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ÓÄÊ 539.4

Ïðîãíîçèðîâàíèå ïîâðåæäåíèÿ êîìïîçèòà íà ñòûêå ìàòðèöû è âîëîêîí

ñ ïîìîùüþ ãåíåòè÷åñêîãî àëãîðèòìà. Ñîîáùåíèå 2. Àíàëèç ïîâðåæäåíèé

îò ñäâèãîâûõ íàïðÿæåíèé â ãðàôèòî-ýïîêñèäíûõ íàíîêîìïîçèòàõ

À. Ìîêàääåì
à,1

, Ì. Àëàìè
á
, Í. Çèàíè

á
, Í. Áåëäæóäè

á
, À. Áóòàó

à

à Íàó÷íî-òåõíîëîãè÷åñêèé óíèâåðñèòåò èì. Õóàðè Áóìåäüåíà, Àëæèð, Àëæèð

á Íàó÷íî-òåõíîëîãè÷åñêèé óíèâåðñèòåò èì. Ìóõàìåäà Áîóäèàôà, Îðàí, Àëæèð

Îïèñàííàÿ â ñîîáùåíèè 1 ãåíåòè÷åñêàÿ ìîäåëü èñïîëüçóåòñÿ äëÿ îïòèìèçàöèè ïîâðåæäåíèÿ â

ïëîñêîñòè ìàêñèìàëüíûõ ñäâèãîâûõ íàïðÿæåíèé íà ñòûêå âîëîêîí è ìàòðèöû â íàíîêîìïî-

çèòíîì ãðàôèòî-ýïîêñèäíîì ìàòåðèàëå. Ïîëó÷åíà õîðîøàÿ êîððåëÿöèÿ ìåæäó ÷èñëåííûìè

ðàñ÷åòàìè è ýêñïåðèìåíòàëüíûìè äàííûìè äëÿ êîìïîçèòà è íàíîêîìïîçèòîâ íà îñíîâå

ãðàôèòà, óñèëåííîãî íàíîïîëèìåðàìè. Ýêñïåðèìåíòàëüíûå äàííûå òàêæå õîðîøî ñîãëàñó-

þòñÿ ñ ðåçóëüòàòàìè, ïîëó÷åííûìè íà îñíîâàíèè ðàñ÷åòíîé ìåòîäèêè ßñìèíà. Â äàëüíåé-

øèõ èññëåäîâàíèÿõ ïëàíèðóåòñÿ èçó÷åíèå âëèÿíèÿ òåðìè÷åñêèõ íàïðÿæåíèé íà ïîäîáíóþ

îïòèìèçàöèþ.

Êëþ÷åâûå ñëîâà: ñäâèãîâîå ïîâðåæäåíèå, ñòûê, âîëîêíî, ìàòðèöà, ãåíåòè÷åñêèé

àëãîðèòì, íàíîêîìïîçèòû.

Introduction. The approach described in our work [1] is applied to nanocomposites.

Nanocomposites refer to composites in which one phase has nanoscale morphology such as

nanoparticles, nanotubes or lamellar nanostructure [2–5].

The improvement of the properties by the addition of particles can be achieved when:

a) adequately good interaction between the nanoparticles and the matrix;

b) good dispersion of particles within the matrix.

In nanocomposites, covalent bonds, ionic bonds, Van der Waals forces, hydrogen

bonding could exist between the matrix and filler components [4, 5]. One of the

classifications is based on the nanomaterial’s dimensional morphology:

1. Zero dimensional nanomaterial such as nanoparticle [4, 6, 7].

2. One dimensional nanomaterial such as nanowire and nanotube [8].

3. Two dimensional nanomaterial such as silicate layers.

4. Three dimensional nanomaterial such as zeolites [9–11].

A classification based on kind of synthesis procedure:

1. Direct incorporation of nanoscale into a polymer melt or solution, such as addition

several type metal oxide and hydroxide to polymeric matrix [6].
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2. In situ generation of nanoscale building blocks in a polymer matrix (reduction of

metal ions in polymer matrix) [6].

In this study, we use the experimental results on graphite epoxy nanocomposites

found by Asma Yasmine [12] to validate our approach genetic.

Various Technical Manufacturing of E-Graphite. A number of techniques were

used to process the E-Graphite/epoxy nanocomposites and the equipment used to process

the nanocomposites. These manufacturing techniques are presented by Asma Yasmine [12].

Direct Mixing. The E-Graphite (EG) was first added to the hardener due to its low

viscosity and stirred continuously using a magnetic stirrer at room temperature for one day.

DGEBA was then added and stirred for another 2 h on a hot plate at 60�C. An accelerator

was added to the solution at ambient temperature and stirred for 0.5 h with slow agitation

followed by overnight degassing. The solution was cast in a teflon mold prepared following

the ASTM standard D638-99. The tensile specimens were 165 mm long and 2.5 mm thick

with a gauge length of 50 mm and width of 13 mm. The mold was then placed in a hot

press and the specimens cured at 148�C for 1 h.

Sonication Mixing. The EG was first sonicated in an acetone bath for 5 h and stirred

on a hot plate using a magnetic stirrer until all the acetone was evaporated. Graphite

nanosheets were added to DGEBA and mixed with a magnetic stirrer for 3 h. Next,

hardener was added and stirred for another 2 h. Finally, an accelerator was added and the

solution was degassed overnight. The solution was then cast and cured as described before

for the direct mixing. If otherwise not stated, the results for sonication mixing came from

nanocompositess processed by this technique. In another attempt, DGEBA was added to the

acetone bath of graphite nanosheets and sonicated for 0.5 and 5 h to observe the effect of

sonication mixing in comparison to magnetic stirrer mixing. The solution was then heated

and stirred on a hot plate at approximately 60�C until all acetone was gone followed by

processing as discussed above.

Shear Mixing. In the present study, EG was used instead of nanoclay particles as the

reinforcement. The epoxy resin (DGEBA) was first placed between the feed and center

rolls. Once the rolls started moving, the EG was spread gradually on the resin to achieve

the maximum contact with the rolls. In the beginning, the solution is highly viscous and

immiscible. However, with continued mixing, it becomes a homogeneous, shiny, miscible

and less viscous solution. Compounding was carried out at room temperature for 2 h with a

rotation speed of 500 rpm. The final product from the mill was then collected and mixed

with the hardener at 60�C for 1 h on a hot plate. After adding accelerator and mixing for a

few minutes, the solution was left overnight for degassing. After degassing, the solution

was cast and cured as described for the direct mixing.

Combined Sonication and Shear Mixing. In this method, a solution of DGEBA and

graphite nanosheets was first processed by sonication mixing followed by shear mixing as

described above. This process combines the benefits of both sonication and shear processes.

Figure 1 show variation elastic modulus for different processing techniques.
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Fig. 1. Variation of elastic modulus of 1 wt.% EG/epoxy nanocomposites for different processing

techniques.



Analytical Models. Modeling of the interface and model based on the statistical

approach [13–22] is given in [1].

Numerical Simulation by GA.

Development. The idea is to optimize the shear damage to the fiber–matrix interface

of graphite epoxy nanocomposites with the variation of modulus of elasticity in the three

manufacturing techniques made by Asma Yasmine [12] (direct mixing, sonication mixing,

and shear mixing). For this, we chose to use a genetic optimization using the result sets of

Yasmine for E � 3.6, 3.7, and 3.9 GPa and a set of mathematical and analytical tools

defined by the Cox model and the Weibull probability theorem.

The evaluation of each generation is made by an objective function based on the Cox

model, which includes all the variables defined at the beginning of the algorithm (mechanical

properties of each component of the composite, the Young modulus, etc.), and each value

of the modulus of elasticity in shear damage of the interface over the entire length of the

fiber is determined.

Figure 2 presents the flowchart of genetic algorithm.

Simulation Results. A calculation was performed on two types of materials pure

epoxy composite and graphite epoxy nanocomposites. We calculate the shear damage to the

interface for pure epoxy (E � 3.5 GPa) and for graphite epoxy nanocomposites (E �

� 3.6 GPa, direct mixing, E � 3.7 GPa, sonication mixing, and E � 3.9 GPa, shear

mixing).

Figures 3–6 show each value of E for the level of damage to the interface of pure

epoxy and graphite epoxy nanocomposites.
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Fig. 2. The flowchart of genetic algorithm.



Figures 3–6 indicate the same pattern for all materials under study. The damage of D

interface starts at a certain point and then increases to the maximum value. The respective

values are: 0.3 and 0.6 for for pure epoxy (Fig. 3), 0.25 and 0.5 for graphite epoxy/direct

mixing (Fig. 4), 0.2 and 0.4 for graphite epoxy/sonication mixing (Fig. 5), and 0.1 and 0.3

for graphite epoxy/shear mixing (Fig. 6).

In all cases under study, this damage is symmetric, attains zero values in the middle of

the fiber, and manifests a high density of calculated points at the ends.

Conclusions. The results of genetic calculation show that the level of damage is

related to the nature of the material used. The nanocomposites have higher resistance to

mechanical stress which interface damage is insignificant compared with those of the

composite materials subject of study in Part 1. Numerical simulation, as compared with the

result obtained by genetic algorithm, has shown that the graphite epoxy is stronger than the

pure epoxy. The figures show the level of damage along fiber length and indicate that the

values found for graphite epoxy are far inferior to those of pure epoxy. We can therefore

say that the model well describes the phenomenon of damage for both composite and

nanocomposite materials.

Ð å ç þ ì å

Îïèñàíà â ïîâ³äîìëåíí³ 1 ãåíåòè÷íà ìîäåëü âèêîðèñòîâóºòüñÿ äëÿ îïòèì³çàö³¿ ïî-

øêîäæåííÿ â ïëîùèí³ ìàêñèìàëüíèõ çñóâíèõ íàïðóæåíü íà ñòèêó âîëîêîí ³ ìàòðèö³

â íàíîêîìïîçèòíîìó ãðàô³òî-åïîêñèäíîìó ìàòåð³àë³. Îòðèìàíî õîðîøó êîðåëÿö³þ
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Fig. 3 Fig. 4

Fig. 3. Level of shear damage to the interface of a pure epoxy (E � 3.5 GPa).

Fig. 4. Level of shear damage to the interface of a graphite/epoxy nanocomposites (E � 3.6 GPa).

Fig. 6Fig. 5

Fig. 5. Level of shear damage to the interface of a graphite/epoxy nanocomposites (E � 3.7 GPa).

Fig. 6. Level of shear damage to the interface of a graphite/epoxy nanocomposites (E � 3.9 GPa).



ì³æ ÷èñëîâèìè ðîçðàõóíêàìè é åêñïåðèìåíòàëüíèìè äàíèìè äëÿ êîìïîçèòà òà íàíî-

êîìïîçèò³â íà îñíîâ³ ãðàô³òó, ï³äñèëåíîãî íàíîïîë³ìåðàìè. Åêñïåðèìåíòàëüí³ äàí³

òàêîæ äîáðå óçãîäæóþòüñÿ ç ðåçóëüòàòàìè, ùî îòðèìàí³ íà îñíîâ³ ðîçðàõóíêîâî¿

ìåòîäèêè ßñì³íà. Ó ïîäàëüøèõ äîñë³äæåííÿõ ïëàíóºòüñÿ âèâ÷åííÿ âïëèâó òåðì³÷-

íèõ íàïðóæåíü íà ïîä³áíó îïòèì³çàö³þ.
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