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STOCHASTIC ANALYSIS WITH THE GAMMA MEASURE -
MOVING A DENSE SET

UDC 519.21

D. HAGEDORN

Abstract. The Gamma measure corresponds to a measure on a marked configuration space with an
infinite measure on the marks. We construct Dirichlet forms for the movement of marks and positions.
These include the movement of the support, which is a dense set in �d, d ∈ �. The key ingredient
is a recently discovered integration by parts formula for the directional derivative w.r.t. the positions
(cf. [4]). We briefly introduce the geometry and then concentrate on the construction of the Dirichlet
forms.
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1. Introduction

A Gamma measure can be considered as a measure on a “marked configuration space
with an infinite measure on the marks”. To my knowledge only Dirichlet forms moving
the marks and positions were considered for marked configuration spaces with finite
measure on the marks.

In this article we concentrate on the Dirichlet forms which we can construct for a
Gamma measure. It is supported by the cone of positive, locally finite discrete measures,
which are of the form

η =
∑

x∈τ(η)

sxδx.

Here, τ(η) ⊂ �d, d ∈ � fixed, denotes the support of η, which is typically dense in R.
Moreover, sx ∈ R+ := (0,∞) and δx is the Dirac measure at x ∈ R

d. We refer to the
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points x ∈ τ(η) of the support of each finite discrete measure η as positions and to the
sx as marks.

In [4] a proper geometry on the cone of positive finite discrete measures is introduced
and the existence of an integration by parts rule is shown. Here, we only briefly introduce
the directional derivatives, gradients and tangent spaces involved and state the integra-
tion by parts formula. Regarding the Dirichlet forms we are more detailed. For further
applications we refer to [4].

Projecting the associated stochastic process to the support, we get a stochastic process
moving a dense set: If we consider a compact subset of the support, we encounter typically
infinitely many points lying dense in this set. For the other mentioned Dirichlet forms
the number of points in each compact set of the support is a finite number.

The difference to e.g. [1] is that we obtain some Dirichlet forms without using a quasi-
invariance formula. Although in [4] we also obtain an integration by parts formula for the
directional derivative w.r.t. the marks via the quasi-invariance, this is not possible for the
one w.r.t. the movement of the positions. Nevertheless, we have deduced an integration
by parts formula for this directional derivative.

We first of all calculate for each gradient its adjoint and then produce the correspond-
ing Dirichlet forms, to which correspond to stochastic processes on the cone.

2. Gamma measure

Let (Rd,B(Rd), m) denote the measure space of R
d, d ∈ � fixed, with the Borel σ-

algebra B(Rd) and the Lebesgue measure m. Let R+ be equipped with B(R+) being the
trace Borel σ-algebra B(�) ∩ R+.

The cone of positive finite real discrete measures is defined as

K :=
{

η =
∑

ziδxi

∣∣∣ zi ∈ R+, xi ∈ �d, ∀ i, j ∈ N xi �= xj

whenever i �= j and ∀Λ ∈ Bc(Rd) : η(Λ) < ∞
}
, (2.1)

where Bc(Rd) denotes the collection of measurable sets lying in a compact set in R
d.

Definition 2.1. A Levy measure λ is a measure on (�+,B(�+)) satisfying λ((1,∞)) <

∞,
∫ 1

0
zdλ(z) < ∞ and λ((0,∞)) =∞.

Definition 2.2 (cf. [7, Definition 2.1]). A Levy process on the space (X, m) with Levy
measure λ on �+ is a Poisson process on K, which law Pλ has Laplace transform

EPλ
[exp (−〈a, ·〉)] = exp

(
−
∫

R+×Rd

(1 − e−a(x)z) dλ(z) dm(x)

)
,

where 〈a, η〉 :=
∫

Rd a(x) dη(x) and a : R
d → � is a compactly supported, bounded, non-

negative Borel function.

Definition 2.3 (Gamma measure). A Gamma process with shape parameter θ > 0 is
the Levy process defined by the Levy measure

dλθ(t) = θt−1e−tdt ∀t > 0.

Its law Gθ, given by the Laplace transform

EGθ
[exp (−〈a, ·〉)] = exp

(
−θ

∫
Rd

log(1 + a(x))dm(x)
)

, (2.2)

is called Gamma measure where a : R
d → � is such that log(1 + a(·)) ∈ L1(Rd, m).

In [8] the Gamma measures are discussed in the context of representation theory of
groups. A constructive approach is presented in [7, Definition 2.2], where R

d is replaced
by [0, 1].
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Quasi-invariance of Gθ. Fix θ > 0 and set

M :=
{

f ∈ Cb(Rd)
∣∣∣ f is supported by a compact set

}
(2.3)

Definition 2.4 (cf. [7, Chapter 3]). For each h ∈ M we define the multiplicator

Mh : K → K

η �→ ehη :=
∑

x∈τ(η) eh(x)sxδx.

That is (Mhη)(x) = eh(x)η(x).

This multiplicator changes the weights of the discrete measure η ∈ K at a point
x ∈ τ(η) depending on that point. I.e., in our interpretation the mark of a particle is
changed.

Theorem 2.5 (see [4] and cf. [7, Theorem 3.1]). For each h ∈M, the Gamma measure
Gθ is quasi-invariant under Mh, and the corresponding density is given by

d(MhGθ)
dGθ

(η) = exp
(
−θ

∫
Rd

h(x)m(dx)
)

exp
(
−
∫

Rd

(
e−h(x) − 1

)
dη(x)

)
.

3. Differential geometry

After introducing a gradient w.r.t. the movement of the marks and one w.r.t. changing
the positions, we merge them to obtain one acting on both components. The results of
this section are explained in more detail in [4, 3].

3.1. Gradient w.r.t. the motion of marks. If no confusion is possible we denote
without any further remarks by F that cylindrical function F ∈ FC1

b (K,M) given by

F (η) = gF (〈ρ1, η〉, . . . , 〈ρN , η〉), (3.1)

where gF ∈ C1
b (�N ), η ∈ K and for i = 1, . . . , N , N ∈ � and ρi ∈M.

We note that the transformation Mth, t ∈ R and h ∈ M, only changes the marks
of the discrete measure η. Thus the related directional derivative is a property of the
marks.

Definition 3.1. The directional derivative of a function F : K → � in direction h ∈M
is defined as

∇K
R+,hF (η):=

d

dt
F (Mth(η))

∣∣∣∣
t=0

,

whenever the expression on the right-hand side exists.

We set the tangent space to K at η ∈ K as

T�+,η := L2(Rd, η).

Definition 3.2. We define the gradient ∇K
R+

of a function F : K → � by

∇K
R+

F : K → T·K

η → (∇K
R+

F )(η) ∈ TηK,

whenever the directional derivative of F in each direction h ∈M exists and

∇K
R+,hF (η) =

〈
∇K

R+
F (η), h

〉
T K

R+,η

=: 〈∇K
R+

F, h〉(η) for all h ∈M. (3.2)
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Lemma 3.3. For each F ∈ FC1
b (K,M) the gradient is well-defined (and independent

of the representation of F ):

(∇K
R+

F )(η) :=
N∑

i=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)ρi,

where ∂igF denotes the partial derivative w.r.t. the i-th component of gF .

3.2. Gradient w.r.t. the change of the positions. Let V0(Rd) denote the set of all
C∞-vector fields on R

d with compact support. For any x ∈ R
d, v ∈ V0(Rd) the curve

�  t �→ φv
t (x) ∈ R

d is defined as the solution to the following Cauchy problem{
d
dtφ

v
t (x) = v(φv

t (x))
φv

0(x) = x

We fix v ∈ V0(Rd). Having the group φv
t , t ∈ �, we can consider for any η ∈ K the curve

�  t �→ φv
t (η) ∈ K.

Definition 3.4. For a function F : K → � we define the directional derivative along
the vector field v ∈ V0(Rd) as

(∇K
Rd,vF )(η) :=

d

dt
F (φv

t
�η) |t=0,

provided the right-hand side exists. Here, � means that we take the image measure.

Definition 3.5. We define the tangent space T K
Rd,η to the cone K at the positive dis-

crete measure η ∈ K to be the Hilbert space of measurable η-square integrable sections
(measurable vector fields) Vη : R

d → R
d with the scalar product

〈V 1
η , V 2

η 〉T K

Rd,η

:=
∫

Rd

〈V 1
η (x), V 2

η (x)〉Rdη(dx),

where V 1
η , V 2

η ∈ T K
Rd,η.

Definition 3.6. Let the function F : K → � fulfill that for all v ∈ V0(Rd) the directional
derivative ∇K

Rd,vF exists. The intrinsic gradient of such a function F : K → � is defined
as the mapping K  η �→ (∇K

RdF )(η) ∈ TηK such that for any v ∈ V0(Rd)

(∇K
Rd,vF )(η) = 〈(∇K

RdF )(η), v〉T K

Rd,η

. (3.3)

The intrinsic gradient ∇K
Rd is defined for all those functions for which the above holds.

3.3. Gradient on the cone. After having defined the gradient w.r.t. the motion of the
marks and the one w.r.t. the change of positions, we glue the pieces together.

Definition 3.7. Let h ∈M and v ∈ V0(Rd), then the directional derivative of a function
F : K → � at the point η ∈ K is defined to be

(∇K
h,vF )(η) := (∇K

R+,hF )(η) + (∇K
Rd,vF )(η)

and the gradient as

∇K := (∇K
R+

,∇K
Rd),

whenever the objects exist.

Furthermore, we set the tangent space of K at η ∈ K to be

TηK := T K
R+,η ⊕ T K

Rd,η. (3.4)

Lemma 3.8. For each F ∈ FC1
b (K, C1

0 (Rd)) the gradient ∇K exists.
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4. Dirichlet forms

Our aim is to define some Dirichlet forms on the cone K of positive discrete measures
over R

d. In the framework of [5] the case of a finite measure on the marks is treated.
Translating our task to that framework requires an infinite measure on the marks. Al-
though we lack a quasi-invariance formula on the space of points, we obtain a Dirichlet
form on the cone K. The Dirichlet form approach (cf. e.g. [2], [6]) is used to obtain the
Dirichlet forms, i.e., we define a bilinear form, whose closure is a Dirichlet form.

4.1. Integration by parts formula.

Theorem 4.1 (see [4]). For each h ∈M, v ∈ V0(Rd) and η ∈ K we define the following
logarithmic derivative

〈βGθ (η), (h, v)〉TηK :=〈βGθ
ext(η), h〉T K

R+,η
+ 〈βGθ

int(η), v〉T K

Rd,η

=− θ〈h, m〉+ 〈h, η〉+
∫

Rd

divR
d

v(x)η(dx).

We obtain for all F , G ∈ FC∞
b (K, C∞

0 (Rd)), all h ∈ M and all v ∈ V0(Rd) an integration
by parts formula, i.e.,∫

K

∇K
h,vF (η)G(η)Gθ(dη) =−

∫
K

F (η)∇K
h,vG(η)Gθ(dη)

−
∫

K

F (η)G(η)〈βGθ (η), (h, v)〉TηKGθ(dη).

Definition 4.2. A function V : K → � is called a differentiable cylindrical vector field,
iff it is of the following form

V (η) :=

(
N∑

i=1

gi(η)φi,

N∑
i=1

hi(η)vi

)

where for i = 1, . . . , N gi, hi ∈ FC∞
b (K, C∞

0 (Rd)), φi ∈ M and vj ∈ V0(Rd). By V K
cyl we

denote the set of them. Moreover,

VR+ :=
N∑

i=1

gi(η)φi and VRd :=
N∑

i=1

hi(η)vi.

The gradient of a function F ∈ FC∞
b (K, C∞

0 (Rd)) is exactly of that form, i.e., ∇KF ∈
V K

cyl. Before we derive a formula for the adjoint of such vector fields, we have to check
that the following integrals are finite. This ensures that the adjoint of the gradient can
be well-defined.

Lemma 4.3. Let V1, V2 ∈ V K
cyl, then

∫
K

〈V1(η), V2(η)〉TηK Gθ(dη) < ∞. (4.1)

Proof. The differentiable cylindrical vector fields are bounded and finitely supported.
Thus the integral is finite because the moments of the Gamma measure Gθ exist and are
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finite: We know that there exist Λ ∈ Bc(Rd) and C, C̃ > 0 such that∫
K

〈V1(η), V2(η)〉TηK Gθ(dη) =
∫

K(Λ)

〈V1(η), V2(η)〉TηK Gθ,Λ(dη)

≤ C

N∑
i=1

Ñ∑
j=1

∫
K(Λ)

∫
Λ

φi(x)φj(x) + 〈vi, vj〉Rd η(dx)Gθ,Λ(dη)

≤ C̃

∫
K(Λ)

〈�Λ, η〉 Gθ,Λ(dη) < ∞. �

Theorem 4.4. Fix

V (η) :=

(
N∑

i=1

gi(η)φi,

N∑
i=1

hi(η)vi

)
∈ V K

cyl.

Then we have for all F ∈ FC∞
b (K, C∞

0 (Rd)) that∫
K

〈∇KF (η), V (η)
〉

TηK
Gθ(dη) =

∫
K

F (η)
((∇K

)�,Gθ
V
)

(η)Gθ(dη)

= −
∫

K

F (η)
N∑

i=1

〈
∇K

R+
gi, φi

〉
T K

R+,η

+
〈∇K

Rdhi, vi

〉
T K

Rd,η

Gθ(dη)

+
∫

K

F (η)
(
〈βGθ

ext(η), VR+(η)〉T K
R+,η

+ 〈βGθ
int(η), VRd(η)〉T K

Rd,η

)
Gθ(dη).

(4.2)

Proof. This follows by the definition of the tangent space (cf. (3.4)) and using Theo-
rem 4.1 twice (once for h = 0 and once for v being the identity). The finiteness of the
involved integrals follows by Lemma 4.3.

In detail, we see that∫
K

〈(∇KF
)
(η), V (η)

〉
TηK

Gθ(dη)

=
∫

K

〈(
∇K

R+
F
)

(η), VR+(η)
〉

T K
R+,η

Gθ(dη) +
∫

K

〈(∇K
RdF

)
(η), VRd(η)

〉
T K

Rd,η

Gθ(dη)

=
∫

K

F (η)

(
−

N∑
i=1

〈
∇K

R+
gi, φi

〉
T K

R+,η

+ 〈βGθ
ext(η), VR+(η)〉T K

R+,η

)
Gθ(dη)

+
∫

K

F (η)

(
−

N∑
i=1

〈∇K
Rdhi, vi

〉
T K

Rd,η

+ 〈βGθ

int(η), VRd(η)〉T K

Rd,η

)
Gθ(dη)

=
∫

K

F (η)
((∇K

)�,Gθ
V
)

(η)Gθφ(dη),

where we used the definition of the adjoint in the last line. �

4.2. Extrinsic Dirichlet form. We define for F, G ∈ FC1
b (K,M)

EGθ
ext(F, G) :=

∫
K

〈
∇K

R+
F (η),∇K

R+
G(η)

〉
T K

R+,η

Gθ(dη).

It is well-defined by Lemma 4.3.

Proposition 4.5. We have for F, G ∈ FC2
b (K,M) that

EGθ
ext(F, G) =

∫
K

(LGθ
ext F )(η)G(η)Gθ(dη).
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Here,

(LGθ
ext F )(η) := −

N∑
l,k=1

gl,k〈ρk, ρl〉T K
R+,η

+ βGθ
ext(∇K

R+
F (η), η)

where for 1 ≤ l, k ≤ N

gl,k(η) := ∂l∂kg(〈ρ1, η〉, . . . , 〈ρN , η〉) ∀η ∈ K.

Proof. This follows by Theorem 4.4. Namely, for an arbitrary cylindrical function F (η) =
gF (〈ρ1, η〉, . . . , 〈ρN , η〉) ∈ FC2

b (K,M) we choose for i = 1, . . . , N φi = ρi and

gi(η) := ∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉). (4.3)

Moreover, the generator is independent of the representation of F (cf. [3, Section 6.2]).
�

Proposition 4.6. (EGθ
ext,FC2

b (K,M)) is a closable, symmetric positive definite bilinear
form.

Proof. Since FC∞
b (K,M) is a dense linear subspace of L2(K,Gθ) (cf. [3, Subsection

6.2.1]), the bilinear form is densely defined. Obviously EGθ
is a symmetric bilinear form.

We prove the positive definiteness: For F ∈ FC2
b (K,M) it holds that (using (4.3))

EGθ
ext(F, F ) =

∫
K

∫
Rd

N∑
k=1

N∑
l=1

gk(η)gl(η)ρk(x)ρl(x)η(dx)Gθ(dη)

=
∫

K

∫
Rd

(
N∑

k=1

∂kF (η)ρk(x)

)2

η(dx)Gθ(dη),

(4.4)

which is positive, because η ∈ K. By [6, Proposition I.3.3] follows the rest of the
claim. �

By (EGθ
ext,D(EGθ

ext)) we denote the closure w.r.t.

EK
ext,1 := 〈·, ·〉L2(K,Gθ) + EGθ

ext.

Theorem 4.7. (EGθ
ext,D(EGθ

ext)) is a conservative Dirichlet form.

Proof. Let ρε ∈ C∞
b (�) such that

(1) ρε : �→ [−ε, 1 + ε] and ρ
′
ε ≤ 1,

(2) ρε(t) = t ∀t ∈ [0, 1],
(3) ∀t1 ≥ t2: ρε(t1) ≤ ρε(t2).

Then |ρε(t)| ≤ |ρ′ε(t)||t| ≤ |t|. For any F ∈ FC2
b (K,M) we have that ρε ◦ F ∈ D(EGθ

ext)
and we see using (4.4) that

lim sup
ε→0

EGθ
ext(ρε ◦ F, ρε ◦ F ) ≤ EGθ

ext(F, F ).

Hence, by [6, Proposition I.4.10], the closure is a Dirichlet form. That it is conservative
is obvious. �

4.3. Intrinsic Dirichlet form. We define for F, G ∈ FC2
b (K, C2

0 (Rd)) the gradient
bilinear form

EPλ

int (F, G) :=
∫

K

〈∇K
RdF (η),∇K

RdG(η)
〉

T K

Rd,η

Gθ(dη). (4.5)

By Lemma 4.3 it is well-defined.
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Proposition 4.8. For F ∈ FC2
b (K, C2

0 (Rd)) we set using its standard representation

(LGθ
int F )(η):=−

N∑
i,j=1

gi,j(η)
∫

Rd

〈∇R
d

ρi(x),∇R
d

ρj(x)〉Rddη(x)

+
N∑

i=1

gi(η)
∫

Rd

ΔR
d

ρi(x)dη(x)

where ∇R
d

is the gradient in R
d and ΔR

d

denotes the Laplace operator on R
d. Then we

have for all F, G ∈ FC2
b (K, C2

0 (Rd))

EPλ

int (F, G) =
∫

K

(LGθ

int F )(η)G(η)Gθ(dη); (4.6)

and EPλ
int is a well-defined, positive definite, symmetric bilinear form. Moreover, it is

closable.

Proof. For the proof we use Theorem 4.1 and that divR
d∇R

d

= ΔR
d

:

EPλ

int (F, G) =
∫

K

〈∇K
RdF (η),∇K

RdG(η)〉T K

Rd,η

Gθ(dη) =
∫

K

(LGθ

int F )(η)G(η)Gθ(dη).

This implies the symmetry, bilinearity and the generator form of the form. We see its
positive definiteness by

EPλ

int (F, F )=
∫

K

〈∇K
RdF (η),∇K

RdF (η)〉T K

Rd,η︸ ︷︷ ︸
≥0

Gθ(dη) ≥ 0.

The closability now follows by [6, Proposition I.3.3]. �

By (EPλ

int ,D(EPλ

int )) we denote its closure w.r.t.

EK
int,1 := 〈·, ·〉L2(K,Gθ) + EGθ

int.

Theorem 4.9. The closure (EGθ
int,D(EGθ

int)) is a Dirichlet form.

Proof. Using ρε as in the proof of Theorem 4.7 we see

EGθ

int(ρε ◦ F, ρε ◦ F ) =
∫

K

〈∇K
Rd(ρε ◦ F )(η),∇K

Rd(ρε ◦ F )(η)〉T K

Rd,η

Gθ(dη)

=
∫

K

N∑
i,j=1

∂i(ρε ◦ gF )(〈η, ρ1〉, . . . , 〈η, ρN 〉)∂j(ρε ◦ gF )(〈η, ρ1〉, . . . , 〈η, ρN 〉)

×
∫

Rd

〈∇R
d

ρi(x),∇R
d

ρj(x)〉Rdη(dx)Gθ(dη)

=
∫

K

(ρ′ε(F (η)))2
N∑

i,j=1

∂igF (〈η, ρ1〉, . . . , 〈η, ρN 〉)∂jgF (〈η, ρ1〉, . . . , 〈η, ρN 〉)

×
∫

Rd

〈∇R
d

ρi(x),∇R
d

ρj(x)〉Rdη(dx)Gθ(dη)

≤ EGθ

int(F, F )

Thus by [6, Propositions I.4.7 and I.4.10] the bilinear form is a Dirichlet form. �
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4.4. Dirichlet form. We define for F, G ∈ FC2
b (K, C2

0 (Rd))

EGθ (F, G) :=
∫

K

〈∇KF,∇KG〉TηKGθ(dη).

It is well-defined by Lemma 4.3.

Corollary 4.10. We have for F, G ∈ FC2
b (K, C2

0 (Rd)) that

EGθ (F, G) =
∫

K

F (η)(LGθ G)(η)Gθ(dη),

where

(LGθ G)(η) := (LGθ
ext G)(η) + (LGθ

int G)(η)

Proof. This follows by Theorem 4.4 and by Propositions 4.5 and 4.8. �
Proposition 4.11. (EGθ ,FC2

b (K,M) is a closable, symmetric positive definite bilinear
form.

Proof. This follows by (3.4), Proposition 4.6 and Proposition 4.8. �
We denote its closure w.r.t.

EGθ
1 := 〈·, ·〉L2(K,Gθ) + EGθ

by (EGθ ,D(EGθ )). In general this closure does not have to coincide with the ones corre-
sponding to the Dirichlet forms EGθ

ext and EGθ

int.

Theorem 4.12. (EGθ ,D(EGθ )) is a conservative Dirichlet form.

Proof. This follows by the arguments used to prove Theorems 4.7 and 4.9. �
Remark 4.13. In addition one can show the quasi-regularity of the Dirichlet forms and
obtain an associated Markov process with “nice” path properties.

All the presented results hold for the more general setting of R
d being replaced by an

arbitrary connected, separable orientated C∞-Riemannian manifold X with the volume
element v and the intensity measure being m(dx) = ρ(x)v(dx), where ρ

1
2 ∈ H1,2

loc (X, v).
These result are presented in [3], whose publication is under preparation.
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