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MODELING OF STRAIN AND DENSITY DISTRIBUTION DURING HIGH PRESSURE 

TORSION OF PRE-COMPACTED POWDER MATERIALS 

 
It is shown by finite element modeling that under high pressure torsion of water-atomized pure iron powder a zone 

with high shear strain and high density develops first in a layer adjacent to the moving anvil. The finite element simulation 

results and an analytical calculation using the minimum plastic energy extremum principle both show that with further 

deformation the compacted zone extends progressively in the radial and axial directions throughout the specimen. 
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Бейгельзимер Я.Е., Кулагин Р.Ю., Yajun J. Zhao, Laszlo S. Toth, М.Б. Штерн 

МОДЕЛИРОВАНИЕ ДЕФОРМАЦИИ И РАСПРЕДЕЛЕНИЯ ПЛОТНОСТИ ПРИ 

КРУЧЕНИИ ПОД ДАВЛЕНИЕМ ПРЕДВАРИТЕЛЬНО СКОМПАКТИРОВАННЫХ 

ПОРОШКОВЫХ МАТЕРИАЛОВ 

 
С помощью моделирования методом конечных элементов показано, что при кручении под давлением 

образца из предварительно скомпактированного порошкового железа,  зона с высокой деформацией сдвига и 

высокой плотностью в начале процесса локализуется в слое, примыкающем к подвижной наковальне. При 

дальнейшей деформации уплотненная зона постепенно распространяется в радиальных и осевых направлениях по 

всему образцу. 

Ключевые слова: кручение под высоким давлением, порошок, пористость, математическое моделирование 

 

Бейгельзімер Я.Ю., Кулагін Р.Ю., Yajun J. Zhao, Laszlo S. Toth, М.Б. Штерн 

МОДЕЛЮВАННЯ ДЕФОРМАЦІЇ І РОЗПОДІЛУ ГУСТИНИ ПРИ КРУЧЕННІ ПІД 

ТИСКОМ ПОПЕРЕДНЬО СКОМПАКТІРОВАННИХ ПОРОШКОВИХ МАТЕРІАЛІВ 

 
За допомогою моделювання методом кінцевих елементів показано, що при крученні під тиском зразка з 

попередньо скомпактірованного порошкового заліза, зона з високою деформацією зсуву і високою щільністю на 

початку процесу локалізується в шарі, що примикає до рухомий ковадлі. При подальшій деформації ущільнена зона 

поступово поширюється в радіальних і осьових напрямах по всьому зразку. 

Ключові слова: кручення під високим тиском, порошок, пористість, математичне моделювання 

 
We dedicate this paper to 70th anniversary of Victor Rud’, the wonderful person, who has opened 

the door to the experimental mechanics of porous and powder materials  

 

Introduction 

High pressure torsion (HPT) is the effective severe plastic deformation processes [1]. It is used for 

making materials with exceptionally small grain size (about 100 nm), as well as for consolidating of 

powder materials. In the latter case also occurs grain refinement. 

Strain distribution by volume of the sample is the most important characteristic of the HPT. 

Recently, it was found that the strain distribution at the HPT is non-uniform not only in radial direction (it 

has been known from the early work on HPT), but also in axial direction of the sample [2]. Extreme 

heterogeneity of the strain was founded in article [3], where dead zone is shown.   

The articles [4,5] present the results of experiments on  the consolidation of water atomized 

commercially pure iron  powder by true constrained high pressure torsion (by the classification of the 

paper [1]) (Fig.1). Because of the high hydrostatic pressure, this scheme is the best for the HPT of powder 

materials. 

In the article [4] is shown that porosity of powder specimens decreases with saturation to about 3% 

under uniaxial compression. Torsion under pressure leads to a further porosity reduction up to tenths of a 

percent. In the paper [5] is shown that there is a considerable heterogeneity of the strain in axial direction 

under HPT of powders.  
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In this paper, we investigate theoretically HPT of powder sample under the same conditions as in 

the articles [4,5]. The study showed that with increasing of a rotation angle of the anvil the border of an 

area with a high density is spreading through the specimen. It starts from the edge of rotating piston and 

moves in both radial and axial directions in the sample volume. The porosity in the volume of the sample  

tends to a steady-state value, which is determined by the axial pressure.  Comparison of the strain 

distribution and porosity in the sample volume for the experimental conditions [4,5] show good 

correspondence between theory and experiment. 

Mathematical simulation 

The purpose of the mathematical simulation was to study the evolution of the strain and the density 

distribution in the bulk of precompacted pure iron powder  during it torsion under pressure. 

Different rheological models is used for the simulation of plastic deformation of powder materials 

by finite element method [6].The most commonly used modified Drucker–Prager cap model [7] and 

Shima-Oyane model [8], which are offered in ABAQUS and DEFORM software . To analyze the 

process, we apply the model [9-11], which combines the features of the models [7] and [8], and allows 

one to make some conclusions about the physical mechanisms of deformation. This model takes into 

account both processes accompanying the plastic deformation of materials with low porosity: reduction of 

voids as well as the formation of new ones. The reason of the second processes is the structural 

heterogeneity of the material. 

The model [9-11] is represented by the following equations: 
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respectively denote stress and strain rate deviator intensity;  -porosity, 0k ,  , a , m, n  -  material 

parameters (the technique for determining the value of them   and its specific values for different 

materials and conditions are presented in [9,11]); 

 

             
 

m

n

a




6

1
12 


 ,     12

1



n

     (4) 

 

The parameter  is a coefficient of inner friction.  According to [9, 11], it is a quantitative measure 

of separate structural elements' ability to accommodate each other. In the case, when complete adaptation 

of the elements to each other is possible,  =0. The value of  grows with the increase in the number of 

restrictions to the joint plastic deformation. That is, the less efficient the mechanisms of plastic 

deformation of the structural elements are, the higher is . 

According to the paper [4] the porosity precompacted pure iron powder  close to 3% before starting 

of rotation of the anvil. For materials with a low porosity and compact materials the value of the   is of 
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the order 0.01-0.001, a  is of the order 0.1-0.01, and ,
3

2
0 sk   where s is the flow stress of the 

basic material [9, 11]. Considering this, when 1 , one can obtained from (1)-(4), in the first 

approximation, the next system of the equations: 
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where geM 
3

2
  - Von Mises strain rate; 

t

MM dtee
0

 - Von Mises strain. 

According to Eqs. (5) and (7), when 1 , in the first approximation, one can find the stress-

strain state of the specimen  on the base of Von Mises model for rigid-plastic incompressible materials 

(see, e.g. [12]) and after that the porosity of the materials can be find by solving the kinetic equation (6).  

The exception is when there is a loss of stability of the material with the formation of shear bands [9]. We 

will not consider these regimes in this article. 

The problem is solved by the finite element methods using the commercial package DEFORM-

2D/3D V11.0 [13]. Figure 1 shows the schematic geometry of the HPT system we used.  

 
Fig.1 The schematic geometry of the HPT system for powder consolidation 

 

We have took, according the paper [5]: mmR 10 , mmH 3 . According to the paper [9] we 

have for pure iron: 
3107.2  , 

2107.2 a . The stress–strain curve for precompacted pure 

iron powder we get from the paper [5].  

We accept sticking on the flat surfaces of the anvils and the friction condition sf m  on the 

cylindrical surface, where m is the parameter of friction. We taken 25.0m . 

The initial number of elements of 150,000 was introduced. The upper anvil rotated at 0.1 rad s
-1

 up 

to a 2 full turn under a constant pressure GPap 1.1 . The initial condition, according 

[5]:
21002.3   , when the 0t .   

By the calculation, we determined the strain and the porosity distributions in an axial cross-section 

of the specimen at different angles of rotation of the anvil.  For comparison with experiment [4], we 

determined the average porosity of the sample calculated by the formula   
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Results and Discussion 

The Von Mizes strain distribution  in the axial cross-section  of the sample is shown on the Fig.2.  

  
a b 

  
c d 

Fig.2 The von Mizes strain distribution in the axial cross-section of the sample for the 

compression pressure GPap 1.1  and for the rotation angle equals to: a- 
4


, b-

2


, c- 2 , 

and d- 4 . 

 
The Fig.2 shows that the HPT has a strong strain heterogeneity, not only in the radial direction, but 

in the axial one. This result good agrees with experiment. The calculated shear strain distribution at a 

distance of 9.61 mm from the axis  after rotation by the angle of /2 in comparison with the experimental 

one [5] are shown in Fig.3. 

 

  
a b 

 
Fig 3. The calculated shear strain distribution (a) at the distance of 9.61 mm from the axis 

after rotation by the angle of /2 in comparison with the experimental one [5] (b). 

 
Let’s assume the  isoline with Von Mises strain equal 1 as a nominal border of a zone of large 

plastic deformations. The Figure 4 shows that this border moves both in the radial and axial directions 

with increasing rotation angle.  
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Figure 4.  The moving of the border of the zone of large plastic deformation (the  isoline 

with Von Mises strain equal 1). 
 

Moving of this border in the radial direction follows from the well-known equation for Von Mises 

strain for HPT: 

H

r
eM

3


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where   is the rotation angle of the anvil, r  - is the  distance from the axis z  (see Fig.1). 

Indeed, one can get from the Eq. (9) the radius 1r  of the isoline with Von Mises strain equal 1: 



H
r

3
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One can see that 1r  really decrease when    increase.  

Let's show that moving of the border in the axial direction follows from the  extremum principles 

of the theory of plasticity in particularly from the minimum properties of an actual velocity field (see, 

e.g., [12]).  

According to this principle, the actual velocity field minimizes the functional of power dissipation 
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where the first integral is taken over the volume of a deformable body, and the second - on the 

surface fS of its contact with the tool where there is friction between the deformable material and tool; 

*V


 is so-called kinematically admissible velocity field,  
*
V is its projection to the surface fS ; f  - 

friction stress; 
*
Me is Von Mises strain rate for the kinematically admissible velocity field. 

 Kinematically admissible velocity field must satisfy the boundary conditions for the velocity and 

the incompressibility condition 0* Vdiv


 [12]. Let's take the kinematically admissible velocity field in 

the form 

   nzrV


*
 ,     (12) 

where n


is the unit vector in the direction of the   axis of the cylindrical coordinate system 

 zr ,,  (see Fig.1);   is the rotating rate of the upper anvil;  z  -arbitrary smooth function of  z , 

satisfies the boundary conditions:  

  00   and    1 H       (13) 

It is easy to verify by direct calculation that the field (12) satisfies the condition of 

incompressibility 0* Vdiv


, and the boundary conditions for the velocity. The latter are the conditions 

of material sticking to the flat surfaces of the anvil and the presence of only a tangential velocity 

component on a cylindrical surface Rr  .  

When  
H

z
z  , the Eq. (12) coincide with the velocity field usually used for HPT.  We 

generalize this expression and take 
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where  k is parameter. 

Let's find the k using the principle of minimum properties of an actual velocity field. 

Let’s introduce dimensionless variables: 
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It is easy to prove that the Von Mises strain rate for the kinematically admissible velocity field has 

the form: 
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The projection of the field (12) to the surface fS  is 
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One can obtain using Eqs.(11), (14), (15) and the friction condition sf m  : 
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At the start of the rotation of the anvil the flow stress of the materials is equals 0s  therefore 

1s  throughout the volume of the sample. One can get from the Eq. (16) for the start of the rotation 

of the anvil: 
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By increasing k  the right-hand side of this ratio decreases monotonically, approaching to 
H

R

33
 

while k . 

The dependence   kzz   for 1k  ( 100k ) is shown in Figure 5. It means that only thin 

layer of material with thickness a 1z  adjacent to the upper anvil is mainly deformed at the start of 

the its rotation.  

The plastic deformation leads to a hardening of the materials in this layer. Because of this the 

specimen becomes ununiformed. Let’s 1s is average flow stress of the hardened materials. In this case 

one can obtain from the Eq. (16): 
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If 1z , then 
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Minimum of the W  is determined by the condition    



Міжвузівський збірник "НАУКОВІ НОТАТКИ". Луцьк, 2016. Випуск № 54 

© Yan Beygelzimer,
 
Roman Kulagin, Yajun J. Zhao, Laszlo S. Toth, Michail Shtern 

39 

 
 

 
0

1
1

33

,
21 






k

m
z

H

R

dk

kzdW
s  ,   (20) 

 

One can get from the Eq. (20) 
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When hardening is weak, then 11 s  and k . In this case the velocity field (12) is very 

heterogeneous and deformation remains localized in the top thin layer. If the material hardens rapidly, it 

is reduces the value of the k  according to the relation (21).  For example, when  1.11 s , 1.0z , 

(the values of other parameters in the Eq. (21) is given above) one can get from the Eq.(21) 2.5k .  

 

Fig.5 The dependence   kzz  for different values of the index k : 1- 100k ,  2-

2.5k , 3- 1k  (coincide with the velocity field usually used for HPT, uniform strain 

distribution on the axial direction). 

 

The dependence   2.5zz   is shown in Fig. 5. One can see that in this case the non-uniform 

torsion covers almost half of the height of the sample. Thus, the formation of a thin layer of hardened 

material leads to the spread of plastic deformation  along the axis of the sample. Moreover, the strain rate 

in the hardened layer adjacent to the rotary anvil, is significantly reduced. This development of plastic 

deformation at true constrained HPT follows from the principle of minimum of power dissipation. Since 

this analysis is based on the Von Mises model, this conclusion is valid for the bulk materials. 

The porosity distribution is shown on the Fig.6.  

  

a b 

  
c d 

 

Fig.6 The porosity distribution for the compression pressure GPap 1.1  and the angles 

of the anvil rotation equals to: a- 
4


, b-

2


, c- 2 , and d- 4 . 
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This figure shows that the border of the zone with low porosity as well as the border of the zone 

with the large strain moves in the sample.  

It is easy to see that the kinetic Eq. (6) has a steady-state solution 

   
2

3

9 
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 s

s
a
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One can estimate for the condition of the experiment [4] that %55.0s  

In the Tab. 1 we compare the   calculated by the Eq.8  with the experimental one [4]. 

Tab. 1  

The average porosity   after different angle of anvil rotation 

Rotation angle /2 2 4 

Porosity (experiment) 2.06 1.01 0.59 

Porosity 

(theory) 
1.13 0.60 0.57 

  
The table shows that theory well predicts the steady-state value of the porosity. 

Conclusion 

By calculating in the commercial DEFORM-2D/3D V11.0 software we shown that the equivalent 

strain under true constrained high pressure torsion is nonuniform both radially, and axial direction. For 

homogeneous samples, the deformation is concentrated in a thin layer adjacent to a rotating anvil at the 

start of the rotation of the anvil. If the material is non-hardened by plastic deformation, the deformation 

remains localized in a thin layer under further rotation. In contrast, if the material is hardened, the plastic 

deformation penetrates into the sample with  angle of rotation of the anvil increase. The border of a zone 

with large strain moves both in the radial and axial directions. The above effects are valid for both powder 

and bulk materials. These effects are associated with friction on the lateral surface of the a cavity of the 

anvil and follows from the principle of minimum of power dissipation. 

The density of the powder material increases with the angle of rotation of the anvil. The border of 

high density zone moves in the radial and axial directions by increasing of the angle of the anvil rotation. 

The density in the entire volume of the sample tends to a steady-state value, which decreases with 

increasing of axial pressure. 
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