УДК 541-67, 836/868

Годжаєв Е.М.

Годжаєв Е.М.¹, Гусейнов Дж.І.²

¹Азербайджанський технічний університет, просп. Гусейна Джавіда, 25, Баку, AZ 1073, Азербайджан;
²Азербайджанський державний педагогічний університет Гаджебекова Узеіра, 34, AZ 1000, Азербайджан

Гусейнов Дж.І.

ФІЗИКО-ХІМІЧНИЙ АНАЛІЗ І ТЕРМОЕЛЕКТРИЧНІ ВЛАСТИВОСТІ СПЛАВІВ СИСТЕМИ (SnSe)_{1-x}(ErSe)_x

У роботі побудована діаграма стану системи SnSe - ErSe й виявлено, що в даній системі спостерігається розчинність на основі SnSe . Вивчено мікрорельєф поверхні монокристала SnSe атомно-силовим мікроскопом, було проведено рентгенофазовий аналіз і досліджувалися температурні залежності електропровідності, коефіцієнтів Холла, термоЕРС і теплопровідності сплавів системи (SnSe)_{1-x} (ErSe)_x.

Ключові слова: система $(SnSe)_{1-x} (ErSe)_x$, атомно-силова мікроскопія, термоефективність, рентгенофазовий аналіз.

In this paper, a diagram of state of SnSe-ErSe system has been constructed, and SnSe based solubility in this system has been established. Atomic-force microscope has been used to study surface microrelief of SnSe single crystal, X-ray phase analysis has been performed and the temperature dependences of the electric conductivity, the Hall coefficient, the Seebeck coefficient and the thermal conductivity of $(SnSe)_{1-x}(ErSe)_x$ system alloys have been investigated.

Key words: $(SnSe)_{1-x}(ErSe)_x$ system, atomic-force microscope, thermoelectric figure of merit, X-ray phase analysis.

Вступ

Халькогеніди типу SnX(X = S, Se, Te) займають особливе місце серед напівпровідникових сполук. Ці сполуки мають перемикаючі властивості, є датчиками високого тиску й цінними термоелектричними матеріалами [1-3].

Тверді розчини за участю селену і олова також мають високі коефіцієнти термоефективності й фоточутливості [3-5]. У літературі є дані з дослідження систем Sn - Ln - X(Ln = La - Lu; X = S, Se, Te), де виявлено, що в цих системах поблизу SnX утворюються тверді розчини заміщення [6, 7]. Зокрема, фізико-хімічними й рентгенофазовими аналізами, в інтервалі концентрацій 0-10 моль. % *ErSe* виявлено, що в даній системі розчинність *ErSe* у *SnSe* при 873 К становить 6.3 моль. %, а при 1173 К 5 мол. %. Однак, фазовий аналіз у більш широкому концентраційному інтервалі й дослідження властивостей сплавів не проводились. У зв'язку із цим метою даної роботи є фізико-хімічний аналіз, вивчення мікрорельєфу поверхні, дослідження термоелектричних властивостей сплавів системи *SnSe*-*ErSe*.

Експериментальна частина

При синтезі потрійних сплавів системи *SnSe*-*ErSe*, у якості вихідних компонентів використовували елементи особливої чистоти: олово марки «В4-000», селен «ОС417-4» і хімічно чистий елементарний ербій «ЕР-2».

Для побудови діаграми стану були виготовлені сплави, що містять компоненти в різних співвідношеннях (з інтервалом 5 мол.%), масою 2г.

У якості еталона для диференціального запису використовували прожарений оксид алюмінію. Швидкість нагрівання й охолодження зразків становила 0.5 К/с. Температури при побудові діаграми стану визначено з точністю 2-2.5 К.

Сплави системи *SnSe* - *ErSe* синтезували з вихідних елементів в евакуйованих до 0.1333 Па кварцових ампулах. Синтез здійснювали у два етапи: спочатку – ампули з речовиною нагрівали зі швидкістю 4-5град/хв. до температури плавлення селену і витримували при цій температурі 3-4 години, після чого температуру підвищували до 950-1000°С залежно від сполуки й витримували 8-9 годин. Гомогенізуючий відпал отриманих зразків проводили при 580°С протягом 120 годин.

Синтезовані зразки для диференціального термічного аналізу (ДТА) й електрофізичних досліджень піддавали гомогенізуючому відпалу протягом 100 - 110 год залежно від сполуки: час відпалу збільшували зі збільшенням вмісту ербію.

ДТА зразків здійснювали на низькочастотному терморегістраторі HTP-73 з хромельалюмелевою термопарою. Швидкість нагрівання складала 8 град/хв.

Ренгенофазовий аналіз (РФА) проводили на дифрактометрі ДРОН-3 з *СиК*_αвипромінюванням і нікелевим фільтром.

Мікротвердість сплавів визначали металографічним методом на ПМТ-3 при навантаженнях, обраних у результаті вивчення вимірювань мікротвердості для кожної фази від навантаження. Густину сплавів визначали пікнометричним і рентгенографічним методом, наповнювачем слугував толуол.

Результати і їх обговорення

Отримані сплави компактні, з металевим блиском, зі збільшенням вмісту ербію колір сплавів стає темно-сірим і міняється до чорного. Сплави стійкі по відношенню до повітря й води. Концентровані мінеральні кислоти (HCl, HNO_3, H_2SO_4) й луги (NaOH, KOH) розкладають їх, тоді як органічні розчинники не діють на них.

Результати ДТА сплавів системи *SnSe*-*ErSe* показали, що всі фіксовані ефекти на кривих нагрівання й охолодження зворотні.

У результаті вивчення мікроструктури виявлено, що поблизу *SnSe* є обмежена область розчинності. Для підтвердження границі областей твердих розчинів на основі *SnSe* додатково синтезували сплави, що містять 3,4,5 і 6 мол.% *ErSe*. Сплави відпалювали при 760°С протягом 160 год, далі загартовували.

Аналіз результатів мікроструктурний аналіз (МСА) показав, що розчинність *ErSe* у *SnSe* при кімнатній температурі становить 5 мол.%, а при температурі поблизу евтектики доходить до 10 мол.%. В інтервалі 5-40 мол. % *ErSe* усі сплави двофазні. РФА сплавів (табл.1) показав, що на дифрактограмах в інтервалі концентрацій 0-5мол.% *ErSe* дифракційні максимуми ідентичні.

<u>Таблиця 1</u>

Λ_0	~	11	S	<u>6</u>	<u></u> <i>ω</i>	Ś	50 20	4	2	8	2	N	9	2	Э	2	25
ÅL	11.62/	0	322	96 4	94	63	8 69	14	141	012	542	82	59	51	649	34	2 2
$d_{ m exc}$	4 <i>Se</i> 5Å;c=	2(4.18	3.54	3.07	2.97	2.90	2.41	2.20	2.09	2.06	1.93	1.85	1.77	1.76	1.61	1.45
$d_{\rm posp.,} \rm \AA$	<i>Sn</i> _{0.96} E _{r0.0} Å; <i>b</i> =4.23€	19	4.1810	3.5487	3.0782	2.9757	2.9060	2.4102	2.2000	2.0905	2.0636	1.9373	1.8551	1.7743	1.7635	1.6132	1.4531
θ	<i>a</i> =4.481	18	10 ⁰ 37	12 ⁰ 33`	$14^{0}30^{\circ}$	15 ⁰ 1`	15 ⁰ 23`	18 ⁰ 38`	20 ⁰ 29`	21 ⁰ 38`	21 ⁰ 56`	23 ⁰ 26`	24 ⁰ 33`	25 ⁰ 44`	25 ⁰ 54	28 ⁰ 25	32 ⁰ 3`
I/I_0	1Å	17	7	53	3	7	87	5	7	3	2	3	8	7	3	7	31
$d_{ m ecc} {\rm \AA}$	<i>,Se</i> Å; <i>c</i> =11.6	16	4.1782	3.5466	3.0749	2.9727	2.9016	2.4085	2.1988	2.0896	2.0634	1.9371	1.8549	1.7738	1.7624	1.6194	1.4529
d _{pozpio,} À	<i>Sn</i> _{0.97} E _{70.0}	15	4.1775	3.5458	3.0743	2.9719	2.904	2.4077	2.1980	2.0887	2.0620	1.9360	1.8535	1.7729	1.7617	1.6120	1.4520
θ	a=4.477,	14	10 ⁰ 38'	12 ⁰ 34'	14 ⁰ 31'	15 ⁰ 2`	15 ⁰ 24`	$18^{0}40^{\circ}$	20 ⁰ 31`	21 ⁰ 39`	21 ⁰ 56	23 ⁰ 27	24 ⁰ 33`	25 ⁰ 46	25 ⁰ 56	28 ⁰ 25`	32 ⁰ 3`
$I\!I_0$	-	13	~	56	ŝ	6	90	9	7	б	7	Э	10	7	3	7	34
$_{dexc}$ Å	,Se ;c=11.60Å	12	4.1724	3.5432	3.0704	2.9402	2.9016	2.4048	2.1960	2.0866	2.0591	1.9346	1.8514	1.7712	1.7599	1.6104	1.4518
$d_{posp.} m \AA$	<i>Sn</i> _{0.98} <i>e</i> ,0.03 1; <i>b</i> =4.221	11	4.1718	3.5411	3.0692	2.9671	2.9002	2.4040	2.1951	2.0859	2.0594	1.9335	1.8508	1.7705	1.7592	1.6098	1.4501
θ	a=4.47	10	10 ⁰ 39'	12 ⁰ 34'	14 ⁰ 32'	15 ⁰ 3'	15 ⁰ 24'	18 ⁰ 42'	20 ⁰ 33'	21 ⁰ 41'	21 ⁰ 59'	23 ⁰ 29'	24 ⁰ 36'	25 ⁰ 48'	25 ⁰ 59'	28 ⁰ 36'	32 ⁰ 4'
I/I_0	~	6	6	59	3	11	93	8	5	3	5	3	12	5	3	5	36
$_{dexc,} { m \AA}$	₁ Se ;c=11.59/	8	4.1604	3.5391	3.0611	2.9700	2.8974	2.4032	2.1944	2.0863	2.0592	1.9335	1.8508	1.7705	1.7592	1.6098	1.4501
$d_{posp.,} m \AA$	Sn _{0.99} E _{,0.0} 8;b=4.206	7	4.1691	3.5388	3.0625	2.9609	2.8985	2.4002	2.1936	2.0845	2.0581	1.9323	1.8486	1.7694	1.7572	1.6088	1.4492
θ	a=4.46	9	10 ⁰ 41'	12 ⁰ 35'	14 ⁰ 35'	15 ⁰ 3'	15 ⁰ 26'	18 ⁰ 43'	20 ⁰ 34'	21 ⁰ 41'	21 ⁰ 59'	23 ⁰ 32°	24 ⁰ 39'	25 ⁰ 49°	26 ⁰ 2'	28 ⁰ 43'	32 ⁰ 7'
I/I_0		5	10	68	3	16	100	11	5	5	7	4	14	5	5	3	39
$d_{e\!\kappa\!c} { m \AA}$	j=11.57Å	4	4.1605	3.5316	3.0534	2.9523	2.8924	2.3939	2.1907	2.0814	2.0611	1.9280	1.8435	1.7609	1.7516	1.6094	1.4462
$d_{po p, \hat{A}}$	SnSe 5; b=4.19;c	3	4.1615	3.5321	3.0537	2.9526	2.8925	2.3941	2.1897	2.0807	2.054	1.9283	1.8443	1.7760	1.7533	1.6057	1.4462
θ	a=4.46	2	$10^{0}42$	12 ⁰ 36'	14 ⁰ 12'	15 ⁰ 8'	15 ⁰ 27'	18 ⁰ 47'	20 ⁰ 37'	21 ⁰ 45'	21 ⁰ 58'	23 ⁰ 34'	24 ⁰ 43'	25 ⁰ 58'	26 ⁰ 8'	28 ⁰ 37'	32 ⁰ 12'
	hkl	1	101	102	110	111	004	113	201	202	105	900	115	204	213	205	208

Результати рентгенофазового аналізу сплавів $Sn_{1-x}\varepsilon_{rx}Se$

Зі збільшенням вмісту ербію в складі *SnSe* на дифрактограмах сплавів з'являються нові, не характерні *SnSe* максимуми, що відносяться до *ErSe*.

У табл. 2. наведені деякі дані фізико-хімічного аналізу. Як видно з таблиці, у сплавах з області твердих розчинів зі збільшенням концентрації ербію в складі відбувається збільшення мікротвердості (480-620 МПа). Значення густини сплавів з області твердих розчинів монотонно зростає.

<u>Таблиця 2</u>

	Склад, мол,%		Об'ем	Густина, 10 ³ кг/м ³		Мікротвер-	Параметри елементарної			
№			елемента- рних			дість фаз, МПа	гратки, А			
	SnSe	ErSe	граток, V, Å ³	Рпик	ρ_{peht}		а	b	С	
1	100	0	216.21	6.18	6.28	480	4.460	4.190	11.570	
2	99	1	217.88	6.20	6.38	520	4.468	4.206	11.594	
3	98	2	218.93	6.20	6.40	540	4.471	4.221	11.601	
4	97	3	219.93	6.21	6.42	570	4.477	4.229	11.616	
5	96	4	220.64	6.23	6.42	620	4.481	4.236	11.624	

Результати диференційно-термічного й рентгенофазового аналізів, густини й мікротвердості сплавів системи SnSe - ErSe

На підставі результатів комплексних фізико-хімічних аналізів побудована мікродіаграма системи SnSe - ErSe (рис.1.) Як випливає з рис. 1 ліквідує системи складається із двох частин. В інтервалі концентрацій 0-10 мол.% *ErSe* з рідини первинно кристалізується α -фаза (тверді розчини на основі *SnSe*). Далі з рідини кристалізується фаза *ErSe*. Нижче лінії ліквідусу кристалізуються двофазні сплави ($\alpha + ErSe$).

Рис. 1. Діаграма стану системи SnSe – ErSe.

Нами був досліджений рельєф поверхні монокристала *SnSe* методом скануючих зондових мікроскопів в атомно-силовому режимі (ACM) [8].

У результаті нами були отримані площинні зображення поверхні монокристала *SnSe* розміром 5·10³х5·10³ нм (рис. 2, б). АСМ зображення виходило в результаті збільшення найбільш однорідної ділянки поверхні. З рис. 2 а, де наведені об'ємні зображення тих же ділянок, видно, що рельєф поверхні монокристала досить однорідний. Аналіз гістограми АСМ зображення (рис. 2, в)

показує, що однорідність поверхні міняється в межах до 25 нм. Очевидно, що хоча *SnSe* відноситься до шаруватих напівпровідників із природнім сколом поверхні, у приграничному шарі все-таки спостерігаються деякі шорсткості, зв'язані, швидше за все, з тим фактом, що при руйнуванні сил зв'язку на поверхні кристала залишаються не окремі атоми, а їх групи – кластери.

Про це ж свідчить і отриманий методом ACM спектр Фур'є (рис. 2,г). Зосередження спектра в центрі зображення показує, що поверхневі частки мають приблизно однакові розміри, тобто співрозмірні.

Рис. 2 (а) – двомірне, (б) – об'ємне АСМ зображення поверхні, (в) – гістограма поверхні, (г) – спектр Фур'є монокристала SnSe з розміром 5 мкм.

У роботі досліджувалися температурні залежності питомої електропровідності, коефіцієнтів Холла, термоЕРС у температурним інтервалі 77 - 900 К, а теплопровідність у температурному інтервалі 77 - 350 К сплавів Sn_{1-x}Er_xSe. Результати дослідження наведені на рис. З. Як випливає з рис. За, зміна електропровідності вихідної сполуки SnSe і твердих розчинів $Sn_{1x}Er_xSe$ на його основі з температурою подібні, тобто при низьких температурах спостерігається відносно слабке збільшення електропровідності за рахунок електронів, що перейшли із домішкових рівнів у зону провідності. При кімнатній температурі число носіїв, що перейшли із домішкових рівнів у зону провідності стабілізується й відповідно електропровідність зменшується, у зв'язку зі зменшенням холлівської рухливості а з настанням власної провідності збільшується у зв'язку зі зростанням концентрації власних носіїв. Зміна коефіцієнта Холла з температурою добре узгоджується з температурною зміною питомої електропровідності кристалів Sn_{1-x}Er_xSe (рис. 3, б), тобто при низьких температурах R залишається постійним, а з настанням власної провідності зменшується з ростом температури. Коефіцієнт термоЕРС кристалів при низьких температурах в області домішкової провідності збільшується, а з настанням власної провідності зменшується (рис. 3, в) що характерно для напівпровідникових сполук і твердих розчинів зі складною зонною структурою.

Ширина забороненої зони кристалів $Sn_{1-x}Er_xSe$ визначена з точністю 0.004 еВ. Значення ширини забороненої зони, розраховані з температурних залежностей електропровідності й коефіцієнта Холла добре узгоджуються один з одним. Це свідчить про те, що всі досліджені зразки характеризуються одним переважаючим домішковим рівнем.

Виявлено, що при заміщенні атомів олова атомами ербію в гратці *SnSe* ширина забороненої зони зменшується, тобто для *SnSe* вона становила 0.86 еВ, а для сполук $Sn_{0.075} \varepsilon_{r0.025} Se$ і $Sn_{0.095} \varepsilon_{r0.05} Se$ 0.83 і 0.81 еВ відповідно.

Теплопровідність твердих $Sn_{1-x}Er_xSe$ вимірювали стаціонарним методом. Дослідження проводилися в температурному інтервалі 80-330 К. Результати дослідження приводяться на рис. 3, г. Як випливає з рис. 3, г теплопровідність *SnSe* з варіацією катіонної сполуки в напрямку збільшення атомних ваг катіонів заміщення закономірно зменшується.

Рис. 3. Температурні залежності електропровідності (а), коефіцієнта Холла (б), коефіцієнта термоЕРС (в) й теплопровідності кристалів Sn_{1-x}Er_xSe, де 1-x=0; 2-x=0.02; 3-x= 0.04.

Однак, з переходом від *SnSe* з упорядкованим розташуванням атомів до твердих розчинів заміщення на його основі спостерігається відхилення від звичайної закономірності зміни теплопровідності залежно від атомної ваги. Ймовірно це викликано тим, що для кристалів $Sn_{1-x}E_{rx}Se$ превалює розсіювання фононів від локальних точкових дефектів і основним фактором, що впливає на тепловий опір, є локальні зміни густини й пружних властивостей середовища. Локальна зміна густини в основному залежить від різниці середніх атомних ваг, а локальні зміни пружних властивостей від різниці атомних радіусів розчинника й розчиненої речовини.

З нами отриманих експериментальних результатів випливає, що у твердих розчинах $Sn_{1-x}E_{rx}Se$ зі зростанням вмісту ербію в складі електропровідність збільшується, а теплопровідність убуває. Тому можна було очікувати, що в цій системі в певних сполуках і в певному температурному інтервалі термоефективність досягне величини, що представляє практичне значення. Результати розрахунків приводяться в табл. З. Як випливає з таблиці для сполуки $Sn_{0.96}E_{r0.04}Se$ у температурному інтервалі 250-300 К коефіцієнт термоефективності виявляється високим (1.36-1.81)·10⁻³ K⁻¹ й представляє практичний інтерес.

7	аблиця	3

<i>Т</i> , К		Se			Sn _{0.98}	$Er_{0.02}Se$		$Sn_{0.96}Er_{0.04}Se$				
	σ ₁ , Om ⁻¹ .cm ⁻¹	α_1 , MKB/K	$\chi_{l}, B_{T}/(c_{M} \cdot K)$	$Z_1 \cdot 10^3$, K^{-1}	σ ₂ , Om ^{-I} ·cm ^{-I}	α_2 , MKB/K	χ2, BT/(cM·K)	$Z_2 \cdot 10^3, \mathrm{K}^{-1}$	σ ₃ , Om ^{-I} .cm ^{-I}	α ₃ , mkB/K	χ ₃ , Bτ/(cм·K)	$Z_3 \cdot 10^3, \mathrm{K}^{-1}$
100	56.23	370	37	0.21	11.2	330	27.5	0.44	17.8	300	23.2	0.69
125	10	390	34.6	0.44	22.4	350	25.4	0.11	35.5	320	21.2	0.17
167	20	403	29.4	0.11	44.7	375	22.4	0.28	79.4	335	19	0.47
250	44.67	460	22.2	0.43	79	420	17.6	0.79	141.3	380	15	1.36
300	31.6	480	19.6	0.37	63.1	435	15.8	0.76	158.5	400	14	1.81

Термоелектричні параметри сплавів Sn_{1-x} Er_xSe

Висновки

Методами фізико-хімічного аналізу побудована діаграма стану системи SnSe - 40 мол. % *ErSe* і виявлено, що в даній системі утворюються тверді розчини на основі *SnSe* в області ($0 \le x \le 0.04$). Досліджені мікрорельєф поверхні й температурні залежності електропровідності, коефіцієнта Холла, термоЕРС, теплопровідності і обчислено термоефективність сплавів *Sn*_{1-x}*Er*_x*Se*.

Література

- 1. Абрикосов Н.Х. Полупроводниковые соединения, их получение и свойства / Н.Х. Абрикосов, В.Ф. Банкина, А.В. Порецкая, Е.Д. Скудного // М.: Наука. 1967. С. 220.
- 2. Ерофеев Р.С. К вопросы взаимодействия монохалькогенидов двухвалентных элементов IV групп и P3M / P.C. Ерофеев, О.В. Соламатникова, В.С. Гайдукова, С.И. Репенько // Халькогениды. Вып. 3. Киев: Наука думка. 1974. С.87.
- Абрикосов Н.Х. Полупроводниковые материалы на основе соединений A^{IV} B^{VI} / Н.Х. Абрикосов, Л.Е. Шелимова // М.: Наука. 1975. С. 195.
- 4. Bouad N., Record M.-C., Tedenac J.-C., Marin-Ayral R.-M. / Mechanical alloying of a thermoelectric alloy: *Pb*_{0.65}*Sn*_{0.35}*Te* / J. Solid State Chem.-2004.-177, № 1.-C. 221-226.
- 5. Климов А.Э. Фоточувствительность пленок *Pb*_{1-x}*Sn*_x*Te* <*İn*> в области собственного поглощения. / А.Э. Климов, В.Н. Шумский // ФТП, 2008, т.42, Вып.2, с.147-152
- 6. Гуршумов А.П. Диаграммы состояния металлических систем / А.П. Гуршумов, Б.Б. Кулиев, А.М. Ахмедов // Под. Ред. Петровой Л.А.М.: 1986. Вып. 29. С.429-430.
- 7. Взаимодействие моноселенида олова с моноселинидами / А.П. Гуршумов, Б.Б. Кулиев, А.М. Ахмедов [и. др.] // Р.З.Э. Изв. АН СССР, Ж. Неоргоначеские материалы, 1984. том 20. № 7, с.1090-1093
- 8. Миронов В. Основы сканирующей зондовой микроскопии. / В. Миронов // Изд. Техносфера», Москва, 2004, с. 197-201

Надійшла до редакції 25.02.14