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The measurement of the complex impedance response and accompanied power absorption P(ω) in the radio-
frequency and microwave ranges represents a most popular experimental method to investigate pinning mechan-
isms and the vortex dynamics in type-II superconductors. In the theory, the pinning potential (PP) well for a vor-
tex must be a priori specified in order to subsequently analyze the measured data. We have theoretically solved 
the inverse problem at T = 0 K and exemplify how the coordinate dependence of a PP can be determined from a set 
of experimental curves P(ω|j0) measured at subcritical dc currents 0 < j0 < jc under a small microwave excitation 
j1 << jc with frequency ω. We furthermore elucidate how and why the depinning frequency ωp, which sepa-
rates the non-dissipative (quasi-adiabatic) and the dissipative (high-frequency) regimes of small vortex oscil-
lations in the PP, is reduced with the increase of j0. The results can be directly applied to a wide range of conven-
tional superconductors with a PP subjected to superimposed dc and small microwave ac currents at T << Tc. 

PACS: 74.25.Wx Vortex pinning; 
74.25.F– Transport properties; 
74.25.nn Surface impedance. 

Keywords: microwave power absorption, pinning potential, Abrikosov vortices. 
 

1. Introduction 

One of the most popular experimental methods for the 
investigation of the vortex dynamics in type-II supercon-
ductors is the measurement of the complex ac response in 
the radiofrequency and microwave ranges [1]. The reason 
for this is that at frequencies substantially smaller than 
those invoking the breakdown of the energy gap, the high-
frequency and microwave impedance measurements of a 
mixed state contain information about flux pinning me-
chanisms, the vortex dynamics, and accompanied with it 
dissipative processes in a superconductor. It should be 
noted that this information can not be extracted from the dc 
resistivity data obtained in the steady state regime when 
pinning in the sample is strong. In fact, in the last case 
when the critical current densities cj  are rather large, the 
realization of the dissipative mode, in which the flux-flow 
resistivity fρ  can be measured, requires 0 .cj j  This is 
commonly accompanied by a non-negligible electron 
overheating in the sample [2,3] which changes the value of 
the desired fρ . At the same time, measurements of the 

absorbed by vortices power from an ac current with the 
amplitude 1 cj j�  allow one to determine fρ  at a dissip-
ative power 1P

2
1f jρ∼  which can be many orders of 

magnitude less than 0P
2
0 .f jρ∼

 
Consequently, measure-

ments of the complex ac response versus frequency ω  
practically probe the pinning forces in the absence of over-
heating effects, otherwise unavoidable at overcritical 
steady-state dc current densities. 

At last years, the appearance of experimental works uti-
lizing the usual four-point scheme [4], strip-line coplanar 
waveguides (CPWs) [5], the Corbino geometry [6,7], or 
the cavity method [8] to investigate the microwave vortex 
response in as-grown thin-film superconductors (or in 
those containing some nano-tailored pinning potential (PP) 
landscape) reflects the explosively growing interest to the 
subject. In fact, such artificially fabricated pinning nano-
structures provide a PP of unknown shape that requires 
certain assumptions concerning its coordinate dependence 
in order to fit the measured data. At the same time, in a real 
sample a certain amount of disorder is always presented, 
acting as pinning sites for a vortex as well. Therefore, an 



Determination of the coordinate dependence of a pinning potential from the microwave experiment with vortices 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2013, v. 39, No. 2 163 

approach how to reconstruct the form of the PP experimen-
tally ensued in the sample is of great demand for both, ap-
plication-related and fundamental reasons. An early 
scheme how to reconstruct the coordinate dependence of 
the pinning force from measurements implying a small 
ripple magnetic field superposed on a larger dc magnetic 
field was reported in Ref. 9. Similar problems to recon-
struct specific form of a potential subjected to superim-
posed constant and small alternating signals arise not only 
in the vortex physics but also in a number of other fields. 
Mainly due to the closest mathematical analogy we would 
like to mention the Josephson junction problem wherein a 
plenty of non-sine forms of the current-phase relation is 
known to occur [11] and which could in turn benefit from 
our results reported here. 

Turning back to the development of theory of our prob-
lem, the very early model to describe the absorbed power 
by vortices refers to the work of Gittleman and Rosenblum 
(GR) [12] where a small ac excitation of vortices in the 
absence of a dc current has been considered. The GR re-
sults have been obtained at = 0T  K in the linear approxi-
mation for the pinning force. We will present briefly their 
results in the present work since the subsequent description 
of our new results requires these as the essential back-
ground. Later on, the theory accounting also for the vortex 
creep at non-zero temperature in a one-dimensional cosine 
PP has been extended by Coffey and Clem (CC) [13]. 
However, this theory has been developed for a small mi-
crowave current in the absence of a dc. Recently, the CC 
results have been substantially generalized by us [14,15] 
for a two-dimensional cosine washboard pinning potential 
(WPP). The washboard form of the PP has enabled an ex-
act theoretical description of the two-dimensional aniso-
tropic nonlinear vortex dynamics for any arbitrary values 
of ac and dc amplitudes, temperature, the Hall constant, 
and the angle between the transport current direction with 
respect to the guiding direction of the WPP. Among other 
nontrivial results obtained, an enhancement [14] and a sign 
change [15] in the power absorption for 0 cj j  have been 
predicted. Whereas the general solution of the problem in 
Refs. 14, 15 has been obtained in terms of a matrix contin-
ued fraction and is suitable for the analysis mainly in the 
form of figure data due to a large number of variable pa-
rameters, an analytical implementation of the solution at 

= 0T  K, 0 < cj j , and 1 0j →  has been performed in 
Refs. 16, 17, taking the anisotropy of the vortex viscosity 
and an arbitrary Hall constant also into account. 

In the present work, we report the possibility of recon-
struction the coordinate dependence of a PP if a set of 

0 ( )ωP  curves has been measured at different dc current 
amplitudes in the whole range 00 cj j≤  at a small mi-
crowave amplitude 1 0.j →  Whereas a preliminary com-
munication on this matter can be found in Ref. 18, here we 
provide a detailed description of the PP reconstruction pro-
cedure. The geometry of the problem implies a standard 

four-point microstrip bridge of a thin-film superconductor 
placed into a small perpendicular magnetic field with a 
magnitude 2cB B�  at .cT T�  The sample is assumed to 
have at least one pinning site and dc and ac currents are 
directed collinearly. The theoretical treatment of the prob-
lem is detailed next. 

2. Dynamics of pinned vortices on a small microwave 
current 

 The GR model [12] considers oscillations of damped 
vortex in a parabolic PP. They measured the power absorp-
tion by vortices in PbIn and NbTa films over a wide range 
of frequencies ω  and successfully analyzed their data on 
the basis of a simple equation for a vortex moving with the 
velocity ( )tv  along the x axis 

 = ,p Lx k x fη +�  (1) 

where x  is the vortex displacement, η  is the vortex viscosi-
ty, pk  is the constant which characterizes the restoring force 

pf  in the PP well 2( ) = (1/2)p pU x k x  and =pf  
/ = .p pdU dx k x= − −  In Eq. (1) 0 1= ( / ) ( )Lf c j tΦ  is the 

Lorentz force acting on a vortex, 0Φ  is the magnetic flux 
quantum, c  is the speed of light, and 1 1( ) = exp ( )j t j i tω  is 
the density of a small microwave current with the amplitude 

1.j  Looking for the solution of Eq. (1) in the form 
( ) = exp ( ),x t x i tω  where x  is the complex amplitude of 

the vortex displacement, one immediately gets ( ) =x t�  
( )i x t= ω and 

 0 1( / )
= ,

p

c j
x

i
Φ η
ω+ω

 (2) 

where /p pkω ≡ η  is the depinning frequency. To calculate 
the magnitude of the complex electric field arising due to 
the vortex on move, one takes = / .E Bx c�  Then 

 1
1( ) = ( ) .

1 /
f

p

j
E Z j

i
ρ

ω ≡ ω
− ω ω

 (3) 

Here 2
0= /f B cρ Φ η  is the flux-flow resistivity and 

( ) /(1 / )f pZ iω ≡ ρ − ω ω  is the microwave impedance of the 
sample. 

In order to calculate the power P  absorbed per unit vo-
lume and averaged over the period of an ac cycle, the stan-
dard relation = (1/2)Re( )EJ∗P  is used, where E  and J  
are the complex amplitudes of the ac electric field and cur-
rent density, respectively. The asterisk denotes the com-
plex conjugate. Then, from Eq. (3) it follows 

 
2
12

1 2
1 1( ) = Re ( ) = .
2 2 1 ( / )

f

p

j
Z j

ρ
ω ω

+ ω ω
P  (4) 
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For the subsequent analysis, it is convenient to write out 
real and imaginary parts of the impedance 

= Re Im ,Z Z i Z+  namely 

 2 2

( / )
Re ( ) = , Im ( ) = .

1 ( / ) 1 ( / )
f f p

p p
Z Z

ρ ρ ω ω
ω ω

+ ω ω + ω ω
 (5) 

The frequency dependences (5) are plotted in dimensionless 
units / fZ ρ  and / pω ω  in Fig. 1 (see the curve for 0 = 0).j  
From Eqs. (1), (2), and (4) it follows that pinning forces do-
minate at low frequencies ( ),pω ω�  where ( )Z ω  is nondis-
sipative with 2Re ( ) ( / ) ,pZ ω ≈ ω ω  whereas at higher fre-
quencies ( pω ω� ) frictional forces dominate and ( )Z ω  is 
dissipative with 2Re ( ) [1 ( / ) ].f pZ ω ≈ ρ − ω ω  In other 
words, due to the reduction of the amplitude of the vortex 
displacement with the increase of the ac frequency, a vortex 
is getting not influenced by the pinning force. This can be 
seen from Eq. (2) where 1/x ω∼  for ;pω ω�  this is ac-
companied, however, with the independence of the vortex 
velocity of ω  in this regime in accordance with Eq. (3). 

3. Influence of a dc current on the depinning frequency 

When an arbitrary dc current is superimposed on a 
small microwave signal, the GR model can be generalized, 
for an arbitrary PP. For definiteness sake, let us consider a 
subcritical dc current with the density 0 < ,cj j  where cj  
is the critical current density in the absence of a microwave 
current. Our aim now is to determine the changes in the PP 
parameters the superimposition of the dc current leads. In 
the presence of 0 0,j ≠  the effective PP becomes ( )U x ≡�  

0( ) ,pU x xf≡ −  where ( )pU x  is the x-coordinate depen-
dence of the PP when 0 = 0.j  Note also that 0 < cf f  
where 0f  and cf  are the Lorentz forces which correspond 
to the current densities 0j  and ,cj  respectively. 

In the presence of a dc current, the equation of motion 
for a vortex has the form 

 ( ) = ( ) ,pt f t fη +v  (6) 

where 0( ) = ( / ) ( )f t c j tΦ  is the Lorentz force with 
0 1( ) = ( ),j t j j t+  where 1 1( ) = exp( )j t j i tω , and 1j  is the 

amplitude of a small microwave current. Due to the fact 
that 0 1( ) = ( ),f t f f t+  where 0 0 0= ( / )f c jΦ  and 1( ) =f t  

0 1( / ) ( )c j t= Φ  are the Lorentz forces for the subcritical dc 
and microwave currents, respectively, one can naturally 
assume that 0 1( ) = ( ),t t+v v v  where 0v  does not depend 
on the time, whereas 1 1( ) = exp( ).t i tωv v  In Eq. (6) the 
pinning force is = ( )/ ,p pf dU x dx−  where ( )pU x  is a PP 
of some form. Our aim is to determine ( )tv  from Eq. (6) 
which, taking into account the considerations above, ac-
quires the following form: 

 0 1 0 1[ ( )] = ( ).pt f f f tη + + +v v  (7) 

Let us consider the case when 1 = 0.j  If 0 < ,cj j  i.e., 
0 < ,cf f  where cf  is the maximal value of the pinning 

force, then 0 = 0,v  i.e., the vortex is in rest. As it is seen 
from Fig. 2 the rest coordinate 0x  of the vortex in this case 
depends on 0f  and is determined from the condition of 
equality to zero of the effective pinning force 

0( ) = ( )/ = ( ) ,pf x dU x dx f x f− +� �  which reduces to the 
equation 0 0( ) = 0,pf x f+  or 

 0 = 0

( )
= | ,p

x x
dU x

f
dx

 (8) 

the solution of which is the function x0(f0). 
Let us now add a small oscillation of the vortex in the 

vicinity of 0x  under the action of the small external alter-
nating force 1( )f t  with the frequency ω . For this we ex-
pand the effective pinning force ( )f x�  in the vicinity of 

Fig. 1. The frequency dependences of real (a) and imaginary (b) 
parts of the ac impedance calculated for a cosine pinning poten-
tial ( ) = ( /2)(1 cos )p pU x U kx−  at a series of dc current densities,
as indicated. In the absence of a dc current, the GR results are
revealed in accordance with Eqs. (5). 
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Fig. 2. Modification of the effective PP 0( ) ( )i p iU x U x f x≡ −�
where ( ) = ( /2)(1 cos )p pU x U kx−  is the WPP, with the gradual 
increase of f0 such as 0 01 02 030 = < < = ,cf f f f f  i.e., a vortex 
is oscillating in the gradually tilting pinning potential well in the 
vicinity of the rest coordinate x0i. 
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0=x x  into a series in terms of small displacements 
0u x x≡ −  which gives 

 0 0 0( ) ( ) ( )f x x f x f x u′− + +� � � …�  (9) 

Then, taking into account that 0( ) = 0f x�  and 0( ) =f x′�  
0( ),pU x′′=  Eq. (7) acquires the form 

 1 1= ,pu k u fη + ��  (10) 

where 0 0( ) = ( )p pk x U x′′�  is the effective constant characte-
rizing the restoring force ( )f u�  at small oscillations of a 
vortex in the effective PP ( )U x�  close by 0 0( )x f  and 

1 = = .u i uω�v  Equation (10) for the determination of 1v  is 
physically equivalent to GR Eq. (1) with the only distinc-
tion that the vortex depinning frequency /p pkω ≡ η��  now 
depends on 0f  through Eq. (8), i.e., on the dc transport 
current density 0j . Thereby, all the results of the previous 
section [see Eqs. (2)–(5)] can be repeated here with the 
changes x u→  and .p pω → ω�  

In order to discuss the changes in the dependences 
Re ( )Z ω  and Im ( )Z ω  caused by the dc current, the PP 
must be specified. As usually [13–15], we take a cosine 
WPP of the form ( ) = ( /2)(1 cos ),p pU x U kx−  where 

= 2 /k aπ  and a  is the period; though any other non-
periodic PP can also be used. Then, as it has been pre-
viously shown for the cosine WPP [16], 0( / ) =p cj jω�  

2
01 ( / )p cj j= ω −  and the appropriate series of the curves 

0( | )jωP  is plotted in Fig. 1. As evident from the figure 
data, the curves shift to the left with the increase of 0.j  
The reason for this is that with the increase of 0j  the PP 
well while tilted is broadening, as evident from Fig. 2. 
Thus, during the times shorter than = 1/p pτ ω  (i.e., for 

> )pω ω  a vortex can no longer non-dissipatively oscillate 
in the PP well. As a consequence, the enhancement of 
Re ( )Z ω  occurs at lower frequencies. At the same time, 
the curves in Fig. 1 maintain their original shape. Thus, the 
only universal parameter to be found experimentally is the 
depinning frequency .pω  For a fixed frequency and differ-

ent 0j , real part of ( )Z ω  always acquires larger values for 
larger 0j , whereas the maximum in imaginary part of 

( )Z ω  corresponds precisely to the middle point of the non-
linear transition in Re ( ).Z ω  It should be noted that even 
for = 0T  K the dissipation, though is small, still remains 
non-zero even at very low frequencies. 

4. Reconstruction of a pinning potential from 
microwave absorption data 

We now turn to a detailed analytical description how to 
reconstruct the coordinate dependence of a PP experimen-
tally ensued in the sample, on the basis of microwave pow-
er absorption data in the presence of a subcritical dc trans-
port current. It will be shown that from the dependence of 

the depinning frequency 0( )p jω�  as a function of the dc 
transport current 0j  one can determine the coordinate de-
pendence of the PP ( ).pU x  The physical background for 
the possibility to solve such a problem is Eq. (8) which 
gives the correlation of the vortex rest coordinate 0x  with 
the value of the static force 0f  acting on the vortex and 
arising due to the dc current 0.j  

4.1. General scheme of the reconstruction 

From Eq. (8) it follows that while increasing 0f  from 
zero to its critical value cf  one in fact “probes” all the 
points of the dependence ( ).pU x  Taking the x0-coordinate 
derivative in Eq. (8), one obtains 

 0

0 0 0

1 1= = ,
( ) ( )p p

dx
df U x k x′′ �  (11) 

where the relation 0 0( ) = ( )pU x k x′′ �  has been used [see 
Eq. (10) and the text below]. By substituting 0 0 0= ( ),x x f  
Eq. (11) can be rewritten as 0 0 0 0/ = 1/ [ ( )],pdx df k x f�  and 
thus, 

 0

0 0

1= .
( )p

dx
df fηω�

 (12) 

If the dependence 0( )fω�  has been deduced from the expe-
rimental data, i.e., fitted by a known function, then Eq. 
(12) allows one to derive 0 ( )x f  by integrating 

 
0

0 0
0

1( ) = .
( )

f

p

dfx f
fη ω∫ �  (13) 

Then, having calculated the inverse function 0 0( )f x  to 
0 0( )x f  and using the relation 0 0 0( ) = ( ),pf x U x′  i.e., 

Eq. (8), one finally obtains 

 0 0 0
0

( ) = ( ).
x

pU x dx f x∫  (14) 

4.2. Example procedure to reconstruct a WPP 

 Here we would like to support the above-mentioned 
considerations by giving an example of the reconstruction 
procedure for a WPP. Let us suppose that a series of power 
absorption curves ( )ωP  has been measured for a set of 
subcritical dc currents 0.j  Then for determinacy, let us 
imagine that each i-curve of 0( | )jωP  like those shown in 
Fig. 1 has been fitted with its fitting parameter pω�  so that 
one could map the points 0[( / ) , ( / ) ],p p i c ij jω ω�  as shown 
by triangles in Fig. 3. 

We fit the data in Fig. 3 by the function / =p pω ω�  

2
01 ( / )cj j= − and then substitute it into Eq. (13) from 

which one calculates 0 0( ).x f  In this case, the function 
has a simple analytical form, namely 0 0( ) =x f  

0( / ) arcsin ( / )c p cf k f f= . Evidently, the inverse to it func-
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tion is 0 0 0( ) = sin( / )c p cf x f x k f  with the period 

= 2 /c pa f kπ  (see also Fig. 4). By taking the integral (14) one 

finally gets ( ) = ( /2)(1 cos ),p pU x U kx−  where = 2 /k aπ  

and 2= 2 / .p c pU f k  

5. Conclusion 

In this paper we have shown how from data on the mi-
crowave power absorption by vortices in the presence of a 
subcritical dc transport current the coordinate dependence 
of the PP in the sample can be determined. The proposed 
procedure can be used at cT T�  and implies a small mi-
crowave current density 1 .cj j�  In order to keep the 
transport current distribution in the sample as homogene-

ous as possible the pinning potential is assumed to be not 
very “strong” in the sense that vortex pinning is caused by, 
e.g., the vortex length reduction rather than the supercon-
ducting order parameter suppression. Though the potential 
reconstruction scheme has been exemplified for a cosine 
WPP, i.e., for a periodic and symmetric PP, the elucidated 
procedure in the general case does not require periodicity 
of the potential and can account also for asymmetric ones. 
If this is the case, one has to perform the reconstruction pro-
cedure under the dc current reversal, i.e., two times: for 0j+  
and 0.j−  The scheme to reconstruct the WPP ( )pU x  from 
the experimental data on 0( )p jω�  can be briefly summarized 
as follows: a) by using the data 0( / ( ))p jω ω�P  to find 

0( )p jω� ; b) taking the integral (13) to calculate 0 0( );x f  
c) then from 0 0( )x f  to find the inverse to it function 

0 0( );f x  and finally d) to integrate 0 0( )f x  and by using 
Eq. (14) to recover the PP ( ).pU x  

Theoretically, we have limited our consideration by 
= 0T  K, 0 < ,cj j  and 1 0j →  because this has allowed 

us to provide a clear reconstruction procedure in terms of 
elementary functions accompanied by a simple physical 
interpretation. Experimentally, adequate measurements can 
be performed, i.e., on conventional thin-film superconduc-
tors (e.g., Nb, NbN) at .cT T�  These are suitable due to 
substantially low temperatures of the superconducting state 
and that relatively strong pinning in these materials allows 
one to neglect thermal fluctuations of a vortex with regard 
to the PP depth pU �  1000–5000 K [19,20]. It should be 
stressed that due to the universal form of the dependences 

0( | ),jωP  the depinning frequency pω  plays a role of the 
only fitting parameter for each of the curves 0( | ),jωP  
thus fitting of the measured data seems to be uncompli-
cated. However, one of most crucial issues for the experi-
ment is to superimpose adequately the applied currents and 
then to uncouple the picked-up dc and microwave signals 
maintaining the matching of the impedances of the line and 
the sample. Quantitatively, experimentally estimated val-
ues of the depinning frequency in the absence of a dc cur-
rent and a temperature of about 0.6 cT  are 7pω ≈  GHz for 
a 20 nm-thick [7] and a 40 nm-thick [8] Nb films. This 
value is strongly suppressed with the increase of both, the 
field magnitude and the film thickness. 

Concerning the general validity of the results obtained, 
three remarks should be given. First, though the figure data 
have been provided here for a cosine WPP as for the most 
commonly used potential, the coordinate dependence can 
be reconstructed for not only periodic potentials. In fact, 
single PP wells, like one used in Ref. 5, can also be proven 
in accordance with the provided approach. Second, if a PP 
is periodic, however, it should be noted that the theoretical 
consideration here has been performed in the single-vortex 
approximation, i.e., is valid only at small magnetic fields 

2 ,cB B�  when the distance between two neighboring 
vortices, i.e., the period of a PP is larger as compared with 
the effective magnetic field penetration depth. 

Fig. 3. The pinning potential reconstruction procedure: step 1.
A set of 0[( / ) ,( / ) ]p p i c ij jω ω�  points ( ) has been deduced from
the supposed measured data and fitted as 2

0/ = 1 ( / )p p cj jω ω −�
(solid line). Then by Eq. (13) 0 0 0( ) = ( / )arcsin ( / )c p cx f f k f f
(dashed line). 
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Fig. 4. The pinning potential reconstruction procedure: step 2.
The inverse function to 0 0( )x f  is 0 0 0( ) = sin( / )c p cf x f x k f
(dashed line). Then by Eq. (14) ( ) = ( /2)(1 cos ),p pU x U kx−  is
the PP sought (solid line). 
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Finally, the results can be directly verified in, e.g., the 
microstrip geometry for combined microwave and dc elect-
rical transport measurements. Whereas experimental works 
on this matter have started to appear [4–7], we hope to 
have stimulated further developments in the field. Fur-
thermore, due to the mathematical analogy between the 
equation of motion for a vortex used in this work and the 
equation for the phase difference in the Josephson junction 
problem, we believe that the proposed scheme of the re-
construction can also be adopted for that case. 
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