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UDC 536.24 Approaches to the identification of thermophysical characteristics, using methods for

solving inverse heat conduction problems and A. N. Tikhonov’s regularization method,

MULTIPARAMETRIC | ¢ developed. According to the results of the experiment, temperature-dependent coef-

ficients of heat conductivity, heat capacity, and internal heat sources are determined.

IDENTIFICATION In this case, the thermophysical characteristics are approximated by Schoenberg’s
OF SEVERAL cubic splines, as a result of which their identification reduces to determining unknown

THERMOPHYSICAL coefficients in the approximated dependencies. Therefore, the temperature in the body

will depend on these coefficients, and it can be represented using two members of the

CHARACTERISTICS Taylor series as a linear combination of its partial derivatives with respect to the un-

BY SOLVING known coefficients, multiplied by the increments of these coefficients. Substituting this

expression into the Tikhonov functional and using the minimum property of the quad-
THE INTERNAL ratic functional, we can reduce the solution of the problem to the solution of a system
INVERSE HEAT of linear equations with respect to the increments of unknown coefficients. By choosing
CONDUCTION a certain regularization parameter and some functions as an initial approximation, we

can implement an iterative process in which the vector of unknown coefficients for the

PROBLEM current iteration will be equal to the sum of the vector of the coefficients obtained in

the previous iteration and the coefficient increment vector as a result of solving a sys-

Yurii M. Matsevytyi tem of linear equations. Such an iterative process of identifying the thermophysical

matsevit@ipmach.kharkov.ua

characteristics for each regularization parameter makes it possible to determine the
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mean-square discrepancy between the resulting temperature and the temperature
measured as a result of the experiment. It remains to choose the regularization pa-

Valerii V. Hanchyn rameter so that this discrepancy is within the root-mean-square measurement error.
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Such a search, for example, is identical to algorithms for searching roots of nonlinear

ORCID: 0000-0001-9242-6460 equations. When checking the efficiency of using the proposed method, a number of test

problems were solved for bodies with known thermophysical characteristics. An analy-

A. Podgorny Institute sis of the influence of random measurement errors on the error of the identifiable
of Mechanical Engineering thermophysical characteristics of the body being studied was carried out.
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Introduction

Solution of inverse heat conduction problems (HCP) of identifying the parameters of mathematical

models is of particular importance as an important step in ensuring the adequacy of these models in the pres-
ence of experimental information about the thermal process being studied. This article discusses the nonlinear
internal inverse HCP of identifying thermophysical characteristics. These can be temperature-dependent coeffi-
cient of heat conductivity, heat capacity, internal heat sources, etc. The authors of [1-6] propose classifications
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of inverse HCPs and consider methods for their solution. In [4, 5], the problems of identifying the coefficient of
heat conductivity and heat capacity are called coefficient inverse HCPs. We follow the classification given in
[2, 6] and assign all the problems of identifying the thermophysical characteristics inside the body being studied
to a class of internal problems by analogy with the external inverse HCPs [2, 4, 5, 6] of identifying heat flows
and other thermophysical characteristics on the surface of the body. The solution for the class of internal in-
verse HCPs of simultaneously identifying the internal thermal characteristics, such as the coefficient of heat
conductivity and heat capacity, is considered the most time-consuming, since it is very difficult and in some
cases almost impossible to take into account the influence of changes in these characteristics on the thermal
process of the body being studied. One of the first works devoted to the solution of such problems was work
[7], which considered the simultaneous identification of the heat conductivity coefficient and specific volumet-
ric heat capacity of artificial diamonds by solving a multi-parameter inverse HCP, using an iterative filter. Its
authors conclude that while searching for different thermophysical characteristics, an inaccuracy in identifying
one of them causes a corresponding inaccuracy in identifying another characteristic, i.e. for their correct simul-
taneous identification, the a-priori information about one of the identifiable characteristics must be known. In
[8], a method for identifying one of the thermal characteristics is proposed, which reduces to constructing an
iterative process of determining the coefficient vector in the approximative dependence of the identifiable func-
tion on temperature. In this work, to obtain the solution, the author uses M. M. Lavrentyev’s o-regularization
method [9, 10], which is less flexible than A. N. Tikhonov’s regularization method [5], since when the former
is used, it is more difficult to take into account the a-priori information about the desired thermophysical char-
acteristic. Using the iterative process proposed in [8] and A. N. Tikhonov's regularization method [5], we pro-
pose the following approach to the simultaneous identification of several desired characteristics.

Problem Formulation
In this paper, we consider a nonstationary internal inverse HCP, which can be formalized as follows:

ALQT),s e @ (T), e @, (D =T, i=1in ,

where @, (1),i= Ln are the desired temperature-dependent thermophysical characteristics; 7 is the process
state variable, which in most cases is known from an experiment (initial data); A is the operator that connects
the desired dependencies @, (T),i=1,n with the initial data T*; n is the number of the required dependencies.

This problem, like any inverse HCP, due to the violation of causality, is incorrect according to Ha-
damard, which leads to the instability of the solution being obtained. To solve such problems, they are either
reduced to conditionally correct, or left incorrect, with one of the regularization methods being used [1-10].
Here, A. N. Tikhonov’s regularization method is used [5].

Consider the nonstationary thermal process in the body with boundary conditions of the second and
third kinds, which is described as follows [2, 11]:

C(T)aa—: =div(MT)- grad(T))+ S(T),M € D, (1)
oT
-Mr )a_ =q, 2)
v Mel
oT
—Mﬂg— =a(r-T5) 3)
Vlver,
TM.0)_, =T, )
at T(M,,t,) =T, i=lLn,, k=Lm, (5)

where T=T(M, 7) is the body temperature; D is the area of space occupied by the body; I'; and I, are parts of
the border area D; M is a point in the region D; 1 is a time coordinate; A(T), C(T'), S(T') are the desired depend-

encies of the coefficient of heat conductivity, heat capacity and internal heat source; o is the heat-transfer coef-
ficient of the surface I'»; T is the required ambient temperature of the surface I';; g is the required heat flows at
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the boundary I'j; Vv is the external normal to the boundary of the body; Ty is the initial body temperature; m is
the number of measurements in the time coordinate; n. is the number of measurement points in the body; M, are

the individual points of the area D in which the temperature 7;;" is measured. The measurement error is a ran-
dom variable distributed according to the normal law with zero mathematical expectation and o~ dispersion.
Based on the thermophysical experiment 7", the dependencies of the thermophysical characteristics
of the body being studied, A(T"), C(T'), S(T'), are determined over the entire temperature range, with account
taken of the available a priori information about these dependencies.
Below, we consider a methodological approach to solving the problem.

Regularization Algorithm for Solving the Inverse HCP
To solve the inverse HCP, we use A. N. Tikhonov’s regularization method, which reduces to mini-
mizing the following functional:

7= [lroa. -1t 0] apdz+B-Qloy (D). ... 0, (1)]+B- Aoy (1), .., 9, (7)), (6)
0D

where T(M, 1) is the temperature obtained as a result of solving the direct HCP; T“'(M,t) is the experimen-
tally obtained temperature; T, is the completion moment of thermal process analysis; B is the regularization
parameter; Q[(p1 @),....0, (T)] is a stabilization functional; A[(pl( 1) ..,0/( T)] is a quadratic functional char-

acterizing the discrepancy between the values of the desired thermophysical characteristics and the values of
these characteristics, a-priori specified at certain temperatures in the range being studied.
If the desired functions @,(T),...,¢,(T) are represented as

¢:(T)= zaksB;d (), i=1n, )
k=1

where (0i;,...,0,;) = A, are the vectors of the desired parameters, and By’ (T) are Schoenberg’s cubic splines,

then the identification of the desired functions reduces to the determination of the unknown vectors A;, i=1,n.
We minimize functional (6) by the iterative method [8]. Since the temperature 7(M, t) depends on

the vectors A;, i= L, it can be represented at the (p+1) th iteration by using Taylor's series, as

n n; P
T (M@0 (1), QU (T = TP (M3, 0] (T), o, @0 (T + DY gg Ao, ®)
i=1 k=1 ki

where (Aa™...., A’y =AA""', i=1,n are the incremental vectors AA?™ = AP*' — AP .

At the (p+1) th iteration, we write the stabilization functional as

Tmax p+l p+l 2

+ + c + a(p ’ 82(p
Qlor™\(T),... ,"™(T)|= Ao ,.( ' } ,.( ' } drT, 9
[(Pl ) ] IZ_:,TJ. Wo ( )2+W1 3T Tw, 372 )]

min

where T, T, .. are the minimum and maximum temperatures in problem (1) — (5), and w,,w,;,,w,; are the
weighting factors, which are selected depending on the a priori information about the desired thermophysical
characteristics.

The quadratic functional A[(pl( 7),..,0,( T)] that characterizes the discrepancy between the values of
the desired thermophysical characteristics and the values of the same characteristics, a-priori specified at cer-
tain temperatures in the range being studied, can be constructed as follows.

Let T},..., T, be some temperatures from the interval [ijn, Tmax] for the i-th desired function, and

Jirs fis--os [, - respectively, a priori values of this function. Then the quadratic functional A[(pl( 7),..,0,( T)]

takes the form
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Alou™), 0. m=3">W,(0.T;,)- £, F . (10)

i=l j=l
where W, are the weighting factors that are selected based on how accurately the a priori values f,, f;,,.... f;;,

are specified.
We substitute expressions (7), (8), (9), (10) into functional (6). Replacing T(M ,’c) by the approximate

temperature value at the points of thermometry and using the necessary condition for the minimum of func-

tional (6), we obtain a system of linear equations with respect to Aoc,ffl ,i=1,n, k=1n, in the i-thiteration.

The system of linear equations includes the regularization parameter , which is determined, as we did in

[12, 13], based on the condition
1—1/3 0<0< 1+1/£ G, (11)
N N

which is proposed in [1]. Here, N is the total number of thermometric measurements; o is the root-mean-
square deviation of the obtained temperature from the temperature measured at the points of thermometry.

We believe that the regularization parameter is chosen correctly if the two-sided inequality (11) is
satisfied for the obtained solution according to the iterative scheme proposed above.

Numerical Experiment

Consider the process of heating a body (an infinite plate), with a temperature-dependent internal heat
source and convective heat flux, taking into account the fact that in the case of the dependence of the heat
capacity and heat conductivity of the body on temperature, the boundary value problem (1-4) can be repre-
sented as follows:

C(T)a—T:i(x(T)a—TjJrS(T), xe [0,1], (12)
JT 0x ox
)L <o, (13)
x|, _o
oT
(—k(T)—+0cTJ =aT,, (14)
ox -
(M.} _, =T,. (15)

where [ is the thickness of the plate; C(T) is the heat capacity of the plate; A(T) is the coefficient of the heat
conductivity of the plate; S(7) is an internal heat source; a is the heat transfer coefficient; T is the convective
flow temperature; 7 is the initial temperature of the plate.

To conduct the numerical experiment of the boundary value problem (12—-15), the dimensionless de-
pendencies C(T),AMT),S(T) are taken, which are approximated quite accurately by Schoenberg’s cubic

splines with a small number of the required parameters

C(T)=3.4-3.2T-0.877, (16)
MT)=0.1+1.8T —0.977, (17)
S(7)=10.0-15.07 +5.0T>. (18)

The points of thermometry are evenly distributed across the plate thickness. A random error, distrib-
uted according to the normal law at 6=0.05, is superimposed on the obtained numerical solution at the points
of thermometry. Such a random error is large enough in comparison with the measurement errors of modern
devices, which makes it possible to illustrate the effectiveness of the proposed method.

Figs. 1-3 show the dependencies of heat capacity C(T), heat conductivity coefficient A(7), and in-
ternal heat source S(7), obtained using the method described above, and the dependencies of these thermo-
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physical characteristics (16)—(18) for the following dimensionless data: /=1, n,=400, m=21, At=0.001, 0=2.0,
T=2.5, To=1.0, Tyin=1.0, Tpax=2.0, S(Tin)=0, S(T1a)=0, Wy =10, W, (=10, W, =10". For all the

required dependencies, as noted above, a small number of the required parameters nc=5, m;=5, ns=5 were
chosen. The weighting factors in functional (9) were chosen according to the recommendations of [1]. In this
problem, for the required dependencies of heat conductivity and heat capacity, the second-order regulariza-
tion was used, and for the desired dependence of the internal source, the zero-order regularization.

Fig. 4 shows the dependencies T(M,, 1), obtained as a result of solving the direct and inverse HCPs,
as well as the noisy temperature at the point M, = {0}

The selection of the regularization parameter 3 began with f=1.0, and as the required functions, the
initial dependencies A(T)=0.6, C(T)=1.0 and S(7)=0 were selected. The iterative selection process B after the
fifth iteration ended at $~0.003906 when the root-mean-square error reached 6~0.05011.

C(T) AT
-——\\
08 \ 0.8

0.6 \ 0.6 ?
g
0.4 \\ : 0.4

0.2 \ 02

1.0 1.0

12 1.4 1.6 18 20 12 14 1.6 18 2.0
o T
Fig. 1. Dependencies C(T): Fig. 2. Dependencies A(T):
1 — in the form of (16); 1 — in the form of (17);
2 — obtained by the iterative method 2 — obtained by the iterative method
SeT) T, )
0.0 1
1.4 R

W\ /
\ Y L 0
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2 1 l
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T T
Fig. 3. Dependencies S(T): Fig. 4 Dependencies T(0, 7):
1 — in the form of (18); 1 — obtained by solving the direct HCP,
2 — obtained by the iterative method using characteristics in the form (16-18);

2 — the noisy solution to the direct problem;
3 — obtained using the identified characteristics
by solving the inverse HCP
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Conclusions

heat

The above solution to the internal inverse HCP of identifying temperature-dependent heat capacity,
conductivity coefficient, and internal heat source indicates that the presented method for identifying

thermophysical characteristics can be successfully used if there is an a-priori information about the desired
functions. If this is absent, then the proposed method can also be applied, but the measurement errors should
be comparable with the errors in solving direct problems.

The studies presented in the article were carried out within budget theme II1-6-20.
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BaratonapamerpuyHa inenTugikanis TenaodizuuHNX XapaKTePUCTHK LLISIXOM PO3B’I3aHHA
BHYTPIilIHbOI 00epHeHo1 3a1a4i TeIIONPOBiAHOCTI

1O. M. ManeButuii, B. B. 'anuun

[HcTUTYT IpOGIeM MammHOOYAyBaHHS iM. A. M. Ilinropaoro HAH VYkpainwu,
61046, Ykpaina, M. Xapkis, Byin. [Toxxapcekoro, 2/10

Po3spobneno nioxoou 0o ioenmuixayii menio@izuuHux XapaKmepucmux 3 GUKOPUCMAHHAM Memooi8 pO36's-

3aHHsL 0bepHenux 3a0ay menaionpogionocmi i memooy peeyaspusayii A. M. Tuxonoea. 3a pezynomamamu npogedenozo
EeKCHepUMEeHMY 8USHAYAIOMbCIL 3ANEINHCHI 810 memMnepamypu KoeQiyicHm menionpogioHoCmi, Meni0EMHICIb, GHYmMpiul-
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Hi Ootcepena meniomu. Ilpu yoomy menioghizuyni xapaxmepucmuku anpokcumMyromocsa Kyoiunumu cnaatinamu [lvon-
bepea, HACTIOOK Y020 ix i0enmugixayis 3600umvbcs 00 GUIHAUEHHST HeGI0OMUX KoepiyicHmie 6 anpoKCUMayiunux 3a-
aedcnocmsx. Omoice, memnepamypa 6 mini 6yoe 3anexcamu 6i0 yux xoeghiyicumis i ii Modcna 6yoe 306pazumu, 8UKO-
pucmosyrouu 06a uienu psaoy Teinopa Ak AiniiHy KOMOIHAYIIO iT YaCMUHHUX NOXIOHUX 3 HEBIOOMUX KoeiyicHmis, nom-
HOdCEHUX Ha npupicm yux xoegiyicumis. ITiocmasnsiouu yetl supas 6 Gyukyionan Tuxonosa i euxopucmosyrouu 61ac-
MUBicms MIHIMYMY KEaOpAMuyHo20 QYHKYIOHALA, MOIICHA 36eCMU PO368 30K 3a0ai 00 PO38 A3aHHS CUCeMU TTHIHUX
PIiBHsIHb U000 30iNblUeHb HeglooMUX Koepiyichmis. Bubpasuiu 0151 nouamrkoso2o HAONUNCEHHs NeGHULL napamemp pe-
eynapuzayii i 0eaxi QyHKyil, MOJCHA peanizysamu imepayiuHutl npoyec, 8 AKOMY 6eKmop Hegi0oMUX Koe@iyieHmis O/
nomounoi imepayii 6yoe 0opigH06amu cymi 6eKmopa KoepiyicHmis 3 nonepeonvol imepayii i 6eKmopa NPupoCcmis yux
KoepiyicHmig HACIIOOK PO368 A3aHHA cucmemy JiHIUHUX pieHaus. Takuil imepayitinuil npoyec 3 ioenmu@ikayii menio-
@DI3UUHUX XAPAKMEPUCMUK OISl KOJICHO20 NAPAMEMpPA pecyaspu3ayii 0ae MONCIUBICIb BUSHAYUMU CePeOHbOKEAOPAMU-
YHULL BIOXUTL MIJC 00EPIACYBAHOI0 MEMNEPAMYPOIO | MEMNEPAMYPOI0, AKY GUMIPSIU 6HACTIOOK NPOBEOEHO20 eKCnepume-
umy. 3anuwiacmocs nioibpamu napamemp pesyiapuzayii maxum YuHom, woob yetl 8ioxun 6y8 6 meriscax cepeoHboKeao-
pamuunoi noxubxu eumipiosans. Taxuil nowyx, Hanpukiad, iOeHMUYHUL AlOPUMMAM NOWYKY KOPeHs HeliHIUHO020
pisuanusa. 1o yac nepesipxu egpekmunocmi UKOPUCANHA 3ANPONOHOBAHO20 Memoody VIO po36’A3aHO HU3KY mec-
Mmosux 3a0ay 0 min 3 Gi0oMuMu menao@izuunumu xapakmepucmuxamu. [lposedeno ananiz eniugy UNAOKO8UX NOXu-
00K 8UMIPIOBAHL HA NOXUOKY I0eHMUDIKOBAHUX MENTOPIZUYHUX XAPAKMEPUCTIUK OOCAI0NCYBAHO20 MIA.

Knrouogi cnosa: obepnena 3adauwa mennionpogionocmi, memoo peeyaapuszayii A. M. Tuxonosa, cmabinizyiouuii
@yukyionan, napamemp peeyusipusayii, idenmugpixkayis, anpoxkcumayis, Kyoiuni cnaatnu Lllvonbepea.
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