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Abstract: The problem of increasing the resolution 
power of an antenna through input signal recovery using 
the computer implementation of a mathematical model 
in the form of the system of three Fredholm integral 
equations of the first kind is examined. To solve the 
system of linear integral equations, regularizating 
algorithms and corresponding softwares based on 
generalized Tikhonov and Lavrentiev methods with 
determination of a regularization parameter by means of 
the model experiments technique have been developed. 
The algorithms are implemented in Matlab environment 
and can be used with other application packages. The 
efficiency of the developed computer tools has been 
confirmed by solving test and practical problems. 

Key words: signal recovery, antenna, integral 
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1. Topicality 
When modern surveillance systems being 

developed, the important problem in developing 
software systems for the recovery of distorted signals 
occures. In many cases, these problems are formulated in 
the form of integral equations of the first kind and their 
systems. For their solving special regularization methods 
can be used [1-8], which were focused and discussed in 
detail in a case of one integral equation. For solving 
systems of this type of integral equations there exist just 
some general recommendations. In this regard, this 
article examines numerical algorithms that utilize the 
provisions of the Tikhonov and Lavrentiev methods in 
combination with the method of model (computational) 
experiments. The algorithms are applied to solve the 
system of linear integral equations (SLIE) arising while 
solving the problem of increasing an antenna resolution 
and separating a weak signal from anisotropic 
background noise. 

2. Statement of the problem 
Let us assume that antenna has an directional 

characteristic (DC) R ; its rotation allows us to measure 
a field U  – a response at the output of the antenna - as a 
function of direction y . It is necessary to use the known 
R  and U  for determining the true field P  at the 

antenna input as a function of y . Determining the field 
P  gives us a possibility for increasing the antenna 
resolution power by mathematical processing of the 
measurements results, and this, in turn, allows us to 
reveal the fine structure of the field (to separate a weak 
signal С  from the background noise, to classify 
components of the field P  in the event of closely-spaced 
sources under observation). 

Let us assume that the sources of field P  are 
distributed only in the horizontal plane (if they have 
different elevation angles, then the following procedure 
will result in an elevation-averaged solution). Further, 
the field P  is the sum of three components: a useful 
signal C , an interfering signal MC , and an interference 
noise Π , wherein each of the components can be 
distributed or localized (lumped). 

We assume that the components’ spectra ( )CS f , 

( )
MCS f and ( )ΠS f (where f is frequency) are known 

and the scanning of the antenna, that is, measuring the 
field ( )iU y  as function of direction y  in three different 
( 1, 2 ,3=i ) frequency bands, has been done. As a result, 
we get the amplitudes of the useful signal, interfering 
signal, and noise interference ( )CP y , ( )

MCP y , ( )ΠP y  

and so obtain a system of 3 linear integral Fredholm 
equations of the first kind: 

( , ) ( ) ( , ) ( )

( , ) ( ) ( ),

, 1,2,3,

− −

Π Π
−

′ ′ ′ ′ ′ ′+ +

′ ′ ′+ =

≤ ≤ =

∫ ∫

∫

M MiC C iC C

i i

R y y P y dy R y y P y dy

R y y P y dy U y

c y d i

π π

π π
π

π   (1) 

where  

( , )′iCR y y =
2

1

( ) ( , ) ( ) ,′∫
i

i

f

f C
f

f R y y S f dfγ          (2) 

( , )′
MiCR y y =

2

1

( ) ( , ) ( ) ,′∫
i

M
i

f

f C
f

f R y y S f dfγ        (3) 



Dmytro Verlan, Nataliia Kostian 

 

( , )Π ′iR y y =
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and ( )fγ  is the sensitivity of transducers constituting 

the antenna as function of frequency f ; [ ]1 2,i if f , 

1, 2,3=i  are different frequency bands. 
In practice, the sources are usually located in a 

limited area. So, to reduce the calculations without 
significant losses of accuracy [10] the equation (1) may 
be written as: 
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where [ ],a b  is a solution search area; [ ],c d  is a 

measurement area. 

3. Modernization of Lavrentiev and Tikhonov 
regularization methods for SLIE cases 

The most well-known methods for solving ill-posed 
problems are Tikhonov [1] and Lavrentiev [2] 
regularization methods, Ivanov and Bakushinsky 
methods of quasi-solutions, the methods of statistical 
regularization, iterations, piece-wise integration etc.  
[1- 8]. However, these methods were discussed in details 
only for their application to scalar linear integral 
equations of the first kind. But for solving the systems of 
n equations, such as (1) and (1'), these methods were 
discussed in very general form, when corresponding 
equations were written in an operator notation 

=иоR P U , 

where иоR  is an integral operator. For a more detailed 
approach these methods require further modification if 
being applied to solving the SLIE. 

Let us consider the application of the Tikhonov and 
Lavrentiev regularization methods in case of the SLIE. 

We write the SLIE as  

1
( , ) ( ) ( ),

, 1, ,
=

′ ′ ′≡ =

≤ ≤ =

∑ ∫
bN

i ij j i
j a

A P R y y P y dy U y

c y d i N

     (5)  

where N  is a number of the equations (equal to the 
number of the sought functions, ( )′jP y ); ( , )′ijR y y  are 

the kernels of the integral equations; ( )iU y  are right 
sides of the equations, iA  are integral operators. In (5) 
the functions ( , )′ijR y y  and ( )iU y are considered to be 

known, and the functions ( )′jP y  are sought. 

The Lavrentiev method applied to the SLIE (5) 
looks like: 

1
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where iα  are the parameters of regularization. The SLIE 
(6) solution with correctly selected iα  is stable. 

In the Tikhonov method applied to the SLIE (5) a 
stable solution is obtained as follows. A regularizing 
functional is formed: 
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where 0>lq  are weighting factors (which are usually 
assumed to be equal to 1 in variational problems if there 
is no indication of their more exact values). 

Writing down the first variations of the functional 
Φ  and transforming them, we obtain: 
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thuswise 
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or, finally, 
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Thus, the system of N  linear integral equations of 
the second kind has been obtained for the function 

( )′jP y , and its solution is stable at the properly chosen 

values iα . The stability of the Lavrentiev and Tikhonov 
equations for linear integral equations of the first kind is 
explained in [10].  

4. LSLIE and TSLIE programs for solving SLIE 
with regularization methods 

Computational algorithms and programs LSLIE and 
TSLIE have been developed as m-files in Matlab 
software enwironment to solve SLIE (5) using the 
Lavrentiev and Tikhonov generalized regularization 
methods by solving SLIE (6) and (8). At 1=iq  the 
integrals in (6) and (8) are calculated by a trapezoidal 
rule with a step ′= ∆ =h y const  and then SLIEs of nN  

order are solved regarding to the values ( )′jP y  in the 

nodes ,′ =y a  +a h , …, b . 
Separately, there have been developed the programs 

for solving the equations (5), (6) and (8) - (10) written in 
the most commonly used form: 
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where ( ),ijK x s  are kernels; ( )if x  are the right sides 

being known functions (and usually with errors); ( )jy s  

are sought functions, 
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The integrals in (9') and (10') are calculated by 
Simpson's rule with the step h  ( ( ) /−d c h  is to be even). 
The resulting linear algebraic equation is solved using a 
module entitled sistema . 

5. Determination of the regularization parameters 
by the method of model experiments 

The most difficult task while using the regularization 
method is determining the optimal values ioptα  of the 

parameters iα , i.e., those values iα  whereby the 
obtained solution ( ) =iP y ( )iP yα  most closely reflects 

the exact solution ( )iP y . 
A rather large group of methods for determining 

ioptα  [1-9] was developed to solve scalar integral equa-

tions. Those methods are generally time-consuming. In 
the considered problem the antenna directional 
characteristic remains unchanged over the time that is 
sufficient for setting up and solving a so-called model 
example [7-11], i.e. high efficiency in such conditions 
was demonstrated by the method of model experiments 
[10], according to which a significant part of the 
computation can be made in advance, and after the 
measurement of function ( )U y  the problem is solved by 
multiplying a matrix by a vector of discrete values, 
which does not take long. This method provides the 
simplicity and efficiency of computer problem solving 
and consists of the following steps. 

In advance (before measuring the function ( )iU y ) 
the mode is determined, in which the measurements and 
their processing is to be performed. The mode is a set of 
values a, b, c, d, h, ( , )′ijR y y ; ∆ i iU U  are relative 

measurement errors (according to a norm); ∆ ijR  are 

the errors of directional characteristics. Then a model 
experiment W is set which has the same mode as an 
upcoming problem V. In the experiment W an 
approximate solution ( )jP y  is chosen on the basis of 

antecedent information about the upcoming problem V. 
Then, the problem W is solved for different iα ; out of 

their set the values iα = ioptα  that provide the most exact 

solutions to the problem W (close to the exact solution 
( )

WjP y ) are selected for their next utilization while 

solving the problem V. 
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In [10, 11] it was demonstrated, that for linear 
integral equations of the first kind optWα  approaches 

optVα . Similarly, it can be shown that optWα  is close to 

optVα  for a SLIE. In a model experiment W it is not 

necessary to choose an exact solution that is very close 
to that of the real problem V (which is unknown as well), 
since the relative error estimate does not depend directly 
on the right sides ( )iU y  (which, in turn, depend on the 
sought solution), and depends only on their relative 
errors ∆ i iU U . Therefore, in the problem W it is 
sufficient to specify that, for example, the powers of the 
sources C and MC  differ by a factor of ten, CP  is less 
than the average value of Π by a factor of ten, C and 

MC  are within the main lobe of the directional 
characteristic. 

Several modes can be set and iα  can be identified 
for each of them by setting up and solving the model 
experiment ptoblem. 

“Fast” solving algorithm. In the case when the 
regularization parameter values iα  are determined using 
a model experiment, the inverse matrix method can be 
used to accelerate the solution of SLIE (6) or (8) by a 
quadrature method. According to it, the solution of (6) or 
(8) after their algebraization can be presented as 

=P TU ,                              (11) 

or, correspondingly, 

=P LU , 

where T  and L  are the precalculated inverse matrices 
of the linear algebraic equation system (depending on the 
mode). Then the solving process is reduced to a simple 
multiplication of T  or L  by the vector U , which will 
require minimal amount of machine time. 

6. Solving time estimation 
As in the method described in [10, 11], most of the 

time is spent while determining ioptα  for each mode (by 

solving a model experiment problem), as well as 
computing the matrix T  or L . However, that calcu-
lation is performed before a real experiment (although 
possibly limited in time, e.g., one day before the 
experiment). During the real experiment itself it is 
required to measure ( )iU y , induce the matrix T  or L  
and multiplyT  or L  by U  (it takes much less time). 

If ( ) / 1= − +n b a h  is the number of samples during 
scanning and 3=N , the order of the matrix T  or L  
equals to 3n  and multiplying T  or L  by U  requires 

about 3(3 )n  operations such as multiplication, addition 
and assignment. 

7. Numerical examples 
To illustrate the method, we consider a problem 

close to a practical one. 
A sought field ( )P y  is presented as a sum of 3 

components (i.e. 3=N ): a useful signal C , an 
interfering signal MC , and a distributed interference 

noise Π ; C  and MC  being represented in the form of 

δ -functions 1 1( )−p y yδ  and 2 2( )−p y yδ , where 1p  

and 2p  are their amplitudes, 1y  and 2y  are their 
coordinates and Π is a smooth function 

, [ , ],
( )

0, [ , ].
Π = ∈

Π =  ∉

const y a b
y

y a b
              (12) 

The energy spectra C , MC  and Π  are chosen as 
3/ 22( ) 1/ 10−= ⋅ f

CS f f β ,                   (13) 
3/ 2

( ) 1/ 10−= ⋅
M

f
CS f f β ,              (14) 

( ) 1/Π =S f f ,                          (15) 
where f is frequency in kHz, 0.5=β  kHz-3/2. 

Nine directional characteristics with ( ) 1=fγ  have 
such a form: 
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where 
[ ]sin / sin( )

( )
/ sin( )

′⋅ −
′− =

′⋅ −f
sf v y y

R y y
sf v y y
π

π
,            (19) 

s  = 10 m, v  = 1500 m/s; 
1st frequency band: 11 1,5=f  kHz, 21 2,9=f  kHz 

(approximately an octave); 
2nd frequency band: 12 1,2=f  kHz, 22 2,4=f  kHz 

(an octave); 
3rd frequency band: 13 2=f  kHz, 23 2,8=f  kHz 

(approximately a half-octave); 
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The right sides of the integral equations are: 

1 21 2( ) ( ) ( )

( ) , 1,2,3.Π

= − + − +

′ ′+Π − =∫

Mi iC iC

b
i

a

U y p R y y p R y y

R y y dy i
.     (20) 

The integrals in (16)-(18) and (20) are numerically 
calculated by the Gauss formula with the accuracy up to 
9 digits. 

In the model experiment W  1 10=p , 2 15=p , 

1 1.9= − oy , 2 2.1= − oy  (the distance between C  and 

MC  averaged after iCR  and 
MiCR  equals 

approximately to 0,7∆Θ , where 0,7∆Θ  is the main lobe 

width at the level 0.7, i.e. C  and MC  are within the 
main lobe of the directional characteristic,), 100Π = . 

After solving the equations (7) for different 

1 2 3, ,α α α  their optimal values can be found: 

4,0
1 10−=optα , 4,3

2 10−=optα , 4,5
3 10−=optα .    (21) 

Fig. 1 and Fig. 2 show the solution of the equations 
(7) for =i ioptα α . 

We can see that the obtained solutions are close 
to the real signals C  and MC  (although their peaks 
are not steep enough), as well as the distributed 
interference Π  (although with small fluctuations 
around the mean). 

Further, the real problem V  with the error 

40.028∆ =V midU a u  (where 4a  is a normally distribu-

ted random variable with rms=1, midu  is an average 
response value) was solved with the found values 

1 2 3, ,α α α  (21). The results are as follows: 1 10=p , 

2 100=p , 130Π = , 1 2.96= − oy , 2 3.12= oy . 
 

 
Fig. 1. Model experiment: graphs of the functions 

( )CP y  and ( )
MCP y . 

 

Fig. 2. Model experiment: graph of the function ( )ΠP y . 

Fig. 3 and Fig. 4 show the obtained solutions 
( )CP y , ( )

MCP y , and ( )ΠP y  for the real problem. It is 

evident that all three components C , MC  and Π  can be 
clearly differentiated. 

 
Fig. 3. Real problem: graphs of the functions 

 ( )CP y  and ( )
MCP y . 

 

Fig. 4. Real problem: graph of the function ( )ΠP y . 

93



Dmytro Verlan, Nataliia Kostian 

 

8. Conclusion 
Numerical experiments show that the method gives 

correct solution for closely-spaced sources for the 
distance between them up to 0,8 0,9≈ ∆Θ ÷ ∆Θ  with the 

powers CP  and 
MCP  that are fairly similar. When 

MCP  

increases by a factor of ten, the method is able to 
differentiate the sources at a distance up to 0,5≈ ∆Θ ; 

increasing the distance between C  and MC  up to 

0,2≈ ∆Θ  makes it possible to resolve sources with a 

proportion 
MCP / CP ≈  40-60. All these statements are 

valid even in the presence of a distributed interference 
noise Π  exceeding CP  in magnitude by a factor of ten 
or hundred at the antenna input (for averaging time about 
5 sec). Thus, the considered regularization methods are 
functional, and the proposed programs are sufficiently 
effective, flexible, and easy to use. They can be used 
together with other application program packages, 
included in the software complex Matlab. Thus, the 
method of model experiments has shown its high 
efficiency for the task of increasing the resolution of an 
antenna. 
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ТРИВХОДОВА ІНТЕГРАЛЬНА 
МОДЕЛЬ ЗАДАЧІ ВІДНОВЛЕННЯ 

СИГНАЛІВ АНТЕНИ З 
УРАХУВАННЯМ ЗАВАД 
Дмитро Верлань, Наталія Костьян 

Розглянуто задачу підвищення роздільної здатності 
антени шляхом відновлення вхідного сигналу за до-
помогою комп’ютерної реалізації математичної моделі у 
вигляді системи трьох інтегральних рівнянь Фредгольма  
І роду. Для розв’язання системи лінійних інтегральних 
рівнянь створено регуляризуючі алгоритми та відповідні 
програмні засоби на основі узагальнених варіантів методів 
Тихонова і Лаврентьєва з визначенням параметра регу-
ляризації за методом модельних експериментів. Алгоритми 
реалізовано в середовищі Matlab та їх можна застосувати 
разом з іншими пакетами прикладних програм. Пра-
цездатність розроблених комп’ютерних засобів підтвер-
джується розв’язанням тестових і практичних задач. 
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