А. И. Дикусар, Р. Кужба

Сравнительный анализ взаимосвязи между наукой и социально-экономическим развитием общества в странах ЕС и СНГ

На основе количественного анализа взаимосвязи между уровнем социально-экономического развития общества (оцениваемым Индексом человеческого развития (ИЧР)) и уровнем его научного развития (оцениваемым наукометрическими показателями, основанными на информационной модели науки) показано наличие между ними положительной обратной связи как для стран ЕС, так и для стран СНГ. Показано существенное различие между этими группами стран как в степени жесткости соответствующих корреляционных зависимостей, так и в степени влияния науки на уровень социально-экономического развития. Особенности современного развития науки в исследованных группах стран свидетельствуют о положительных тенденциях взаимного влияния науки и уровня социально-экономического развития в странах ЕС и отрицательных тенденциях (снижение вклада в мировой информационный процесс) в странах СНГ. Анализируются тенденции развития различных отраслей знаний на мировом, региональном и национальном уровне в таких странах как Украина, Молдова, Литва и Румыния.

Ключевые слова: индекс человеческого развития, уровень развития науки, уровень социальноэкономического развития, коэффициент научного развития, *H*-фактор, мировой информационный процесс, отрасль знаний.

Несмотря на то, что взаимосвязь между уровнем развития науки в конкретном обществе и уровнем его социально-экономического развития очевидна и не подлежит сомнению, количественный анализ подобной взаимосвязи стал возможен только с развитием наукометрии количественного анализа мировых информационных потоков. В основе наукометрического анализа лежит информационная модель науки. В рамках этой модели наука рассматривается как мировой информационный процесс [1]. На ее основе в настоящее время созданы различные базы данных (Web of Science, Scopus и др.), позволяющие не только оценивать вклад различных исследователей (групп ученых, лабораторий и институтов), а также стран в развитие науки, но и анализировать различные виды взаимосвязей между группами исследователей, направлениями исследований, определять перспективные, быстро развивающиеся направления науки, а также (при определенных условиях) оценивать их эффективность.

В настоящей работе на основе базы данных Scopus (SCImago Journal & Country Rank) [2] представлены результаты количественного анализа взаимосвязи между развитием науки и социально-экономическим развитием общества в странах, принадлежащих к ЕС и к СНГ.

Количественный анализ подобных взаимосвязей возможен, если известны интегральные количественные характеристики уровня социально-экономического развития общества. В качестве таковых, как и в [3-5], будет использован Индекс человеческого развития — ИЧР (до 2013 года Индекс развития человеческого потенциала — ИРЧП) (англ. Human Development Index — HDI), ежегодно рассчитываемый специальной Комиссией ООН [6] и включающий показатели уровня экономического развития, здоровья населения и уровня его образования. Согласно отчетам ООН, начиная с 2009 года в зависимости от уровня ИЧР все страны подразделяются на страны с очень высоким, высоким, средним и низким уровнем ИЧР. Так, в отчете ООН за 2013 год Молдова относится к странам со средним уровнем ИЧР (0,660, 113 место в мире), Украина и Румыния — с высоким (0,740, 78 место в мире и 0,786, 56 место в мире, соответственно), а Литва – с очень высоким уровнем (0,834, 35 место в мире).

Анализ подобных взаимосвязей представляется крайне важным, если учесть, что уровень социально-экономического развития общества — это то, за что несут ответственность Президент, Парламент, Кабинет Министров, то есть руководящие органы государства, а они, к сожалению, далеко не

[©] А. И. Дикусар, Р. Кужба, 2015

всегда понимают важность и необходимость развития научных исследований в стране.

ИЧР является интегральным показателем, рассчитываемым с учетом численности населения конкретной страны (например, в качестве уровня экономического развития используется ВВП на душу населения с учетом паритета покупательной способности). Очевидно, что для расчета количественного показателя уровня развития науки необходима такая его характеристика, которая бы учитывала «масштаб» страны. В качестве таковой в настоящей работе (как и в [3-5]) используется коэффициент научного развития (SDI – англ. Science Development Index), представляющий собой отношение доли вклада конкретной страны в мировой информационный процесс (науку) (Ps) к доле населении этой страны в населении Земли (Ph):

$$SDI = P_S/Ph \tag{1}$$

В табл. 1 представлены значения Ps для десяти ведущих стран мира (в области науки), рассчитанные на основе количества статей в ведущих научных журналах мира, включающих все науки, за 2013 год (слева представлены аналогичные данные за 1996 год). В табл. 1 также представлены значения H-фактора, учитывающего не только число статей, но и их цитируемость (то есть степень влияния на мировой информационный процесс, значения H-фактора соответствуют периоду 1996—2013 гг.).

Таблица 1 Доля вклада в мировой информационный процесс (науку) некоторых ведущих в научном отношении стран, %

	в мирово	Доля вклада в мировой		
Страна	информацио процесс,	(1996– 2013)		
	1996	2013		
США	28,9	22,0	1518	
Китай	2,5	16,6	436	
Великобритания	7,3	6,3	934	
Германия	6,4	5,8	815	
Япония	7,4	4,7	694	
Франция	4,8	4,2	742	
Индия	1,8	4,1	341	
Италия	3,3	3,6	654	
Канада	3,6	3,5	725	
Испания	2,1	3,1	531	

Источник: [2]

Приведенные результаты показывают динамику развития мирового информационного процесса. Из табл. 1 видно, что показатели ведущих в научном отношении стран мира снижаются (США ~ на 30%, Японии – почти вдвое, Великобритании ~ на 16%), в то время как увеличивается доля азиатских стран (Китая ~ в 7 раз, Индии — более чем в 2 раза). Очевидно, что это является следствием снижения не абсолютных, а относительных показателей. Дополнительным свидетельством в пользу этого утверждения являются значения показателя, учитывающего не только количество работ, но и их цитируемость – Н-фактор (Hirsch-factor). Для Индии и Китая значения Н-фактора существенно ниже (пока). Кажется очевидным, что приведенные результаты являются свидетельством бурного развития науки во всех странах, следствием чего и является снижение относительной доли вклада ведущих в научном отношении стран мира. Приведенные результаты также показывают, что величина SDI - это динамическая величина, изменяющаяся во времени. Кроме того, временные изменения вышеуказанного параметра могут служить показателем динамики развития науки в конкретной стране.

В табл. 2 приведены аналогичные показатели для ряда стран Восточной Европы (ЕС и СНГ). В табл. 2 включены также показатели регионального вклада (страны Восточной Европы).

Таблица 2 Доля вклада в мировой информационный процесс (науку) некоторых стран ЕС и СНГ, %

	ı	Доля вклада в информационный процесс, %						
Стана	На ми	•	На региональном уровне		тор (1996— 2013)			
	1996	2013	1996					
Россия	2,77	1,71	45,4	27,7	355			
Украина	0,50	0,35	8,14	5,69	159			
Румыния	0,17	0,53	2,73	8,62	153			
Литва	0,04	0,11	0,69	1,71	122			
Молдова	0,02	0,02	0,35	0,24	68			

Источник: [2]

Данные табл. 2 показывают существенную разницу между динамикой развития науки в странах ЕС и СНГ. Если в России и Украине

наблюдается резкое снижение показателей развития науки, то в Румынии и Литве — резкий рост. Россия в 1996 году давала почти половину регионального вклада, в 2013 году ее показатель снизился до ~ 28%. В то же время Н-фактор России продолжает оставаться достаточно высоким и превышает таковой, например, для Индии (что следует из сравнения данных табл. 1 и табл. 2). В Молдове не наблюдается такой резкий спад, который характерен для России и Украины, хотя незначительное снижение регионального вклада имеет место.

На рис. 1 показана взаимосвязь между уровнем развития науки и социально-экономического развития для стран ЕС и СНГ (значения SDI рассчитаны по данным SCImago [2] за 2013 год). Видно, что даже наименее развитые в научном отношении страны ЕС (Болгария и Румыния) имеют более высокие показатели SDI, чем Россия, не говоря уже о странах СНГ, имеющих более низкие показатели. Несмотря на ожидаемый разброс данных (очевидно, что не только уровень развития науки определяет уровень социальноэкономического развития) наблюдается очевидная корреляция между уровнем развития науки и уровнем социально-экономического развития, причем как для стран ЕС, так и СНГ. Однако существенная разница (только подтверждающая наличие такой корреляции) состоит в том, что и уровень развития науки, и уровень социально-экономического развития в ЕС выше, чем в СНГ.

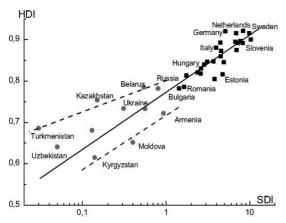


Рис. 1. Взаимосвязь между уровнем развития науки и социально-экономического развития для стран ЕС и СНГ

Источник: составлено по данным [2]

Наблюдаемая корреляция, рассчитанная методом наименьших квадратов, в виде зависимости

$$HDI = b + a \lg SDI \tag{2}$$

позволяет рассчитать и коэффициент корреляции R (то есть оценить наличие сильной или слабой взаимосвязи между изучаемыми параметрами), а также определить коэффициент a в уравнении (2), показывающий степень влияния науки на уровень социально-экономического развития. Полученные результаты приведены в табл. 3 вместе со стандартными отклонениями (для сравнения приведены аналогичные показатели для стран Латинской Америки и Восточной Европы). Видно, что страны ЕС имеют не только наиболее высокие значения и HDI и SDI, но и более сильную взаимосвязь между этими показателями (более высокие значения R) и более значимое влияние науки на значение HDI (более высокие значения a в уравнении (2)).

Значительно больший разброс в величине коэффициента корреляции *R* и его меньшая величина для стран СНГ (табл. 3) обусловлены существенными особенностями наблюдаемых зависимостей для различных стран СНГ (рис. 1). Верхняя ветвь этой зависимости — это зависимость для стран, имеющих собственные энергоресурсы (Россия, Казахстан, Украина, Туркменистан, а также Беларусь, имеющая преференциальный доступ к ним), а нижняя — для стран, таких ресурсов не имеющих или имеющих их в ограниченном количестве (Армения, Молдова, Киргизия).

Таблица 3 Коэффициент корреляции и уровень взаимосвязи между наукой и социально-экономическим развитием

Регион/ Страна	R	a	b
EC	$0,86\pm0,10$	$0,15\pm0,02$	$0,76\pm0,01$
СНГ	$0,57\pm0,27$	$0,07\pm0,03$	$0,75\pm0,03$
Латинская Америка	0,53±0,13	0,04±0,01	0,76±0,02
Восточная Европа	0,83±0,12	0,11±0,02	0,77±0,01

Источник: рассчитано по данным [2]

Очевидно, что для первой группы стран величины HDI (то есть уровень их социально-экономического развития) существенно выше, даже несмотря на более низкий уро-

вень развития науки. Так, значение SDI для Молдовы выше, чем для Казахстана, а уровень социально-экономического развития ниже, поскольку у Казахстана есть возможность повышения уровня экономики (а, следовательно, и других составляющих HDI) за счет собственных энергетических ресурсов.

Очевиден тот факт, что не только наука определяет уровень социально-экономического развития, о чем свидетельствуют результаты, приведенные на рис. 1. Одновременно приходим к выводу, что для стран, не имеющих собственных энергетических ресурсов, практически единственным фактором развития является развитие науки. Именно к категории таких стран относится Молдова. Этот вывод подтверждается наклоном зависимости HDI – SDI для этой группы стран, практически совпадающим с наклоном (степень влияния науки на уровень социальноэкономического развития) для стран ЕС (рис. 1). Характерно, что близкие показатели корреляции, характерные для стран СНГ, наблюдаются и для стран Латинской Америки (табл. 3).

Следует подчеркнуть, что наблюдаемые взаимосвязи — это не более чем корреляции, которые свидетельствуют о наличии положительной обратной связи «уровень развития науки — уровень социально-экономического развития — уровень развития науки». Но ответ на вопрос, что является первичным, а что вторичным, они не дают. Однако кажется очевидным, что любое снижение финансирования науки (особенно для стран, не имеющих собственных

энергетических ресурсов) с неизбежностью влечет снижение уровня социально-экономического развития страны (за которое несут ответственность ее руководители). Именно поэтому в тех странах ЕС, где финансирование науки поддерживается на уровне ~ 3% от ВВП, показатели и SDI, и HDI существенно выше. Более того, как следует из данных, приведенных в табл. 2, для таких стран, как Румыния или Литва, вступление в ЕС (а, следовательно, существенное увеличение финансирования науки) привело к резкому росту и научных показателей, и уровня социально-экономического развития. Что же касается Молдовы, то одна из причин ее относительно низких показателей это крайне неудовлетворительное финансирование науки ($\sim 0.4\%$ от ВВП) (и что, видимо, еще хуже – непонимание роли науки людьми, ответственными за принятие решений в социально-экономической сфере).

Далее ответим на вопрос о том, в каких именно областях науки ученые Украины и Молдовы достигли пусть и скромных, но всетаки значимых результатов. Наличие наблюдаемой корреляции между уровнем развития науки и социально-экономического развития требует ответа на этот вопрос, в том числе и по той причине, что наука многофункциональна (является частью культуры общества, влияет на уровень образования и экономики) и ввиду этого определяет уровень социально-экономического развития. Соответствующие результаты приведены в табл. 4, табл. 5 (клас-

Таблица 4 Доля вклада ученых Украины в мировой информационный процесс в различных отраслях знаний на мировом, региональном и национальном уровне, %

Отрасль знаний	Доля на г урог	•	Доля на региональ- ном уровне		Доля на национальном уровне		Н-фактор
	1996	2013	1996	2013	1996	2013	1996-2013
Все отрасли	0,50%	0,35%	8,14%	5,69%	100%	100%	159
Физика и астрономия	1,53	1,16	10,23	9,92	23,36	23,42	121
Химия	0,93	0,53	7,32	5,91	9,71	8,56	91
Биохимия, генетика и молекулярная биология	0,24	0,19	4,77	3,52	4,11	4,23	87
Материаловедение	1,47	0,92	11,59	9,94	17,82	15,38	84
Науки о земле и планетах	0,52	0,47	5,22	5,45	2,71	3,30	77
Инженерия	0,89	0,4	12,03	7,10	17,27	13,09	62
Химическая инженерия	1,29	0,38	12,32	5,36	5,40	2,83	62
Математика	1,03	0,58	8,95	6,05	6,06	6,66	55
Информатика	0,53	0,27	8,48	5,05	3,37	3,86	38
Bcero					89,81%	81,33%	

Источник: составлено по данным [2]

Таблица 5 Доля вклада ученых Молдовы в мировой информационный процесс в различных отраслях знаний на мировом, региональном и национальном уровне, %

Отрасль знаний	1	мировом вне	Дол регион уро		Доля на национальном уровне Н-ф		Н-фактор
	1996	2013	1996	2013	1996	2013	1996-2013
Все отрасли	0,02%	0,02%	0,35%	0,24%	100%	100%	68
Физика и астрономия	0,08	0,06	0,56	0,48	25,00	23,15	51
Материаловедение	0,10	0,05	0,75	0,58	22,46	18,40	48
Химия	0,06	0,03	0,51	0,35	13,09	10,39	44
Инженерия	0,04	0,02	0,48	0,32	13,48	12,17	39
Химическая инженерия	0,03	0,01	0,25	0,18	2,15	1,93	30
Биохимия, генетика и молекулярная биология	0,01	0,01	0,26	0,11	4,30	2,80	30
Медицина	0,00	0,00	0,14	0,14	2,34	5,49	25
Математика	0,07	0,02	0,56	0,26	7,42	5,93	19
Bcero					90,24%	80,26%	

Источник: составлено по данным [2]

сификация отраслей знания соответствует классификации базы данных Scopus), где представлены отрасли знаний, составившие в 2013 году $\sim 80\%$ от всех развивающихся отраслей знаний в этих странах.

Как в Украине, так и в Молдове наибольший вклад дают физика, химия, материаловедение, инженерия. При относительно небольшом количестве работ высокие показатели Н-фактора имеет биохимия, генетика и молекулярная биология. Отсутствуют в этом списке экономические и социальные науки, науки в области энергетики (исследования ведутся, работы есть, но до уровня международного признания они «не дотягивают»). Относительно низок уровень международного признания работ в области медицины, а также сельскохозяйственных и биологических наук. Наблюдается резкий спад работ подобного уровня в области математики в Молдове и химической инженерии в Украине. Важно подчеркнуть два обстоятельства: практически по всем отраслям знания идет снижение показателей, приоритеты в развитии науки не соответствуют мировым тенденциям, для которых характерно развитие прежде всего наук о жизни (медицина, биохимия, генетика и

молекулярная биология и др.) Для сравнения в табл. 6, табл. 7 представлены ведущие отрасли знаний Литвы и Румынии — странчленов ЕС, одна из которых — бывшая советская республика, а другая — страна бывшего соцлагеря. В отличие от Украины и Молдовы, в обеих упомянутых странах ЕС доля всех отраслей знаний на мировом и региональном уровне растет, особенно доля наук о жизни (медицина, биохимия, генетика и молекулярная биология, наука об окружающей среде). Тенденция развития наук о жизни характерна для всех развитых в научно-техническом плане стран, чего нельзя сказать о странах СНГ.

В заключение необходимо отметить, что глубокое осознание не только наблюдаемой корреляции, но и ее причин (а также следствий) является необходимым условием дальнейшего развития общества. Наука — это вектор социально-экономического движения, направленный в будущее, своеобразный «мимесис» по определению А. Тойнби [7]. Если «мимесис» направлен в будущее, а условием этого является развитие науки, то общество развивается, а в противном случае наблюдается его стагнация и создаются условия для его деградации и распада.

Таблица 6 Доля вклада ученых Литвы в мировой информационный процесс в различных отраслях знаний на мировом, региональном и национальном уровне, %

Отрасль знаний	Доля на мировом уровне		Доля на региональном уровне		Доля на национальном уровне		Н-фактор
	1996	2013	1996	2013	1996	2013	1996-2013
Все отрасли	0,04	0,11	0,69	1,71	100%	100%	122
Медицина	0,01	0,06	0,64	1,6	5,92	9,63	84
Биохимия, генетика и молекулярная биология	0,04	0,06	0,74	1,12	7,04	4,27	75
Физика и астрономия	0,12	0,19	0,82	1,63	20,67	12,23	70
Химия	0,08	0,12	0,63	1,23	9,27	5,63	62
Инженерия	0,05	0,13	0,67	2,29	10,61	13,39	57
Материаловедение	0,11	0,17	0,84	1,8	14,41	8,83	56
Сельскохозяйственные и биологические науки	0,03	0,14	0,56	2,14	2,91	6,66	48
Наука об окружающей среде	0,03	0,14	0,56	2,39	1,9	3,95	42
Математика	0,14	0,11	1,22	1,19	9.16	4,15	35
Информатика	0,09	0,09	1,39	1,51	6,15	3,65	32
Социальные науки	0,01	0,18	0,53	4,35	0,45	7,57	22
					88,49%	79,96%	_

Источник: составлено по данным [2]

Таблица 7 Доля вклада ученых Румынии в мировой информационный процесс в различных отраслях знаний на мировом, региональном и национальном уровне, %

Отрасль знаний	Доля на м урог	_		Доля на доля на национальном уровне уровне		Н-фактор	
	1996	2013	1996	2013	1996	2013	1996-2013
Все отрасли	0,17	0,53	2,73	8,62	100	100	153
Физика и астрономия	0,47	0,81	3,14	6,96	21,04	11,51	114
Медицина	0,05	0,24	2,35	6,84	5,75	9,12	98
Биохимия, генетика и молекулярная биология	0,08	0,34	1,66	6,41	4,19	5,41	84
Химия	0,41	0,78	3,27	8,24	12,72	8,38	80
Инженерия	0,28	0,66	3,84	11,57	16,17	14,97	77
Материаловедение	0,42	0,8	3,27	8,66	14,72	9,4	74
Математика	0,47	0,87	4,1	9,13	8,14	7,05	59
Информатика	0,23	0,5	3,77	9,21	4,4	4,93	57
Наука об окружающей среде	0,1	0,6	1,69	10,29	1,5	3,75	57
Сельскохозяйственные и биологические науки	0,04	0,34	0,71	5,03	0,97	3,46	48
Всего					89,6%	77,98%	

Источник: составлено по данным [2]

- 1. *Налимов В. В.* Наукометрия / В. В. Налимов, З. М. Мульченко. М.: Наука, 1969.
- 2. SCImago Journal & Country Rank [Electronic resource]. Access mode: www.scimagojr.com/
- 3. Дикусар А. И. Взаимное влияние социально-экономического и научного развития общества / А. И. Дикусар // Науковедение. 1999. № 2. С. 51—74.
- 4. Дикусар Александр. Место исследователей Молдовы в мировом информационном процессе. Наукометрический анализ / Александр Дикусар // Akademos. — 2011. — № 2 (21). — С. 28—35.
- 5. *Dikusar Alexandr*. Interdependenta dintre stiinta si dezvoltarea economico-sociala: UE, CSI, Republica Moldova / Alexandr Dikusar, Rodica Cujba // Akademos. 2015. No 1 (36). P. 8–12.
- 6. Human Development Report 2013. The Rise of the South: Human Progress in a Diverse World, United Nations Development Programme, One United Nations Plaza New York, NY 10017, ISBN 978-92-1-126340-4 [Electronic resource]. Access mode: http://hdr.undp.org/sites/default/files/reports/14/hdr2013_en_complete.pdf.
- 7. *Тойнби А. Дж.* Исследование истории: Цивилизации во времени и пространстве / А. Дж. Тойнби ; пер. с англ. К. Я. Кожурина. Москва : ACT: Астрель, 2011. 863 с.

Получено 26.03.2015

А. І. Дікусар, Р. Кужба

Порівняльний аналіз взаимозв'язку між наукою та соціально-економічним розвитком суспільства в країнах ЄС та СНД

На основі кількісного аналізу взаємозв'язку між рівнем соціально-економічного розвитку суспільства (оцінюваним Індексом людського розвитку (ІЛР)) і рівнем його наукового розвитку (оцінюваним наукометричними показниками, основаними на інформаційній моделі науки) показано наявність позитивного оберненого зв'язку між ними як для країн ЄС, так і для країн СНД. Показано суттєву відмінність між цими групами країн як за ступенем жорсткості відповідних кореляційних залежностей, так і за ступенем впливу науки на рівень соціально-економічного розвитку. Особливості сучасного розвитку науки в досліджуваних групах країн свідчать про позитивні тенденції взаємного впливу науки і рівня соціально-економічного розвитку в країнах ЄС і негативні тенденції (зниження внеску в світовий інформаційний процес) в країнах СНД. Аналізуються тенденції розвитку різних галузей знань на світовому, регіональному та національному рівні в таких країнах як Україна, Молдова, Литва та Румунія.

Ключові слова: індекс людського розвитку, рівень розвитку науки, рівень соціально-економічного розвитку, коефіцієнт наукового розвитку, *Н-фактор*, світовий інформаційний процес, галузь знань.