А. С. Затуловский, А. Г. Малявин, Ж. Д. Богатырева, В. А. Щерецкий, А. А. Кузьменко

Физико-технологический институт металлов и сплавов НАН Украины, Киев

Влияние химического состава на процесс кристаллизации и структуру фторфлогопитового литья

Исследовано влияние стеклообразующих катионов фторфлогопита (Si^{4+} , AI^{3+}), выраженных посредством алюмосиликатного модуля (M) и анионной части (F^{1-}) на свойства литого фторфлогопитового материала. Установлено, что для изученных материалов характерно зональное строение, которое зависит от химического состава и чистоты шихтовых компонентов. Мелкокристаллическое строение и оптимальный набор свойств имеет фторфлогопитовый материал с алюмосиликатным модулем M = 4 при содержании фтора 9-11 %мас.

Ключевые слова: слюда, фторфлогопит, алюмосиликаты, литые фасонные изделия, жаропрочные футеровочные материалы.

войства литого фторфлогопитового материала сильно зависимы от изменения его строения, фазового состава, морфологии фаз, вида используемых исходных сырьевых материалов и их соотношения в шихте.

При исследовании условий и возможности получения литых фторфлогопитовых материалов установлено, что на макро- и микроструктуру отливок чистота сырьевых материалов существенного влияния не оказывает, так как большинство примесей изоморфно замещают Al3+, Si4+, Mg2+ в калиевом фторфлогопите или же входят в состав стеклофазы. Решающее влияние на структуру литого материала оказывает режим охлаждения отливок, а также соотношение исходных компонентов, участвующих в слюдообразовании [1, 2]. Зависимость свойств литого материала от состава и структуры литья была установлена [3] при изучении макро- и микрошлифов, фазового состава литых изделий, используемых в литейном производстве и цветной металлургии. Так, при изоморфном замещении части Si4+ на Al3+ резко возрастает протяженность промежуточной (транскристаллитной) зоны, с одновременным увеличением размера кристаллов фторфлогопита в центральной зоне.

Для оптимизации состава шихты и приведения его в соответствие с технологическими условиями приготовления фторфлогопитового расплава, устанавливают влияние величины алюмосиликатного модуля (отношения ионов кремния к ионам алюминия, основных сеткообразующих катионов фторфлогопита) и содержания фтора на свойства литого материала [4]. Необходимость такого исследования обусловлена тем, что вводимое количество фтора в шихте в 1,5 раза больше стехиометрического. В процессе плавки часть фтора улетучивается. Следовательно, количество фтора в расплаве зависит от температурно-временных параметров плавки, что в результате и оказывает решающие влияние на свойства литого материала отливок. Исследования проводили в условиях экспериментальной базы ФТИМС НАНУ, применив ранее отработанную и апробированную методику [3].

Расплав получали в лабораторной электродуговой печи емкостью 20 кг. Опытные отливки, имеющие размеры 260х230х50 мм с прибыльной частью высотой 60 мм, отливали вертикально в песочно-глинистые формы. Свойства полученных материалов, особенности их формирования изучали, определяя макро- и микростроение, фазовый состав, физикомеханические и другие характеристики. На первой серии плавок расчетные значения алюмосиликатного модуля составляли 2, 3 и 4 при содержании фтора около 10,75 %мас. Во второй серии плавок расчетные значения фтора составляли 6, 9 и 12 %мас., при величине алюмосиликатного модуля около 3. Химический состав шихтовых компонентов приведен в табл. 1, расчетные составы опытных шихт – в табл. 2, химический состав полученных материалов – в табл. 3.

Образцы 1-5 получены на основе технически чистых материалов, образцы 6-11 - на основе чистых химических реактивов марки «ч». Составы 8-11 аналогичны составам 1-4, соответственно. Приведенные данные (табл. 3) показывают, что составы полученных материалов отличаются от стехиометрического состава фторфлогопита содержанием основных компонентов: SiO₂, Al₂O₃ и F₂. Так, в материалах 1-3 и 7-10 содержание SiO, составляет 31,9-43,7 %мас. (в стехиометрическом составе – 42,8 %мас.), Al₂O₃ – 9,5-20,9 %мас. (в стехиометрическом составе – 12,1 %мас.), при этом содержание фтора изменяется от 10,1 до 12,3 %мас. (в стехиометрическом составе - 9,0 %мас.). В материалах 2, 4, 5, 9 и 11 содержание фтора составляет 7,5-14,2 %мас., а содержание SiO₂ и Al₂O₃ практически близкое к стехиометрическому. Содержание оксида калия в этих материалах составляет 10,1-12,6 %мас., MgO – 26,3-29,0 %мас. (в стехиометрическом составе 11,2 и 28,7 %мас., соответственно). Содержание СаО (0,4-1,7 %мас.) связано с различным его количеством в шихтовых составляющих.

Из приведенных данных следует, что калий, магний, кремний и алюминий при плавке практически полностью переходят из шихты в расплав. В то же время потери фтора достигают 16-23 %мас. от его исходного содержания в шихте, что объясняется его высоким давлением насыщенных паров, по сравнению с другими элементами формульного состава калиево-

Таблица 2

Таблица 3

Химический состав шихтовых материалов

	Марка,	Содержание, %мас.									
Материал	ГОСТ, ТУ, месторождение	SiO ₂	Al ₂ O ₃	MgO	CaO	Fe ₂ O ₃	$K_{2}SiF_{6}$	K ₂ CO ₃	AIF_3	примеси	Σ
Кварцевый песок	Новоселовское	98,72	0,74	_	0,30	0,11	_	_	_	0,13	100,0
Окись алюминия	ТУ 2962-54 Для хроматогра- фии	_	98,00	_	_	_	-	-	-	2,0	100,0
Окись магния	FOCT 4526-48	0,1	-	89,90	-	-	_	_	-	10,0	100,00
Калий кремнефтористый	ТУ 6-09-1650-72	-	-	_	_	_	99,00	_	_	1,0	100,00
Поташ	FOCT 4221-65	-	-	-	-	_	-	98,00	-	2,0	100,00
Алюминий фтори- стый	ТУ 6-09-1122-71	-	-	-	_	-	-	-	99,0	1,0	100,0

Расчетные составы опытных шихт

0	Содержание компонентов, %мас.									
Состав	SiO ₂	Al ₂ O ₃	MgO	K ₂ SiF ₆	K ₂ CO ₃	AIF ₃	M = Si ⁴⁺ / Al ³⁺			
1	30,7	16,0	27,8	25,5	-	_	1,91			
2	34,7	11,8	28,0	25,5	-	-	2,99			
3	37,0	9,5	28,0	25,5	-	-	3,92			
4	37,4	11,9	28,2	17,1	5,4	_	2,90			
5	34,0	7,0	26,8	25,5	_	6,7	2 90			
6	25,0	21,0	28,0	26,0	-	_	1,30			
7	29,3	15,2	26,5	29,0	-	_	2,00			
8	30,7	16,0	27,8	25,5	-	-	2,00			
9	34,7	11,8	28,0	25,5	-	_	2,95			
10	37,0	9,5	28,0	25,5	-	_	3,93			
11	37,4	11,9	28,2	17,1	5,4	_	2,89			
12	34,7	11,8	28,0	25,5	_	-	2,99			

Химический состав полученных материалов

Maranua Na	Содержание компонентов, %мас.										
материал №	SiO ₂	Al ₂ O ₃	MgO	K ₂ O	Na ₂ O	FeO	CaO	F	Σ	$F_2 = O_2$	Σ
1	37,0	16,4	28,1	10,8	0,2	0,4	1,3	10,1	104,3	4,2	100,1
2	41,3	11,7	28,3	10,5	0,4	0,3	1,1	10,6	104,2	4,5	99,7
3	43,7	9,5	28,5	10,1	0,1	0,3	1,4	10,3	103,9	4,3	99,6
4	41,4	12,1	29,0	10,6	0,3	0,4	1,7	7,5	103,0	3,2	99,8
5	40,5	11,8	27,6	10,3	0,2	0,3	1,4	14,2	106,3	6,0	100,3
6	31,9	20,9	28,7	11,2	0,1	0,1	1,7	11,1	104,7	4,7	100,0
7	36,9	15,8	26,3	12,6	0,1	0,1	0,6	12,3	104,7	5,2	99,5
8	37,4	16,0	28,2	11,2	0,1	0,1	0,4	10,9	104,3	4,6	99,7
9	41,2	11,9	28,7	11,1	0,1	0,1	0,5	10,8	104,5	4,6	99,9
10	43,5	9,6	28,7	11,1	0,1	0,1	0,5	10,8	104,4	4,6	99,8
11	42,1	12,4	28,8	11,0	0,1	0,1	0,6	7,8	102,9	3,3	99,6
12	42,8	12,1	28,7	11,2	_	_	_	9,0	103,8	3,8	100,0

го фторфлогопита. Так, при исходном содержании фтора в шихте 9 %мас. его потери составляют 1,23 %мас., а при введении 13,2-13,5 %мас. – 2,3-2,4 %мас. Таким образом, при введении фтора в шихту в 1,5 раза больше стехиометрического (при расчетной формуле KMg₃[Si₃ AlO₁₀]F₃), его потери возрастают в 2 раза.

Отливки полученных материалов имеют существенные различия в макростроении, характеризуемые зональностью, подобной зональности строения металлических слитков. Характерным для всех материалов является наличие трех структурных зон: а) поверхностной (корковой); б) промежуточной (транскристаллической); в) центральной (равноосной).

Поверхностная зона, как правило, имеет незначительную протяженность ~1~1,5 мм, что составляет 1-2 % толщины отливки и сложена в основном стеклофазой с включениями различно ориентированных кристаллов фторфлогопита размером до 0,5-0,6 мм.

Переходная зона, в зависимости от состава материала, имеет протяженность от 1-2 до 15-20 мм или от 1-2 до 30-40 % толщины отливки. Кристаллы фторфлогопита в этой зоне направлены перпендикулярно поверхности, что обусловлено теплофизическими условиями затвердевания отливки.

Центральная зона занимает основную площадь сечения отливки и сформирована крупными произвольно ориентированными кристаллами фторфлогопита, размер которых в среднем составляет от 1-3 до 12 мм.

Протяженность зон и размер кристаллов фторфлогопита, составляющих отдельные зоны, у разных образцов отличается (табл. 4). С увеличением величины алюмосиликатного модуля (М) наблюдается уменьшение зональности и размера кристаллов фторфлогопита, при этом структура материала становится однородной и равномерной. Эта тенденция наиболее четко проявляется у составов 1-3, полученных на техническом сырье. Так, материал 1 (М = 2) имеет наиболее ярко выраженную зональность и неоднородную крупнокристаллическую структуру с размером кристаллов фторфлогопита в центральной зоне до 12 мм (рис. 1, *а*). Переходная зона с субпараллельной структурой имеет протяженность ≈ 20 мм, размер кристаллов фторфлогопита – 3-5 мм.

Увеличение алюмосиликатного модуля до 3 (состав 2) приводит к формированию более однородной структуры (рис. 1, б). Протяженность переходной зоны существенно уменьшается и составляет 8-10 %, размер кристаллов фторфлогопита также уменьшается и в переходной зоне составляет 0,4-4,0 мм, а в центральной – 0,7-4,1 мм.

При алюмосиликатном модуле 4,0 (состав 3) получен материал с однородной мелкокристаллической

структурой, в которой зональность практически отсутствует (рис. 1, в). Размер кристаллов фторфлогопита составляет в переходной зоне 0,5-1,0 мм, в центральной – 0,5-2,2 мм.

В материалах 8-10, аналогичных по составу материалам 1-3, но полученных из чистого сырья, общая тенденция укрупнения структуры и увеличения размера кристаллов фторфлогопита с уменьшением алюмосиликатного модуля сохраняется, но зональность выражена менее явно. Эти материалы имеют практически однородную межкристаллическую структуру с размером кристаллов фторфлогопита в переходной зоне 0,5-2,0 мм, а в центральной – 0,4-2,1 мм.

Увеличение размера кристаллов фторфлогопита и укрупнение строения материала с применением технического сырья можно объяснить наличием в нем примесей, в частности, Ca²⁺, Fe²⁺, которые способствуют образованию легкоплавких эвтектик и уменьшению вязкости расплава, в котором создаются благоприятные условия роста кристаллов фторфлогопита, такое предположение подтверждается ранее сделанными работами других исследователей [5, 6]. Зависимость величины кристаллов фторфлогопита от алюмосиликатного модуля приведена на рис. 2.

Уменьшение M до 1,3 (образец 6) приводит к образованию материала с неоднородным мелкокристаллическим строением. Протяженность переходной зоны составляет не более 2 % с размером кристаллов фторфлогопита 0,2-1,4 мм соответственно, в центральной зоне размер кристаллов – 0,45-1,0 мм. Такое строение обусловлено многофазным составом материала. При изучении микростроения видно, что такой материал содержит в значительном количестве алюмомагнезиальную шпинель. Эта высокотемпературная фаза действует как модификатор 1 рода, играя роль центров кристаллизации и, следовательно, ускоряет кристаллизацию расплава и измельчает литую структуру материала.

При одинаковом значении М в образцах с изменяющимся содержанием фтора, повышение содержания фтора приводит к большему проявлению

Таблица 4

	Зоны									
Образец №		Корковая	П	ереходная	Центральная					
	протяжен- ность, %	размер кристаллов фторфлогопита, мм	протяжен- ность, %	размер кристаллов фторфлогопита, мм	протяжен- ность, %	размер кристаллов фторфлогопита, мм				
1	1-2	0,07-0,1	40	3,0-5,0	58-59	1-12				
2	1-2	0,07-0,15	8-10	0,5-4,0	90-91	0,7-4,1				
3	1-2	0,07-0,12	2	0,5-1,0	96-97	0,5-2,2				
4	1-2	0,05-0,1	8-10	1,0-3,0	90-91	0,5-5,0				
5	1-2	0,07-0,1	10-15	2,0-3,0	83-89	3,0-5,0				
6	1-2	0,17-0,25	2	0,2-1,4	96-97	0,45-1,0				
7	1-2	0,2-0,6	30	1,1-4,0	68-69	1,0-8,0				
8	1-2	0,2-0,5	3-4	0,5-2,0	94-96	0,5-2,1				
9	1-2	0,05-0,1	1-2	0,5-1,6	96-98	0,8-1,7				
10	1-2	0,1-0,2	1-2	0,5-1,0	96-98	0,4-1,2				
11	1-2	0,1-0,2	2	0,5-1,0	96-97	0,8-1,9				

Рис. 1. Характерные макроструктуры полученных материалов: *a* – M = 2; *б* – M = 3; *в* – M = 4, где M – величина алюмосиликатного модуля

зональности и увеличению размеров кристаллов фторфлогопита. Причем эта тенденция более четко проявляется при применении технического сырья. Так, материал образца 4, полученный при недостатке фтора (7,5 %) относительно стехиометрического состава, имеет протяженность переходной зоны 8-10 %, а в образце 5 (с увеличенным почти в 2 раза содержанием фтора относительно 4-го) протяженность этой зоны возрастает до 10-15 %. При этом, если в 4-ом образце строение – неоднородное и крупнокристаллическое, с размером кристаллов фторфлогопита в переходной зоне 1-3 мм, а в центральной – 0,5-5 мм, то в 5-ом – строение также крупнокристаллическое (с размером в этих зонах 2-3 и 3-5 мм соответственно), но более однородное.

В то же время материал образца 11, полученный из чистого сырья, при недостатке фтора по сравне-

нию со стехиометрией, не имеет зональности, структура его мелкокристалличсеская, подобная материалам образцов 8-10.

Увеличение количества фтора по сравнению со стехиометрией при одновременном уменьшении М, с применением чистого сырья, приводит к получению крупнокристаллического материала (образец 7, М = 2, содержание фтора 12,3 %) с ярко выраженной зональностью. Протяженность переходной зоны составляет 30 % толщины отливки, размер кристаллов фторфлогопита в ней – 1,1-4,0 мм, а в центральной зоне – 1-8 мм.

Таким образом, исследование особенностей макростроения позволило установить, что для изученных составов характерно зональное строение с различной протяженностью переходной зоны в зависимости от химического состава и чистоты применяемого сырья. Образование переходной зоны с субпараллельной структурой обусловлено условиями затвердевания и кристаллизации. Основным фактором, определяющим скорость процесса затвердевания литого расплава, является теплообмен в системе отливка-форма [7-10]. После образования коркового слоя поверхности отливки кристаллы фторфлогопита первой генерации продолжают расти со скоростью, определяемой температурными условиями затвердевания и степенью переохлаждения расплава. Вследствие образующегося в отливке градиента температур, кристаллы фторфлогопита растут преимущественно в направлении обратном теплоотводу, перпендикулярно поверхности отливки. Это также связано с анизотропией теплопроводности кристаллов

фторфлогопита, которая вдоль плоскости спайности в 10 раз выше, чем в перпендикулярном направлении, что является одной из причин различия в скорости роста по отдельным плоскостям: в плоскости спайности она в 5-10 раз выше, чем в перпендикулярном направлении [11, 12].

Различная протяженность переходной зоны при практически постоянных условиях затвердевания и кристаллизации отливок зависит от химического состава расплава, то есть при практически одинаковом теплопереносе движущей силой роста кристаллов является массоперенос, величина которого определяется вязкостью расплава [10, 11, 13]. При уменьшении М от 4,0 до 2,0 вязкость и энергия активации уменьшаются, что приводит к возрастанию скорости роста кристаллов фторфлогопита и увеличению как протяженности переходной зоны, так и размера кристаллов фторфлогопита в материале. Так, при минимальной вязкости у расплава 1 (М = 2,0) протяженность переходной зоны составляет 40 % толщины отливки, а величина кристаллов фторфлогопита достигает 10-12 мм. С повышением вязкости расплава, (образец 3 (М = 4,0)) почти в 2 раза, протяженность

переходной зоны составляет 2 % толщины образца, а величина кристаллов фторфлогопита – 2,2 мм. Таким образом, поскольку вязкость полученных расплавов и величина кристаллов фторфлогопита функционально связаны с алюмосиликатным модулем, который является показателем химического состава, можно утверждать, что протяженность переходной зоны обусловливается химическим составом.

Наиболее благоприятной макроструктурой обладают материалы образцов 3 и 10, имеющие близкий химический состав. Строение этих материалов характеризуется значительным развитием центральной однородной кристаллической зоны с размером кристаллов фторфлогопита 0,1-3 мм. Суммарная протяженность остальных зон не превышает 1-3 мм. Концентрация фтора в расплаве и соотношение между кремнием и алюминием при прочих равных условиях, очевидно, определяют скорость зарождения и роста кристаллов фторфлогопита, фазовый состав материала и его свойства.

ЛИТЕРАТУРА

- 1. Новые материалы из оксидов и синтетических фторсиликатов / Тресвятский С. Г., Лопато Л. М., Вишневский В. Б. и др.; Под общ. ред. Тресвятского С. Г. Киев: Наукова думка, 1982. 204 с.
- 2. Кондратенко А. Д. Исследование слюдообразования и технологии получения слюдокристаллических материалов: автореф. дис. канд. техн. наук. Киев, 1972. 18 с.
- 3. Малявин А. Г., Руженцева М. К. Изучение строения и физико-механических свойств литого слюдокристаллического материала // Сб. Проблемы каменного литья. 1975. вып. 3. Киев: Наукова думка. С. 158–181.
- 4. Пархоменко М. А. Исследования по получению синтетических слюд и новых материалов на их основе. Автореф. дис. канд. техн. наук. Киев, 1965. 18 с.
- 5. *Бобр-Сергеев А. А.* Синтез фторфлогопита из шихты на основе микроклина // В кн.: Рост кристаллов. 1965. № 6. С. 393–406.
- 6. *Аникин И. Н., Ишбулатов Р. А.* Кристаллизация фторслюды из растворов в расплавах фторидов // ДАН СССР. 1973. № 4. С. 942–945.
- 7. Хан Б. Х. и др. Затвердевание и кристаллизация каменного литья. Киев: Наукова думка, 1969. 163 с.
- 8. Баландин Г. Ф. Формирование кристаллического строения отливок. М.: Машиностроение, 1978. 287 с.
- 9. Вейник А. И. Теория затвердевания отливки. М.: Машгиз, 1960. 436 с.
- 10. Ефимов В. А. Разливка и затвердевание стали. М.: Металлургия, 1976. 552 с.
- 11. Аникин И. Н., Кочеткова Е. Е. Опыты по кристаллизации слюды на затравках // Тр. ВНИИСИМС. 1960. вып. 10. С. 134–139.
- 12. Аникин И. Н. и др. Некоторые особенности кристаллов синтетической слюды // Тр. ВНИИСИМС. 1969. вып. 10. С. 112–118.
- 13. Эйтель В. Физическая химия силикатов. М.: Изд-во иностр. литер., 1962. 1056 с.

- 1. Tresviatsky S. G., Lopato L. M., Vishnevsky V. B. et al. (1982). Novye materialy iz oksidov i sinteticheskikh ftorsilikatov [New materials from oxides and synthetic fluorosilicates. Ed. by Tresviatsky S. G.]. Kiev: Naukova dumka, 204 p. [in Russian].
- 2. Kondratenko A. D. (1972). Issledovanie sliudoobrazovaniia i tekhnologii polucheniia sliudokristallicheskikh materialov [Research of mica formation and technology of obtaining of micaceous crystalline materials]. Extended abstract of candidate's thesis. Kiev, 18 p. [in Russian].
- Malyavin A. G., Ruzhentseva M. K. (1975). Izuchenie stroeniia i fiziko-mekhanicheskikh svoistv litogo sliudokristallicheskogo materiala [Study of the structure and physico-mechanical properties of the cast silt-crystalline material]. Kiev: Naukova dumka. Sb. Problemy kamennogo lit'ia, iss. 3, p. 158–181 [in Russian].

- 4. *Parkhomenko M. A.* (1965). Issledovaniia po polucheniiu sinteticheskikh sliud i novykh materialov na ikh osnove [*Studies on the production of synthetic micas and new materials based on them*] Extended abstract of candidate's thesis. Kiev, 18 p. [in Russian].
- 5. Bobr-Sergeeev A. A. (1965). Sintez ftorflogopita iz shikhty na osnove mikroklina [Synthesis of fluorophlogopite from charge based on microcline]. In the book: Growth of Crystals, no. 6, pp. 393–406 [in Russian].
- 6. Anikin I. N., Ishbulatov R. A. (1973). Kristallizatsiia ftorsliudy iz rastvorov v rasplavakh ftoridov [Crystallization of fluoromica from solutions in melts of fluorides]. DAN USSR, no. 4, pp. 942–945 [in Russian].
- 7. *Khan B. Kh. et al.* (1969). Zatverdevanie i kristallizatsiia kamennogo lit'ia [*Solidification and crystallization of stone casting*]. Kiev: Naukova dumka, 163 p. [in Russian].
- 8. Balandin G. F. (1978). Formirovanie kristallicheskogo stroeniia otlivok [Formation of the crystalline structure of castings]. Moscow: Mashinostroenie, 287 p. [in Russian].
- 9. Veinik A. I. (1960). Teoriia zatverdevaniia otlivki [The theory of solidification of casting]. Moscow: Mashgiz, 436 p. [in Russian].
- 10. Efimov V. A. (1976). Razlivka i zatverdevanie stali [Casting and hardening of steel]. Moscow: Metallurgiia, 552 p. [in Russian].
- 11. Anikin I. N., Kochetkova E. E. (1960). Opyty po kristallizatsii sliudy na zatravkakh [Experiments on the crystallization of mica on seeds]. Tr. VNIISIMS, vol. 10, pp. 134–139 [in Russian].
- 12. Anikin I. N. (1969). Nekotorye osobennosti kristallov sinteticheskoi sliudy [Some features of crystals of synthetic mica]. Tr. VNIISIMS, iss. 10, pp. 112–118 [in Russian].
- Eitel` V. (1962). Fizicheskaia khimiia silikatov [Physical chemistry of silicates]. Moscow: Izdatels'tvo inostrannoi Literatury, 1056 p. [in Russian]

Затуловський А.С., Малявін А.Г., Богатирьова Ж.Д., Щерецький В.О., Кузьменко О.А. Вплив хімічного складу на процес кристалізації і структуру фторфлогопітового литва

Досліджено вплив склоутворюючих катіонів фторфлогопіту (Si⁴⁺, Al³⁺), виражених за допомогою алюмосилікатного модуля (M) і аніонної частини (F¹⁻) на властивості литого фторфлогопітового матеріалу. Встановлено, що для вивчених матеріалів характерна зональна будова, яка залежить від хімічного складу і чистоти шихтових компонентів. Дрібнокристалічна будова і оптимальний набір властивостей має фторфлогопітовий матеріал з алюмосилікатним модулем M = 4 при вмісті фтору 9-11 %мас.

The influence of glass-forming fluorophlogopite cations (Si^{4*} , Al^{3*}), expressed by aluminosilicate module (M) and anionic part (F^{I-}) on the properties of cast fluorophlogopite material is investigated. It is stated typical zonal structure for investigated materials, which depends on chemical composition and purity of charge components. The fine-crystalline structure and optimal set of properties have a fluorophlogopite material with an aluminosilicate module M = 4 with a fluorine content in range

of 9-11 wt. %.

