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MODELING OF STRAIN AND DENSITY DISTRIBUTION DURING HIGH PRESSURE
TORSION OF PRE-COMPACTED POWDER MATERIALS

It is shown by finite element modeling that under high pressure torsion of water-atomized pure iron powder a zone
with high shear strain and high density develops first in a layer adjacent to the moving anvil. The finite element simulation
results and an analytical calculation using the minimum plastic energy extremum principle both show that with further
deformation the compacted zone extends progressively in the radial and axial directions throughout the specimen.

Keywords: high pressure torsion, powder, porosity, mathematical simulation

Beiirean3umep SLE., Kyaarun P.IO., Yajun J. Zhao, Laszlo S. Toth, M..B. IllTtepH

MOJAEJIUPOBAHUE JE®@OPMAIMU U PACIIPEAEJIEHUSA IIVIOTHOCTH ITPU
KPYYEHUU IO JABJIEHUEM ITPEJIBAPUTEJIBHO CKOMITIAKTUPOBAHHBIX
IHOPOIIKOBBIX MATEPHAJIOB

C nomouwpio mMoOenuposanus Memooom KOHEUHBIX IIEMEHMO8 NOKA3AHO, YMO RpU Kpy4eHuu noo O0asieHuem
ofpaszua u3 npeosapumenbHO CKOMRAKMUPOBAHHO20 HOPOWIKOB020 Jicesle3d, 30HA C GbICOKOU Oepopmauueit coguza u
6bICOKOIl NJIOMHOCMbIO 6 HAuajne RPouecca JOKAIU3Yemcsa 6 clloe, NPUMbIKawwem K noosuiichoii naxoeanvue. Ilpu
oanvHeliueil oepopmayuu yniomHuennas 30Ha NOCMEeNEeHHo PACRPOCIMPAHAENICA 6 PAOUATILHBIX U 0CEbIX HANPABIEHUAX NO
ecemy oopazuy.

Kntouesvle cnosa: kpyuenue noo 8blcOKUM Oa61eHUEeM, HOPOUIOK, NOPUCHOCHb, MAMEMAMUYECKOe MOOETUPOBAHUEe
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MOJIEJIOBAHHSA JIE@OPMAIII I PO3MOALTY T'YCTUHHU ITPU KPYYEHHI 1T
THUCKOM IIONNEPEJHBO CKOMITAKTIPOBAHHHUX ITOPOINIKOBUX MATEPIAJIIB

3a donomozorw modenieannn memooom KiHyesux eleMeHmie NOKA3aHO, W0 npu KPy4eHHi ni0 MUCKom 3pasKa 3
nOnepeonbo CKOMRAKMIPOGAHHO20 NOPOULKOB020 3A7li3d, 30HA 3 UCOKOI0 Oehopmauicio 3cyey i 6ucoKow wjinbHicmio Ha
nouamKy npoyecy J10KaIi3YEMbCA 8 WApi, Wio npUMUKac 00 pyxomuii koeaoni. Ilpu nodanvuiiii depopmauii ywjinonena 3ona
ROCIYNO060 NOWUPIOEMBCA 6 PAOIANLHUX | 0CbOGUX HANPAMAX NO 6CLOMY 3DA3KY.

Knwouogi cnosa: kpyuenna nio 6ucokum muckom, NOpOUIOK, NOPUCMICIb, MAMEMAMUYHE MOOENO8AHHS

We dedicate this paper to 70th anniversary of Victor Rud’, the wonderful person, who has opened
the door to the experimental mechanics of porous and powder materials

Introduction

High pressure torsion (HPT) is the effective severe plastic deformation processes [1]. It is used for
making materials with exceptionally small grain size (about 100 nm), as well as for consolidating of
powder materials. In the latter case also occurs grain refinement.

Strain distribution by volume of the sample is the most important characteristic of the HPT.
Recently, it was found that the strain distribution at the HPT is non-uniform not only in radial direction (it
has been known from the early work on HPT), but also in axial direction of the sample [2]. Extreme
heterogeneity of the strain was founded in article [3], where dead zone is shown.

The articles [4,5] present the results of experiments on the consolidation of water atomized
commercially pure iron powder by true constrained high pressure torsion (by the classification of the
paper [1]) (Fig.1). Because of the high hydrostatic pressure, this scheme is the best for the HPT of powder
materials.

In the article [4] is shown that porosity of powder specimens decreases with saturation to about 3%
under uniaxial compression. Torsion under pressure leads to a further porosity reduction up to tenths of a
percent. In the paper [5] is shown that there is a considerable heterogeneity of the strain in axial direction
under HPT of powders.
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In this paper, we investigate theoretically HPT of powder sample under the same conditions as in
the articles [4,5]. The study showed that with increasing of a rotation angle of the anvil the border of an
area with a high density is spreading through the specimen. It starts from the edge of rotating piston and
moves in both radial and axial directions in the sample volume. The porosity in the volume of the sample
tends to a steady-state value, which is determined by the axial pressure. Comparison of the strain
distribution and porosity in the sample volume for the experimental conditions [4,5] show good
correspondence between theory and experiment.

Mathematical simulation

The purpose of the mathematical simulation was to study the evolution of the strain and the density
distribution in the bulk of precompacted pure iron powder during it torsion under pressure.

Different rheological models is used for the simulation of plastic deformation of powder materials
by finite element method [6].The most commonly used modified Drucker—Prager cap model [7] and
Shima-Oyane model [8], which are offered in ABAQUS and DEFORM software . To analyze the
process, we apply the model [9-11], which combines the features of the models [7] and [8], and allows
one to make some conclusions about the physical mechanisms of deformation. This model takes into
account both processes accompanying the plastic deformation of materials with low porosity: reduction of
voids as well as the formation of new ones. The reason of the second processes is the structural
heterogeneity of the material.

The model [9-11] is represented by the following equations:
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where o and €, are the components of stress and strain rate tensors; o = — 0 Oj and

€ =6, 0 respectively denote the hydrostatic stress and the volume strain rate;
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respectively denote stress and strain rate deviator intensity; € -porosity, ko, a,a Mm N - material

parameters (the technique for determining the value of them and its specific values for different
materials and conditions are presented in [9,11]);
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The parameter o is a coefficient of inner friction. According to [9, 11], it is a quantitative measure
of separate structural elements' ability to accommodate each other. In the case, when complete adaptation
of the elements to each other is possible, a. =0. The value of o grows with the increase in the number of
restrictions to the joint plastic deformation. That is, the less efficient the mechanisms of plastic
deformation of the structural elements are, the higher is o.

According to the paper [4] the porosity precompacted pure iron powder close to 3% before starting
of rotation of the anvil. For materials with a low porosity and compact materials the value of the ¢ is of
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2
the order 0.01-0.001, a is of the order 0.1-0.01, and ko = \/g O, Where O is the flow stress of the

basic material [9, 11]. Considering this, when @ <<1, one can obtained from (1)-(4), in the first
approximation, the next system of the equations:

=Ky, (5)
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where € = gg - VVon Mises strain rate; €y = jeM dt- Von Mises strain.
0

According to Egs. (5) and (7), when @ <<1, in the first approximation, one can find the stress-
strain state of the specimen on the base of Von Mises model for rigid-plastic incompressible materials
(see, e.g. [12]) and after that the porosity of the materials can be find by solving the kinetic equation (6).
The exception is when there is a loss of stability of the material with the formation of shear bands [9]. We
will not consider these regimes in this article.

The problem is solved by the finite element methods using the commercial package DEFORM-
2D/3D V11.0 [13]. Figure 1 shows the schematic geometry of the HPT system we used.
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Fig.1 The schematic geometry of the HPT system for powder consolidation

We have took, according the paper [5]: R =10mm, H =3mm. According to the paper [9] we
have for pure iron: o =2.7 1073, a=2.7-1072. The stress—strain curve for precompacted pure
iron powder we get from the paper [5].

We accept sticking on the flat surfaces of the anvils and the friction condition 7; = Maogon the

cylindrical surface, where M is the parameter of friction. We taken m=0.25.
The initial number of elements of 150,000 was introduced. The upper anvil rotated at 0.1 rad s™ up

to a 2 full turn under a constant pressure Pp=1.1GPa. The initial condition, according

[5]:0=3.02-10"2 ,whenthe t =0.

By the calculation, we determined the strain and the porosity distributions in an axial cross-section
of the specimen at different angles of rotation of the anvil. For comparison with experiment [4], we
determined the average porosity of the sample calculated by the formula

HR
g2~ [[6(r,z)rdrdz (8)
V%0
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Results and Discussion
The Von Mizes strain distribution in the axial cross-section of the sample is shown on the Fig.2.
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Fig.2 The von Mizes strain distribution in the axial cross-section of the sample for the
T T
compression pressure P =1.1GPa and for the rotation angle equals to: a- 2 b- 5 c- 21,

and d- 4.

The Fig.2 shows that the HPT has a strong strain heterogeneity, not only in the radial direction, but
in the axial one. This result good agrees with experiment. The calculated shear strain distribution at a
distance of 9.61 mm from the axis after rotation by the angle of 7/2 in comparison with the experimental
one [5] are shown in Fig.3.
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Fig 3. The calculated shear strain distribution (a) at the distance of 9.61 mm from the axis
after rotation by the angle of #/2 in comparison with the experimental one [5] (b).

Let’s assume the isoline with Von Mises strain equal 1 as a nominal border of a zone of large
plastic deformations. The Figure 4 shows that this border moves both in the radial and axial directions

with increasing rotation angle.
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Figure 4. The moving of the border of the zone of large plastic deformation (the isoline
with Von Mises strain equal 1).

Moving of this border in the radial direction follows from the well-known equation for Von Mises
strain for HPT:
__Ip

V3H
where ﬂ is the rotation angle of the anvil, I -is the distance from the axis Z (see Fig.1).
Indeed, one can get from the Eq. (9) the radius I} of the isoline with Von Mises strain equal 1:

J3H

n= 7 (10)

One can see that I; really decrease when /3 increase.

Let's show that moving of the border in the axial direction follows from the extremum principles
of the theory of plasticity in particularly from the minimum properties of an actual velocity field (see,

e.g., [12]).
According to this principle, the actual velocity field minimizes the functional of power dissipation

W)= [oemdV + [r,V.dS . (11)
Q s,

where the first integral is taken over the volume of a deformable body, and the second - on the
surface S of its contact with the tool where there is friction between the deformable material and tool;

— % *
V  is so-called kinematically admissible velocity field, V, is its projection to the surface Sf y T -

friction stress; €y, is Von Mises strain rate for the kinematically admissible velocity field.
Kinematically admissible velocity field must satisfy the boundary conditions for the velocity and

the incompressibility condition div\7* =0 [12]. Let's take the kinematically admissible velocity field in
the form

V' =wrd(z)i, . (12)

where ﬁcﬂ is the unit vector in the direction of the ¢ axis of the cylindrical coordinate system

(r,¢, Z) (see Fig.1); @ is the rotating rate of the upper anvil, <I)(Z) -arbitrary smooth function of Z,
satisfies the boundary conditions:

®(0)=0and ®(H)=1 (13)

It is easy to verify by direct calculation that the field (12) satisfies the condition of

- —%
incompressibility divVV = 0, and the boundary conditions for the velocity. The latter are the conditions
of material sticking to the flat surfaces of the anvil and the presence of only a tangential velocity
component on a cylindrical surface =R,

YA
When @(Z)zﬁ, the Eqg. (12) coincide with the velocity field usually used for HPT. We

generalize this expression and take
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k
@(z):(ij , (14)
where K is parameter.

Let's find the K using the principle of minimum properties of an actual velocity field.
Let’s introduce dimensionless variables:

-z _r _ Oy
L=—, =—, Og=—"— (15)
H R Oy
It is easy to prove that the Von Mises strain rate for the kinematically admissible velocity field has
the form:

MTJ3H dz
The projection of the field (12) to the surface Sy is
V. =wRd(2) , (15)
One can obtain using Egs.(11), (14), (15) and the friction condition 7; = Moy
1 1 1
V\2’ _ R [kz"“™| [&,r?dr |dz +m[&yz"dz , (16)
2mR*Hoy, 3H 0 0

At the start of the rotation of the anvil the flow stress of the materials is equals o therefore

Oy =1 throughout the volume of the sample. One can get from the Eq. (16) for the start of the rotation
of the anvil:

W(0,k) R mz*?

2mR’Hoy, 3V3H  k+1

R
By increasing K the right-hand side of this ratio decreases monotonically, approaching to 3 \/§H

while K — 0.

The dependence CD(Z)z Zk for K >>1 (k =100) is shown in Figure 5. It means that only thin

layer of material with thickness a AZ <<1 adjacent to the upper anvil is mainly deformed at the start of
the its rotation.
The plastic deformation leads to a hardening of the materials in this layer. Because of this the

specimen becomes ununiformed. Let’s O is average flow stress of the hardened materials. In this case
one can obtain from the Eq. (16):

W (AZ,k) R [_ ... iy (-t
= KAZ +(1—- Az m JAVA S E— 18
2mR*Hog, 3v3H [651 +i-a7) ]+ {651 ket 9
If AZ <<1, then
W (AzZ,k) R e [ e 1 }
= 1+kAz —1)|+m| AZ -1)+—|, 19
27sz2Ho-So 3\/§H[ (Usl )] (O-sl ) K+1 (19)

Minimum of the W is determined by the condition
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dw(az,k) R
dk 3V3H

A2(5y 1) - v Tl)z -0, (20)

(= | 3y3Hm @)
RAZ(5, —1)

When hardening is weak, then o —1 andk —> o0. In this case the velocity field (12) is very
heterogeneous and deformation remains localized in the top thin layer. If the material hardens rapidly, it
is reduces the value of the K according to the relation (21). For example, when & =1.1, AZ=0.1,

(the values of other parameters in the Eq. (21) is given above) one can get from the Eq.(21) K =5.2.

One can get from the Eqg. (20)

Fig.5 The dependence ®(Z)= 7 for different values of the index k : 1-k =100, 2-

k =5.2, 3-k =1 (coincide with the velocity field usually used for HPT, uniform strain
distribution on the axial direction).

The dependence @(Z): 25'2 is shown in Fig. 5. One can see that in this case the non-uniform

torsion covers almost half of the height of the sample. Thus, the formation of a thin layer of hardened
material leads to the spread of plastic deformation along the axis of the sample. Moreover, the strain rate
in the hardened layer adjacent to the rotary anvil, is significantly reduced. This development of plastic
deformation at true constrained HPT follows from the principle of minimum of power dissipation. Since
this analysis is based on the Von Mises model, this conclusion is valid for the bulk materials.

The porosity distribution is shown on the Fig.6.
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Fig.6 The porosity distribution for the compression pressure P =1.1GPa and the angles

_ _ T T
of the anvil rotation equals to: a- —,b- —, ¢c- 27 ,andd- 4.
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This figure shows that the border of the zone with low porosity as well as the border of the zone
with the large strain moves in the sample.
It is easy to see that the kinetic Eq. (6) has a steady-state solution
a o |3
O, =——— = (18)
9a o \2

One can estimate for the condition of the experiment [4] that &, ~ 0.55%

In the Tab. 1 we compare the 6 calculated by the Eq.8 with the experimental one [4].

Tab. 1
The average porosity 0 after different angle of anvil rotation
Rotation angle /2 21 4n
Porosity (experiment) 2.06 1.01 0.59
Porosity
(theory) 1.13 0.60 0.57

The table shows that theory well predicts the steady-state value of the porosity.

Conclusion

By calculating in the commercial DEFORM-2D/3D V11.0 software we shown that the equivalent
strain under true constrained high pressure torsion is nonuniform both radially, and axial direction. For
homogeneous samples, the deformation is concentrated in a thin layer adjacent to a rotating anvil at the
start of the rotation of the anvil. If the material is non-hardened by plastic deformation, the deformation
remains localized in a thin layer under further rotation. In contrast, if the material is hardened, the plastic
deformation penetrates into the sample with angle of rotation of the anvil increase. The border of a zone
with large strain moves both in the radial and axial directions. The above effects are valid for both powder
and bulk materials. These effects are associated with friction on the lateral surface of the a cavity of the
anvil and follows from the principle of minimum of power dissipation.

The density of the powder material increases with the angle of rotation of the anvil. The border of
high density zone moves in the radial and axial directions by increasing of the angle of the anvil rotation.
The density in the entire volume of the sample tends to a steady-state value, which decreases with
increasing of axial pressure.
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