PACS: 81.20.Ev, 81.07.Wx, 81.20.Wk, 81.70.Pg

М.В. Лакуста, И.А. Даниленко, Т.Е. Константинова, Г.К. Волкова, В.А. Глазунова

СПЕКАНИЕ НАНОПОРОШКОВ ТЕТРАГОНАЛЬНОГО ДИОКСИДА ЦИРКОНИЯ. МЕХАНИЗМЫ СПЕКАНИЯ И РОЛЬ МЕХАНИЧЕСКОГО ИЗМЕЛЬЧЕНИЯ

Донецкий физико-технический институт им. А.А. Галкина НАН Украины

Статья поступила в редакцию 15 января 2016 года

Исследована кинетика начальной стадии спекания двух сортов нанопорошков тетрагонального диоксида циркония: ЗҮ-ТZР, DIPE (ZrO₂–3 mol% Y₂O₃) (изготовленного в ДонФТИ НАН Украины) и аналогичного по химическому составу нанопорошка TZ-3Y (фирма Tosoh, Tokyo, Japan). Проанализированы нанопорошки ЗҮ-TZР, полученные методом совместного осаждения с механическим помолом в течение 48 h (ЗҮ-TZP-48М) и без помола (ЗҮ-TZР), а также нанопорошки TZ-3Y, полученные методом промышленного гидролиза. Исследован процесс усадки образцов на начальной стадии спекания при постоянной скорости нагревания. На основании дилатометрических данных выявлено, что нанопорошки ЗY-TZP спекаются по механизму объемной диффузии, а нанопорошки TZ-3Y – по механизму зернограничной диффузии. Показано, что механическая активация нанопорошков уменьшает степень агрегации, приводит к изменению фазового состава, а также оказывает значительное влияние на механизмы спекания на начальной стадии.

Ключевые слова: тетрагональный диоксид циркония, механическая активация, спекание нанопорошков, механизмы массопереноса

Досліджено кінетику початкової стадії спікання двох видів нанопорошків тетрагонального діоксиду цирконію: 3Y-TZP, DIPE (ZrO₂–3 mol% Y₂O₃) (виготовленого у ДонФТІНАН України) і аналогічного за хімічним складом нанопорошка TZ-3Y (фірма Tosoh, Tokyo, Japan). Проаналізовано нанопорошки 3Y-TZP, які отримано методом спільного осадження з механічним подрібненням протягом 48 h (3Y-TZP-48M) і без подрібнення (3Y-TZP), а також нанопорошки TZ-3Y, які отримано методом промислового гідролізу. Досліджено процес усадки зразків на початковій стадії спікання при постійній швидкості нагрівання. На основі обробки дилатометричних даних виявлено, що нанопорошки 3Y-TZP спікаються за механізмом об'ємної дифузії, а нанопорошки TZ-3Y – за механізмом зеренної дифузії. Показано, що механічна активація нанорошків зменшує рівень агрегації, призводить до зміни фазового складу, а також значно впливає на механізми спікання на початковій стадії.

Ключові слова: тетрагональний діоксид цирконію, механічна активація, спікання, механізми масопереносу

Введение

Диоксид циркония – это керамический материал, обладающий широким набором и уникальным сочетанием физико-механических свойств. Достаточно высокая величина предела прочности на изгиб сочетается в нем с высокой трещиностойкостью и биологической совместимостью, что делает этот материал незаменимым для восстановительной хирургии в ортопедии и стоматологии. Кроме того, износостойкость, радиационная и химическая стойкость, ионная проводимость подчеркивают многообразие его применений. Интерес к данной керамике не исчезает в течение длительного времени, о чем свидетельствует множество публикаций [1–5]. При этом следует отметить, что свойства диоксида циркония могут быть существенно изменены за счет использования различных методов синтеза порошка, исходных материалов, видов стабилизирующей добавки, способа консолидации и спекания [4,6].

Процессы спекания порошковых материалов исследовались многими научными школами на протяжении сотни лет (У.Д. Кинжери, Р.М. Герман и Я.Е. Гегузин, Д.Л. Джонсон) [4,7–9]. Ими выявлены основные механизмы процессов спекания порошков в изотермических условиях. Наиболее полно изучены начальная и конечная стадии изотермического спекания, для которых установлены аналитические уравнения, отображающие процессы спекания двух сферических частиц и повакансионного растворения пор в твердом теле [7].

При исследовании процессов уплотнения нанопорошков очень важен начальный этап спекания, так как процессы консолидации происходят поособому ввиду высокой удельной площади поверхности частиц. Для установления механизмов массопереноса в нанопорошках на начальной стадии используют метод неизотермического спекания, поскольку с помощью метода изотермического спекания очень сложно зафиксировать именно само начало спекания. Пока необходимая температура будет достигнута, нанопорошки уже могут спечься, и аналитические методы расчета механизмов спекания не дадут достоверных результатов. В. Янг и И. Катлер, Л. Джонсон, В. Вэнг и Р. Рай [3,5,8,9] определили необходимые условия применения экспериментальных данных для выведенных ими аналитических уравнений, описывающих кинетику и механизмы на начальной стадии спекания в нанопорошках.

Целью данной работы является исследование влияния условий синтеза и механического измельчения нанопорошков на кинетику спекания оксидных керамических материалов на основе тетрагонального диоксида циркония, стабилизированного иттрием.

Методика эксперимента

Исследуемые в данной работе нанопорошки ЗҮ-ТZР (ZrO₂–3 mol%Y₂O₃) были получены методом совместного химического осаждения в отделе физического материаловедения Донецкого физико-технического института им. А.А. Галкина НАН Украины. Для их изготовления использовали водные растворы солей ZrOCl₂·8H₂O и Y(NO₃)₃·*n*H₂O. Осаждение проводили в реакторе «Simax» при комнатной температуре в течение 1 h в водном растворе аммиака при pH > 9. Осадок многократно промывали дистиллированной водой для удаления побочных продуктов реакции до значения pH = 6 и высушивали в CBЧ-печи до прекращения потери массы. Далее ксерогели прокаливали при температуре $t = 1000^{\circ}$ C в течение 2 h.

Порошки TZ-3Y согласно по данным производителя, были получены методом промышленного гидролиза. Порошки подвергли сушке, прокаливанию и механическому помолу в течение 48 h, а также гранулированию [6].

Удельную площадь поверхности измеряли методом Брунауэра–Эммета– Теллера (ВЕТ) на приборе типа «SORBI-4» с ошибкой измерений ~ 5%. Структурно-фазовый состав всех нанопорошков и область когерентного рассеяния *D*_{OKP} исследовали рентгенодифракционными методами на установке ДРОН-3, а также методом просвечивающей электронной микроскопии на микроскопе JEM-200A при ускоряющем напряжении 200 kV.

Далее все порошки подвергли одноосному прессованию при давлении 33.6 MPa, порошковые компакты обработали высоким (300 MPa) гидростатическим давлением. Для дилатометрических исследований подготовили образцы с размерами Ø6 mm × 12 mm.

Степень усадки спекающихся порошковых прессовок получили при помощи дилатометра NETZSCH DIL 402 PC. Дилатометр был откалиброван при помощи стандартного образца из Al₂O₃. Измерения усадки по методу постоянной скорости нагрева проводили в диапазоне от комнатной температуры до 1500°C с различными скоростями нагревания (2.5, 5, 10, 20°C/min). При достижении температуры 1500°C образец охлаждали с постоянной скоростью. Термическое расширение для каждого образца было скорректировано по кривой охлаждения методом, описанным в статье [4].

Методика определения механизма спекания на начальной стадии

Предполагается, что тело образца является изотропным и его усадка по длине и ширине происходит одинаково. Тогда плотность как величина, зависящая от температуры, может быть определена как [3]:

$$\rho(T) = \left(\frac{L_f}{L(T)}\right)^{3} \rho_f, \qquad (1)$$

где L_f – конечная длина, L(T) – длина при температуре образца T, ρ_f – конечная плотность образца, измеренная гидростатическим методом.

Механизм спекания и энергия активации определены по аналитическому методу, описанному в [4,5]. Скорость спекания на начальной стадии выражается уравнением

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\left(\frac{\Delta L}{L_0} \right)^{1/n} \right] = \frac{K \gamma \Omega D}{k T a^p} \,, \tag{2}$$

где $\Delta L = L_0 - L$ – изменение длины образца; L_0 – начальная длина образца; K – численная константа (включает в себя эффективную ширину границ зерен при зернограничной и объемной диффузии); γ – поверхностная энергия; Ω – атомный объем; D – коэффициент диффузии; t – время; T – абсолютная температура; k – постоянная Больцмана; a – радиус частиц; n, p – параметры порядка зависимости диффузионного механизма.

Из уравнения (2) с учетом скорости нагревания (c = dT/dt) выведено уравнение [5,10]:

$$\frac{\mathrm{d}}{\mathrm{d}T}c\left[\left(\frac{\Delta L}{L_0}\right)^{1/n}\right] = \frac{K\gamma\Omega D}{kTa^p}; \quad \frac{\mathrm{d}}{\mathrm{d}T}\left[\left(\frac{\Delta L}{L_0}\right)^{1/n}\right] = \frac{K\gamma\Omega D}{kTa^pc}, \quad (3)$$

где

$$D = D_0 \exp\left(-\frac{Q}{RT}\right). \tag{4}$$

Поскольку зависимость $(\Delta L/L_0)^{1/n}$ может быть выражена как функция плотности, тогда

$$\left(\Delta L/L_0\right)^{1/n} = F(\rho).$$
⁽⁵⁾

В. Вэнгом и Р. Раем было поучено уравнение, описывающее кинетику спекания

$$Tc \frac{d\rho}{dT} = \frac{1}{F'(\rho)} \frac{K\gamma\Omega D}{kTa^p} \exp\left(-\frac{Q}{RT}\right),$$
(6)

которое делится на три составляющие, зависящие от температуры, размера зерен и плотности.

Применение уравнений, описывающих кинетику начальной стадии спекания методом постоянной скорости нагрева, возможно лишь при условии, что величины плотности и размеров зерна постоянны (или их изменения несущественны). Поэтому для экспериментальных расчетов берут данные усадки не более 4%, поскольку изменение размера зерен при такой величине усадки и температуре незначительные.

Для определения энергии активации *Q* логарифмируем уравнение (6) и получаем

$$\ln\left[T\left(\frac{\mathrm{d}T}{\mathrm{d}t}\right)\left(\frac{\mathrm{d}\rho}{\mathrm{d}T}\right)\right] = -\frac{Q}{RT} + \alpha(n,p), \qquad (7)$$

где

$$\alpha(n,p) = \ln\left[f(\rho,n)\right] + \ln\left(\frac{K\gamma\Omega D_0}{k}\right) - p\ln a, \qquad (8)$$

Q – энергия активации; R – универсальная газовая постоянная; $f(\rho, n)$ – функция плотности, которая зависит от n; D_0 – предэкспоненциальный множитель.

Энергию активации спекания находят, используя тангенс угла наклона S_1 кривой на зависимости графика Аррениуса $\ln[T(dT/dt)(d\rho/dT)]$ от 1/T:

$$Q = -RS_1. \tag{9}$$

Для определения механизма спекания В. Янг и И. Катлер из уравнения (2) вывели еще одно уравнение скорости усадки:

$$\frac{\mathrm{d}(\Delta L/L_0)}{\mathrm{d}T} = \left(\frac{K\gamma_s \Omega D_0 R}{ka^p cQ}\right)^n \left(\frac{nQ}{RT^{2-n}}\right) \exp\left(-\frac{nQ}{RT}\right). \tag{10}$$

Из уравнения (10) также можно найти энергию активации, учитывая тангенс угла наклона S2 кривой на зависимости графика Аррениуса $\ln[T^{2-n}d(\Delta L/L_0)/dT]$ от 1/T:

$$nQ = -RS_2, \tag{11}$$

где S_2 определяли из зависимости Аррениуса $\ln[T^{1.6}d(\Delta L/L_0)/dT]$ от 1/T [4].

Для установления механизма диффузии, преобладающего на начальной стадии спекания, использовали уравнение

$$n = \frac{nQ}{Q} = \frac{S_2}{S_1}.$$
 (12)

Известно, что при n = 1/3 преобладает механизм зернограничной диффузии, при n = 1/2 – механизм объемной диффузии, а при n = 1 – механизм вязкого течения [7].

3. Результаты и их обсуждение

На рис. 1,*а*,*в* представлены данные просвечивающей электронной микроскопии, характеризирующие структуру нанопорошков соответственно ЗҮ-ТZР и TZ-3Ү. Как видно из табл. 1, исследуемые нанопорошки характеризуются близкими значениями размера частиц и удельной поверхности, что позволяет проводить их сравнение. Следует обратить внимание на существенное различие в фазовом составе нанопорошков, которое будет объяснено ниже.

На рис. 2 показаны температурные зависимости относительной усадки dL/L_0 и скорости усадки $\Delta L/dt$ от температуры спекания *T* для образцов ЗҮ-ТZР и TZ-3Y со скоростью нагревания 10°C/min от комнатной температуры до 1500°C. Как видно, температуры начала спекания у данных образцов отличаются. В образцах TZ-3Y усадка начинается при температуре 960°C, а в образцах ЗY-TZP – при 1010°C. Это можно объяснить тем, что температуры

прокаливания вероятнее всего для них были разные (нанопорошки 3Y-TZP прокаливали при 1000°C, а TZ-3Y – при температурах ниже 1000°C, но точной информации производитель не дает).

Рис. 1. Структуры нанопорошков ЗҮ-ТZР (*a*), ЗҮ-ТZР-48М (б) и ТZ-ЗҮ (*b*), полученные методом просвечивающей электронной микроскопии

в

Таблица 1

Начальные характеристики нанопорошков 3	βY.	-TZP	иTZ	-3¥
---	-----	------	-----	-----

Характеристики	3Y-TZP	TZ-3Y
$S_{\rm BET},{\rm m}^2/{\rm g}$	14.2	15
$\langle D_{ m OKP} \rangle$, nm	31	27
Фазовый состав	6.4% M + T	18.8% M + T

Примечание. М – моноклинная фаза, Т – тетрагональная фаза

Наибольшая скорость усадки достигается при температурах 1171 и 1219°C соответственно для порошков ЗҮ-ТZР и ТZ-ЗҮ. Можно увидеть, что усадка образца ЗҮ-ТZР происходит интенсивнее, чем образца ТZ-ЗҮ.

Рис. 2. Температурная зависимость усадки и скорости усадки для образцов 3Y-TZP (сплошные кривые) и TZ-3Y (штриховые) при скорости нагрева $c = 10^{\circ}$ C/min

Таблица 2

Порядок зависимости диффузионного механизма *n*, энергия активации спекания *Q* и механизм массопереноса для нанопорошков ЗҮ-ТZP и TZ-ЗҮ

Нанопорошки	n	$Q \pm 40$, kJ/mol	Механизм массопереноса
TZ-3Y	1/3	840	Зернограничная диффузия
3Y-TZP	1/2	667	Объемная диффузия

Механизмы спекания для образцов TZ-3Y и 3Y-TZP определяли методом, описанным в статьях [3,4,8], при помощи уравнений (3)–(11) и графиков Аррениуса (рис. 3). Полученные результаты энергии активации и механизмов массопереноса вещества для исследуемых образцов представлены в табл. 2. Из таблицы видно, что образец 3Y-TZP спекается по механизму объемной диффузии при n = 1/2, а образец TZ-3Y – по механизму зернограничной диффузии при n = 1/3. Это подтверждает тот факт, что в образцах 3Y-TZP процесс массопереноса происходит более интенсивно.

Такое различие доминирующих механизмов спекания в нанопорошках, синтезированных двумя подобными способами, с одинаковыми химическим составом и начальными характеристиками, скорее всего обусловлено дополнительной по отношению к 3Y-TZP механической активацией в результате 48-часового помола в мельнице нанопорошков TZ-3Y. Для проверки данного предположения авторы провели эксперимент по исследованию влияния механической активации на доминирующие механизмы спекания начальной стадии. Порошок 3Y-TZP, полученный совместным осаждением, был подвергнут механической активации путем помола в течение 48 h в вибрационной мельнице (3Y-TZ-48M).

Рис. 3. Графики Аррениуса образцов ЗҮ-ТZР (*a*) и ТZ-ЗҮ (δ) для оценки механизма спекания при относительной плотности р, %: • – 50, ▲ – 51, △ – 52, ■ – 53

На рис. 1,*б,в* показаны структуры нанопорошков соответственно ЗҮ-ТZР-48М и TZ-ЗҮ, полученные методом просвечивающей электронной микроскопии. Известно, что процесс механической активации разделяется на две стадии – агрегирование и разрушение агрегатов. Как видно из рисунка, нанопорошки ЗҮ-ТZР-48М имеют небольшой уровень агломерации, что связано с образованием вторичных агрегатов в процессе такого длительного помола в мельнице. Хотелось бы отметить, что в данном случае представлены мягкие агломераты, которые могут быть разрушены незначительными механическими воздействиями, поскольку они связаны между собой слабым вандер-ваальсовым взаимодействием.

Изменения, происходящие в нанопорошке ЗҮ-ТZР-48М при механической обработке, отразились на его кристаллической структуре. Прежде всего на рентгеновских дифрактограммах прослеживается увеличение количества моноклинной фазы (30%) в составе нанопорошка. При этом размер области когерентного рассеяния, соответствующий *T*-фазе диоксида циркония, равен 26 nm. Похожие изменения вследствие применения механического помола в мельнице наблюдаются и для нанопорошка TZ-3Y (см. табл. 1). Основным фактором, приводящим к увеличению содержания моноклинной фазы диоксида циркония, являются сдвиговые напряжения, которые возникают при интенсивной и продолжительной механической активации в планетарной мельнице.

При помощи аналитического метода, использованного для неизотермического спекания с постоянной скоростью нагрева, было установлено, что нанопорошки 3Y-TZP-48M, приготовленные методом соосаждения с применением 48-часового помола в вибрационной мельнице, спекаются по механизму зернограничной диффузии. Таким образом, было доказано, что механическая активация приводит к изменению доминирующего диффузионного механизма спекания на начальной стадии.

Заключение

В результате исследований выявлено, что нанопорошки 3Y-TZP, приготовленные методом совместного осаждения, спекаются по механизму объемной диффузии, а нанопорошки 3Y-TZP-48M, подвергшиеся 48-часовому помолу, как и нанопорошки TZ-3Y, полученные методом гидролиза, – по механизму зернограничной диффузии

Установлено, что различие доминирующих механизмов спекания в нанопорошках, синтезированных двумя близкими способами, с одинаковыми химическим составом и начальными характеристиками обусловлено механической активацией нанопорошков TZ-3Y.

Проведенный эксперимент с применением механического помола нанопорошков ЗҮ-ТZР-48М подтвердил, что механическая активация изменяет уровень агрегации нанорошков, фазовый состав, а также приводит к изменению доминирующего механизма спекания на начальной стадии от объемной к зернограничной диффузии, что объясняется повышением степени дефектности на границах зерен.

- 1. А.В. Шевченко, А.К. Рубан, Е.В. Дудник, Огнеупоры и техническая керамика № 9, 2 (2000).
- А.И. Смирнов, Конструкционная керамика. Итоги науки техники ВИНИТИ, Порошковая металлургия, 64–106 (1990).
- 3. J. Wang, R. Raj, J. Am. Ceram. Soc. 73, 1172 (1990).
- 4. K. Matsui, K. Tanaka, N. Enomoto, J. Hojo, J. Ceram. Soc. Jpn. 114, 763 (2006).
- 5. D.L. Johnson, J. Appl. Phys. 40, 192 (1969).
- Advanced Ceramics, Zirconia Powders, Electronic data. Mode access://www.tosoh.com
- 7. Я.Е. Гегузин, Физика спекания, Наука, Москва (1967).
- 8. W.S. Young, I.B. Cutler, J. Am. Ceram. Soc. 53, 659 (1970).
- 9. J. Wang, R. Raj, J. Am. Ceram. Soc. 74, 1959 (1991).
- K. Matsui, N. Ohmichi, M. Ohgai, T. Yamakawa, J. Hojo, J. Ceram. Soc. Jpn. Supplement 112–1, PacRim5 Special Issue 112, S343 (2004).

M.V. Lakusta, I.A. Danilenko, T.E. Konstantinova, G.K. Volkova, V.A. Glazunova

SINTERING OF TETRAGONAL ZIRCONIA NANOPOWDERS. SINTERING MECHANISMS AND THE ROLE OF MECHANICAL GRINDING

The kinetics of the initial stage of sintering of two kinds of tetragonal zirconia nanopowders: 3Y-TZP, DIPE (ZrO_2-3 mol% Y_2O_3) (produced at DonIPE of NASU) and the TZ-3Y nanopowder similar in chemical composition (Tosoh, Tokyo, Japan) has been studied. To be analyzed, the 3Y-TZP nanopowders were obtained by the chemical co-precipitation method with mechanical grinding for 48 h (3Y-TZP-48M) and without grinding (3Y-TZP); the TZ-3Y nanopowders were obtained by the industrial hydrolysis. The shrinkage of the samples at the initial sintering stage was investigated at a constant rate of heating. After the processing of the dilatometric data, it was found that the 3Y-TZP nanopowders were sintered by the volume diffusion mechanism and the TZ-3Y nanopowders were sintered by the grain boundary diffusion mechanism. It was shown that the mechanical activation of nanopowders reduced the aggregation degree, resulted in a change of the phase composition and had a significant influence on the sintering mechanisms at the initial sintering stage.

Keywords: tetragonal zirconia, mechanical activation, sintering of nanopowders, mechanisms of mass transfer

Fig. 1. Structures of the 3Y-TZP (a), 3Y-TZP-48M (δ) and TZ-3Y (a) nanopowders registered by transmission electron spectroscopy

Fig. 2. Temperature dependence of the shrinkage and the shrinkage rate in the 3Y-TZP samples (solid curves) and the TZ-3Y ones (dashed curves) at the heating rate of $c = 10^{\circ}$ C/min

Fig. 3. Arrhenius plots of the 3Y-TZP samples (*a*) and the TZ-3Y ones (*b*) for the estimation of the sintering mechanism at the relative density ρ , %: • – 50, \blacktriangle – 51, \triangle – 52, \blacksquare – 53