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An approach to evaluation of the Helmholtz free energy using a combination of the Mayer group expansion
for molecular crystals and classical Metropolis Monte Carlo method is developed and applied to solid heavy me-
thane CDy4. The location of the phase I-phase Il transition line on phase diagram is assessed and compared with

existing experimental and computer simulation data.
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1. Introduction

Difficulties in theoretical prediction of the Helmholtz
free energy and other related properties (such as entropy or
chemical potentials) led to the fact that the most popular
methods to obtain the Helmholtz free energy for molecular
solids remain Monte Carlo computer simulation [1]. A short
overview of the existing theoretical and Monte Carlo simu-
lation methods were presented in our recent paper [2].

Nevertheless even the most sophisticated computer simu-
lation approaches still cannot explain appearance of particu-
lar crystalline phases of molecular crystalline solids having
certain spatial and orientational structure and their location
on the phase diagram, especially at low temperatures.

Recently we proposed a consistent theoretical approach
for estimating the Helmholtz free energy for monatomic
solids based on the Mayer group expansion technique [2]. It
was successfully applied to predicting changes in the proper-
ties of highly anharmonic Lennard-Jones crystal along the
sublimation and melting line. The comparison with the most
precise computer simulation data revealed that theoretical
predictions are in excellent agreement with Monte Carlo
simulation data in the whole range of temperatures and den-
sities studied.

The purpose of this paper is an attempt to extend the
Mayer group expansion technique mentioned above on the
simplest molecular solids and test its ability to predict the
location of some polymorphic phase transition lines on their
phase diagrams.
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Extension of the Mayer group expansion technique on
molecular solids build from non-spherical molecules is de-
veloped in the next section. The method of numerical evalu-
ation of the Helmholtz free energy applied in this work is
provided in Sec. 3. As an example of the application object
of the proposed approach, we have chosen the phase transi-
tion between the orientationally disordered phase I and par-
tially orientationally ordered phase 1l in the solid CD4. The
corresponding molecular interaction model used in this work
is described in Sec. 4.

Results of estimation of this polymorphic transition line
location on the phase diagram of CDg4 crystal are discussed
and compared with experimental and recent computer simu-
lation data [3] in the final section. Here we discuss the pos-
sibility to explain the appearance of certain phases having
different orientational and spatial structures in the phase
diagram of simple molecular crystals and outline directions
for the further development of the theory.

2. Generalization of the Mayer group expansion
on molecular solids

We consider below a perfect crystal build from N hard
non-spherical molecules at fixed temperature T and volume
V. The position and orientation of each molecule is defined
by six coordinates: the 3-dimensional radius vector of its

center xiz{xi(l),xi(z),xi(s)}, and three Euler angles

o; ={0;,¢;,y;}. The potential energy of such crystal is
supposed to be a sum of pair potentials:
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Uy= 2. q)ij(xiv(’)iyxj,mj)- 1)
O<i<j<N
Following to the Mayer group expansion method pro-

posed earlier [2], the potential energy Uy (1) can be repre-
sented as a sum

UN ZU&O) + Z Uy (AXi,A(,l)i) +
I<i<N

+ Z Wij (AXi,A(Oi,AXJ',A(Dj), (2)
I<i<j<N

where UF\?): Z ;; (xi(o),mi(o),x(jo),m(jo)) is the en-

O<i< j<N
ergy of static lattice, Ax; = x; —xi(o) are radius vectors of
molecular displacements from equilibrium positions xi(o),
and Aw; = o; —mi(o) are deviations of the current molecu-

lar orientations from their equilibrium values o)i(o) in the

static lattice, u; (Ax;) are potential energies of single mole-

cules in their static environments referred to their equilib-
rium positions in the static lattice:

Uy (AXi , A(Di ) =

-y [(D(Xi onxj0; )_q>(xi‘°),wi(°),x(j°),m(j°) )} ®)
]jS;tJiSN

and w;; are so-called pair correlation potentials [2]:

Wij (AXi,A(Di,AXj,A(oj):

=(D(Xi’mi’xj,mj)_q)(xi O ,x(jO),m(jO))_

o (3,0 x;,0;)+0(x?.00 x0.a?). @

Since the molecular crystal is supposed to be mechanical-
ly stable, i.e., every single displacement of any molecule
from its static position xi(o) in the lattice site, and every de-
viation from the static orientation mi(o) gives an increase in
the energy, u; (AX;, Am;) potentials turn to zero when both
AX; and Aw; become zero and are ever non-negative.

Note that according to definition (4) pair correlation po-
tentials wj; will vanish whenever at least one of the inter-
acting atoms enters its lattice site and returns to its equilib-
rium orientation.

Except the orientational dependence, extension of the ap-
proach proposed in [2] on molecular solids requires some
generalization which takes into account the possibility of
different crystalline structures where molecules may occu-
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py several types of lattice sites in the lattice having differ-
ent equilibrium orientations mi(o).

Formally the Mayer group expansion for the Helmholtz
free energy remains the same:

Fu (V. T) = R (V,T) = NKT (Wy +W3 +...),  (5)

where F,\(ll)(\/,T) is the Helmholtz free energy in the Ein-
stein approximation, k is the Boltzmann constant, W, and
Wj; are, correspondingly, contributions of binary and ter-
nary correlations [2] between the displacements and rota-
tions of molecules.

The Helmholtz free energy in the Einstein approximation

. \'
RO (v, )= F99) (v, 7)+u® (v) - NkT In[v—f}
0

(6)

in turn, includes F,f,'d'gas)(\/,T); the ideal-gas contribution
to the Helmholtz free energy.

Here U &0) (V) is the potential energy of the static lattice,
V¢ is so-called “free volume” per mole, and vy is the molar
volume unit chosen.

The well-known definition for free volume [4], when
applied to molecular crystals depends on the site type, and
the corresponding expression must be modified by taking
into account existence of s different types of lattice sites.

Integration over molecular positions within the volume v;
(i=1, ..., s) of the Wigner—Seitz cell must be carried here
out along with averaging over all orientations of the select-
ed molecule:

ve (i)= J'<e‘U1(AXi Aowj) /KT >_dxi- )

' i
Vi

Here and below the angle brackets denote averaging over
all orientations of a molecule within its static environment,
and the value of free volume v; in Eq. (6) must be defined
as the average over all s types of the lattice sites:

Vi Z% Z Vs (l)
I<i<s
Contribution of binary correlations W, in Eq. (5) in the
case of a molecular crystal depends as well upon both dis-
placements and rotations of molecules and also can be de-
fined as an average over all types of the lattice sites

1 .
Wo == D Wa(i).
sKigs

The partial contribution W, (i), provided that molecule
occupies lattice site of ith type, can be written as follows:
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W, (i

() (J) J‘ J‘ <( —WU AXj,Aoj,Arj ij)/kT je—[ul(AXi ,Ac)i)+u1(AXj,Amj)]/kT>
Vi VL Vj

dxdxj.  (8)
i .
J

The expression for contribution of ternary correlations W5 [2] also can be generalized similarly.

3. Evaluation of the Helmholtz free energy

To test the ability of the theoretical approach presented
above to estimate locations of the phase transition lines on
the phase diagrams of molecular crystals, we need an effi-
cient method for numerical evaluation of all contributions
to the Helmholtz free energy. Numerical procedure of the
free energy evaluation in the case of molecular crystals
according to Eq. (5) essentially differs from that used for
Lennard-Jones solid in Ref. 2.

In this work, we applied a computation scheme which
combines different numerical integration methods includ-
ing Monte Carlo method.

The first relatively simple task is evaluation of the static
lattice energy per molecule u©@ (v) :U,(\,O)(V)/ N for both

structures, where v=V / N is molar volume.

Evaluation of the free volume v¢ =v; (T,v) values is a
more complicated task. Here we need to calculate the 6-
dimensional integral. The following calculation scheme was
adopted.

Some basic set of fixed displacements of a molecule cen-
ter was selected. At each fixed displacement of the molecu-
lar center we calculated the value of the integrand in Eq. (7)
by averaging it over all orientations of the molecule suppos-
ing the distribution over all orientations obeys the Gibbs dis-

tribution and applied the standard Metropolis Monte Carlo
technique*.

After performing such calculations for all displace-
ments we approximated the obtained spatial dependence of
the integrand in Eq. (7) by a simple analytical function.
Taking into account rather low temperatures considered,
we applied a kind of quasi-harmonic approximation for the
single-particle potential (3):

3 3
0y (AX;) :Aui(o) + ZZai(kl) (Axi(k) —Si(k))(Axi(l) —8i(|)).
k=11=1
9)
ApprOX|mat|on (9) contains 10 fitting parameters Au(o)
(k') ' O (k) (k, 1=1, 2, 3) for each type of the lattice posi-
tlon i= 1 , S which can be fitted by minimizing the mean
squared deviations of the exponent
e—LTl(AXi )/KT (10)
from the integrand in Eq. (7) averaged over orientations.
After finding values of all parameters Aul(io), ikl + Oik

at given T and v it is possible to evaluate the free volume in
this approximation for the given lattice sitei =1, ..., s ana-

Iytically:

(rryPs 2T

(i)=
\/{ 4 1,(22) (33 _ (D) (a-(23) )2

and calculate its average over all lattice sites:

v =1 >0 (i), (11)

I<i<s

To estimate the contribution of the pair correlation contri-
bution W, one must evaluate the 12-dimensional integral (8).

We applied the following calculation scheme. The av-
eraging of integrand in Eq. (8) over orientations of all mol-
ecules in the cell was performed using the same Metropolis
Monte Carlo technique as in our previous study of CDg4
solid [3].

*
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) (a_(13) )2 o ® (a_(lz) )2 .

a(lz)a(l3)a(23)]

As in the case of the free volume evaluation, the 6-di-
mensional spatial dependence of the orientationally aver-
aged integrand in Eq. (8) was approximated as

(1_ e—W(Axi AX )/kT ]e—[al(Axi )+01(ij- )]/kT 1)

Here W(Ax;, Ax;) is an effective pair correlation poten-
tial in quasi-harmonic approximation:

W(AXi ) AXJ' ) ZAWi(jO) + Z Zﬁi(jkl)AXikAX“ . (13)
1<k,1=31=k

The basic set of fixed displacements of a molecule center selected is listed in Table 1.
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Table 1. Molecular displacements (in A) used in calculations

AXq AXo AX3
1 0 0
2 0.1 0
3 -0.1 0
4 0 0.1 0
5 0 -0.1 0
6 0 0 0.1
7 0 0 -0.1
8 0.2 0 0
9 -0.2 0 0
10 0 0.2 0
11 0 -0.2 0
12 0 0 0.2
13 0 0 -0.2
14 0.1 0.1 0.1
15 0.1 -0.1 0.1
16 0.1 0.1 -0.1
17 -0.1 0.1 0.1
18 0.1 -0.1 -0.1
19 -0.1 0.1 -0.1
20 -0.1 -0.1 0.1
21 -0.1 -0.1 -0.1

It should be stressed that here Awi(jo) # 0 because due to
averaging over all orientations this potential does not van-
ish even when there is no displacements and all molecular
centers are in their lattice sites. This obstacle gives the pos-
sibility to separate the pure orientational part of the binary
correlation contribution:

/KT

Wy’ ZNSZ PNE

I<i<s1<j<N

The rest of the binary correlation contribution W(l) =
=W, —W( ) characterizes the effect of correlations relat-
ed to moIecuIar displacements. Of course W(l) is also af-
fected by orientational correlations and can be evaluated if
the remaining 8 parameters ng') (k,j=1, 2, 3) of the effec-
tive correlation potential (13) are known.

All the parameters of the effective correlation potential
must be obtained for each type of cell sites at all temperatures
and molar volumes considered by minimizing the mean
squared deviations between orientationally-averaged inte-
grand in Eq. (8) and its quasi-harmonic approximation (12).

Providing that molecule occupies lattice site of ith type
(i=1, ..., s), the contribution of this site type to Wz(l) can
be estimated as

33 () A VAl (Ax
-z Bij Axikijl+u1(Ax,)+ul(AxJ)]/kT

k=1l=1

1
(l) (fJ) II

L <N ZV Vi Vj
J¢I

Our calculations presented below show that the absolute
values of ngl) are essentially less than those of ai(k')
(k,j=1,2,3) from Eq. (9). In this case the integrand in
Eg. (14) can be replaced by the flrst non-vanishing term in
its expansion in powers of BS and after averaging over
all types of lattice sites we get

(15)

This approximate expression was used below in calcula-
tions of second contribution to binary correlations, related to
molecular displacements.

In order to test the possibility of applying the above ap-
proach in predicting locations of the polymorphic phase
transitions lines in phase diagrams of simple molecular crys-
tals, we estimated all the above contributions to the Helm-
holtz free energy of heavy methane CD4 (phases | and I1).
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dxq0x - (14)

4, Molecular interaction model

In this study, we used the same molecular interaction model
as in our recent Monte Carlo simulations of CD crystal [3].

Within this model the pair interaction potential of me-
thane molecules is

@j; =‘Dcc(rij)+ > (‘DCD(ri,jk)"‘cDCD(rj,ik))"'

1<k<4
+ > (DDD(rik,jI)+UQ—Q<rijv(°iv(’3j)- (16)
1<k, I<4

Here ®cc(rj) represents the central interaction of car-
bon atoms described by the Lennard-Jones (12-6) potential,
®@cp (K, k) is short-range atom-atom interaction energy of
the carbon atom of ith molecule with kth (k=1, ..., 4) deu-
terium atom of jth molecule as a function of the distance
i jk between these atoms, and ®pp (K, ji) contribution

represents interaction of kth deuterium atom of ith molecule
and Ith deuterium atom of kth molecule as a function of dis-
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tance fy j between them. Both C-D and D-D interactions
were also represented by the Lennard-Jones (12-6) poten-
tial. The internal structure of CD4 molecules is supposed to
be rigid, length of C-D bonds is fixed at L = 1.095 A.

The last term in Eq. (16) Ug_q(Kj, @;,@;) represents
the octupole-octupole interaction of CD4 molecules. This
contribution supposed to decay with 7th degree of the recip-
rocal intermolecular distance rjj. Its explicit orientational
dependence was adopted from the work of Isnard et al. [5].

To reduce the number of model parameters we used the
usual Lorentz—Berthelot combination rules:

1
ocb :E(GCC +0pp), €cp =+¢ccépop-  (17)

Details of the potential model calibration could be found
in [3], the octupole moment value was adopted from [6].
The model parameters are presented in Table 2.

Table 2. Adopted parameters of the intermolecular interaction
potential (16)

Parameter Value
SDD/k 86 K
6pD 28A
Scclk 50 K
oce 3.63A
34

Q 2.3:10 " esu

5. Results and discussion

We considered the same two cubic CDy4 crystalline struc-
tures which were discussed in detail in our previous Monte
Carlo simulation study [3]:

— phase I: s = 4 (four molecules in the elemental Fm3m
cell);

— phase II: s=8 (32 molecules in the elemental Fm3c
cell).

The same two different sizes of the Monte Carlo cell as
in our previous paper [3] were used: a “small” one N = 32
(160 atoms), and a “large” cell, having twice the size of a
“small” cell and containing N = 256 molecules (1280 atoms).

In the case of the “small” cell all calculation were per-
formed using cutting radius Ryt = 5.85 A, in the case of the
“large” cell Reyt was set to 10.0 A. Results of the static ener-
gy minimization for these two sizes of cell and two types of
crystalline structures are presented in Table 3. As one can
see, at all densities the lattice structure of phase Il within
the above molecular model has lower static energy than that
of phase I.

As it was shown earlier [3], equilibrium properties of
both phases in solid CD4 are determined mainly by short-
range intermolecular forces. Therefore we were able to
provide averaging over molecular orientations and estimate

free volumes V¢ (11) and binary correlation contributions
W, in both phases | and Il using only the “small” Monte
Carlo cell (32 molecules).

Table 3. Static energy u(o)(v)/k (in K) for two sizes of the cell

v, N =32 N =256
cm®/mol phase | | phase Il phase | phase Il
28.0 -340.7 -400.9 -1298.4 -1359.5
29.0 —445.2 -488.1 -1367.5 -1406.2
30.0 -514.0 -543.3 -1403.2 -1433.7
32.0 -578.6 -590.5 -1408.5 -1421.4

We neglected the ternary W5 and higher-order correla-
tion contributions, which are important only in highly an-
harmonic solids [2] and used the minimal symmetric set of
molecular displacements (first 13 positions in Table 1). A
few tests with the full set of displacements were performed
only to estimate the quality of the quasi-harmonic approx-
imations based on the minimal set of molecular displace-
ments. In addition, when calculating W,, we took into ac-
count only correlations in displacements of nearest
neighboring molecules (first coordination sphere).

Evaluation of the Helmholtz free energy of CDy4 solid
was performed in phases | and Il according to the calcula-
tion scheme described above. To be able to compare the
results obtained to our previous Monte Carlo simulation data
[3] we combined the free volumes and binary correlation
contributions computed on the “small” Monte Carlo cell
with the energy of static lattice U,(\IO) calculated for “large”
256-molecular cell (Table 2).

The main our concern in providing the adopted ap-
proach was the problem of estimating many parameters of
nonlinear models when minimizing the mean squared de-
viations between orientationally-averaged integrands in
Egs. (7) and (8) and their quasi-harmonic approximations
(10) and (12). To make sure that the values found are cor-
rect we used two different numerical methods: Nelder—
Mead and Generalized Reduced Gradient algorithms [7],
as well as different initial estimates in order to validate the
global minimum found. The calculated minima were ac-
cepted only if these two methods give the same result.

To estimate the transition line location we computed the
excess Helmholtz free energy per molecule f(v,T)=
=(Fy —F,\(l'd'gas))/ N at three temperatures (T =30, 35,
40 K) and four molar volumes (v=28, 29, 30, and
32 cmslmol). A rather large number of steps (up to 5-106)
was required to reach an acceptable accuracy in the course
of the Metropolis Monte Carlo averaging of integrands in
V¢ (i) (7) and W, (i) (8). Such computations took a large
amount of processor time*.

* Evaluation of the Helmholtz free energy at a given temperature and volume for both phases took up to one week of continuous run

on 3.4 GHz desktop computer.
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Fig. 1. Volume dependences of the excess Helmholtz free energy in phase | (dashed line) and phase 11 (solid line) on three isotherms
studied. Thin solid lined symbolize common tangents used in determination of the phase transition parameters.

The numerical values of free volumes and correlation
corrections obtained as a result of such computations allow
us to estimate the role of different contributions to the free
energy of both phases. First of all, we made sure that the
Helmholtz free energy of phase Il in the Einstein approxi-
mation (without taking into account correlation contribu-
tions), remains lower than that of phase I at all densities
and temperatures. Intersection of the Helmholtz free energy
isotherms of two phases and transition pressure at a given
temperature was obtained only after taking into account the
contribution of binary correlations —kTW,.

Analyzing the obtained numerical results on the spatial
WZ(O) and orientational Wz(l) contributions to the binary cor-
relation W, we found that their temperature dependence is
relativelé/ weak. At the highest densities considered (v =
=28 cm™/mol) the spatial contribution WZ(O) in both phases
is negative and grows with increasing volume becoming
positive at lower densities (v >30cm™/mol). The orienta-
tional contribution Wz(l), on the contrary, is positive and
decreases with decreasing density. Binary correlations are
much more important in phase | and lead to a significantly
greater decrease in the Helmholtz free energy in this
(orientationally disordered) phase.

The numerical values of transition pressures and vol-
umes of coexisting phases were obtained according to the
Maxwell rule after approximating the excess Helmholtz
free energies of both phases on three isotherms by second-
order polynomials as is illustrated in Fig. 1. The results are
presented in Table 4 and compared with computer simula-
tion and experimental data in Figs. 2 and 3.

Table 4. Estimated molar volumes of coexisting phases | and
I, transition pressures, and the enthalpy of transition

T, Vi, Vi, AV, P, AH,

K em¥mol | cm®mol | cm®mol GPa J/mol

30 31.374 31.016 0.358 0.033 385.6

35 30.631 30.316 0.315 0.203 351.7

40 29.67 29.489 0.181 0.353 202.0
152

As one can see in Fig. 1, the transition pressure, deter-
mined by the slope of the common tangent, grows with
temperature almost linearly. In Fig. 2 we compare the pre-
dicted location of the phase I-phase Il transition line with
Monte Carlo data obtained earlier [3] using the same po-
tential model (16), (17). The predicted transition tempera-
ture at zero pressure is about 28 K.

In Fig. 3 the predicted pressure-temperature relation is
compared with locations of transition lines estimated by
Stewart [8] and van der Putten [9]. It should be noted that
the cell parameters ratio of two phases on the transition line
also is in good agreement with experimental data [10,11]. At
the same time, the absolute values of both cell parameters
differ from experimental data by about 1.5%.

Analyzing the results presented in Table 4, one can see
that according to our predictions, phase I-phase Il transi-

0.6
[
[
|
0.5 O phase |
A phase Il o
m phase Il
0.4r
© [
(a
O 03F u
o
A/ ©
. o
0.2 R o)
A
[
0.1r Al . O o
0
15 20 25 30 35 40 45 50
T, K

Fig. 2. Comparison of the predicted pressure-temperature de-
pendence of the phase I-phase Il transition (solid line) with re-
sults of Monte Carlo computer simulation [3].
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0.4

1

25 30 35 40 45
T K

Fig. 3. Comparison of the predicted pressure-temperature de-
pendence of the phase I-phase Il transition (solid line) with re-
sults of Stewart [8] (dashed line) and van Putten [9] (dash-dotted
line).

tion exists up to maximal temperature of Tyax = 43-45 K,
above which this transition disappears (free energy curves
do not cross). This result is also in a reasonable agreement
with experimental data Tynax = 40 K [8] and Trmax = 35 K [9].

6. Conclusions

In this paper, we presented a new method for estimating
the Helmholtz free energy of molecular solids based on the
Mayer group expansion technique [2]. As indicated above,
the main aim of this work was to test its ability to predict
the location of polymorphic phase transition lines on phase
diagrams of the simplest molecular solids. This problem
recently is increasingly attracting the attention of research-
ers (see, e.g., [12]).

Surprisingly, despite a number of simplifications made
in calculations described above, the predicted location of
the CD4 phase I-phase Il transition line agrees well with
computer simulation data [3] and properties of coexisting
phases are in reasonable agreement with available experi-
mental data [8-11].

These results give us hope that the method proposed may
be effective for other types of allotropic phase transitions in
molecular crystals, where short-ranged atom-atom forces are
responsible for the formation of low-temperature crystalline
phases.

At the same time, it should be stressed that there are cer-
tain limitations in the use of the applied molecular model.
First of all, chemical bonds within this model are rigid and
short-range atom-atom repulsion represented by Lennard-
Jones (12-6) potentials is too stiff, which limits its applica-
bility at higher temperatures and pressures. Representation
of the short-ranged electrostatic interaction only by the
octupole-octupole forces is also limited.
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It also remains unclear what is the role of ternary Wy
and higher-order correlation contributions to the Helmholtz
free energy. According to the results presented above, at
last, the differences in the higher-order correlation correc-
tions to the free energy of both phases are small.

Note that there is also a lower temperature limit for the
applicability of the proposed approach, since it completely
ignores quantum effects. Nevertheless, it is interesting to
test the approach proposed in determining the location of
other phase transition line (phase I-phase I1) in the phase
diagram of heavy methane, as well as apply it to other mo-
lecular solids like CF4, SiHg4, etc.
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pynoBun posknaa Mariepa ansa 1Bepamx Tin:
3aCTOCYBaHHS 0O MOMEKYNSPHUX KpucTanis

€.C. Aky6, J1.M. Axy6

Po3pobiero miaxix g0 omiHKY BiIbHOT eHeprii ['expMrobia 3
BUKOPUCTaHHSIM KOMOiHaIil rpynoBoro poskinany Maiiepa mis
MOJIEKYJSIPHAX KPUCTAJIB Ta KJIacHuHOro Meroxy Monre-Kapio
JUTSL TBEPJOro Baxkkoro metany. OLiHeHe MoJIoKeHHs JiHil mepe-
xony ¢aza I-¢aza II na dasosiit xiarpami CD, mopiBHIOETBCS 3
SKCIEPUMEHTAIBHUMHU JaHUMHU Ta JAHUMHM KOMII'IOTEPHOTO MO-
JICTIOBAHHSI.

KurouoBi cioBa: mosiiMopduuii mepexin, merox Monre-Kapio,
Opi€HTaIHI KOpesii, BaKKII MeTaH.
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E.S. Yakub and L.N. Yakub

'pynnoBoe pasnoxeHne Manepa anga TBepaplx Ten:
NpUMEHeHME K MOMNEKYNAPHbLIM KpucTannam

E.C. Axy6, J1.H. Axy6

Pa3zpaboran moaxon K omeHke cBOOOAHOW sHeprum I'embMm-
TOJBIA C HCIIOJIb30BaHHEM KOMOHHAIMHU TPYIIIOBOTO pa3iloxKe-
HMs Maiiepa Uil MOJEKYJSPHBIX KPHCTAJUIOB U KJIACCHYECKOT0

merona MonTte-Kapio st TBepmoro Tspxenoro merana. OneHeH-
HOE TOJIOKEHHE JUHHMU mepexona dasa I-daza II ma dasosoii
nuarpamme CDg cpaBHUBaeTCS C HKCHEPUMEHTAIBHBIMU JaHHbBI-
MH U JaHHBIMU KOMITBIOTEPHOTO MOJEIUPOBAHNSI.

KimoueBbie cnosa: monumopdHbIid epexon, merox Monre-Kapiio,
OpHEHTAIMOHHEIE KOPPEJSIHH, TSDKEIIBIH MeTaH.
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