on graphs with inversions are allowed. An element g of a group G is called inverter if there exists a tree X where G acts such that g transfers an edge of X into its inverse. A group G is called accessible if G is finitely generated and there exists a tree on which G acts such that each edge group is finite, no vertex is stabilized by G, and each vertex group has at most one end.

In this paper we show that if G is a group acting on a tree X such that if for each vertex v of X, the vertex group G_v of v acts on a tree X_v , the edge group G_e of each edge e of X is finite and contains no inverter elements of the vertex group $G_{t(e)}$ of the terminal t(e) of e, then we obtain a new tree denoted \tilde{X} and is called a fiber tree such that G acts on \tilde{X} . As an application, we show that if G is a group acting on a tree X such that the edge group G_e for each edge e of X is finite and contains no inverter elements of $G_{t(e)}$, the vertex G_v group of each vertex v of X is accessible, and the quotient graph G/X for the action of G on X is finite, then G is an accessible group.

^{*}The author would like to thank the referee for his(her) help and suggestions to improve the first draft of this paper.

²⁰⁰⁰ MSC: 20E06, 20E086, 20F05.

Key words and phrases: Ends of groups, groups acting on trees, accessible groups.

Introduction

The theory of groups acting on trees without inversions known Bass-Serre theory is introduced in [2] and [10], and with inversions is introduced in [9]. The concepts of the fibers of groups acting on trees without inversions were introduced in ([2], p. 78). In this paper we generalize such concepts to the case where the actions of groups on trees with inversions are allowed, and have applications. This paper is divided into 3 sections. In section 1, we introduce the concept of groups acting on trees with inversions. In section 2, we use the results of section 1 to obtain new trees called the fibers of groups acting on trees with inversions. In section 3, we use the results of section 2 to have applications.

1. Groups acting on trees

We begin with general background. A graph X consists of two disjoint sets V(X), (the set of vertices of X) and E(X), (the set of edges of X), with V(X) non-empty, together with three functions $\partial_0 : E(X) \to V(X)$, $\partial_1 : E(X) \to V(X)$, and $\eta : E(X) \to E(X)$ is an involution satisfying the conditions that $\partial_0 \eta = \partial_1$ and $\partial_1 \eta = \partial_0$. For simplicity, if $e \in E(X)$, we write $\partial_0(e) = o(e)$, $\partial_1(e) = t(e)$, and $\eta(e) = \overline{e}$. This implies that $o(\overline{e}) = t(e), t(\overline{e}) = o(e)$, and $\overline{e} = e$. The case $\overline{e} = e$ is allowed. For the edge e, o(e) and t(e) are called the ends of e, and \overline{e} is called the inverse of e. By a path P of X we mean a sequence y_1, \dots, y_n of edges of Xsuch that $t(y_j) = o(y_{j+1})$ for $j = 1, \dots, n-1$. P is reduced if $y_{i+1} \neq \overline{y}_i$, $i = 1, \dots, n-1$.

The origin o(P) and the terminal t(P) of P are defined as $o(P) = o(y_1)$, and $t(P) = t(y_n)$. There are obvious definitions of subgraphs, circuits, morphisms of graphs and Aut(X), the set of all automorphisms of the graph X which is a group under the composition of morphisms of graphs. For more details, the interested readers are referred to [2], [9], and [10]. We say that a group G acts on a graph X, (or X is a G-graph) if there is a group homomorphism $\phi : G \to Aut(X)$. In this case, if $x \in X$ (vertex or edge) and $g \in G$, we write g(x) for $(\phi(g))(x)$. Thus, if $g \in G$, and $y \in E(X)$, then g(o(y)) = o(g(y)), g(t(y)) = t(g(y)), and $g(\overline{y}) = \overline{g(y)}$. The case the actions with inversions are allowed. That is; $g(y) = \overline{y}$ is allowed for some $g \in G$, and $y \in E(X)$. In this case we say that g is an inverter element of G and y is called an inverted edge of X.

If X and Y are G-graphs, and $\mu: V(X) \to V(Y)$ is a map, then μ is called G-map if $\mu(g(x)) = g(\mu(x))$ for all $x \in V(X)$.

Convention. If the group G acts on the graph X and $x \in X$, (x is a vertex or edge), then

1. The stabilizer of x, (or the x group) denoted G_x is defined to be the set $G_x = \{g \in G: g(x) = x\}$. It is clear that $G_x \leq G$, and if $x \in E(X)$, and $u \in \{o(x), t(x)\}$, then $G_{\overline{x}} = G_x$ and $G_x \leq G_u$.

2. The orbit of x denoted G(x) and is defined to be the set $G(x) = \{g(x) : g \in G\}$. It is clear that G acts on the graph X without inversions if and only if $G(\overline{e}) \neq G(e)$ for any $e \in E(X)$.

3. The set of the orbits G/X of the action of G on X is defined as $G/X = \{G(x) : x \in X\}$. G/X forms a graph called the quotient graph of the action of G on X, where $V(G/X) = \{G(v) : v \in V(X)\}$, $E(G/X) = \{G(e) : e \in E(X)\}$, and if $e \in E(X)$, then o(G(e)) = G(o(e)), t(G(e)) = G(t(e)), and $\overline{G(e)} = G(\overline{e})$. The map $p : X \to G/X$ given by p(x) = G(x) is an onto morphism of graphs. If X is connected, then G/X is connected.

4. The set of elements of X fixed by G is the set $X^G = \{x \in X : G_x = G\}$.

Definition 1. Let G be a group acting on a tree X with inversions and let T and Y be two subtrees of X such that $T \subseteq Y$, and each edge of Y has at least one end in T. Assume that T and Y are satisfying the following.

(i) T contains exactly one vertex from each vertex orbit.

(ii) Y contains exactly one edge y(say) from edge orbit if $G(y) \neq G(\overline{y})$ and exactly one pair x, \overline{x} from each edge orbit if $G(x) = G(\overline{x})$. Then

(1) T is called a tree of representatives for the action of G on X,

(2) Y is called a transversal for the action of G on X.

For simplicity we say that (T; Y) is a fundamental domain for the action of G on X.

For the existence of fundamental domains we refer the readers to [5]. For the rest of this section, G is a group acting on a tree X with inversions, and (T; Y) is a fundamental domain for the action of G on X.

The properties of T and Y imply the following that for any $v \in V(X)$ there exists a unique vertex denoted v^* of T and an element g (not unique) of G such that $g(v^*) = v$; that is, $G(v^*) = G(v)$. Moreover, if $v \in V(T)$, then $v^* = v$.

Definition 2. For each $y \in E(Y)$, let [y] be an element of G chosen as follows.

(a) if $o(y) \in V(T)$, then $[y]((t(y))^*) = t(y)$, [y] = 1 in case $y \in E(T)$, and $y = \overline{y}$ if $G(y) = G(\overline{y})$,

(b) if $t(y) \in V(T)$, then $[y](o(y)) = (o(y))^*$, $[y] = [\overline{y}]^{-1}$ if $G(y) \neq G(\overline{y})$, and $[y] = [\overline{y}]$ if $G(y) = G(\overline{y})$.

Proposition 1. G is generated by G_v and [e], where v runs over V(T) and e runs over E(Y).

Proof. See Lemma 4.4 of [9].

The proof of the following proposition is clear.

Proposition 2. For each edge $y \in E(Y)$, let $[y][\overline{y}] = \delta_y$. Then $\delta_y = 1$ if $G(y) \neq G(\overline{y})$, and $\delta_y = [y]^2 \in G_y$ if $G(y) = G(\overline{y})$. Moreover $[y] \notin G_{(t(y))^*}$, if $y \notin E(T)$.

Definition 3. For each $y \in E(Y)$, let +y be the edge +y = y if $o(y) \in V(T)$, and +y = y if $t(y) \in V(T)$.

It is clear that if $G(y) = G(\overline{y})$ or $y \in E(T)$, then $G_{+y} = G_y$. Furthermore, if x and y are two edges of Y such that +x = +y, then x = y or $x = \overline{y}$.

Definition 4. By a word w of G we mean an expression of the form $w = g_0, g_0 \in G_v, v \in V(T)$, or, $w = g_0.y_1.g_1...y_n.g_n, n > 0, y_i \in E(Y)$ for i = 1, ..., n such that the following hold.

- (1) $g_0 \in G_{(o(y_1))^*}$,
- (2) $(t(y_i))^* = (o(y_{i+1}))^*$, for i = 1, 2, ..., n-1,

(3) $g_i \in G_{(t(y_i))^*}$, for i = 1, 2, ..., n.

We define $o(w) = (o(y_1))^*$ and $t(w) = (t(y_n))^*$. If o(w) = t(w) = v, then w is called a closed word of G.

We have the following concepts related to the word w defined above.

(i) The value of w is denoted by [w] and defined to be the element of

$$[w] = g_0[y_1]g_1...[y_n]g_n$$
 of G.

(ii) w reduced if either n = 0 and $g_0 \neq 1$, or else n > 0 and w contains no subword of the following forms:

$$y_i g_i \overline{y}_i$$
 if $g_i \in G_{+(y_i)}$, and $+y_{i+1} = +(\overline{y}_i)$, $i = 1, \dots, n$.

(iii) For each i, i = 1, ..., n, let $w_i = g_0.y_1.g_1...y_{i-1}.g_{i-1}$ with convention $w_1 = g_0$.

Definition 5. For $g \in G$ and $e \in E(Y)$ let [g;e] be the ordered pair $[g;e] = (gG_{+e};+e)$.

Remark 1. If w is a reduced word of G and $y \in E(Y)$, no confusion will be confused by [w], the value of w, and the ordered pair [[w]; y].

Proposition 3. Let $w = g_0.y_1.g_1...y_n.g_n$ and $w' = h_0.x_1.h_1...x_m.h_m$ be two reduced words of G such that o(w) = o(w'), t(w) = t(w'), and [w] = [w']. Then m = n and, $[[w_i]; y_i] = [[w'_i]; x_i]$ for i = 1, ..., n.

Proof. We have $[w'][w]^{-1} = 1$. Let $\widetilde{w} = g_n^{-1} \delta_{y_n}^{-1} \overline{y}_n \dots g_1^{-1} \delta_{y_1}^{-1} \overline{y}_1 \dots g_0^{-1}$. It is clear that \widetilde{w} is a reduced word of G and $[\widetilde{w}] = [w]^{-1}$. Then $w_0 = w_0^{-1} = w_0^{-1}$.

It is clear that \widetilde{w} is a reduced word of G and $[\widetilde{w}] = [w]^{-1}$. Then $w_0 = \widetilde{w}w' = g_n^{-1}\delta_{y_n}^{-1}.\overline{y}_n....g_1^{-1}\delta_{y_1}^{-1}.\overline{y}_1.g_0^{-1}h_0.x_1.h_1....x_m.h_m$ is a word of G. For each i = 0, 1, ..., n, let

, , , , ,

$$L_{i} = g_{i}^{-1} \delta_{y_{i}}^{-1} [\overline{y}_{i}] \dots g_{1}^{-1} \delta_{y_{1}}^{-1} [\overline{y}_{1}] g_{0}^{-1} h_{0} [x_{1}] h_{1} \dots [x_{i}] h_{i}$$

with convention that $L_0 = g_0^{-1}h_0$. Since $[y][\overline{y}] = \delta_y$ for every $y \in E(Y)$, therefore $L_i = g_i^{-1}[y_i]^{-1} \dots g_1^{-1}[y_1]^{-1} g_0^{-1}h_0[x_1]h_1 \dots [x_i]h_i$. Moreover, $L_i = g_i^{-1}[y_i]^{-1} L_{i-1}[x_i]h_i$. Since $[w_0] = 1$, the identity element of G, therefore by Corollary 1 of [8], w_0 is not reduced. Since \widetilde{w} and w' are reduced, the only way that the indicated word w_0 can fail to be reduced is that m = n, and for $i = 1, \dots, n, +x_i = +\overline{y_i} = +y_i$ and $L_{i-1} \in G_{+(x_i)} = G_{+(y_i)}$.

The case $L_{i-1} \in G_{+(x_i)} = G_{+(y_i)}$ implies that $[w_i]^{-1}[w'_i] \in G_{+(\overline{x_i})} = G_{+(\overline{y_i})}$. Then $[w_i]G_{+(y_i)} = [w'_i]G_{+(x_i)}$. Consequently $[[w_i]; y_i] = [[w'_i]; x_i]$, $i = 1, \ldots, n-1$. This completes the proof.

2. Fibers of groups acting on trees

We begin some general background taken from ([2], p. 78).

Definition 6. Let H be a subgroup of the group G and H acts on the set X. Define \equiv to be the relation on $G \times X$ defined as $(f, u) \equiv (g, v)$, if there exists $h \in H$ such that f = gh and $u = h^{-1}(v)$. It is easy to show that \equiv is an equivalence relation on $G \times X$. The equivalence class containing (f, u) is denoted by $f \otimes_H u$. Thus, $f \otimes_H u = \{(fh, h^{-1}(u)) : h \in H\}$.

Consequently, if $f \otimes_H u = g \otimes_H v$, then f = gh and $u = h^{-1}(v), h \in H$. So $f \otimes_H u = fh \otimes_H h^{-1}(u)$ for all $h \in H$.

Let $g \in G$ and $A \subseteq H$. Define $g \otimes_H A = \{g \otimes_H a : a \in A\}$, and

$$G \otimes_H X = \{g \otimes_H x : g \in G, x \in X\}.$$

It is clear that $1 \otimes_H x = h \otimes_H x$ for all $h \in H_x$, the stabilizer of x under the action of H on X. It is easy to show that the rule $f(g \otimes_H x) = fg \otimes_H x$ for

all $f, g \in G$, and all $x \in X$ defines an action of G on $G \otimes_H X$. The stabilizer $G_{g \otimes_H} x$ of $g \otimes_H x$ under the action of G on $G \otimes_H X$ is $G_{g \otimes_H} x = g H_x g^{-1}$ and the orbit $G(g \otimes_H x)$ of $g \otimes_H x$ under the action of G on $G \otimes_H X$ is $G \otimes_H H(x)$ where H(x) is the orbit of x under the action of H on X.

Remark 2. $x \in X$ means x is a vertex or an edge of X.

Definition 7. Let G be a group acting on a tree X and (T; Y) be a fundamental domain for the action of G on X. For each $v \in V(T)$, let X_v be a tree on which G_v acts; (X_v could consist of the single vertex $\{v\}$) and let \hat{X} be the set $\hat{X} = \{[g; e] : g \in G, e \in E(Y)\}$, and \tilde{X} be the set $\tilde{X} = \hat{X} \cup (\bigcup_{v \in V(T)} (G \otimes_{G_v} X_v)).$

The following lemma is a generalization of Corollary 4.9 of ([2], p. 18) and is essential for the proof of the main result of this section.

Lemma 1. Let G be a group acting on a tree X and H be a finite subgroup of G such that H contains no inverter elements of G. Then H is in G_v for some $v \in V(X)$.

Proof. If G acts on X without inversions, then G contains no inverter elements and by ([2], p. 18) H is in G_v for some $v \in V(X)$. Let G act on X with inversions and $g \in H$ be an inverter element. Then $g(e) = \overline{e}$ for some $e \in E(X)$. This implies that g(o(e)) = t(e). Now we show that $g \notin G_v$ for any $v \in V(X)$. If $g \in G_v$, then there is a unique reduced path $e_1, e_2, ..., e_n$ in X joining o(e) and v. Then $g(e_1), g(e_2), ..., g(e_n)$ is a unique reduced path in X joining g(o(e)) = t(e) and g(v) = v. Then $\overline{e}, g(e_1), g(e_2), ..., g(e_n)$ is a path in X joining g(o(e)) = t(e) and g(v) = v but not reduced because X is a tree. Therefore $e = g(e_1)$ and $g(e_2), ..., g(e_n)$ is a reduced path in X joining t(e) and v. Thus, the vertices t(e) and v are joined in X by two distinct reduced paths. This contradicts the assumption that X is tree. This completes the proof.

Remark 3. In Lemma 1 if $g \in G$ and $e \in E(X)$ such that $g(e) = \overline{e}$, then $g^2(e) = g(\overline{e}) = \overline{g(e)} = \overline{\overline{e}} = e$. This implies that $g \notin G_e$ and $g^2 \in G_e$.

If $G_e = \{1\}$, then the subgroup $H = \{1, g\}$ is finite, but H is not contained in G_e for any $v \in V(X)$.

Theorem 1. Let G be a group acting on a tree X and (T; Y) be a fundamental domain for the action of G on X. For each $v \in V(T)$, let X_v be a tree on which G_v acts such that for each $e \in E(X)$, $o(e) \in V(T)$, the stabilizer G_e is in a vertex stabilizer $(G_{o(e)})_w$, $w \in V(X_{o(e)})$.

Then \widetilde{X} forms a tree and G acts on \widetilde{X} . Furthermore, if G acts on X with inversions, or for some $v \in V(T), G_v$ acts on X_v with inversions, then G acts on \widetilde{X} with inversions.

Proof. For each edge $e \in E(Y)$ it is clear that $o(+e) = (o(e))^* \in V(T)$ and $G_{+y} \leq G_{(o(y))^*}$. By assumption there exists a vertex denoted v_e such that $v_e \in V(X_{o(e)})$ and $G_e \leq (G_{o(e)})_{v_e}$, where $(G_{o(e)})_{v_e}$ is the vertex stabilizer of the vertex v_e under the action of $G_{o(e)}$ on $X_{o(e)}$. Now we show that \tilde{X} forms a graph. The set of vertices $V(\tilde{X})$ of \tilde{X} is defined to be the set $V(\tilde{X}) = \bigcup_{v \in V(T)} (G \otimes_{G_v} V(X_v))$ and the set of edges $E(\tilde{X})$ of \tilde{X} is defined to be the set $E(\tilde{X}) = \hat{X} \cup (\bigcup_{v \in V(T)} (G \otimes_{G_v} E(X_v))$. It is clear that $V(\tilde{X}) \neq \phi$ and $V(\tilde{X}) \cap E(\tilde{X}) = \phi$. The ends and the inverses of the edges of \tilde{X} are defined as follows. Let $g \in G$, $v \in V(T)$, and $e \in E(X_v)$. Define the ends and the inverse of the edge $g \otimes_{G_v} e$ as follows.

$$t(g \otimes_{G_v} e) = g \otimes_{G_v} t(e), o(g \otimes_{G_v} e) = g \otimes_{G_v} o(e) \text{ and } \overline{g \otimes_{G_v} e} = g \otimes_{G_v} \overline{e},$$

where t(e), o(e), and \overline{e} are the ends and the inverse of the edge e in X_v .

If $e \in E(Y)$, we define the ends and the inverse of the edge [g; e] as follows. $o[g; e] = g \otimes_{G_{(o(e))^*}} v_e, t[g; e] = g[e] \otimes_{G_{(t(e))^*}} v_{\overline{e}}$ and $\overline{[g; e]} = [g[e]; \overline{e}]$. Then $\overline{[g; e]} = [g[e][\overline{e}]; \overline{e}] = [g; e]$ because $[e][\overline{e}] \in G_{+e}$. These definitions show that \widetilde{X} forms a graph. For $g \in G$ and $v \in V(T)$, let $g \otimes_{G_v} X_v =$ $\{g \otimes_v u : u \in X_v\}$. It is clear that the elements of $g \otimes_{G_v} X_v$ are distinct and $g \otimes_{G_v} X_v$ forms a subtree of \widetilde{X} , where $V(g \otimes_{G_v} X_v) = g \otimes_{G_v} V(X_v)$ and $E(g \otimes_{G_v} X_v) = g \otimes_{G_v} E(X_v)$. Then $g \otimes_{G_v} X_v = 1 \otimes_{G_v} X_v, g \in G_v$. We observe that if $g \in G, v \in V(T), v_1$ and v_2 are two vertices of $V(X_v)$, and $P: e_1, e_2, \dots, e_n$ is a reduced path in X_v joining v_1 and v_2 then it is clear that $g \otimes_{G_v} P: g \otimes_{G_v} e_1, g \otimes_{G_v} e_2, \dots, g \otimes_{G_v} e_n$ is a reduced path in $g \otimes_{G_v} X_v$ joining the vertices $g \otimes_{G_v} v_1$ and $g \otimes_{G_v} v_2$ of $g \otimes_{G_v} X_v$. We call $g \otimes_{G_v} v_2$ in $g \otimes_{G_v} X_v$ induced by the reduced path in X_v joining v_1 and v_2 . We note that P could consist of a single vertex. Now we show that \widetilde{X} forms a tree. First we show that \widetilde{X} contains no loops.

For, if $g \in G$ and $e \in E(Y)$ such that o[g; e] = t[g; e], then $g \otimes_{G_{(o(e))^*}} v_e = g[e] \otimes_{G_{(t(e))^*}} v_{\overline{e}}$. This implies that $(o(e))^* = (t(e))^*$ and $[e] \in G_{(o(e))^*}$. If $e \in E(T)$ then [e] = 1 and the case $(o(e))^* = (t(e))^*$ implies that o(e) = t(e). So e is a loop. This is impossible because X is a tree. So $e \notin E(T)$ and $[e] \in G_{(o(e))^*}$. This contradicts Proposition 2. If $g \in G$ and $e \in E(X_v)$ such that $t(g \otimes_{G_{(t(e))^*}} e) = o(g \otimes_{G_{(o(e))^*}} e)$, then $g \otimes_{G_{(t(e))^*}} t(e) = g \otimes_{G_{(o(e))^*}} o(e)$. This implies that t(e) = o(e). So e is a loop in X_v . This contradicts the fact that X_v is a tree. Let $g \in G$ and, u and v be two vertices of T. We need to show that the subtrees $1 \otimes_{G_u} X_u$ and $g \otimes_{G_v} X_v$ of \widetilde{X} are joined by exactly one reduced path in \widetilde{X} . By Lemma 2.7 of [7], there exists a reduced word $w = g_0.y_1.g_1....y_n.g_n$ of G such that o(w) = u, t(w) = v, and $[w] = g = g_0[y_1]g_1....[y_n]g_n$. Then $(o(y_1))^* = u$, $(t(y_n))^* = v$, $g_0 \in G_u$, $g_i \in G_{(t(y_i))^*}$, $i = 1, \ldots, n$.

Furthermore, $(t(y_i))^* = (o(y_{i+1}))^*$, and, v_{y_i} and $v_{\overline{y}_{i+1}}$ are in $X_{(o(y_{i+1}))^*}$ for i = 1, ..., n - 1. For i = 1, ..., n, let $[w_i] = g_0[y_1]g_1....[y_{i-1}]g_{i-1}$ with convention that $[w_1] = g_0$, and let p_i be the edge $p_i = [[w_i]; y_i]$. Let P_i be the unique reduced path in $[w_{i+1}] \otimes_{G_{(o(y_{i+1}))^*}} X_{(o(y_{i+1}))^*}$ joining the vertices and $[w_{i+1}] \otimes_{G_{(o(y_{i+1}))^*}} v_{\overline{y}_i}$ and $[w_{i+1}] \otimes_{G_{(o(y_{i+1}))^*}} v_{y_{i+1}}$ induced by the unique reduced path in $X_{(o(y_{i+1}))^*}$ joining the vertices $v_{\overline{y}_i}$ and $v_{y_{i+1}}$ for i = 1, ..., n - 1. Let P be the sequence of edges $P: p_1, P_1, p_2, P_2, ..., p_{n-1}, P_{n-1}, p_n$. We need to show that P is a unique reduced path in \widetilde{X} joining the subtrees $1 \otimes_{G_u} X_u$ and $g \otimes_{G_v} X_v$.

$$\begin{split} o(p_1) &= o[[w_1]; y_1] = o[g_0; y_1] = g_0 \otimes_{G_{(o(y_1))^*}} v_{y_1} \in 1 \otimes_{G_u} X_u, \\ t(p_n) &= t[[w_n]; y_n] = [w_n][y_n] \otimes_{G_{(t(y_n))^*}} v_{\overline{y}_n} = [w_n][y_n]g_n \otimes_{G_{(t(y_n))^*}} v_{\overline{y}_n} \\ &= g \otimes_{G_v} v_{\overline{y}_n} \in g \otimes_{G_v} X_v. \\ t(p_i) &= t[[w_i]; y_i] = [w_i][y_i] \otimes_{G_{(t(y_i))^*}} v_{\overline{y}_i} = [w_i][y_i]g_i \otimes_{G_{(t(y_i))^*}} v_{\overline{y}_i} \\ &= [w_{i+1}] \otimes_{G_{(o(y_{i+1}))^*}} v_{\overline{y}_i} = o(p_i).t(p_i) = [w_{i+1}] \otimes_{G_{(o(y_{i+1}))^*}} v_{y_{i+1}} \\ &= o(p_{i+1}). \end{split}$$

Thus, P is a path in \tilde{X} joining the subtrees $1 \otimes_{G_u} X_u$ and $g \otimes_{G_v} X_v$. Now we show that P is reduced. Since the paths $p_{1,p_2,\ldots,p_{n-1}}$ are reduced and $Y \cap X_z = \phi$ for all $z \in V(T)$, we need to show that $p_{i+1} \neq \overline{p}_i$ for $i = 1, \ldots, n-1$. For if $p_{i+1} = \overline{p}_i$, then $[g_0[y_1]g_1....[y_i]g_i; y_{i+1}] = [g_0[y_1]g_1....[y_{i-1}]g_{i-1}; \overline{y}_i]$.

This implies that $g_i G_{+y_{i+1}} = G_{+(y_i)}$ and $+y_{i+1} = +(\overline{y}_i)$. So $g_i \in G_{+y_{i+1}}$.

This contradicts above that w is a reduced word of G. Hence P is a reduced path in \widetilde{X} joining the vertices $1 \otimes_{G_{(o(y_1))^*}} v_{y_1}$ and $g \otimes_{G_v} v_{\overline{y}_i}$.

Now we show that P is unique.

Let $Q: q_1, Q_1, q_2, Q_2, ..., q_{m-1}, Q_{m-1}, q_m$ be a reduced path in X joining the vertices $1 \otimes_{G_{(o(y_1))^*}} v_{y_1}$ and $g \otimes_{G_v} v_{\overline{y}_i}$, where $q_j = [a_j; x_j], a_j \in G$, $x_j \in E(Y), j = 1, ..., m$, and Q_i is defined similarly as P_i above. We need to show that Q = P. We have $o[a_1; x_1] = 1 \otimes_{G_u} v_{y_1}, t[a_i; x_i] =$

 $o[a_{i+1}; x_{i+1}], [a_{i+1}; x_{i+1}] \neq \overline{[a_i; x_i]}$ for $i = 1, \dots, n-1$, and $t[a_m; x_m] =$ $g \otimes_{G_v} v_{\overline{y}_n}$. This implies that $a_1 \otimes_{G_{(o(x_1))^*}} v_{x_1} = 1 \otimes_{G_u} v_{y_1}, a_i[x_i] \otimes_{G_{(t(x_i))^*}} v_{x_1} = 1 \otimes_{G_u} v_{y_1}$. $v_{\overline{x}_i} = a_{i+1} \otimes_{G_{(o(x_{i+1}))^*}} v_{x_{i+1}}, a_{i+1}G_{+x_{i+1}} \neq a_i[x_i]G_{+x_i} \text{ or } x_{i+1} \neq +\overline{x}_i, \text{ and}$ $a_m[x_m] \otimes_{G_{(t(x_m))^*}} v_{\overline{x}_m} = g \otimes_{G_v} v_{\overline{y}_n}$. Consequently $(o(x_1))^* = u, (t(x_i))^* = u$ $(o(x_{i+1}))^*, (t(x_m))^* = v, a_1 = h_0 \in G_u, a_{i+1} = a_i[x_i]h_i, h_i \in G_{(t(x_i))^*}$ and $g = a_m[x_m]h_m, h_m \in G_v$. We get the word $w' = h_0.x_1.h_1....x_m.h_m$ such that o(w') = u, t(w') = v, and [w'] = g. w' is reduced because $x_{i+1} \neq +\overline{x}_i$ or $h_i \notin G_{+x_i}$. By Proposition 3 we have m = n and $[[w_i]; y_i] = [[w_i]; x_i]$, $i = 1, \ldots, n - 1$. So Q = P. Consequently X forms a tree. If G acts on X with inversions, then there exists $y \in E(Y)$ such that $G(y) = G(\overline{y})$ and $y = \overline{y}$. Then $+y = +\overline{y}$ and $[1; y] = [[y]; \overline{y}] = [y][1; y]$. So the element [y] transfers the edge [1; y] into its inverse [[y]; y]. If $v \in V(T)$ and G_v acts on X_v with inversions, there exist $g \in G_v$ and $e \in E(X_v)$ such that $g(e) = \overline{e}$. The definition of \otimes implies that $g \otimes_{G_v} e = 1 \otimes_{G_v} \overline{e}$. Then $g \otimes_{G_v} e = g(1 \otimes_{G_v} e) = 1 \otimes_{G_v} \overline{e} = \overline{1 \otimes_{G_v} e}$. Consequently, G acts on X with inversions. This completes the proof.

Corollary 1. Let G, X, and X_v , $v \in V(T)$ be as in Theorem 1. For each $e \in E(X)$, let G_e be finite and contains no inverter elements of $G_{t(e)}$. Then the conclusions of Theorem 1 hold. Moreover, the mapping $\mu : V(\tilde{X}) \to V(X)$ given by $\mu(g \otimes_{G_v} w) = g(v)$, for all $w \in X_v$ is surjective, and is a G-map.

Proof. Since G_e is finite and contains no inverter elements of $G_{t(e)}$, therefore by Lemma 1, there exists a vertex $w \in V(X_{t(e)})$ such that $G_e \leq (G_{t(e)})_w$. Then by Theorem 1, G acts on \tilde{X} , and if G acts on X with inversions, or for some $v \in V(T)$, G_v acts on X_v with inversions, then G acts on \tilde{X} with inversions. Now if $f, g \in G$, and $u, w \in V(X_v)$ such that $f \otimes_{G_v} u = g \otimes_{G_v} w$, then $g^{-1}f \in G_v$. This implies that $g^{-1}f(v) = v$, or equivalently, f(v) = g(v). Then $\mu(f \otimes_{G_v} u) = \mu(g \otimes_{G_v} w)$, and μ is well-defined. If $v \in V(X)$, and $u \in V(X_v)$, then it is clear that $\mu(1 \otimes_{G_v} u) = v$. So μ is surjective. If $f, g \in G, v \in V(X)$ and $u \in V(X_v)$, then $\mu(f(g \otimes_{G_v} u)) = \mu(fg \otimes_{G_v} u) = fg(v) = f(\mu(g \otimes_{G_v} u))$. This implies that μ is surjective, and is a G-map. This completes the proof. \Box

Corollary 2. Let G, X, and $X_v, v \in V(T)$ be as in Corollary 1. If the stabilizer of each edge of X_v is finite, then the stabilizer of each edge of \tilde{X} is finite.

Proof. $E(\widetilde{X}) = \widehat{X} \cup (\bigcup_{v \in V(T)} (G \otimes_{G_v} E(X_v)))$. Let $g \in G, v \in V(T), p \in E(X_v)$, and $e \in E(Y)$. It is clear that the stabilizer $G_{g \otimes_{G_v} p}$ of the edge

 $g \otimes_{G_v} p$ under the action of G on \widetilde{X} is $G_{g \otimes_{G_v} p} = g(G_v)_p g^{-1}$, where $(G_v)_p$ is the stabilizer of the edge p under the action of G_v on X_v . Since $(G_v)_p$ is finite, therefore $G_{g \otimes_{G_v} p}$ is finite. Similarly, that the stabilizer $G_{[g;e]}$ of the edge [g;e] under the action of G on \widetilde{X} is $G_{[g;e]} = gG_{+e}g^{-1}$. This completes the proof.

Now we end this section the following definition.

Definition 8. Let G be a group acting on a tree X and (T; Y) be a fundamental domain for the action of G on X. For each $v \in V(T)$, let X_v be a tree on which G_v acts, and for each $e \in E(Y)$, let G_e be finite and contains no inverter elements of $G_{t(e)}$. Then \tilde{X} is called a fibered G-tree of base X and fibers $X_v, v \in V(T)$.

3. Accessibility of groups acting on trees

For the study of the concepts of the ends of groups we refer the readers to ([1], p. 17), or ([2], p. 124, 126), or ([11], p. 171).

The number of the ends of a group G is denoted by e(G).

A finitely generated group G is called accessible on the tree X if G acts on X and satisfies the following.

1. $X^G = \phi$,

2. G_e is finite for any $e \in E(X)$,

3. $e(G_v) \leq 1$ for all $v \in V(X)$.

A group is G called accessible if there exists a tree X on which G is accessible on X.

If G is an accessible group on the tree X, then by Proposition 7.4 ([2], p. 132), there exists a tree X' such that G acts on X' and G is not accessible on X'. In this case we say that G is inaccessible.

The main result of this section is the following theorem.

Theorem 2. Let G be a group acting on the tree X such that for each edge e of X, G_e is finite and contains no elements of $G_{t(e)}$, and for each vertex v of X, G_v is an accessible, and the quotient graph G/X is finite. Then G is an accessible group, and G is inaccessible on X.

Proof. The accessibility of G_v , $v \in V(X)$ implies that G_v is finitely generated. Since the quotient graph G/X is finite, therefore similar to the proof of Theorem 4.1 of [2, p. 15], we can show that G is finitely generated. Let (T;Y) be a fundamental domain for the action of G on X. Then there exists a tree X_v on which G_v acts such that $X_v^{G_v} = \phi$, $(G_v)_y$ is finite for every $y \in E(X_v)$, and $e(G_v) \leq 1$. The condition G_e is finite and contains no inverter elements of $G_{t(e)}$, $e \in E(Y)$ implies that G acts on the fiber tree \tilde{X} . If $g \in G$ and $u \in V(X_v)$ such that $G_{g \otimes_{G_v} u} =$ $g(G_v)_u g^{-1} = G$, then $(G_v)_u = G_v$. This contradicts the condition that $X_v^{G_v} = \phi$. So $\tilde{X}^G = \phi$. If $e \in E(Y)$ and $p \in E(X_v), v \in V(X)$, then G_e and $(G_v)_p$ are finite. Then for every $g \in G$, $G_{[g;e]} = gG_{+e}g^{-1}$ and $G_{g \otimes_{G_v} p} = g(G_v)_p g^{-1}$ are finite. For $g \in G, v \in V(T)$ and $u \in V(X_v)$, $e(G_{g \otimes u}) = e(g(G_v)_u g^{-1}) = e((G_v)_u) \leq 1$. This implies that G is accessible on \tilde{X} . Consequently G is accessible. If G is accessible on X, then for every $v \in V(T)$, $e(G_v) \geq 1$. Since G_v is accessible, then by Theorem 6.10 of ([2], p. 128), $e(G_v) \geq 2$. Contradiction. So G is inaccessible on X. This completes the proof.

Now we apply Theorem 2 to tree product of groups $A = \prod_{i \in I}^* (A_i; U_{ij} = U_{ji})$ of the groups $A_i, i \in I$, with amalgamation subgroups $U_{ij}, i, j \in I$ introduced in [3], and to a new class of groups called quasi-HNN groups introduced in [4], and defined as follows.

Let G be a group, I and J be two indexed sets such that $I \cap J = \phi$ and $I \cup J \neq \phi$. Let $\{A_i : i \in I\}$, $\{B_i : i \in I\}$, and $\{C_j : j \in J\}$ be families of subgroups of G. For each $i \in I$, let $\phi_i : A_i \to B_i$ be an onto isomorphism and for each $j \in J$, let $\alpha_j : C_j \to C_j$ be an automorphism such that α_j^2 is an inner automorphism determined by $c_j \in C$ and c_j is fixed by α_j ; that is, $\alpha_j(c_j) = c_j$ and $\alpha_j^2(c) = c_j c c_j^{-1}$ for all $c \in C_j$.

The group G^* of the presentation

$$\left\langle gen(G), t_i, t_j \mid rel(G), t_i a t_i^{-1} = \phi_i(a), t_j c c_j^{-1} = \alpha_j(c), \\ t_j^2 = c_j, a \in A_i, c \in C_j \right\rangle,$$

where $i \in I, j \in J$, or simply,

$$G^* = \left\langle gen(G), t_i, t_j \mid rel(G), t_i A_i t_i^{-1} = B_i, t_j C_j t_j^{-1} = C_j, t_j^2 = c_i, \ i \in I, j \in J \right\rangle$$

is called a quasi HNN group of base H and associated pairs (A_i, B_i) , and (C_i, C_i) of subgroups of G.

The tree product $A = \prod_{i \in I}^{*} (A_i; U_{ij} = U_{ji})$ of the groups $A_i, i \in I$, acts on the tree X without inversions defined as follow.

$$V(X) = \{ (gA_i, i) : g \in A, i \in I \},\$$
and $E(X) = \{ (gU_{ij}, ij) : g \in A, i, j \in I \}.$

If y is the edge $y = (gU_{ij}, ij)$, then $o(y) = (gA_i, i), t(y) = (gA_j, j)$, and $\overline{y} = (gU_{ji}, ji)$. A acts on X as follows.

Let $f \in A$. Then $f((gA_i, i)) = (fgA_i, i)$ and $f((gU_{ij}, ij)) = (fgU_{ij}, ij)$. If $v = (gA_i, i) \in V(X)$ and $y = (gU_{ji}, ij) \in E(X)$, then the stabilizer of v is $A_v = gA_ig^{-1} \cong A_i$, a conjugate of A_i , and then the stabilizer of y is $A_y = gU_{ij}g^{-1} \cong U_{ij}$, a conjugate of U_{ij} . The orbit of v is $A(v) = \{(agA_i, i) : a \in A, i \in I\}$, and the orbit of y is $A(y) = \{(agU_{ij}, ij) : a \in A, i, j \in I\}$.

So the quotient graph $A \not/ X$ is finite if I is finite. This leads the following proposition as an application to Theorem 2.

Proposition 4. Let $A = \prod_{i \in I}^{*} (A_i; U_{ij} = U_{ji})$ be a tree product of the groups A_i , $i \in I$, such that A_i is accessible, and U_{ij} is finite and contains no inverter element of A_i for all $i, j \in I$. If I is finite, then A is accessible.

A free product of groups with amalgamated subgroup is a special case of tree product of the groups, we state the following corollary of Proposition 4.

Corollary 3. Let $A = *_c A_i$, $i \in I$, be the free product of the groups A_i , $i \in I$ with amalgamation subgroup C such that A_i is accessible, and C is finite and contains no inverter element of A_i for all $i, j \in I$. If I is finite, then A is accessible.

It is shown in [6] that the quasi-HNN group

$$G^* = \left\langle gen(G), t_i, t_j \mid rel(G), t_i A_i t_i^{-1} = B_i, t_j C_j t_j^{-1} = C_j, t_j^2 = c_i, i \in I, j \in J \right\rangle$$

acts on the tree X with inversions defined as follow.

$$V(X) = \{ gG : g \in G^* \}, \text{ and } E(X) = \{ (gB_i, t_i), (gA_i, t_i), (gC_j, t_j) \},\$$

where $g \in G^*, i \in I$, and $j \in J$. For the edges $(gB_i, t_i), (gA_i, t_i)$, and $(gC_j, t_j), i \in I, j \in J$, define $o(gB_i, t_i) = o(gA_i, t_i) = o(gC_j, t_j) = gG, t(gB_i, t_i) = gt_iG, t(gA_i, t_i) = gt_i^{-1}G$, and $t(gC_j, t_j) = gt_jG$, and $\overline{(gB_i, t_i)} = (gt_iA_i, t_i^{-1}), \overline{(gA_i, t_i^{-1})} = (gt_i^{-1}B_i, t_i), \text{ and } \overline{(gC_j, t_j)} = (gt_jC_j, t_j).$

 G^* acts on X as follows. Let $f \in G^*$. Then for the vertex gG and the edges $(gB_i, t_i), (gA_i, t_i^{-1}), \text{ and } (gC_j, t_j)$ of X, define $f(gG) = fgG, f(gB_i, t_i) = (fgB_i, t_i), f(gA_i, t_i^{-1}) = (fgA_i, t_i^{-1}), \text{ and } f(gC_j, t_j) = (fgC_j, t_j).$

The action of G^* on X is with inversions because the element $t_j \in G^*$ maps the edge (C_j, t_j) to its inverse $\overline{(C_j, t_j)}$; that is, $t_j(C_j, t_j) = (t_jC_j, t_j) = \overline{(C_j, t_j)}$

The stabilizer of the vertex v = gG is, $G_v^* = gGg^{-1}$, a conjugate of G, the stabilizers of the edges (gB_i, t_i) , $f(gA_i, t_i^{-1})$, and (gC_j, t_j) are gB_ig^{-1} , conjugates of B_i , gA_ig^{-1} , a conjugate of A_i , and gC_jg^{-1} , a conjugate of C_j respectively, for all $i \in I$, and all $j \in J$.

The orbits of gG, (gB_i, t_i) , $f(gA_i, t_i^{-1})$, and (gC_j, t_j) are $\{fG : f \in G^*\}$, $\{(fB_i, t_i) : f \in G^*\}$, and $\{(fC_j, t_j) : f \in G^*\}$. Then the quotient graph $G^* \nearrow X$ is finite if $I \cup J$ is finite. This leads the following proposition as an application to Theorem 2.

Proposition 5. Let G^* be the quasi-HNN group

$$G^* = \left\langle gen(G), t_i, t_j \mid rel(G), t_i A_i t_i^{-1} = B_i, t_j C_j t_j^{-1} = C_j, t_j^2 = c_i, i \in I, j \in J \right\rangle$$

such that G is accessible, A_i , B_i , and C_j are finite and contain no inverter elements of G. If $I \cup J$ is finite, then G^* is accessible.

By taking $J = \phi$ in the group G^* defined above, yields the following corollary of Proposition 5.

Corollary 4. Let G^* be the HNN group

$$G^* = \left\langle gen(G), t_i \mid rel(G), t_i A_i t_i^{-1} = B_i, \ i \in I \right\rangle$$

such that G is accessible, A_i , and B_i are finite and contain no inverter elements of G. If I is finite, then G^* is accessible.

References

- D. E. Cohen, Groups of cohomological dimension one, Springer Lecture Notes 245, 1972.
- [2] W. Dicks and M. J. Dunwoody, *Groups acting on graphs*, Cambridge University Press, 1989.
- [3] A. Karrass and D. Solitar, The subgroups of a free product of two groups with an amalgamated subgroup, Trans. Amer. Math. Soc., 150, 1970, pp.227-255.
- [4] M. I. Khanfar and R. M. S. Mahmood, On quasi HNN groups, Kuwait J. Sci. Engrg. 29, 2002, no.2, pp.13-24.
- M. I. Khanfar and R. M. S. Mahmud, A note on groups acting on connected graphs, J. Univ. Kuwait Sci. 16, 1989, no.2, pp.205-208.

- [6] R. M. S. Mahmood and M. I. Khanfar, On invertor elements and finitely generated subgroups of groups acting on trees with inversions. Int. J. Math. Math. Sci. 23, 2000, no.9, pp.585-595.
- [7] R. M. S. Mahmood and M. I. Khanfar, Subgroups of quasi-HNN groups, Int. J. Math. Math. Sci. 31, 2002, no.12, pp.731-743.
- [8] R. M. S. Mahmud, The normal form theorem of groups acting on trees with inversions. J. Univ. Kuwait Sci. 18, 1991, pp.7-16.
- [9] R. M. S. Mahmud, Presentation of groups acting on trees with inversions, Proc. R. Soc. Edinb., Sect. A, 113, 1989, no.3-4, pp.235-241.
- [10] J-P. Serre, Trees, Translated by John Stillwell, Springer-Verlag, 1980.
- [11] C. T. C. Wall, Homological Group Theory, London Mathematical Society, Lecture Notes Series, vol.36, Cambridge University Press, Cambridge, 1979.

CONTACT INFORMATION

R. M. S. Mahmood

Department of Mathematics, Irbid National University, P. O. Box 2600, Irbid, Jordan. *E-Mail(s)*: rasheedmsm@yahoo.com

Received by the editors: 16.04.2013 and in final form 07.11.2014.