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Short notes

Nonstationary equation for the one-particle wave function
of the Bose—Einstein condensate
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Based on the self-consistent Hartree—Fock approximation, the nonstationary equation is obtained for the one-
particle wave function describing the Bose—Einstein condensate in a rarefied gas of spin-zero bosons. A rarefied
gas of bosons is exposed to the static external field, which ensures its finite ground state. The derived equation
allows one to correctly determine the ground state energy in the stationary case.
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The experimental observation of the Bose-Einstein
condensate (BEC) in ultracold gases of alkali metals [1]
gave a powerful impact for theoretical studies of weakly
nonideal Bose systems. Due to the presence of magnetic
moments, alkali metal atoms can be kept in magnetic traps.
To achieve the ultralow temperatures required for the forma-
tion of BEC, laser cooling and the evaporation of the high-
est energy atoms from a magnetic trap are used (see [2] for
more details). The resulting ultracold gas is usually rarefied
and strongly inhomogeneous [3]. In view of the inhomoge-
neity of the system, the nonstationary Gross—Pitaevsky (GP)
equation [4, 5] is widely used to describe such a gas at zero
temperature with regard to the effect of laser radiation [6].
However, this equation does not allow to directly deter-
mine the ground state energy of a Bose gas [7, 8].

In the case of an ultracold gas of spinless bosons of
mass m, located in a static external field ¢V (r), the GP
equation for the BEC wave function W (r,t) has the form
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where U, is a constant that determines the intensity of the
pair interaction of bosons:

U(r) =Uo3(r)
Jd3r|‘P(r,t)|2 =N, 0]

N is the number of particles in the considerated degenerate
Bose gas, equal to the number of particles in the BEC [4, 5].
The derivation of the GP equation is usually based on the
exact equation of motion for the field operators of creation
¥*(r,t) and annihilation ‘i’(r,t) in the Heisenberg repre-
sentation:
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with the subsequent formal replacement of these operators
by their average (expected) values [4, 5]:
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However, the use of formal substitution (4) raises cer-
tain doubts (see [9-13] and the references therein). In this
regard, A. Leggett [7] drew attention to the fact that the de-
rivation of the GP equation can be derived using the well-
known self-consistent Hartree—Fock approximation (SCHF).
At the same time, he also pointed out that in this case
the GP equation (1) contains a some contradiction, which
was already mentioned above: the stationary GP equation
does not directly determine the energy of the ground state
of a degenerate Bose gas (see also [8]). Indeed, in a statio-
nary state, for which the BEC wave function has the form

W(r,t)=wy(r)exp(-ict/n), (5)

the “stationary” wave function \y(r) satisfies the stationary
GP equation:

{_ﬁAr +o®V (r)+UO |\|/(r)|2}\|/(r) = &u(r). (6)
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Physically, £ must coincide with the ground state ener-
gy &, per particle. However, in the approximation corre-
sponding to the GP equation, the ground state energy &, is
determined by the relation

o hz (ext) 1 2
NSO:jd ry*(r) —%Ar“l’ (r)+§Uo|‘V(r)| w(r).
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It is easy to verify the validity of (7), if we take into ac-
count that with regard to Eq. (4), the expected value of the
Hamiltonian H for the system under consideration

H = jd%‘iﬁ (r){—%A, +¢®0 (r)+%u0\iﬁ (r)‘i’(r)}‘l’(r)

(®)

leads to the ground state energy N&,.

In this case, to derive the stationary GP equation (6), it
is reasonable to assume that the stationary many-particle
wave function for a degenerate Bose gas in the ground
state can be represented in the form

N
\Vo(rl'rz!""rN):on(ri)’ Id3r|x0(r)|2 =1 (9
i-1

where 1y, (r) is the one-particle stationary wave function.
To determine the wave function y, (r), the variational prin-
ciple should be used for calculating the energy of the ground
state of the system with the Hamiltonian

R N h2 X 1 N
H=>-o—A +0®(r)+2U, Y 8(r -rj).  (10)
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Then it is easy to verify [7] that the function y,(r) sa-
tisfies the equation

{—%Ar +9@Y (r)+Uq (N —1)|x0 (r)|2}xo(r) =&y (r).

(11)

Equation (11) defines the stationary wave function
%o (r) for one boson with zero spin in the self-consistent
field of the other (N —1) bosons. Provided that N >>1, the
stationary GP equation (6) immediately follows from (11),
if we assume that the stationary wave function of the BEC
is determined by the relation

w(r)=VNyo(r). (12)

A similar result within the SCHF approach can be ob-
tained using the secondary quantization formalism [8].

To obtain the appropriate nonstationary equation (for
the one-dimensional case in the absence of an external field,
such an equation was first derived for in Ref. 14), it is na-
tural to assume that for a degenerate Bose gas the nonsta-
tionary many-particle wave function in the coordinate re-
presentation W (ry,r5,...,ry;t) satisfying the Schrédinger
equation

oW, | w2 1,3
|h70:;{_%Ari +(p(eXt)(ri)+EU0§ S(I'i _rj )}‘1”0,
(13)

by analogy with (9) can be represented in the form (see,
e.g. [7])

N
Yo (it =[] %o (1), Jd3r|x0(r,t)|2 =1.
i=1

(14)
Substituting (14) into (13), one obtains
N
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N

where the function A; ({ri},t)=]T xo(r;.t) does not
j#i

depend on the spatial variable r;. Further, within the frame-

work of the accepted consideration, very significant as-

sumptions are made to obtain a nonstationary equation [7].

In particular, by virtue of the condition N >1, it is as-

N
sumed that the quantity Z S(ri —rj) can be considered as
j#i
the local inhomogeneous density of the gas at the point r;.
Moreover, it is accepted that this value can be replaced
by its expected value [by analogy with the statement (4)].
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Under the validity of such assumptions, it is argued that
Eq. (15) is satisfied if the one-particle wave function

%o (1 t) satisfies the following equation:

_oya(r,t h®
n 0Ly o (1) 0 (o (1)

ot
+ NUo|Xo(r't)|2 %o (1), (16)

which is equivalent to the nonstationary GP equation (1)
up to the replacement W (r,t) = N7, (r,t) [see (12)1[7].

Meanwhile, as shown in [14], for the case of a one-
dimensional problem in the absence of an external field,
there is no need for the assumptions made in [7].

To derive a closed equation for the function y, (r;,t), it
is sufficient to multiply equation (15) by the function
A ({r.i}.t) and integrate over all spatial variables r;, ex-
cept for the selected r;. As a result, omitting the index (|)
and accounting that

1 N N N N
EZZ...:ZZ..., (17)
i=1 ji i=1 j>i
we get
2
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where the angular brackets define the procedure for calcu-
lating the expected values:

(wlo) Efdsr\v*(r,t)cp(r,t),
(ylAlp) = Idsrw* (rt)Ao(r.t),

and the operator H in the coordinate representation is equal

(19)
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It is convenient to rewrite Eq. (18) in the form similar
to the nonstationary GP equation (16) for the one-particle
wave function:

ihmz {—ﬁAr +o® (r)+(N-1)E(t)+

ot 2m
#Ug (N =Dto (r.0) o (1) (21)
E(t):<Xo‘ﬂ‘Xo>_ih<Xo|aX0 /6t>. (22)

Next, we substitute (20) into (21), multiply by the func-
tion yg (r,t) and integrate over the spatial variable r.
Thus, we obtain

hz (ext)
—%Ar +OQ (r)

. 0
in <Xo %>_<Xo Xo>:
1

(oo N Do rfe). @

The nonstationary equation for the one-particle wave
function of the Bose—Einstein condensate in the form (21)
directly follows from Eqs. (21)-(23) with E(t) equal to

E(t)=_%<X0‘U0|Xo(r't)|2‘)(o>- (24)

Let us emphasize that the obtained relations, as well as the
method of their derivation, are in full agreement with the
results obtained for the first time in Ref. 14 and reproduce
them for the one-dimensional case in the absence of an
external field. Equations (21)—(24) indicate that describing
behavior of one boson, it is necessary to take into account
the self-consistent change in the behavior of the other bos-
ons, which is not reduced to the traditional “mean field”
effect (see [14] for more details).

In a stationary state, when the wave function y, (r,t)
can be represented as

%o (r.t)=Xq () exp (—iggt/ 1), (25)
the quantity E(t) is described by
E (1) = Eo = (Xo[|Xo )20, (26)

As a result, according to Eqgs. (18)-(26), we obtain a
stationary equation that determines the function X, (r) and
the energy ¢:

2
{_g_mA' +@D (r)+(N -1)x

(oo () +<X0‘7:(‘X0>)}Xo(r)= NegXo (). (27)

It is easy to show that the energy &, coincides with the
energy of the ground state &, per particle in the considerated
boson gas [see (5)], that was required to prove. Taking into
account Eq. (26), it is seen that the function X, (r) corre-
sponds to the solution of the stationary GP equation (11).
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Ha ocnoBi camoy3romkeHoro HabmmkeHHs: Xaprtpi—Doka ot-
PHMAaHO HecTal[ioHapHe PiBHSAHHSA Ul OJJHOYACTUHKOBOT XBUJIBOBOT
¢ynkuii, mo ommcye konmeHcat boze-EiHmTelina B po3pimke-
HOMY ra3i CHiH-HyJIbOBUX 0030HiB. Po3pimkenuii ra3 6030HIB mia-
JAETHCS BIUIMBY CTATUYHOTO 30BHIMIHBOTO OIS, IO 3a0e3mnedye
Horo KiHIeBHd OCHOBHHMI craH. OTpUMaHe PIiBHSHHS JI03BOJISIE
MIPaBIIILHO BH3HAYUTH EHEPTil0 OCHOBHOTO CTaHy y CTalioHap-
HOMY BHII3JIKY.

KirouoBi cioBa: BupomkeHuii 603e-ra3, koHacHcar boze—Eitn-
LITelHa, cCaMoy3ro/uKeHe HabmmKeHHs: XapTpi—
®doka, eHeprisi OCHOBHOT'O CTaHy.
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