
INFORMATION TECHNOLOGIES

6 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 6/2(68), 2022

UDC 004.43:004.02
DOI: 10.15587/2706-5448.2022.267160

USAGE OF FORMALIZED KNOWLEDGE
ABOUT SOURCE CODE FOR
REFACTORING ACTIONS IN SWIFT

The object of research in the paper is the source code of a software product written in the Swift programming
language. Most programs as a product of a certain project during the life cycle require changes and modifica-
tions, which is costly or impossible to implement in the case of poor code quality. One of the options for solving
the problem of poor code quality is the timely application of refactoring principles. The existing problem is that
implementation of high-level refactoring must be done manually by the developer without the use of automated
tools as built-in solutions cannot fulfill the need due to the architectural complexity of the product.

To reduce the number of errors made during refactoring, to simplify the process of performing routine actions,
it is suggested to use a new software product for refactoring. It works with high-level user commands based on
a formalized description of the source code together with a knowledge base containing a description of code entities
and their properties (what specific actions can be performed with them). In the work, the refactoring of the source
code was carried out using the example of the Swift programming language. The proposed approach of component
architecture (knowledge base, software engine) further allows to expand the functionality of the software product
to other programming languages.

The work was directed to the development of a prototype of a software product using the proposed approach
to check and compare the results with other refactoring tools. A command line utility has been developed that ac-
cepts a verbal command as an input and outputs the results of processing and analysis of the source code (search
for complex structures in the code) or applies the proposed change. As a result of the conducted testing, it was
established that the use of the proposed approach allows performing complex refactoring tasks with the help of
a simple verbal formalized command. Accomplishing the same task using only the built-in refactoring tools requires
significantly more time and effort or is impossible at all.

Keywords: Swift programming language, knowledge base, analysis and refactoring tools, source code.

Andrii Tkachuk,
Bogdan Bulakh

© The Author(s) 2022

This is an open access article

under the Creative Commons CC BY license

How to cite

Tkachuk, A., Bulakh, B. (2022). Usage of formalized knowledge about source code for refactoring actions in Swift. Technology Audit and Production

Reserves, 6 (2 (68)), 6–10. doi: https://doi.org/10.15587/2706-5448.2022.267160

Received date: 26.09.2022

Accepted date: 14.11.2022

Published date: 17.11.2022

1.  Introduction

The use of a standard approach (the one that is of-
fered as an integral part of the language) for refactoring
in Swift is limited [1]. Adding new refactoring actions is
carried out strictly according to one principle, which makes
it impossible to add handling of non-standard situations.

To write a refactoring action, it is necessary to have
a compiler, because refactoring does not work with «raw»
code, but with its representation – an abstract syntax tree.
The use of the added actions is possible only for their
«main» purpose without the possibility of parameterization
and changing properties while working with the utility. Writ-
ing new actions is difficult, which slows down the process
of the emergence of new refactoring possibilities [2]. It is
these listed drawbacks of refactoring that cause the lack
of variety of actions that can be applied and narrow focus
of those actions that already exist (they could be applied
only to a certain part of the code with a specific goal).
To be able to perform full-fledged refactoring using the

methods offered in the catalog of code antipatterns (code
smells catalog), it is necessary to have a large set of tools,
which is impossible due to the complexity of their develop-
ment [3]. In this case, developers performing refactoring
are forced to do a lot of work during refactoring manually,
which nullifies the task of automatic refactoring and in-
creases the number of errors in the code [4, 5].

To avoid all the limitations described above, it is sug-
gested to use entities, concepts, and the knowledge base
for refactoring. The user must formulate descriptive task
for refactoring [6, 7].

The proposed software product must accept as input
a request that operates with code concepts and carry out
the appropriate refactoring.

The product is innovative, as there are no analogues
on the market, and the need to use its functionality is
apprehensible.

The object of research in the work is the refactoring
of the source code of a software product written in the
Swift programming language.

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

7TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 6/2(68), 2022

ISSN 2664-9969

The aim of research is to develop an approach for code
refactoring of a source code written in the Swift language,
which would be based on the formalization of knowledge
about the code.

2.  Material and Method

During the research, study was carried out and problems
that could not be solved by means of standard refactoring
were discovered [8–10].

As an example for comparison purposes, the analysis action
that looks for all methods that have more than 3 parameters
was chosen. The built-in refactoring tool was tested to obtain
a result for future comparison (the task turned out to be
overwhelming). The same test was performed for additional
refactoring utilities that work on regular expressions. The
result showed that they are not able to solve such a task.

The structure of the software knowledge base, the ar-
chitecture of the software engine and their implementation
were developed.

The developed software utility accepts as input a line
like the following: Test.swift find func paramsCount
greaterThanOrEquals 3.

For all requests to be resolved successfully, it is neces-
sary to describe the entities and concepts and correctly
program their processing [11]. This is what the know
ledge base is for. In this project, the knowledge base is
a formalized description of the source code written in the
Swift language. It contains its properties, correspondences
between «raw» code and code entities, concepts (classes,
structures, string literals), their properties (name, identi-
fier, number of parameters) and actions that can be per-
formed (search, rename). Such a description can be for-
malized, for example, by means of descriptive logics (and
corresponding languages such as OWL-DL), but in this
work, for simplicity, a meta-description is created using
the same Swift programming language.

In Fig. 1 a class diagram is shown. It describes a part
of the knowledge base that contains knowledge about the

String entity type and what properties it has. Thanks
to the protocol organization of the code, any entity can
be described using formalized methods, which will allow
expanding the functionality of the product effectively.

In Fig. 2 the class diagram of the software engine is
shown. The engine is used when there is a request for analysis,
such as a «search», or a change (application of refactoring).
It reads the source code, sends it to the knowledge base
module for evaluation, and returns the result to the user
in the form of a text response or modified source code.

Fig. 3 shows a class diagram describing the interac-
tion of the engine classes with the classes representing
the knowledge base.

The developed prototype of the software product is
a command line utility [12]. Creating a graphical user
interface is not appropriate, because the program can act
as a sub-process for an integrated development environ-
ment or a special text editor.

To check all the requirements set for the product, several
test runs were carried out and the boundary conditions
of execution were verified.

3.  Results and Discussion

An important trait of a developed software product
prototype is that the commands that are given are not
«strict». For example, the command rename class name
equals Test Renamed should not be programmed in this
specific appearance. It should work successfully even if
the entity type is changed to a structure: rename struct
name equals Test Renamed. That is, the program supports
logical deduction from a combination of available (imple-
mented) entities, concepts, actions and performs tasks
correctly. It is thanks to this trait that a high rate of
scaling of the software product is achieved, since at the
initial stage an engine that processes the command and
executes it is developed, and then only the knowledge
base is supplemented with a description of the entities,
their properties, and actions that can be performed.

 Fig. 1. Class diagram for the String entity

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

8 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 6/2(68), 2022

ISSN 2664-9969

The main obstacle in the development of the software
product was getting the ability to work with an abstract
syntax tree. Processing the «raw» source code and forma
lizing it manually is an inefficient task, because it is solved
by the initial stages of the Swift language compiler. That
is, in the case of own implementation of the processing
function, it would be writing the compiler «from scratch».
The expediency of such work remains in great doubt [13].

To access the abstract syntax tree generated by the com-
piler, it is necessary to have access to the lexer and tokenizer,
which are components of the compiler from the libSyntax
library written in C++. The SwiftSyntax library, which is
a high-level wrapper for the libSyntax library [14–16], was
used to develop the prototype.

The block diagram of the algorithm of the program
is shown in Fig. 4.

Interaction with the program is done through the ter-
minal. To start work, it is necessary to enter a command
in the terminal. After that, the program is executed in-
dependently and does not require the input of additional
data from the user.

After command is received, it is checked for correctness.

If the command turns out to be incorrect, the program
terminates execution and displays the corresponding error.
If the command is correct, the program continues.

After the command is checked, the class which is used
to traverse the file containing the source code is initialized.
It is selected and configured according to the task writ-
ten in the command.

For each node of the program that falls under the condi-
tions specified in the command, the condition is evaluated,
and the application of the task is performed, which includes
the output of the work result in one form or another.

After processing all the nodes, the program terminates
the execution.

To begin with, the proposed software product must sup-
port the entities, properties and tasks described in Table 1.

During the evaluation of the results, several tests were
conducted. The most indicative tests are presented below.

Fig. 5 shows the source code written in Swift. To check
the ability of the created software product to find objects
in the code that cannot be found using standard refactoring
tools, the following command is executed: refactor Test.
swift find class conforms to FirstProtocol. The result of the

 Fig. 2. Class diagram for the software engine

Fig. 3. Class diagram in the part of interaction of the engine with the database

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

9TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 6/2(68), 2022

ISSN 2664-9969

execution is a range of text of the source code (starting
line and character, ending line and character).

Fig. 4. Block diagram of the program algorithm

Table 1
Proposed functionality

Parameter type Available alternatives

Tasks find, rename, localize

Entities class, struct, string, func

Properties of entities name, paramsCount, conforms, inherits

Operators equals, contains, from, to, greaterThanOrEquals

Fig. 6 highlights the range that the program found
as a result of execution of the received request. The ex-
pected result is the location of the SecondTestClass class
declaration. As it can be seen, the program successfully
coped with the task, despite the fact that the searched
class is declared as internal to another class.

In the second test, the same source code as in the
first test will be used (Fig. 5). The search for objects
based on their characteristics will be done. To do this, it
is needed run the command: refactor Test.swift find func

paramsCount equals 2. The expected result is that the
program will find the shouldReturnTrue method.

Fig. 5. Initial source code

Fig. 6. The result for the first test

In this case, the program produced two results. The
first one (Fig. 7) is the declaration of the method, which
has two parameters, in the protocol.

Fig. 7. Result 1 for the second test

The second one (Fig. 8) is the implementation of the
method in the class that implements the aforementioned
protocol.

Fig. 8. Result 2 for the second test

The advantage of the proposed software product is that
it can perform refactoring tasks of a non-standard type,
adapt to the user’s needs. However, the main advantage

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

10 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 6/2(68), 2022

ISSN 2664-9969

is the speed and flexibility of adding new functionality.
To do that, it is only necessary to add description to the
knowledge base (special files in the program) of how ex-
actly to associate the code with properties of a certain
entity and add keywords to the command handler.

A limitation of this study is that the possibility of
obtaining an abstract syntax tree for other programming
languages and the possibility of its integration with the
developed scheme of the knowledge base was not considered.

During the analysis of the results, it was found that
the program has prospects for development and further
commercialization. Such directions should include support
of multiple files, combining multiple conditions in one
command, and support of other programming languages.
Also, as a future development of the idea, it is advisable
to consider the description of knowledge about the code
not in the form of a hierarchy of classes of a specific
programming language, but in the form of a hierarchy of
concepts and entities. They can be described in OWL-type
languages using the appropriate logical deduction tools
for those languages.

4.  Conclusions

Based on the results of experimental studies, it was
confirmed that the automatic analysis and refactoring sys-
tems that already exist do not fully satisfy the needs of
the end user and are not capable of performing relatively
non-trivial refactoring tasks. To solve problems of this
kind, knowledge-based refactoring using the concepts and
entities of the source code was proposed.

As a result, knowledge-based refactoring allows to
form a command descriptively in the form of a task that
operates with code concepts – entities, their properties,
and actions that can be applied on them. Then the deve
loper who performs refactoring will concentrate only on
the formulation of the task, and the program will decide
exactly how to apply the described refactoring command
to the source code based on what properties the outlined
entities have and how to process them.

To experimentally confirm this idea, a software imple-
mentation of the refactoring utility for Swift code was
developed and a number of non-trivial operations on the
code, unavailable in standard refactoring tools, were per-
formed. However, the formulated statements are also valid
for processing code written in other modern high-level
programming languages.

Conflict of interest

The authors declare that they have no conflict of inte
rest in relation to this study, including financial, personal,
authorship, or any other, that could affect the study and
its results presented in this article.

Financing

The study was conducted without financial support.

Data availability

The manuscript has associated data in the data repository.

References

1.	 Swift Documentation. Swift Local Refactoring. Available at:
https://www.swift.org/blog/swift-local-refactoring/

2.	 Lacerda, G., Petrillo, F., Pimenta, M., Guéhéneuc, Y. G. (2020).
Code smells and refactoring: A tertiary systematic review of chal-
lenges and observations. Journal of Systems and Software, 167.
doi: https://doi.org/10.1016/j.jss.2020.110610

3.	 Almogahed, A., Omar, M., Zakaria, N. H. (2022). Refactoring
Codes to Improve Software Security Requirements. Procedia
Computer Science, 204, 108–115. doi: https://doi.org/10.1016/
j.procs.2022.08.013

4.	 Code refactoring best practices. Available at: https://www.
altexsoft.com/blog/engineering/code-refactoring-best-practices-
when-and-when-not-to-do-it/

5.	 Kaur, S., Singh, P. (2019). How does object-oriented code
refactoring influence software quality? Research landscape and
challenges. Journal of Systems and Software, 157. doi: https://
doi.org/10.1016/j.jss.2019.110394

6.	 Fowler, M. (1999). Refactoring. Improving the Design of Exist-
ing Code. Addison-Wesley, 63.

7.	 Morales, R., Soh, Z., Khomh, F., Antoniol, G., Chicano, F. (2017).
On the use of developers’ context for automatic refactoring
of software anti-patterns. Journal of Systems and Software,
128, 236–251. doi: https://doi.org/10.1016/j.jss.2016.05.042

8.	 Don, R., Brant, J. Refactoring tools. Available at: http://www.
laputan.org/pub/patterns/fowler/Roberts-Brant.doc

9.	 De Nicola, R., Di Stefano, L., Inverso, O., Uwimbabazi, A.
(2022). Automated replication of tuple spaces via static analysis.
Science of Computer Programming, 223. doi: https://doi.org/
10.1016/j.scico.2022.102863

10.	 Hammad, M., Babur, Ö., Basit, H. A., van den Brand, M. (2022).
Clone-Writer: An effective editor for developing code by using
code clones. Software Impacts, 13. doi: https://doi.org/10.1016/
j.simpa.2022.100323

11.	 Al Dallal, J. (2012). Constructing models for predicting ex-
tract subclass refactoring opportunities using object-oriented
quality metrics. Information and Software Technology, 54 (10),
1125–1141. doi: https://doi.org/10.1016/j.infsof.2012.04.004

12.	 Swift Syntax Command Line Tool (2019). Available at: https://
www.pointfree.co/episodes/ep55-swift-syntax-command-line-tool

13.	 Almeida, L. (2019). An Overview of SwiftSyntax. Available at:
https://medium.com/@lucianoalmeida1/an-overview-of-swifts-
yntax-cf1ae6d53494

14.	 Mattt (2018). SwiftSyntax. Available at: https://nshipster.com/
swiftsyntax/

15.	 SwiftSyntax Documentation. Available at: https://github.com/
apple/swift-syntax/tree/main/Documentation

16.	 A set of Swift bindings for the libSyntax library. Available at:
https://iosexample.com/a-set-of-swift-bindings-for-the-libsyntax-
library/

*Andrii Tkachuk, Postgraduate Student, Department of System
Design, National Technical University of Ukraine «Igor Sikorsky
Kyiv Polytechnic Institute», Kyiv, Ukraine, ORCID: https://orcid.org/
0000-0002-9127-6381, e-mail: andrewtkachuk@yahoo.com

Bogdan Bulakh, PhD, Associate Professor, Department of System
Design, National Technical University of Ukraine «Igor Sikorsky Kyiv
Polytechnic Institute», Kyiv, Ukraine, ORCID: https://orcid.org/
0000-0001-5880-6101

*Corresponding author

