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Abstract: The problem of increasing the resolution
power of an antenna through input signal recovery using
the computer implementation of a mathematical model
in the form of the system of three Fredholm integral
equations of the first kind is examined. To solve the
syssem of linear integral equations, regularizating
algorithms and corresponding softwares based on
generalized Tikhonov and Lavrentiev methods with
determination of a regularization parameter by means of
the moddl experiments technique have been developed.
The algorithms are implemented in Matlab environment
and can be used with other application packages. The
efficiency of the developed computer tools has been
confirmed by solving test and practical problems.

Key words: signa recovery, antenna, integra
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1. Topicality
When modern  surveillance  systems  being
developed, the important problem in developing

software systems for the recovery of distorted signals
occures. In many cases, these problems are formulated in
the form of integral equations of the first kind and their
systems. For their solving special regularization methods
can be used [1-8], which were focused and discussed in
detail in a case of one integra equation. For solving
systems of this type of integral equations there exist just
some general recommendations. In this regard, this
article examines numerica agorithms that utilize the
provisions of the Tikhonov and Lavrentiev methods in
combination with the method of model (computational)
experiments. The agorithms are applied to solve the
system of linear integral equations (SLIE) arising while
solving the problem of increasing an antenna resolution
and separating a weak signal from  anisotropic
background noise.

2. Statement of the problem

Let us assume that antenna has an directional
characteristic (DC) R ; itsrotation alows us to measure
afield U —aresponse at the output of the antenna - asa
function of direction y . It is necessary to use the known

R and U for determining the true field P at the

antenna input as a function of y. Determining the field
P gives us a possihility for increasing the antenna
resolution power by mathematical processing of the
measurements results, and this, in turn, allows us to
reveal the fine structure of the field (to separate a weak
signa C from the background noise, to classify
components of thefield P in the event of closely-spaced
sources under observation).

Let us assume that the sources of fidd P are
distributed only in the horizontal plane (if they have
different elevation angles, then the following procedure
will result in an elevation-averaged solution). Further,
the fiedld P is the sum of three components. a useful
signal C, aninterfering signal Cy, , and an interference
noises P, wherein each of the components can be
distributed or localized (lumped).

We assume that the components' spectra S-(f),

SCM (f)and So (f) (wheref is frequency) are known

and the scanning of the antenna, that is, measuring the
field U;(y) asfunction of direction y in three different
(i =1, 2,3) frequency bands, has been done. As aresult,
we get the amplitudes of the useful signal, interfering
signal, and noise interference R-(y), PCM (), B(y)

and so obtain a system of 3 linear integral Fredholm
equations of the first kind:
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o
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3
and g(f) is the sendtivity of transducers congtituting

the antenna as function of frequency f; [fy, ],

i =1,2,3 are different frequency bands.

In practice, the sources are usualy located in a
limited area. So, to reduce the calculations without
significant losses of accuracy [10] the equation (1) may
be written as.

b b
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b
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where [a,b] is a solution search area; [c,d] is a
measurement area.

3. Modernization of Lavrentiev and Tikhonov
regularization methodsfor SLIE cases

The most well-known methods for solving ill-posed
problems are Tikhonov [1] and Lavrentiev [2]
regularization methods, Ivanov and Bakushinsky
methods of quasi-solutions, the methods of dtatistical
regularization, iterations, piece-wise integration etc.
[1- 8]. However, these methods were discussed in details
only for their application to scalar linear integra
equations of thefirst kind. But for solving the systems of
n equations, such as (1) and (1), these methods were
discussed in very general form, when corresponding
equations were written in an operator notation

R,P=U,
where R,, is an integra operator. For a more detailed

approach these methods require further modification if
being applied to solving the SLIE.
Let us consider the application of the Tikhonov and
Lavrentiev regularization methods in case of the SLIE.
Wewritethe SLIE as

APS A OR; (v, YO (y9dye=U, (),
i1 a ®)
CEyEd,i=1LN,
where N is a number of the equations (equal to the
number of the sought functions, P;(y9); R;(y,y9 are
the kernels of the integral equations; U;(y) are right
sides of the equations, A are integral operators. In (5)
the functions R; (y, y9 and U;(y) are considered to be

known, and the functions P; (y9 are sought.

The Lavrentiev method applied to the SLIE (5)
looks like:

AR+ A oR; (v, YOP, (Yadye=U, (),
i=1 a (6)
afy£b,i=1N,
where a; arethe parameters of regularization. The SLIE
(6) solution with correctly selected a; is stable.

In the Tikhonov method applied to the SLIE (5) a
stable solution is obtained as follows. A regularizing
functional isformed:

2
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where g; >0 are weighting factors (which are usualy

assumed to be equal to 1 in variational problemsif there
isno indication of their more exact val ues).

Writing down the firgt variations of the functiona
F and transforming them, we obtain:
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or, finaly,
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Thus, the system of N linear integra equations of
the second kind has been obtained for the function
P, (y9, and its solution is stable at the properly chosen

(10)

values a; . The stability of the Lavrentiev and Tikhonov
equations for linear integral equations of the first kind is
explained in [10].

4.LSLIE and TSLIE programs for solving SLI1E
with regularization methods

Computational algorithms and programs LSLIE and
TSLIE have been developed as mfiles in Matlab
software enwironment to solve SLIE (5) using the
Lavrentiev and Tikhonov generdized regularization
methods by solving SLIE (6) and (8). At g =1 the
integras in (6) and (8) are caculated by a trapezoidal
rule with a step h=Dy¢=const and then SLIEs of nN
order are solved regarding to the values P, (yfl) in the

nodes y¢=a, a+h, ..., b.

Separatdly, there have been devel oped the programs
for solving the equations (5), (6) and (8) - (10) written in
the most commonly used form:

N b
Ay° & oK (xs)yj(s)ds= f; (x),
i=1 a (5)
CEXE, i :m,
where Kj; (x,s) are kernels; f;(x) are the right sides
being known functions (and usually with errors); y; (s)

are sought functions,
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The integrals in (9) and (10" are calculated by
Simpson's rule with thestep h ((d - ¢)/h isto be even).
The resulting linear algebraic equation is solved using a
module entitled sistema.

5. Determination of the regularization parameters
by the method of model experiments

The most difficult task while using theregularization
method is determining the optimal values a;q, of the

parameters a;, i.e, those values a; whereby the
obtained solution B(y)= RBj(y) most closdly reflects

the exact solution R (y) .

A rather large group of methods for determining
Qjopt [1-9] was developed to solve scalar integral equa-
tions. Those methods are generally time-consuming. In
the considered problem the antenna directional
characteristic remains unchanged over the time that is
sufficient for setting up and solving a so-called model
example [7-11], i.e. high efficiency in such conditions
was demonstrated by the method of model experiments
[10], according to which a significant part of the
computation can be made in advance, and after the
measurement of function U (y) the problem is solved by
multiplying a matrix by a vector of discrete values,
which does not take long. This method provides the
simplicity and efficiency of computer problem solving
and consigs of the following steps.

In advance (before measuring the function U;(y))
the mode is determined, in which the measurements and
their processing is to be performed. The mode is a set of
values a, b, ¢, d, h, R;(y,y9; [DUj||/|U;| are relative

measurement errors (according to a norm); ||DRJ- || are

the errors of directiona characterigtics. Then a model
experiment W is set which has the same mode as an
upcoming problem V. In the experiment W an
approximate solution P;(y) is chosen on the basis of

antecedent information about the upcoming problem V.
Then, the problem W is solved for different a;; out of

their set the values a; =a gy that provide the most exact

solutions to the problem W (close to the exact solution
P, (¥)) are selected for their next utilization while

solving the problem V.
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In [10, 11] it was demonstrated, that for linear
integral equations of the first kind a gy approaches

agptv - Similarly, it can be shown that a gy iscloseto
agpry for a SLIE. In a model experiment W it is not

necessary to choose an exact solution that is very close
to that of thereal problem V (which is unknown aswell),
sincethe relative error estimate does not depend directly
on the right sides U; (y) (which, in turn, depend on the
sought solution), and depends only on their relative
errors |DU;||/|U;|. Therefore, in the problem W it is

sufficient to specify that, for example, the powers of the
sources C and Cy, differ by a factor of ten, R- isless
than the average value of P by a factor of ten, C and
Cy ae within the main lobe of the directional
characterigtic.

Several modes can be set and a; can be identified
for each of them by setting up and solving the model
experiment ptoblem.

“Fast” solving algorithm. In the case when the
regularization parameter values a; are determined using
a model experiment, the inverse matrix method can be
used to accelerate the solution of SLIE (6) or (8) by a
guadrature method. According to it, the solution of (6) or
(8) after their algebraization can be presented as

P=TU, (11)

or, correspondingly,

P=LU,
where T and L are the precalculated inverse matrices
of thelinear algebraic equation system (depending on the
mode). Then the solving process is reduced to a simple

multiplication of T or L by the vector U , which will
require minima amount of machinetime.

6. Solving time estimation

As in the method described in [10, 11], most of the
timeis spent while determining a;; for each mode (by
solving a model experiment problem), as wel as
computing the matrix T or L. However, that calcu-
lation is performed before a rea experiment (although
possibly limited in time, eg., one day before the
experiment). During the rea experiment itself it is
required to measure U; (y), induce the matrix T or L
and multiply T or L by U (it takes much lesstime).

If n=(b- a)/h+1 isthe number of samples during
scanning and N =3, the order of the matrix T or L
equals to 3n and multiplying T or L by U requires

about (3n)3 operations such as multiplication, addition
and assignment.

7. Numerical examples

To illustrate the method, we consider a problem
closeto a practical one.

A sought field P(y) is presented as a sum of 3
components (i.ee N=3). a useful signa C, an
interfering signal Cy,, and a distributed interference
noise P ; C and Cy, being represented in the form of
d -functions pd(y- y5) and pd(y- y»), where p;
and p, are ther amplitudes, y; and y, are their
coordinatesand P is asmooth function
P(y):}g :c?nst, y1 [aD],
10, yl [ab].
Theenergy spectra C, Cy;, and P are chosen as

(12)

S (f)=1/ 120012, (13)
S, (1 =UTao?™?, (14)
S (f)=1/f, (15)

where f isfrequency in kHz, b = 0.5 kHz 32

Nine directiona characteristics with g(f) =1 have
such aform:
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0 Scyy (F)ef
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fa
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where
sin|psf /v>€in(y- y9
Re(y- y9= [ . ], (19)
psf/vxsin(y- y9
s =10m, v = 1500 m/s,
1st frequency band: f;; =1,5 kHz, fy1 =29 kHz
(approximately an octave);
2nd frequency band: f, =1,2 kHz, f,, =2,4 kHz
(an octave);
3rd frequency band: fi3=2 kHz, fy,3=28 kHz

(approximately a half-octave);
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Theright sides of theintegral equations are:

Ui(y) =p,Rc(y- ) +p,Rc,, (Y- ¥2) +

b _ (20)
+P oRp (y- y9dy¢ =123

a

The integrals in (16)-(18) and (20) are numericaly
calculated by the Gauss formula with the accuracy up to
9 digits.

In the model experiment W p; =10, p, =15,
y;=-19, y,=-21 (the distance between C and
Rew
approximately to DQq 7, where DQg 7 is the main lobe

width at the level 0.7, i.e. C and C, are within the

main lobe of the directiona characteristic,), P =100.
After solving the equations (7) for different
aq,a,,a3 their optimal values can be found:

Cy averaged dfter Re and equals

- - -4
agop =100, a0y =107%3, agyy =100, (21)

Fig. 1 and Fig. 2 show the solution of the equations
(7) for aj =ajgpt -

We can see that the obtained solutions are close
to the real signals C and C,, (although their peaks

are not steep enough), as well as the distributed
interference P (although with small fluctuations
around the mean).

Further, the rea problem V with the error

DUy, =0.028a,u,iq (Where a, is a normaly distribu-
ted random variable with rms=1, u.q IS an average
response value) was solved with the found values
ag,as,az (21). The results are as follows: p; =10,

p, =100, P =130, y; =-2.96", y, =3.12°.

Fig. 1. Modd experiment: graphs of the functions
Re(y) and R, (V) -

S A )

[ [ I I -
12 3 4 5
Fig. 2. Model experiment: graph of thefunction R ().

Fig. 3 and Fig. 4 show the obtained solutions
Fe(y), Ry, (), and R (y) for theredl problem. It is

evident that all three components C, Cy;, and P can be
clearly differentiated.

Fig. 3. Real problem: graphs of the functions
Re(y) and R, (V) -

Fig. 4. Real problem: graph of thefunction R ().
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8. Conclusion

Numerical experiments show that the method gives
correct solution for closdy-spaced sources for the
distance between them up to » DQpg, DQg g With the

powers Fc and R~ that arefairly similar. When R,

increases by a factor of ten, the method is able to
differentiate the sources at a distance up to » DQqs ;

increasing the distance between C and Cy, up to
»DQp, makes it possible to resolve sources with a
proportion R, /R » 40-60. All these statements are

valid even in the presence of a distributed interference
noise P exceeding R- in magnitude by a factor of ten

or hundred at the antennainput (for averaging time about
5 sec). Thus, the considered regularization methods are
functional, and the proposed programs are sufficiently
effective, flexible, and easy to use. They can be used
together with other application program packages,
included in the software complex Matlab. Thus, the
method of modd experiments has shown its high
efficiency for the task of increasing the resolution of an
antenna.
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TPUBXOJOBA IHTEI'PAJIBHA
MOJEJIb 3AJAYI BITHOBJIEHHSA
CUT'HAJIIB AHTEHMU 3
YPAXYBAHHSAM 3ABAJI

Jmurpo Beprans, Haranist Koctbsin

PosrisHyro 3ajady MiABUIIEHHS PO3IUIBHOI 3[aTHOCTI
AQHTCHU LUIAXOM BIJHOBJIEHHS BXIJHOrO CHIHAly 3a JIO-
[IOMOTOI0 KOMIT' IOTEpHOI peasti3alii MareMaTH4HOI Moneli y
BUIJISAZII CUCTEMH TPhOX IHTErpalbHUX piBHAHb Ppenrombma
I pomy. Hdns po3’si3aHHS CHUCTEMH JIIHIHHUX 1HTErpajbHUX
PIBHSHB CTBOPEHO PETYISIPU3YIOUl aIrOPUTMM Ta BiAIOBIiMHI
IpOrpamHi 3aco0M Ha OCHOBI y3araJbHEHHX BapiaHTiB METOIIB
TuxoHoBa i1 JlaBpeHTbeBa 3 BHU3HAUCHHAM IapamMeTpa pery-
JsIpU3alii 32 METOZO0M MOJICNIBHUX €KCIIEPUMEHTIB. AJTOpUTMHU
peanizoBaHo B cepenoBuiui Matlab Ta ix mMoxHa 3acrocyBatu
pasoM 3 IHIIMMM IaKeTaMH HpHUKIaaHUX mnporpaM. Ilpa-
LE3JaTHICTh PO3POOJICHUX KOMII IOTCpPHUX 3aco0iB MiaTBEp-
JUKYETBCS PO3B’ sI3aHHSAM TECTOBHX 1 IPAKTUYHUX 3a/1a4.
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