Lyfar V, Ivanov V., Baturin O., Gerasymenko K.

SETTING UP THE GOALS OF RESEARCH TASKS IN DETERMINING SAFETY
INTEGRITY LEVELS OF BASIC SOFTWARE AND HARDWARE COMPLEXES IN
PROCESS CONTROL SYSTEMS

This article analyses scientific and technical problem of estimating the level of security completeness
of basic software and hardware complexes of the control system. In the article authors examined
the possibility of developing information technology, methods and models of the decision support
system. In the article the authors highlighted requirements for the elements of a complex control
electronic system, approaches and models of qualitative and quantitative determination of reliability
indicators of software.

Key words: Safety integrity level, reliability of software, electronic programmable devices,
reliability, safety.

1. Importance and relevance of the research.

When developing control computer systems implemented in the automated process control systems (APCS) of
high-risk industries, the requirements for safety integrity level (SIL) and the reliability of software and hardware are
regulated. The SIL is determined by the integral integrity level (Safety integrity level SIL). Carrying out SIL analysis
for electronic/ electrical / programmable electrical (E / E / PE) systems is an important difficulty both in the determination
of safety functions, due to problems in determining the severity of the negative consequences for failures of E / E / PE
elements and in the quantitative definition of performance indicators of elements and components of the control system.
This particularly applies to software systems that support the operation of such systems. At the moment, software
reliability assessment is carried out at best by rank methods without any quantitative criteria, which excludes the
possibility of comparative analysis of alternative software developments. In addition, the rank methods presented in [3]
are designed as an assembly of requirements and recommendations for hybrid control systems and contain significant
subjective approaches that interfere with the creative development of software.

Therefore, it is important to obtain a reliable estimate of the overall reliability of computing systems at the present
stage, taking into account the reliability of not only the hardware of the computer system (the level of equipment and any
associated control system is most optimally determined by analyzing the types and consequences of failures [1-4] but also
the reliability of its software.

One of the modern scientific and technical directions of studies of software reliability is the assessment of the level
of safety completeness of basic software and hardware complexes of automated process control systems (APCS).

2. Problem statement.

Let’s consider the requirements for software on the example of the standard [3]. The structure of the standard is
shown in Figure 1. In Appendices A and B, requirements are set for protection against software failures. Appendix D
contains the requirements for the Operating Manual (Safety Manual) regarding the features of the software. According
to IEC 61508-3, an urgent recommendation is labeled HR. For example, from the level of SIL3 (safety integrity level)
and higher for some life cycles of the development of basic software and hardware systems of the Automated Control
System.

Table - Example of methods / tools according to IEC 61508-3

Life Cycles for the Development of Basic Software and
Hardware Complexes of Automated Control Systems

Semiformal methods Specification of software security requirements Software design

and development: software architecture design

Direct traceability between security requirements and | Specification of software security requirements

security software requirements

Reverse traceability between security requirements | Specification of software security requirements Software design

Method / Tool

and perceived security needs and development: software architecture design

Automated means of developing specifications for Specification of software security requirements Software

the support listed above, suitable methods / tools design and development: software architecture design

Detecting and diagnosing errors Specification of software security requirements Software design
and development: software architecture design

Gradual disabling of functions Specification of software security requirements Software design
and development: software architecture design

Choosing the appropriate programming language Specification of software security requirements Software design
and development: software architecture design

A subset of a language Specification of software security requirements Software design
and development: software architecture design

Certified products and certified translators Specification of software security requirements Software design

and development: software architecture design




Computer aided design tools Specification of software security requirements Software design
and development: software architecture design

Programming with protection Specification of software security requirements Software design
and development: software architecture design

Modular approach Specification of software security requirements Software design
and development: software architecture design

Design and coding standards Specification of software security requirements Software design

and development: software architecture design
Functional testing and testing using the "black box"|Design and development of software: verification and

method integration of software modules Integration of programmable
electronic devices

Performance testing Design and development of software: testing and integration of
software modules

Model-based testing Design and development of software: testing and integration of
software modules

Testing the interface Design and development of software: testing and integration of
software modules

Test management and automation tools Design and development of software: testing and integration of

software modules

It must be noted that the one of the most important distributions of models and methods for estimating reliability
parameters for the phases of the life cycle of the development of basic software and hardware complexes of automated
process control systems are the coding phase and the testing phase [5].

1. Encoding. At this stage, the real code of the program is written, usually in a high-level language. Sometimes
it is possible to use low-level programming languages to achieve high performance or to interface with non-standard
hardware. The code is constantly analyzed for errors.

2. Testing. This phase is one of the most important and laborious. It can take from 30 to 60% of the time and
material resources of the project.

For the methods presented, it is much more relevant, demandable and possible to develop models and approaches
to obtaining, in addition to qualitative and also quantitative indicators of reliability, which more objectively show the
compliance of the software.

3. Analysis of data and methods.

The coding phase of the software. The number of errors in the executable code directly depends on the errors
made at the coding stage. One of the most commonly used parameters for evaluating the correctness of software is the
error density. The initial error density is proposed to be estimated as [5]

D=CthFermEs (1)

Where F,;, - is the test phase coefficient; Fyr - coefficient of command programming; Fn - the coefficient of
experience and "maturity" of the software development process; Fs - is the structuring factor; C - constant, which
determines the number of errors / KLOC (errors per thousand lines of source code). The coefficients Fyr, Fm, Fs and C
depend only on the skill and experience of the development team. When evaluating the coefficient of command
programming (Fyr), the error density depends on specific people, their experience in writing programs and debugging.
Following settings can be accepted: "High", "Medium", "Low". Numerical indicators are defined and asked by the expert.
For the coefficient of experience and "maturity” of the software development process (Fm), the following parameter
values are accepted: "Level 1", "Level 2", "Level 3", "Level 4", "Level 5". Numerical indicators are defined and asked
by the expert. The structuring factor (Fs) allows you to take into account the dependence of the error density on the
programming language (the ratio of the number of code in assembler and the language of high level):

F,=1+04a @

where a - is the ratio of the amount of code in the Assembler and the high-level language. It is assumed that the
code in assembler can contain 40% more errors. An obvious drawback is the lack of methods for quantifying the
estimation of the coefficients Fyr, Fi.

The software testing phase. The testing phase is the longest and can take up to 60% of the total project. During
testing, the greatest number of errors in the software is detected. Let’s consider some of the most commonly used models
which are used in software reliability testing [7,8].

Evaluation of the reliability of the software for the work

To predict the reliability of software in this model, data are used about the number of errors eliminated during the
process of linking programs into the software system and during its debugging. Based on these data, the parameters of
the reliability model are calculated, which can be used to predict reliability indicators in the process of using software in
analogy with non-recoverable technical objects. In the model under consideration, it is assumed that in successive runs



of the program, the input data sets are random and are selected in accordance with the distribution law corresponding to
the actual operating conditions. The model is based on the following assumptions: ¢ at the initial moment of program
layout in the software system, there are Ejp errors in them. When adjusting programs, new errors are not introduced; * the
total number of machine instructions in programs is constant; e the intensity of program failures is proportional to the
number of errors left in it after debugging during the time.

A=[Eo - E(D]C M)

Where E.(t)- is the number of errors eliminated during the debugging time. C is the proportionality factor to be
determined. Thus, the model has two different time values: the debugging time, which can be measured in months, and
the program time after debugging t or the total running time of the program. The debugging time includes the time spent
on detecting errors, eliminating them, checking checks, etc. The value of the failure rate is considered constant during the
entire operation time (0,t) and changes only when errors are detected and corrected, while the time t again is counted from
zero. In view of the assumptions made for a fixed probability of the absence of errors in the program, during the operating
time (0,t) will be:

P(¢,7) = exp{(=C[E, — E.(D]0)}, 2

Jelinski — Moranda Model
This model is based on the following assumptions:
« the operating time before the next failure is distributed according to the exponential distribution law;
« the intensity of program failures is proportional to the number of errors remaining in the program;
* program failure occurs when one program error occurs and its operation is restored when this error is fixed.
Then, according to these assumptions, the probability of failure-free operation of the program on the i - m work interval
after the next recovery will be:

P(t;, 7) = exp(—A; ty),

®)
e d; = CplEp — (i — 1)]

failure rate of the program at the i - m work interval, which starts after the elimination of the (i -1) — m failure;
C,, coefficient of proportionality; Eo - the number of software errors in the software at the time of its operation. The

disadvantage is that if the C value is not accurately determined, the intensity of the program failures can become

negative, which leads to a meaningless result. In addition, it is assumed that the correction of detected errors does not
introduce new errors, which is not always satisfied.
Mills model

Mills model (refers to static models and differ models discussed above, especially in that it does not take into
account the time of error) provides entering into the program before testing a certain number of known (artificial) errors.
Errors are introduced randomly and recorded in the protocol of artificial errors. It is assumed that all errors (both natural
and artificially introduced) have the same probability of being found in the testing process.

The program is tested for some time and statistics about the detected errors are collected. Let after the testing we
found n. with our own program errors and n, of artificially introduced errors. Then the initial number of errors in the
program Ey can be estimated from the Mills formula

E,=n @)

where Eu is the number of artificially introduced errors.

The Mills model allows us to solve the inverse problem-testing the hypothesis of the initial number of errors K.
We suppose that the program initially (at the time of testing) contains K errors, Eo = K. We introduce artificially into the
program E, errors and test it until all artificially introduced errors are detected. Let it be found that there are no own
program errors. Probably that there were initially K errors in the program can be calculated from the ratio

0, n,>K
P(E,=K)= E, , N <K (5)
E +K+1

The disadvantages of this model are:

« the need to introduce artificial errors (this process is poorly formalized);

* a fairly wide assumption of the value of K, which is based solely on the intuition and experience of the person
conducting the assessment, the model assumes a large influence of the subjective factor.



Conclusions

The described approaches and models have a number of advantages and disadvantages. One of the most important
drawbacks is the lack of a common methodology allowing the selection and use of methods for quantitative analysis and
assessments of the level of software safety integrity and methods and models that could be used in decision support
information technology to develop requirements for reliability indicators for E / E / PE and software control systems. It
is necessary to develop such methodologies, methods and models with the help of which it would be possible to develop
a generalized reliability model of the software and hardware complex, to implement an automated analysis of the failure
combinations of both hardware and software components of the control system.

Jlitepatypa

1. dynkumoHanbHas 0€30MACHOCTH CHCTEM DIIEKTPHUYECKHX, SJIEKTPOHHBIX, MPOrPAaMMHPYEMBIX JJIEKTPOHHBIX,
cBsi3aHHBIX ¢ OesomacHocThio = Y. 1. O6urme tpeboBanus : Functional safety of electrical, electronic, programmable
electronic safety-related systems. Part 1. General requirements: HanmoHaabHbIM cTanaapT Poccuiickoit ®eneparuu TOCT
P MDBK 61508-1-2007 / denepanbHOEe arcHTCTBO IO TEXHHYECKOMY PETYIUPOBAHHIO W METPOJIOTHH. — M.:
Crangaptuadopwm, 2008. - V, 44 c.

2. OyHKUMOHATBHAA 0E30MACHOCTh CUCTEM 3JIEKTPUYECKHUX, JIEKTPOHHBIX, MPOrPaMMHUPYEMBIX 3JIEKTPOHHBIX,
cBsI3aHHBIX ¢ Oe3omacHocThiO = Y. 2. TpeboBanus k cuctemam : Functional safety of electrical, electronic, programmable
electronic safety-related systems. Part 2. Requirements for systems: HaronansHbIi crangapT Poccuiickoit ®enepanmu
I'OCT P M3K 61508-2-2007 / denepanbHOe areHTCTBO MO TEXHHYECKOMY PETYIUPOBAHHIO U METPOJIOTHH. — M.:
Crangaptuadopwm, 2008. - V, 58 c.

3. OyHKUMOHAIBHAsA 0E30MAaCHOCTh CUCTEM JJIEKTPUUECKHX, JJIEKTPOHHBIX, MPOrPaMMHUPYEMBIX JJIEKTPOHHBIX,
CBsI3aHHBIX ¢ Oe3zomacHocThio = Y. 6. PykoBoacteo mo mpumenenuto 'OCT P MOK 61508-2-2007 u T'OCT P MBK
61508-3-2007 : Functional safety of electrical, electronic, programmable electronic safety-related systems. Part 6.
Guidelines on the application of GOST R IEC 61508-2-2007 and GOST R IEC 61508-3-2007 : Hal[iOHAIbHBIN CTAHAAPT
Poccuiickoit @eneparmu 'OCT P MOK 61508-6-2007 / denepanbHOe areHTCTBO MO TEXHUUECKOMY PEryJUPOBaHHIO U
Mmetposiorud. - Mocksa : Ctanmaptuadopm, 2008. - V, 62 c.

4. ®yHkMoHaANBHAsi 0€30MaCHOCTh B HEMPEPBIBHBIX MPOU3BOJCTBaX. PYKOBOICTBO 110 6€30MaCHOCTH MPOIIECCOB
/ IEC 61511:2004 Functional Safety — Safety Instrumented Systems for the Process Industry Sector/ HarroHambHBIH
cranmapt Poccuiickoit ®eneparmu 'OCT P MOK 61511-1-2011 / depepanbHOe areHTCTBO MO TEXHHYECKOMY
perynupoBanuto u Merposoruu. — M.: Crannaprundopm, 2013. — 'V, 66 c.

5. dynxunoHanbHas 0€30IaCHOCTh CHCTEM JIEKTPUYECKHX, IEKTPOHHBIX, IPOrPAMMHUPYEMBIX 3JEKTPOHHBIX,
cBsI3aHHBIX ¢ Oe3omacHocThio = Y. 3. TpeGoBanus k mporpamMHOMy obecreuenuro: Functional safety of electrical,
electronic, programmable electronic safety-related systems. Part3. Software requirements (IDT): HammoHabHBIH
cranmapt Poccuiickoii ®@enepapin ['OCT P MOK 61508-3-2007 / depepanbHoe areHTCTBO MO TEXHUYECKOMY
perynupoBaHuio u Metposioruu. - Mocksa : Crannaprungopm, 2007. - V, 62 c.

6. Kopanes U.B. Ananu3 mpoGiieM B 00NacTH WCCIIENOBAHUsS HAJSKHOCTH HPOrPAMMHOIO O0ECIICUCHHUS:
MHOT'09TAITHOCTh U apXUTEKTYpHBIN acnekT / — BectHuk Cubl'AY. 2014. Ne 3(55)

7. Wkmap B.H. Hapéxuocth cucrem ynpamneHws: ydeOHoe mocodbue / — Tomck: Mzn- Bo Tomckoro
MOJUTEXHUIEeCKOro yuuBepcurera, 2009. — 126¢.

8. Ocunenko, H.b. OcHOBBI cTanAapTU3alMy U cepTUHUKALMU MPOrpaMMHOro obecrneueHusi; M-Bo obpa3. PB,
I'omensckuit rocynaperBernsiit yausepceuteT uM. ©. Ckopunsl. - ['omens: I'TY mm. @. Cropunsl, 2007. — 137¢.

References

1. Funktsional'naya bezopasnost' sistem elektricheskikh, elektronnykh, programmiruemykh elektronnykh,
svyazannykh s bezopasnost'yu. Obshchie trebovaniya: [Functional safety of electrical, electronic, programmable
electronic safety-related systems]. Partl. General requirements: natsional'nyy standart Rossiyskoy Federatsii GOST R
MEK 61508-1-2007 / Federal'noe agentstvo po tekhnicheskomu regulirovaniyu i metrologii. — Moscow: Standartinform,
2008. - V, p. 44 (in Russian)

2. Funktsional'naya bezopasnost' sistem elektricheskikh, elektronnykh, programmiruemykh elektron-nykh,
svyazannykh s bezopasnost'yu. Trebovaniya k sistemam: [Functional safety of electrical, electronic, pro-grammable
electronic safety-related systems]. Part 2. Requirements for systems: natsional'nyy standart Rossiyskoy Federatsii GOST
R MEK 61508-2-2007 / Federal'noe agentstvo po tekhnicheskomu regulirovaniyu i metrologii. — Moscow:
Standartinform, 2008. - V, p. 58 (in Russian)

3. Funkcional'naya bezopasnost' sistem ehlektricheskih, ehlektronnyh, programmiruemyh ehlektronnyh,
svyazannyh s bezopasnost'yu. Rukovodstvo po primeneniyu GOST R MEHK 61508-2-2007 i GOST R MEHK 61508-3-
2007: [Functional safety of electrical, electronic, programmable electronic safety-related systems]. Part 6. Guidelines on
the application of GOST R IEC 61508-2-2007 and GOST R IEC 61508-3-2007 : nacional'nyj stan-dart Rossijskoj Federacii
GOST R MEHK 61508-6-2007 / Federal'noe agentstvo po tekhnicheskomu regulirova-niyu i metrologii. Moscow:
Standartinform, 2008. - V, p.62 (in Russian)

4. Funkcional'naya bezopasnost' v nepreryvnyh proizvodstvah. Rukovodstvo po bezopasnosti processov / IEC
61511:2004 [Functional Safety — Safety Instrumented Systems for the Process Industry Sector] nacional'nyj standart
Rossijskoj Federacii GOST R MEHK 61511-1-2011 / Federal'noe agentstvo po tekhnicheskomu regulirovaniyu i
metrologii. — Moscow: Standartinform, 2013. — V, p.66 (in Russian)



5. Kovalev I.V. Analiz problem v oblasti issledovaniya nadezhnosti programmnogo obespecheniya: mnogoetapnost'
i arkhitekturnyy aspekt / — Vestnik SibGAU. 2014, No. 3(55) (in Russian)

6. Rukovodstvo po funkcional'noj bezopasnosti dlya sistem, svyazannyh s bezopasnost'yu, i drugih primenenij s
urovnem SIL2, SIL3 v sootvetstvii so standartami MEHK 61508 MEHK 61511 / GM [International Technology for safety]
/ Via San Fiorano 70, 20058 Villasanta (MI) Italy, 2013. — D100, p.77 (in Russian)

7. Osipenko, N.B. Osnovy standartizatsii i sertifikatsii programmnogo obespecheniya M-vo obraz. RB, Gomel'skiy
gosudarstvennyy universitet im. F. Skoriny. - Gomel': GGU im. F. Skoriny, 2007. — pp. 137 (in Russian)

8. Shklyar V.N. Nadezhnost' sistem upravleniya [The reliability of control systems]: uchebnoe posobie / — Tomsk:
I1zd-vo Tomskogo politekhnicheskogo universiteta, 2009. — p. 126 (in Russian)

Bucsimnena ma npoananizosana Hayko8o-mexHiuHa npobiema OYiHKU pieHsi NOBHOMU Oe3neKu 6a308ux npoSpamHo-
anapamuux komnnekcie ACYTII, moocnusicmov po3podku iHgpopmayitinoi mexnonozii, memooie ma mooeneti cucmemu
NIOMPUMKY NPUUHAMMSL PIUEHb, Wo00 PO3POOKU 8UMO2 00 elleMeHmi6 CKIAOHOI Kepylouol eneKmpoHHOL cucmemu.
Cohopmynvosani 3a0aui 00CniodNceHb 0Nl SUPIWEHH NPOOAeM OYIHKU NOKA3HUKIE HAOIUHOCMI anapamHoz2o ma
npozpamHozo 3abesneyents 6a306ux Komniekcie. Poseusinymi nioxoou ma mooeni sKiCH020 ma KilbKICHO20 BU3HAYEHHS
NOKA3HUKIB HAOIUHOCME NPO2PAMHO20 3A0€3NeHeHHS.

Knrouosi cnosa: Safety integrity level, naditinicmo npoepamno2o 3abe3neyenns, eaeKmpoHHi RPOSPAMOBAHT RPUCMPOL,
Haoitinicme, 6esnexa.

This article analyses scientific and technical problem of estimating the level of security completeness of basic software
and hardware complexes of the control system. In the article authors examined the possibility of developing information
technology, methods and models of the decision support system. In the article the authors highlighted requirements for
the elements of a complex control electronic system, approaches and models of qualitative and quantitative determination
of reliability indicators of software.

Key words: Safety integrity level, reliability of software, electronic programmable devices, reliability, safety.

JoBigka npo aBTOpiB:

Volodymyr Lyfar, Head of Department of Programming and Mathematics, Ph.D. in Technical Sciences,
Associate Professor, Volodymyr Dahl East Ukrainian National University

+38 097-547-03-97

E-mail: lyfarva61l@ukr.net

Vitalii Ivanov, Ph.D. in Technical Sciences, Department of Programming and Mathematics , Volodymyr Dahl
East Ukrainian National University

+ 38095-801-07-99

E-mail: vetgen75@gmail.com

Oleksandr Baturin, Senior Lecturer of Department of Programming and Mathematics, Volodymyr Dahl East
Ukrainian National University

+38050-919-21-84

E-mail: aibaturin1973@gmail.com

Kostyantyn Gerasymenko, Deputy Director for Automation Systems in Power Engineering in SRPA
“Impulse”

+38 (06452) 6-01-94

E-mail: gerasymenko ke@imp.lg.ua



mailto:lyfarva61@ukr.net
file:///D:/2017-13/sbor/Лифар2/vetgen75@gmail.com
mailto:aibaturin1973@gmail.com
mailto:gerasymenko_ke@imp.lg.ua

