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1. Introduction

Difficulties in theoretical prediction of the Helmholtz 
free energy and other related properties (such as entropy or 
chemical potentials) led to the fact that the most popular 
methods to obtain the Helmholtz free energy for molecular 
solids remain Monte Carlo computer simulation [1]. A short 
overview of the existing theoretical and Monte Carlo simu-
lation methods were presented in our recent paper [2]. 

Nevertheless even the most sophisticated computer simu-
lation approaches still cannot explain appearance of particu-
lar crystalline phases of molecular crystalline solids having 
certain spatial and orientational structure and their location 
on the phase diagram, especially at low temperatures. 

Recently we proposed a consistent theoretical approach 
for estimating the Helmholtz free energy for monatomic 
solids based on the Mayer group expansion technique [2]. It 
was successfully applied to predicting changes in the proper-
ties of highly anharmonic Lennard-Jones crystal along the 
sublimation and melting line. The comparison with the most 
precise computer simulation data revealed that theoretical 
predictions are in excellent agreement with Monte Carlo 
simulation data in the whole range of temperatures and den-
sities studied. 

The purpose of this paper is an attempt to extend the 
Mayer group expansion technique mentioned above on the 
simplest molecular solids and test its ability to predict the 
location of some polymorphic phase transition lines on their 
phase diagrams.  

Extension of the Mayer group expansion technique on 
molecular solids build from non-spherical molecules is de-
veloped in the next section. The method of numerical evalu-
ation of the Helmholtz free energy applied in this work is 
provided in Sec. 3. As an example of the application object 
of the proposed approach, we have chosen the phase transi-
tion between the orientationally disordered phase I and par-
tially orientationally ordered phase II in the solid CD4. The 
corresponding molecular interaction model used in this work 
is described in Sec. 4. 

Results of estimation of this polymorphic transition line 
location on the phase diagram of CD4 crystal are discussed 
and compared with experimental and recent computer simu-
lation data [3] in the final section. Here we discuss the pos-
sibility to explain the appearance of certain phases having 
different orientational and spatial structures in the phase 
diagram of simple molecular crystals and outline directions 
for the further development of the theory. 

2. Generalization of the Mayer group expansion
on molecular solids 

We consider below a perfect crystal build from N hard 
non-spherical molecules at fixed temperature T and volume 
V. The position and orientation of each molecule is defined 
by six coordinates: the 3-dimensional radius vector of its 
center { }(1) (2) (3), ,i i i ix x x=x , and three Euler angles

{ }, , .i i i i= θ ϕ ψω  The potential energy of such crystal is
supposed to be a sum of pair potentials: 
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Following to the Mayer group expansion method pro-
posed earlier [2], the potential energy UN (1) can be repre-
sented as a sum 
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where ( ) ( )0 (0) (0) (0) (0)

0
, , ,ij i i j jN

i j N
U

< < ≤
= Φ∑ x ω x ω  is the en-

ergy of static lattice, (0)
i i i∆ = −x x x  are radius vectors of 

molecular displacements from equilibrium positions (0)
ix , 

and (0)
i i i∆ = −ω ω ω  are deviations of the current molecu-

lar orientations from their equilibrium values (0)
iω  in the 

static lattice, 1( )iu ∆x  are potential energies of single mole-
cules in their static environments referred to their equilib-
rium positions in the static lattice:  

( )1 ,i iu ∆ ∆ =x ω  

  ( ) ( )(0) (0) (0) (0)

1
, , , , , ,i i j j i i j j

j N
j i
≤ ≤
≠

 = Φ −Φ  ∑ x ω x ω x ω x ω , (3) 

and ijw  are so-called pair correlation potentials [2]: 

( ), , ,ij i i j jw ∆ ∆ ∆ ∆ =x ω x ω  

( ) ( )(0) (0), , , , , ,i i j j i i j j= Φ −Φ −x ω x ω x ω x ω  

 ( ) ( )(0) (0) (0) (0) (0) (0), , , , , , .j ji i i i j j−Φ +Φx ω x ω x ω x ω  (4) 

Since the molecular crystal is supposed to be mechanical-
ly stable, i.e., every single displacement of any molecule 
from its static position (0)

ix  in the lattice site, and every de-
viation from the static orientation (0)

iω  gives an increase in 
the energy, 1( , )i iu ∆ ∆x ω  potentials turn to zero when both 

i∆x  and i∆ω  become zero and are ever non-negative. 
Note that according to definition (4) pair correlation po-

tentials ijw  will vanish whenever at least one of the inter-
acting atoms enters its lattice site and returns to its equilib-
rium orientation.  

Except the orientational dependence, extension of the ap-
proach proposed in [2] on molecular solids requires some 
generalization which takes into account the possibility of 
different crystalline structures where molecules may occu-

py several types of lattice sites in the lattice having differ-
ent equilibrium orientations (0)

iω .  
Formally the Mayer group expansion for the Helmholtz 

free energy remains the same: 

 ( ) ( ) ( )(1)
2 3, , ,N NF V T F V T NkT W W= − + +  (5) 

where (1) ( , )NF V T  is the Helmholtz free energy in the Ein-
stein approximation, k is the Boltzmann constant, 2W  and 

3W  are, correspondingly, contributions of binary and ter-
nary correlations [2] between the displacements and rota-
tions of molecules. 

The Helmholtz free energy in the Einstein approximation 

( ) ( ) ( )(1) (id.gas) (0)

0
, , ln ,f

N N N
v

F V T F V T U V NkT
v

 
= + −   

 
 

  (6) 

in turn, includes (id.gas) ( , )NF V T ; the ideal-gas contribution 
to the Helmholtz free energy.  

Here (0) ( )NU V  is the potential energy of the static lattice, 
fv  is so-called “free volume” per mole, and 0v  is the molar 

volume unit chosen.  
The well-known definition for free volume [4], when 

applied to molecular crystals depends on the site type, and 
the corresponding expression must be modified by taking 
into account existence of s different types of lattice sites.  

Integration over molecular positions within the volume iv  
(i = 1, …, s) of the Wigner–Seitz cell must be carried here 
out along with averaging over all orientations of the select-
ed molecule: 

 ( ) ( ),1e .
i

f i
iv

u kTi iv i d− ∆ ∆
= ∫

x ω x  (7) 

Here and below the angle brackets denote averaging over 
all orientations of a molecule within its static environment, 
and the value of free volume fv  in Eq. (6) must be defined 
as the average over all s types of the lattice sites: 

( )
1

1
f f

i s
v v i

s ≤ ≤
= ∑ . 

Contribution of binary correlations 2W  in Eq. (5) in the 
case of a molecular crystal depends as well upon both dis-
placements and rotations of molecules and also can be de-
fined as an average over all types of the lattice sites 

( )2 2
1

1

i s
W W i

s ≤ ≤
= ∑ . 

The partial contribution 2 ( )W i , provided that molecule 
occupies lattice site of ith type, can be written as follows: 

 



Mayer group expansion for solids: application to molecular crystals 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2020, v. 46, No. 2 149 

 ( ) ( ) ( ) ( )
1

, ,, , , 1 1
2 1( ) ( )

1

[ + ]1 1 e e .
2

j

wij i i j j i i j j
ji j

j N v vf f i j

u u kTkT
W i d d

Nv v

− ∆ ∆ ∆ ∆− ∆ ∆ ∆ ∆

≤ ≤

 
= − 

 
∑ ∫ ∫

x ω x ωx ω r ω
x x   (8) 

The expression for contribution of ternary correlations 3W  [2] also can be generalized similarly.  
 ______________________________________________  

3. Evaluation of the Helmholtz free energy 

To test the ability of the theoretical approach presented 
above to estimate locations of the phase transition lines on 
the phase diagrams of molecular crystals, we need an effi-
cient method for numerical evaluation of all contributions 
to the Helmholtz free energy. Numerical procedure of the 
free energy evaluation in the case of molecular crystals 
according to Eq. (5) essentially differs from that used for 
Lennard-Jones solid in Ref. 2.  

In this work, we applied a computation scheme which 
combines different numerical integration methods includ-
ing Monte Carlo method.  

The first relatively simple task is evaluation of the static 
lattice energy per molecule (0)(0) ( ) ( ) /Nu v U V N=  for both 
structures, where /v V N=  is molar volume.  

Evaluation of the free volume ( , )f fv v T v=  values is a 
more complicated task. Here we need to calculate the 6-
dimensional integral. The following calculation scheme was 
adopted.  

Some basic set of fixed displacements of a molecule cen-
ter was selected. At each fixed displacement of the molecu-
lar center we calculated the value of the integrand in Eq. (7) 
by averaging it over all orientations of the molecule suppos-
ing the distribution over all orientations obeys the Gibbs dis-

tribution and applied the standard Metropolis Monte Carlo 
technique*.  

After performing such calculations for all displace-
ments we approximated the obtained spatial dependence of 
the integrand in Eq. (7) by a simple analytical function. 
Taking into account rather low temperatures considered, 
we applied a kind of quasi-harmonic approximation for the 
single-particle potential (3): 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
3 3

0
1

1 1
.kl k k l l

i i i i i i i
k l

u u x x
= =

∆ =∆ + α ∆ −δ ∆ − δ∑∑x  

  (9) 

Approximation (9) contains 10 fitting parameters (0) ,iu∆  
( ) ,kl
iα  ( )k

iδ  (k, l = 1, 2, 3) for each type of the lattice posi-
tion i = 1, ..., s which can be fitted by minimizing the mean 
squared deviations of the exponent 

 ( )1e u kTi− ∆x

 (10) 

from the integrand in Eq. (7) averaged over orientations. 
After finding values of all parameters (0)

1 ,iu∆  ,iklα  ikδ  
at given T and v it is possible to evaluate the free volume in 
this approximation for the given lattice site i = 1, …, s ana-
lytically: 

 ___________________________________________________  
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and calculate its average over all lattice sites: 

 ( )
1

1 .f f
i s

v v i
s ≤ ≤

= ∑   (11) 

To estimate the contribution of the pair correlation contri-
bution 2W  one must evaluate the 12-dimensional integral (8).  

We applied the following calculation scheme. The av-
eraging of integrand in Eq. (8) over orientations of all mol-
ecules in the cell was performed using the same Metropolis 
Monte Carlo technique as in our previous study of CD4 
solid [3].  

As in the case of the free volume evaluation, the 6-di-
mensional spatial dependence of the orientationally aver-
aged integrand in Eq. (8) was approximated as 

 ( ) ( ) ( )1 1, +[ ]
1 e e .

w u ui j i jkT kT− −∆ ∆ ∆ ∆ 
−  

 

x x x x  

 (12) 

Here ( , )i jw ∆ ∆x x  is an effective pair correlation poten-
tial in quasi-harmonic approximation: 

 ( ) ( ) ( )0

1 , 3
, .kl

i j ik jlij ij
k l l k

w w x x
≤ = ≠

∆ ∆ =∆ + β ∆ ∆∑ ∑x x  (13) 

* The basic set of fixed displacements of a molecule center selected is listed in Table 1. 
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It should be stressed that here (0) 0ijw∆ ≠  because due to 
averaging over all orientations this potential does not van-
ish even when there is no displacements and all molecular 
centers are in their lattice sites. This obstacle gives the pos-
sibility to separate the pure orientational part of the binary 
correlation contribution: 

 ( )
( )0

0
2

1 1

/1 1 e .
2 i s j N

w kTijW
Ns

−

≤ ≤ ≤ ≤

∆ 
 = −
 
 

∑ ∑   

The rest of the binary correlation contribution (1)
2W =  

(0)
2 2W W= −  characterizes the effect of correlations relat-

ed to molecular displacements. Of course (1)
2W  is also af-

fected by orientational correlations and can be evaluated if 
the remaining 8 parameters ( )kl

sβ  (k, j = 1, 2, 3) of the effec-
tive correlation potential (13) are known.  

All the parameters of the effective correlation potential 
must be obtained for each type of cell sites at all temperatures 
and molar volumes considered by minimizing the mean 
squared deviations between orientationally-averaged inte-
grand in Eq. (8) and its quasi-harmonic approximation (12). 

Providing that molecule occupies lattice site of ith type 
(i = 1, …, s), the contribution of this site type to (1)

2W  can 
be estimated as 
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 ______________________________________________  
 

Our calculations presented below show that the absolute 
values of ( )kl

sβ  are essentially less than those of ( )kl
iα  

(k, j = 1, 2, 3) from Eq. (9). In this case the integrand in 
Eq. (14) can be replaced by the first non-vanishing term in 
its expansion in powers of ( )kl

sβ  and after averaging over 
all types of lattice sites we get 

 ( )
( )( )

( ) ( )

2
3 3

1
2 2

1 1 1 1

1 .
16

kl
s s ij

kk ll
i j k ls i j

W
n = = = =

β
≈

α α
∑∑∑∑  (15) 

This approximate expression was used below in calcula-
tions of second contribution to binary correlations, related to 
molecular displacements. 

In order to test the possibility of applying the above ap-
proach in predicting locations of the polymorphic phase 
transitions lines in phase diagrams of simple molecular crys-
tals, we estimated all the above contributions to the Helm-
holtz free energy of heavy methane CD4 (phases I and II). 

4. Molecular interaction model  

In this study, we used the same molecular interaction model 
as in our recent Monte Carlo simulations of CD4 crystal [3]. 

Within this model the pair interaction potential of me-
thane molecules is 

( ) ( ) ( )( )CC CD , CD ,
1 4

ij ij i jk j ik
k

r r r
≤ ≤

Φ = Φ + Φ +Φ +∑  

 ( ) ( )DD ,
1 , 4

, , .ik jl ij i j
k l

r u rΩ−Ω
≤ ≤

+ Φ +∑ ω ω  (16) 

Here CC ( )ijrΦ  represents the central interaction of car-
bon atoms described by the Lennard-Jones (12-6) potential, 

CD ,( )i jkrΦ  is short-range atom-atom interaction energy of 
the carbon atom of ith molecule with kth (k = 1, ..., 4) deu-
terium atom of jth molecule as a function of the distance 

,i jkr  between these atoms, and DD ,( )ik jlrΦ  contribution 
represents interaction of kth deuterium atom of ith molecule 
and lth deuterium atom of kth molecule as a function of dis-

Table 1. Molecular displacements (in Å) used in calculations 

 
Δx1 Δx2 Δx3 

1 0 0 0 
2 0.1 0 0 
3 –0.1 0 0 
4 0 0.1 0 
5 0 –0.1 0 
6 0 0 0.1 
7 0 0 –0.1 
8 0.2 0 0 
9 –0.2 0 0 
10 0 0.2 0 
11 0 –0.2 0 
12 0 0 0.2 
13 0 0 –0.2 
14 0.1 0.1 0.1 
15 0.1 –0.1 0.1 
16 0.1 0.1 –0.1 
17 –0.1 0.1 0.1 
18 0.1 –0.1 –0.1 
19 –0.1 0.1 –0.1 
20 –0.1 –0.1 0.1 
21 –0.1 –0.1 –0.1 
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tance ,ik jlr  between them. Both C–D and D–D interactions 
were also represented by the Lennard-Jones (12-6) poten-
tial. The internal structure of CD4 molecules is supposed to 
be rigid, length of C–D bonds is fixed at L = 1.095 Å. 

The last term in Eq. (16) ( , , )ij i ju rΩ−Ω ω ω  represents 
the octupole-octupole interaction of CD4 molecules. This 
contribution supposed to decay with 7th degree of the recip-
rocal intermolecular distance rij. Its explicit orientational 
dependence was adopted from the work of Isnard et al. [5]. 

To reduce the number of model parameters we used the 
usual Lorentz–Berthelot combination rules:     

 ( )CD CC DD CD CC DD
1 , .
2

σ = σ + σ ε = ε ε  (17) 

Details of the potential model calibration could be found 
in [3], the octupole moment value was adopted from [6]. 
The model parameters are presented in Table 2.  

5. Results and discussion 
We considered the same two cubic CD4 crystalline struc-

tures which were discussed in detail in our previous Monte 
Carlo simulation study [3]: 

– phase I: s = 4 (four molecules in the elemental Fm3m 
cell); 

– phase II: s = 8 (32 molecules in the elemental Fm3c 
cell). 

The same two different sizes of the Monte Carlo cell as 
in our previous paper [3] were used: a “small” one N = 32 
(160 atoms), and a “large” cell, having twice the size of a 
“small” cell and containing N = 256 molecules (1280 atoms).  

In the case of the “small” cell all calculation were per-
formed using cutting radius Rcut = 5.85 Å, in the case of the 
“large” cell Rcut was set to 10.0 Å. Results of the static ener-
gy minimization for these two sizes of cell and two types of 
crystalline structures are presented in Table 3. As one can 
see, at all densities the lattice structure of phase II within 
the above molecular model has lower static energy than that 
of phase I. 

As it was shown earlier [3], equilibrium properties of 
both phases in solid CD4 are determined mainly by short-
range intermolecular forces. Therefore we were able to 
provide averaging over molecular orientations and estimate 

free volumes fv  (11) and binary correlation contributions 
2W  in both phases I and II using only the “small” Monte 

Carlo cell (32 molecules).  

We neglected the ternary 3W  and higher-order correla-
tion contributions, which are important only in highly an-
harmonic solids [2] and used the minimal symmetric set of 
molecular displacements (first 13 positions in Table 1). A 
few tests with the full set of displacements were performed 
only to estimate the quality of the quasi-harmonic approx-
imations based on the minimal set of molecular displace-
ments. In addition, when calculating 2W , we took into ac-
count only correlations in displacements of nearest 
neighboring molecules (first coordination sphere).  

Evaluation of the Helmholtz free energy of CD4 solid 
was performed in phases I and II according to the calcula-
tion scheme described above. To be able to compare the 
results obtained to our previous Monte Carlo simulation data 
[3] we combined the free volumes and binary correlation 
contributions computed on the “small” Monte Carlo cell 
with the energy of static lattice (0)

NU  calculated for “large” 
256-molecular cell (Table 2). 

The main our concern in providing the adopted ap-
proach was the problem of estimating many parameters of 
nonlinear models when minimizing the mean squared de-
viations between orientationally-averaged integrands in 
Eqs. (7) and (8) and their quasi-harmonic approximations 
(10) and (12). To make sure that the values found are cor-
rect we used two different numerical methods: Nelder–
Mead and Generalized Reduced Gradient algorithms [7], 
as well as different initial estimates in order to validate the 
global minimum found. The calculated minima were ac-
cepted only if these two methods give the same result. 

To estimate the transition line location we computed the 
excess Helmholtz free energy per molecule ( , )f v T = 

(id.gas)( ) /N NF F N= −  at three temperatures (T = 30, 35, 
40 K) and four molar volumes (v = 28, 29, 30, and 
32 cm3/mol). A rather large number of steps (up to 5·106) 
was required to reach an acceptable accuracy in the course 
of the Metropolis Monte Carlo averaging of integrands in 

( )fv i  (7) and 2 ( )W i  (8). Such computations took a large 
amount of processor time*.  

Table 2. Adopted parameters of the intermolecular interaction 
potential (16) 

Parameter Value 

εDD/k 8.6 K 

σDD 2.8 Å 

εCC/k 50 K 

σCC 3.63 Å 

Ω 2.3·10–34 esu 

 

Table 3. Static energy u(0)(v)/k (in K) for two sizes of the cell 

v, 
cm3/mol 

N = 32 N = 256 

phase I phase II phase I phase II 

28.0 –340.7 –400.9 –1298.4 –1359.5 

29.0 –445.2 –488.1 –1367.5 –1406.2 

30.0 –514.0 –543.3 –1403.2 –1433.7 

32.0 –578.6 –590.5 –1408.5 –1421.4 

 

* Evaluation of the Helmholtz free energy at a given temperature and volume for both phases took up to one week of continuous run 
on 3.4 GHz desktop computer. 
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The numerical values of free volumes and correlation 
corrections obtained as a result of such computations allow 
us to estimate the role of different contributions to the free 
energy of both phases. First of all, we made sure that the 
Helmholtz free energy of phase II in the Einstein approxi-
mation (without taking into account correlation contribu-
tions), remains lower than that of phase I at all densities 
and temperatures. Intersection of the Helmholtz free energy 
isotherms of two phases and transition pressure at a given 
temperature was obtained only after taking into account the 
contribution of binary correlations 2kTW− . 

Analyzing the obtained numerical results on the spatial 
(0)
2W and orientational (1)

2W  contributions to the binary cor-
relation 2W , we found that their temperature dependence is 
relatively weak. At the highest densities considered (v = 
= 28 cm3/mol) the spatial contribution (0)

2W  in both phases 
is negative and grows with increasing volume becoming 
positive at lower densities (v > 30 cm3/mol). The orienta-
tional contribution (1)

2W , on the contrary, is positive and 
decreases with decreasing density. Binary correlations are 
much more important in phase I and lead to a significantly 
greater decrease in the Helmholtz free energy in this 
(orientationally disordered) phase.  

The numerical values of transition pressures and vol-
umes of coexisting phases were obtained according to the 
Maxwell rule after approximating the excess Helmholtz 
free energies of both phases on three isotherms by second-
order polynomials as is illustrated in Fig. 1. The results are 
presented in Table 4 and compared with computer simula-
tion and experimental data in Figs. 2 and 3. 

As one can see in Fig. 1, the transition pressure, deter-
mined by the slope of the common tangent, grows with 
temperature almost linearly. In Fig. 2 we compare the pre-
dicted location of the phase I–phase II transition line with 
Monte Carlo data obtained earlier [3] using the same po-
tential model (16), (17). The predicted transition tempera-
ture at zero pressure is about 28 K. 

In Fig. 3 the predicted pressure-temperature relation is 
compared with locations of transition lines estimated by 
Stewart [8] and van der Putten [9]. It should be noted that 
the cell parameters ratio of two phases on the transition line 
also is in good agreement with experimental data [10,11]. At 
the same time, the absolute values of both cell parameters 
differ from experimental data by about 1.5%. 

Analyzing the results presented in Table 4, one can see 
that according to our predictions, phase I–phase II transi-

Table 4. Estimated molar volumes of coexisting phases I and 
II, transition pressures, and the enthalpy of transition 

T, 
K 

VI, 
cm3/mol 

VII, 
cm3/mol 

ΔV, 
cm3/mol 

P, 
GPa 

ΔH, 
J/mol 

30 31.374 31.016 0.358 0.033 385.6 

35 30.631 30.316 0.315 0.203 351.7 

40 29.67 29.489 0.181 0.353 202.0 

 

Fig. 1. Volume dependences of the excess Helmholtz free energy in phase I (dashed line) and phase II (solid line) on three isotherms 
studied. Thin solid lined symbolize common tangents used in determination of the phase transition parameters. 

Fig. 2. Comparison of the predicted pressure-temperature de-
pendence of the phase I–phase II transition (solid line) with re-
sults of Monte Carlo computer simulation [3]. 
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tion exists up to maximal temperature of Tmax ≈ 43–45 K, 
above which this transition disappears (free energy curves 
do not cross). This result is also in a reasonable agreement 
with experimental data Tmax ≈ 40 K [8] and Tmax ≈ 35 K [9]. 

6. Conclusions 

In this paper, we presented a new method for estimating 
the Helmholtz free energy of molecular solids based on the 
Mayer group expansion technique [2]. As indicated above, 
the main aim of this work was to test its ability to predict 
the location of polymorphic phase transition lines on phase 
diagrams of the simplest molecular solids. This problem 
recently is increasingly attracting the attention of research-
ers (see, e.g., [12]). 

Surprisingly, despite a number of simplifications made 
in calculations described above, the predicted location of 
the CD4 phase I–phase II transition line agrees well with 
computer simulation data [3] and properties of coexisting 
phases are in reasonable agreement with available experi-
mental data [8–11].  

These results give us hope that the method proposed may 
be effective for other types of allotropic phase transitions in 
molecular crystals, where short-ranged atom-atom forces are 
responsible for the formation of low-temperature crystalline 
phases. 

At the same time, it should be stressed that there are cer-
tain limitations in the use of the applied molecular model. 
First of all, chemical bonds within this model are rigid and 
short-range atom-atom repulsion represented by Lennard-
Jones (12-6) potentials is too stiff, which limits its applica-
bility at higher temperatures and pressures. Representation 
of the short-ranged electrostatic interaction only by the 
octupole-octupole forces is also limited.  

It also remains unclear what is the role of ternary 3W  
and higher-order correlation contributions to the Helmholtz 
free energy. According to the results presented above, at 
last, the differences in the higher-order correlation correc-
tions to the free energy of both phases are small. 

Note that there is also a lower temperature limit for the 
applicability of the proposed approach, since it completely 
ignores quantum effects. Nevertheless, it is interesting to 
test the approach proposed in determining the location of 
other phase transition line (phase I–phase III) in the phase 
diagram of heavy methane, as well as apply it to other mo-
lecular solids like CF4, SiH4, etc. 
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Груповий розклад Майєра для твердих тіл: 
застосування до молекулярних кристалів 

Є.С. Якуб, Л.М. Якуб 

Розроблено підхід до оцінки вільної енергії Гельмгольца з 
використанням комбінації групового розкладу Майєра для 
молекулярних кристалів та класичного методу Монте-Карло 
для твердого важкого метану. Оцінене положення лінії пере-
ходу фаза I–фаза II на фазовій діаграмі CD4 порівнюється з 
експериментальними даними та даними комп’ютерного мо-
делювання. 

Ключові слова: поліморфний перехід, метод Монте-Карло, 
орієнтаційні кореляції, важкий метан. 

Fig. 3. Comparison of the predicted pressure-temperature de-
pendence of the phase I–phase II transition (solid line) with re-
sults of Stewart [8] (dashed line) and van Putten [9] (dash-dotted 
line). 
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Групповое разложение Майера для твердых тел: 
применение к молекулярным кристаллам 

Е.С. Якуб, Л.Н. Якуб 

Разработан подход к оценке свободной энергии Гельм-
гольца с использованием комбинации группового разложе-
ния Майера для молекулярных кристаллов и классического 

метода Монте-Карло для твердого тяжелого метана. Оценен-
ное положение линии перехода фаза I–фаза II на фазовой 
диаграмме CD4 сравнивается с экспериментальными данны-
ми и данными компьютерного моделирования. 

Ключевые слова: полиморфный переход, метод Монте-Карло, 
ориентационные корреляции, тяжелый метан.
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