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CAUCHY PROBLEMS AND INVARIANT MEASURES FOR ONE
STOCHASTIC FUNCTIONAL-DIFFERENTIAL EQUATION

We deal with Cauchy problem for one stochastic functional-differential equation. We study the
existence, uniqueness and continuous dependence on initial function of so-called mild solution to
this problem. We have also obtained its Markovian and Feller property and obtained sufficient
conditions of invariant measure existence in terms of coefficients.

PosrisiayTa 3amaga Komri jtst croxacTuaroro GyHKITIOHAIBHO-IMMEPEHITiaIbHOrO piBHsanHHA. [0~
CJIJI?KEHO iICHYBaHHsA, €IMHICTD TA HEMIEPEPBHY 3aJ€2KHICTD BiJl MOYATKOBUX JAHUX M SKOTO PO3B’si3-
Ky 1€l 3amaqi. Takoyk BCTAHOBJIEHO BJIACTUBICTH MAPKOBOCTI Ta (PesIEPOBOCTI Ta OTPUMAHO JI0-
cTaTHI YMOBH iCHYBaHH:A iHBapiaHTHOI Mipu y TepMinax koedinieHTiB 3a/ai.

1. Introduction. In the given paper we study the following Cauchy problem
du(t,z) = (Agu(t,z) + f(ue(z)))dt + o(u(2))dW (t,2), 0 <t < T,z € RY, (1)
u(t,r) = ¢(t,z), —h<t<0,x€R? h>0, (1%)

d
where A, = Y 02 is d-measurable Laplace operator, 82 = aa_’ i€ {1,...,d},
i=1
W(t,x), x € RY is Ly(R?)-valued Q-Wiener process, f and o are some given func-
tionals to be specified later, ¢ is an initial datum function, and w;(z) = u(t + 6, x),
—h<0<0, zeRL

Many authors have been dealing with such a problem in bounded domains with
abstract elliptic operators. As particular result they have considered such problems
with Laplacian in bounded domains. Let note that we consider problem (1)—(1*) in
an unbounded domain. The principal difference of this problem from the problem
in a bounded domain is that a semigroup {S(t),t > 0}, generated by the Laplace
operator in a bounded domain, possesses the exponential contraction property. Since
we have been dealing with Laplacian in the whole space, where an exponential
estimate is not valid, our results do not follow from abstract results, obtained earlier
by others.

This paper is organised as follows. Firstly, we introduce a statement of the
problem and formulate our main results. Then we introduce preliminary facts and
necessary notions, needed in what follows. Next sections are devoted to the proof.

2. Mathematical formulation of the problem and main results. This
section is supposed to be a gentle introduction to our problem with as little theory
as possible.

Throughout the paper we assume that all random objects are defined on a com-
plete probability space (9, F, P) Henceforth Ly(R?Y) will note Hilbert space with

the norm ||g(- )|z, ®e) = f g%(z)dz. Let {e,(x),n € {1,2,...}} be an orthonor-

mal basis on Ly(RY), Wh1ch is uniformly bounded, i.e., sup esssuple,(z)| < 1.
ne{l,2,... } reRd
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Let Q be a nonnegative operator. We now define Ly(R¢)-valued Q-Wiener pro-
cess W(t,x) = W(t,-), t >0, v € R4 as follows W(t, ) = > VAuen(-)Ba(t),
=1

t > 0, where {B,(t),n € {1,2,...}} C R are mutually independe;lt standard real-
valued one-dimensional Brownian motions on ¢ > 0, {\,,n € {1,2,...}} is a se-
quence of positive real numbers, satisfying Tr@Q = > A\, < oo. Let {F,,t > 0}

n=1

be a normal filtration on F. We assume that W(t, -), t > 0, is a Q-Wiener
process with respect to a filtration {F;,¢t > 0}, ie., W(t,-), t > 0, is F-mea-
surable, and the increments W (t + ho, -) — W (t, -) are independent of F; for all
ho > 0 and t > 0. Let denote by Hf = L5(R?) real Hilbert space with the norm

lg( ) e = fg x)dx, by HY = Ly([—h; 0]; HY) — real Hilbert space with the

norm ||a( )|l ge = f [ h*(0,z)p(x)dxdb. Let HP = HYj x H! denote Hilbert space

—h Rd
B u(t,z) € HY, t >0, x € RY, B
of vectors U(t,z) = ( w(z) = u(t +0,2) € H', —h<0<0,zeR , Ot x) =

B ( #(0,x) € HY, x € RY,
RN

t,o) € HY, —h<t<0,z¢€R? ) with the norm

WU, e = sqrtlult, ) + eI,

12G2, e = /1900, )2 + 1602, )3
We impose the following two conditions.

1) {f,0}: HY — Hf are such that for some constant L > 0

1 @)lsg + llo(@)lg < L1+ [ullag), w € HY,
1f () = f()lzg + llo(u) = o (0)llmg < Lllw = vl g, {u,v} C HY.

2) The initial-datum function ¢: Hf — H{ is Fo-measurable random function,
independent of W (t,z), t > 0, x € R%, and such that

0
B [ olt, )yt < oo, EN00. s < 0,022

Let S(t): HY — H{. From now on we use the notation S(t)g(-), g € Hf, to
denote the convolution (S(t)g(-))(z) = [ A (t,x — §)g(&)dE, x € R, g € HY. Tt
R4

is known from semigroup theory that by this rule operators {S(¢),¢ > 0} generate
solution

ult,2) = (S(H)g( ) (x) = / At x— €)g(E)de 2)
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of the problem

du(t,z) = Agu(t,z), t >0, z € RY,
u(O,m) = g(:lj'), S Rda

and besides these operators create (Cp)-semigroup of operators, an infinitesimal
generator of which is the Laplace operator A,. Here

g )
H(t,x) = ¢ (4nt)? exp{ at }a t>0, zelR%
0, t< 07 x € Rd’

denotes the source function (diffusion kernel) of the heat equation.
We next proceed with a rigorous definition of mild solution of (1) — ( 1%).

Definition 1. A continuous random process u: Hlj — H{ is called a mild so-
lution (solution) to (1) — (1*) on 0 <t < T provided

1) It is F;-measurable for 0 <t <T.

2) It satisfies the integral equation

ult,z) = / (b — €)B(0,€)dé + / / H(t— 5,0 — €)f (uy(€))deds

+/tg \/)\_n</ H(t— s, 0 — §)a(us(f))€n(f)d§) dBn(s),

0<t<T,zeR? (3)
u(t,z) = ¢(t, ), —h<t<0,zeR’ h>0, (3%)
u(0,z) = ¢(0,z), z € R (3%%)

oAt < 00, p > 2.

T
) It satisfies the condition E [|u(t, - )|,
0 0

Remark 1. It is assumed in the definition above that all the integrals from (3)
are well defined.

The following theorem is true for such a solution.

Theorem 1 (existence and uniqueness). Let conditions from 1), 2) be true. Then
there ezists a unique solution u(t, -) to (1) — (1*) for 0 <t <T.

From the theorem above the following result follows.

Corollary 1. Suppose conditions of theorem 1 are valid. Then for U(t,z) =
B u(t,z) € HY, t >0, z € R4, . .
— ( w(z) = ult 1 0.0) € HY, —h<0<0, xR )’ where u(t, -) is the solution
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to (1) — (1%*) for 0 <t < T, and uy(-) solves the problem

t+60

un(z) = / A+ 0,0 — O)p(0,6)dé + / / A 40— 5,0 — ) fun(€))deds

t+-6

o [ V([ 040 @ )as)
—Qognt_gT—;dxeRd, (4)
w(r) = ¢p(z), —h—0<t<—0,z€R? h>0, (4%)
u(0,z) = $(0,2), x € RY, (4%%)

we have E|U(t, -)||%, < oc.

Next we are interested whether the unique solution depends continuously on the
initial condition. At first let us note that if we replace the initial range [—h, 0] from
( 1*) by [s—h, s] for arbitrary 0 < s < ¢, it will be possible to guarantee existence and
uniqueness of the solution to (1) — ( 1*) for 0 < s < ¢ with Fs-measurable initial
datum function ¢(¢, -), satisfying assumptions from 2) for s — h < t < s. Such
a solution will be temporarily denoted by u(t,s, -, ¢). Consequently, if we define
Fs-measurable initial datum function ¢(s + 6, -,w) € HY, 6 € [—h, 0], satisfying
conditions from assumption 2), then u(s + 6,s, -, ¢) = ¢(s + 0, -) and u(t, s, -, )
satisfies (3) for t > s. Let denote by w(s, -, ¢) =u(t +0,s, -,¢), —h < 0 <0, shift
of solution u such that us(s, -,¢) =u(s+40,s, -,¢) =o(s+6, -).

Let @ be o-algebra of Borel subsets from HY. If for any set A; € D1 we define

Mt(Al) = P{ut(sv 'aSO) € Al} = P(Sawathl)’ (5)

then (s, -, ) defines a measure on ©;. Function (5) is said to be a transition
function, corresponding to the random process w(s, -, ). Similarly to the finite-
dimensional case from [2], it is possible to show that this function possess all standard
properties of the transition probability. The following theorem is valid.

Theorem 2 (the Markovian property). Under assumptions of theorem 1 the
process uy(s, -, @), where ¢ satisfies conditions from 2), is the Markov process on
HY with the transition function p, defined by (5).

From this theorem the following result follows.

Corollary 2. Suppose conditions of existence theorem 1 are wvalid. Then
Ult.z,6) = u(t,s,x,¢) € Hf, t > s, v € RY,

T u(s,z,0) =u(t+0,s,x,¢) € H, —h<0<0,reR?
Markov process on HP with the transition function u,(A) = P{U(t, -,¢) € A},
A €D, where ® is og-algebra of Borel subsets from H”.

1s the

Let denote by B,(HY) the Banach space of all real bounded Borel functions,
defined on HY, by €,(HY}) — the Banach space of all real bounded continuous func-
tions, defined on HY. If operator P;.f(¢) = Ef(u(s, -,¢)), 0 < s <t < T,
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¢ € HY, is bounded and continuous for any f € €,(HY), then it will be said that
P, ; possess the Feller property. Hence, if operator

Piig(@) =Eg(U(t, -,¢)), 0<s <t <T, p € HY, (6)

B u(t,s,x, o) € HY, t > s, v € RY,
where U(t, 7, ¢) = < u(s,z,0) =ult+0,s,2,0) € H, —h<0<0,reR?
bounded and continuous for any g € €,(H?), then it possess the Feller property.

, is

Theorem 3 (continuous dependence on initial datum and the Feller property).
Under assumptions of theorem 1 there exists C(T) > 0 such that for ¢(t, -) € HY,
(0, -) € HY, ¢1(t, -) € HY, ¢1(0, -) € HY the next processes

Ut 2, 6) = u(t,z,¢) € HY, t >0, v € RY,
OO wle,¢) = ult+0,2,0) € HY, —h<0<0, xR

and

Ult, o, d1) = u(t,z, ¢1) € Hy, t >0, v € RY,
o= w(z,¢1) =u(t+0,z,¢1) € H, —h<60<0, z€R?

satisfy the condition

sup Bt .6) ~ U, - 00l < ) BIO(0. ) = (0. )

0<t<T
0
+ [ Blote. )~ onle lgae)
“h

and the family of operators Py, from (6) possess the Feller property.

Next we deal with existence of invariant measures. There is plenty of works,
dedicated to this question. Let note the work [5] of Scheutzow et al., where this
question is considered in finite dimensional space with finite dimensional Wiener
process. The obtained result has been got with the help of Lyapunov functions.
Since we deal with infinite dimensional Wiener process and unbounded operator,
we have been using an idea of Da Prato et al. [4]. Their approach concerns such
equations with no delay. Let us note that general ideas from this approach are
valid for our case. But presence of delay makes some technical adjustments to our
proof. Therefore, in order to state our result, we have been dealing with the weight
function p(z) = We present the next theorem, concerning invariant measure
existence.

_1
L[|

Theorem 4 (invariant measure existence). If r > 7+ d and (1) has bounded in
probability solution U in HP, then there exists invariant measure in HP.

This theorem has one significant moment — checking conditions of existence of
bounded solution to our equation on semiaxis t > 0. The theorem below gives us
sufficient coefficient conditions of existence of such a solution.

Theorem 5. Suppose d > 3. Let o: H — H{ be such that

lo(uw) = o(V)llag < Lllu—vllmg, {u,v} C HY,
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and for some o¢ > 0
lo(u)] < 09, u € HY.

Let f: HY — H{ be such that
1/ (w) = f()llmg < Lllw = vllgp, {u, v} C HY,
and besides for some v from Li(R?) N Ly (RY) the following estimate is true
[f(w)] < ¥(2), ue HY, x € R
Then if u(0, -) = ¢(0, -) belongs to Lo(RY) N HY, then stt>1£)E||U(t, NE, < oo .

3. Preliminaries.

Definition 2. A nonnegative positive bounded function p from Li(R?) is called
an admissible weight, if for any T > 0 there exists C,(T) > 0 such that for each
0 <t <T the next estimate is true

[ At - ptare < CTI0AE), ¢ € B

Remark 2. As concrete examples of admissible weights we can consider, for
instance, the functions p(x) = exp{—r|z|}, z € RY, r > 0, or p(z) = r €RY,

1
. 1+|1.|r7
with r > d.

Remark 3. From now on only admissible weights are considered.

Remark 4. For (Cy)-semigroup of operators, defined by (2), the following esti-
mate s true

I(S®g(- D@7z < Co(Dlg(@)lzgg. 0 <t < T, g € H.

4.1. Proof of theorem 1 and its corollary 1.

Proof. The proof is based on the classical theorem from functional analy-
sis — Banach theorem on a fixed point. According to it, let’s consider B,r, —
Banach space of all Hf-valued F;-measurable for almost all 0 < ¢ < T processes

®: Hf — H{, continuous in ¢ for almost all w from €, with a norm [[®[|y, ., =

T
E [[|®(¢, -)||%,,dt. Let us consider an operator ¥: B, 1, — B,r1,, acting as
“hn 0

follows

Vultn) = [t - o004+ [ [ (=50 O (ule)deds

; / i Vn ( [t s s>a<us<5>>en<5>d£) dB,(s), 0 <t < T,z R,

Tu(t,z) = ¢(t,x), —h <t <0, ze€RY h>0,
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Yu(0,7) = ¢(0,z), v € R

Standard computations yield contraction of ¥ in this space, thereby completing the
proof of the theorem.
Next let us show that El|u,(-)||7,, < oo, where u; solves the problem (4) —
1

— (4™*%). We need to show that

P

0 » 0
Bl = B( [+ 6, ) <58 [ute 6, gt < o
—h —h

Let us consider separately cases of 0 <t < hand h <t <T. For0<t<h

0 —t 0
E/Hu(t +0, - )| d6 = E/Hu(t +0, ) dd + E/Hu(t +0, )50 =
—h —h —t

t4+6=0 t+0=t
_E / Jult +6, )| d(t +6) + B / Jult + 0, )|t +6) =
t+o=t—h t4+6=0

0 t
—E [ fJuls, s + B [lluls, )l <
t—h 0

0 h
<B [ uts, Nts + B [lats, s < o0

If h <t<T, then we obtain

0
E/Hu(t +0, ) [ppdt =
Zh

t+6=t T
=E / [u(t +0, )| d(t +0) < E/Hu(s, s < oo,
t+0=t—h 0
thereby completing the proof of the corollary. n

4.2. Proof of theorem 2.

Proof. Let u(t,s, -,¢) be the solution of (1) — ( 1*) on ¢t > s in the terms
of section 2, i.e., let ug(s, -,¢) = u(s+6,s,-,0) = p(s+86,-), —h < 0 <0, and
u(t, s, -, ¢) satisfy (3) for t > s. Here the function ¢(s + 0, -,w) is Fy-measurable
and satisfies conditions from assumption 2) for any fixed s such that 0 < s <t < T.
For any fixed s and t w(s, -,¢) = u(t + 6,s, -, ¢) as a function of 6 is a random
variable from HY{. Let ¢ € H{ be non-random. Then u(t,s, -, ) is completely
defined by the increments W (7) — W (s), 7 > s, therefore it does not depend on
o-algebra J; and is G;-measurable. Here G; is the minimal o-algebra, generated by
the increments W (1) — W(s), 7 > s. For any 0 < s <7 <t < T we have

Ut(S, 7¢) :ut(Ta '7“7’('97 7¢)) (7)
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Note that u,(s, -, ¢) is F.-measurable and does not depend on o-algebra G..
Thus, w(s, -, ¢) = B(ur(s, -, d),w), where 5(X,w), X € HY, is a random func-
tion that does not depend on events from c-algebra F, and is §,-measurable.
In order to prove the theorem, we need to demonstrate that for all 0 < s <7 <
<t <T and A; € D, the following identity is true

P{u(s, -, ¢) € A1|F,} = P(r,u-(s, -, 9),t, Ay), (8)

where the transition function P(7,u,t, A1) is defined from (5). In order to prove (8)
it is enough to show that for any real bounded Borel function g: HY — R we have

E(g(ut(sv i ¢))|3~7’) = Eg(ut(7_> ) SD))|90=UT(37',¢)' (9)

(9) is proved similarly to [4, theorem 3.8] with the help of (7), independence of
u(7, -, ) from o-algebra F, and its F,-measurability. The theorem is proved. [

4.3. Proof of theorem 3.

Proof. Let ¢ and ¢; satisfy conditions from 2) and let u(¢, z, ¢) and u(t, z, ¢1)
be solutions, corresponding to initial datums ¢ and ¢, respectively. We have

sup EHU(t? 7¢) - U(t7 '7¢1>H§{P - OE?ETE(HU(t’ 7¢) - u<t’ '7¢1)||§1€+

0<t<T

+ sup Euut<-,¢>—ut<-,¢1>uzf) < sup Ellu(t, -, ¢) — ult, - 6)[ %+
0<t<T

0<t<T

0<t<T

0
+ sup E/Hu(t—i—@, - 0) —u(t+46, -,¢1)H12qu¢9. (10)
—h
Taking into account the identity

u(t,x,q§) - u(t7x7¢1) = /«%/(t,l’ - 5) (¢(07£) - ¢1(07£))d£+

t

" / / H(t— 5,0 — €)(fluls +0,6,0)) — fluls + 0,6, 61)))deds +

0 Rd

¢ oo

T / SV ( / H (t—s,2—) (U(U(8+9,€,¢))—U(U(S+9,€,¢1)))€n(€)d€>dﬁn(5)

0 n=1 Rd
0<t<T, —h<6<0,zeR?

we obtain by standard computations, using Gronwall’s inequality, the following es-

timate for sup EHU(t, ) Qb) - U(t, " Qsl)”?'—[p
0<t<T 0

sup E”u(tv 7925) - u<t7 '7¢1)||§Ig < <SCP<T)E”¢<07 ) - 9251(07 ')H?{g—i_

0<t<T
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L3120, <T+Z/\ > /|y¢ .)||§{5d5> «
xexp{3L2C (T) (T+Z/\ )T T}
o) (1000, ) 010 )l + B / lott, )= en(t. ga ). (1)

C(T) = 3C,(T) max {1; hL? (T + i /\n> exp {3L20p(T) (T + i )\n) T- T}} :

n=1

Next let us estimate sup E f |lu(t+0, -, ¢) — u(t + 6, -,¢1)||§{5d9. We get
0<t<T

sup B [ [lu(t +6, +,0) ~ ult + 0. -, 60|50
0<t<T

< s B / Jut + 6, -, 0) — u(t +0, -, 61)|%pd6

0<t<h
4 sup B [t +6,.0) ~ ult + 6, . 0) . (12)

h<t<T

Taking into account estimate for Elju(t, -, ¢) — u(t, -, ¢1)H§{g, 0<t<T, follow-
ing from (11), we have

sup E/Hu(t +0,-,0)—u(t+0, -,¢1)H§{gd9 =

0<t<h

= sup E/Hu(t—i—@, @) —u(t+46, -,¢1)Hl2qu9+

0<t<h

+ sup E/||u<t+0, B = ult+ 6, -, 61)l[Zpdd <

0<t<h

= E/ch IIdes+E/||u L 0) —uls, - d)|[3pds <

<E / 665, ) = én(s, Vs + CIT (EL00, ) = 6100, s+

Hayxk. Bicnuk Yxkropos yu-ty, 2018, sum. 33, Ne 2



CAUCHY PROBLEMS AND INVARIANT MEASURES FOR A FUNCTIONAL SDE 129

+ij@~>—¢@fm%m), (13)

sup B [[Ju(t+6, +,0)=u(t+0, 600 <E [ (s, -, 0)=u(s. - o0)lfypds <

R<t<T

< T (100, ) = 00, )l + B [llots, ) = s lgas ). (1)

Thus, we obtain from (12), applying (13) and (14),

0
sup B [[lu(t+6,-.0) ~ u(t + 0. @MmW<E/W — 61(s, - )|Zeds
0<t<T
-+%mmT(mwm,» HHW+E/M¢ »mm@), (15)

and from (16) with the help of (11) and (15) we derive

sup BIU( .6 = Ut~ o0y < ) (B0, ) - a0, g+

0<t<T

+E/w mmm)+E/w ~ 1o, s+

IN

#2007 (BI0(0. ) = 610, g + B [6(s. ) = (s g
“h

< () +1)+ 1) (B0, ) = 010, )1 + B [l ) = s lgas ),

thereby completing the proof of the theorem. m

4.4. Proof of theorem 4 (sketch). Based on the classic scheme [4, theorem
11.29], adapted to functional-differential equations, and the standard technique from
Krylov—Bogolyubov theorem, we now prove our theorem for the existence of an
invariant measure. This adaptation is based on three lemmas. Let Ty > 2r be fixed.

Lemma 1. An operator A: HY — HY, acting as Apo(-) = S(Ty+0)po( - ), is a
Hilbert-Schmidt operator.
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Proof. Similarly to [3], if {e,(x),n € {1,2,...}} is an orthonormal basis on
Ly(R9), then {ﬁ’% (x)en(x),n € {1,2,... }} is an orthonormal basis on Hf. Indeed,
we obtain for Hilbert-Schmidt norm || - ||gs of operator A

||A”12LIS = Z

)3 ; /:(R/g A2 (Ty ;(ef,)x—@dg)p(x)dx)d@ <

0
5
S/ ! de<TO+9)(/1+|x|pdx>d0<oo.
(87(Ty +0))* 2 1+ |z

o0

e(-)
V()

A

: ]
Next we have
u(Th, ) = S(T)o( ) + / S(Ty— ) fus( - ))ds + / S(Ty — s)o(us(-))dW (s, -).
To+0

ury(+) = u(To +0, ) = S(To +0)p(-) + / S(To+6 —s)f(us(-))ds+

To+6
+ / S(Ty + 0 — 8)o(uy(-))dW (s, -).

Let us take 110 <a< %, p > 2, and let ¢ belong to the space L, ([0, Ty]; Hy). We

To+6
consider an operator (Gop(+))(0) = [ (To+ 0 — s)*1S(Tp + 6 — s)p(s)ds from
0
C([—h;0]; HY). Using an infinite dimensional version of Arzela-Askoli theorem, we

have proved the following result.

Lemma 2. G, is a compact operator, acting from Ly,([0,To]; Hf) into
C([—h; 0]; HY).

Next we consider a set K(r) C H?, K(r) = {(z,2) : x € Hy, = € HY, © =
STo)v(-) + (Gip(-))(0) + (Gah(-))(0), 2= S(To + O)v(-) + (Grp(-))(0) +

F(Gah( DO, 1) < 7. 19, opriry < 7> Il oy < 7 In
virtue of lemma 2, K (r) is compact in H?.

Lemma 3. Let conditions from 1) be true. Then there exists a constant C' >0

such that for any » > 0 and y = ﬁ) € H? with [[y(-)|lmwe < 7 we have

P{(u(Ty, z,2), ur, (7, 2)) € K(r)} > 1= Cr?(L+[ly(-)ll5)-

Proof. We skip the proof and just mention that the result has been obtained
with the help of standard estimates along with the factorisation method. O]

Similarly to [4, theorem 11.29] with the help of lemmas 1 — 3 it is possible to
prove that there exists > 0 such that for any € > 0 P{(u(¢, - ),u:(-)) € K(r)} >
> 1—r. Thus, we have obtained the tightness of a family of measures £ (u(t, - ), u(-))
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for t > 1. Based on this result, Krylov-Bogoliuibov procedure yields our theo-
rem. ]
4.5. Proof of theorem 5.
Our aim is to show that

sup B0, = sup B ult, g + (I )

t>0 t>0

< sup Elfult, )%, + supE/Hu(t 0, )|Pyedh < o
>0 O >0 0

Firstly let us show sup E||u(t, )||12ng < 00. We begin by observing that
>0

t

S(t)p(0, - ) + /S(t —s)f(u(s+0, -))ds+

0

sup Eju(t, )||§{g =supE
£>0 >0

2 2 2
/St—s u(s+0, -))dW (s, -) :supE‘ZJj(t) <
o t>0 HP
Hy 0
2
<3 swpE[lJ;()|3- (16)
= 20

Let us estimate sup EHJj(t)H?{g, j € {0; 1; 2}, separately.
>0
sup B Jo(t) |15, = sup E[|S()¢(0, - )7 =
£>0 >0

s | ( [t €)¢(0,§)d§)20($)da: <

Rd R4

S?EEE/(/%”‘ dé‘)(/%trc—f)¢2(0£)d€>() =
:StggE/(/%t:v— (z)d )¢2(0,£)d£§

Rd R4
< (esssupp >E||¢ ||L (R9) < 0.
z€R4
2

sup E||J1(t) ||Hp = SupE
£>0

/ (t—s)f(u(s+86,-))ds

—supE [ ( / [t 5o = rtats + 0,§>>d§ds)2p<x>dx <

t>0

Hg

Ré 0 Rd
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stup( /(//%t 5,0~ 6)f s+9£>>d£ds) o)+
+E/(//’“ sr=8)f S+9€))d€d8>2 (2 m) _

= 2Stl>1£)(Jl (t) + JE(1)). (17)

E/(//Ji/t s, v —&) f(u(s+4, §))d§d$)zp(x)dx§

Rd

<k [ ( / ( [ -so-0stuts+o, s>>d5)2ds)p<x>dx <

Rd t—1 R4

<u [ ( / ( [#a=sa-orus+ e@)d&) ds>p<x)dx <

< <essxs;1]1£) W@) ( / p(x)dx) < o0, (18)

/(// (t = 5,2 = &)|f(u 3+975))’dfd8)2p(a¢)daz:
E/(t/l( (it — S>) </ P{ Z §|)}|f( (s +9,§))|d§)d3)2p(q;)dx§
E/< (/w dg)ds) —

R4

=l 40 ) ( )/ (th)zds)Q:

R4

- ([ ([ ([ ) o

) and (18), the estimate sup E||J;(¢)]|?
>0

||H£ < 0.

Thus, we have from (17), using (1

t

/S(t —s)o(u(s+0, -))dW (s, -)

Hg

sup EHJg(t)H?{g =supE
>0 >0
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_ supE/(/t/Ji/(t sz Eoluls + 9,5))d§dW(s,x))2p(x)dx. (20)

t>0
R 0 R4

Let us consider the integrand from (20) separately.

E(/ [t = sz = atuts +9=§))d§dW(s,x)>2 _

0 Rd

= / SV [t s - atuts 4 0.1 dms))z -

S (/ H(t— s, — E)o(uls +0, 5))en(§)d§)2ds _

n=1

+E Zl An (/ H(t—s,x—Eolu(s + 9,5))en(g)dg) ds = Ji(t) + J2(t). (21)

o)

() <E 71; An (/ H(t— 5,0 —&)|o(uls + 975))!%(5)615)2618 <

0

:ag/iAn(/lﬂ(r,x—g)dg)dT. (22)

Bt <E / S, ( [ f>|a<u<s+0,5>>|en<5>d5)2ds <

g2 n=1

¢ [e'e} 2 o0
SJS/Z:IAn(/%(t—S,x—g)%) ds:agzlAn. (23)
t—1 " R n=
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134
Then estimates (20), (21) with (22) and (23) together imply
¢ oo
sup E||J5(t)] 50 < supE/ US/Z)\R(/%/Q(T,:C— d€>d7'+
d 1 =l R4

+UOZ)\> das—ao(ZA></ d:)s)(lJr/(/Ji/QTy)dy)dT)

)dy> dr < 0o. We have

We next prove [ <f K1,y
1 \Rd
1 2 2
M}exp{—M}algOah‘ <
47

1
e J—
g(/ (47T7')g Xp{ 4t
Rd

17( R/ %/Z(T,y)dy)dTZ 1/ o,
! ( / %(T,y)dy)dT:

<[ (e B )ar = [
(4rT)? o (47T)? ar /. (4rT)?
11
:2d7r(21/7-—gd7'<00.
1
)“?16) < 00.

Using the obtained estimates along with (16) gives rise to sup E|ju(

0
It remains to show supE [ [ju(t +6, - |3, odf) < 0o
t>0 _p

We get
0
supE [ (e + 6, ) [ <
>0 0
h

)]|2p<oo 0<t<h In

< sup E
0<t<h

It follows from the obtained above estimate E||u(t,

virtue of this result for the first term we conclude
0
/||u t+0, - ||de9— sup E/||u (t+0, - )||de0+

Hdes—i—E/Hu g eds < oo.

0

/||u t+0 -)IﬁfgdeﬂupE/”“ H 0 Mgt
t>h
- n

sup E
0<t<h

+ sup E/||ut+0 ||de9<13/|\¢
0<t<h

For the second term we obtain
HHP dS"—

um@<E/m

supE/Hu (t+0, - HdeH < supE/Hu
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2

ds <
H

¢ h ¢
—l—supE/Hu(s, -)||§{pds = E/||u(s, -)||§{pds+supE/‘
tzh 0 0 t>h
0 h

Z Ji(s)

< E/Hu(s, -)Hggds+3Z§1>15E/HJJ-<S)H§{5¢S.

t
Arguing as above, we estimate SupEf”Jj(S)H%IgdS, j € {0;1;2}, similarly to
h

t>h

sup E[|J;(¢)]1%,, j € {0;1;2}, thereby completing the proof. O
t>0 0
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