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Abstract. We calculate the convexity adjustment to the forward rate in the Vasicek model for the
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options.
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1. Introduction

Forward contracts are widely used financial instruments used for purchase/sale of some
asset at some future date at the specified fixed price. An example of forward contract is
a forward rate agreement (FRA) on interest rate as an underlying asset.

FRA is a cash settled contract with the payment based on the net difference between
the floating interest rate and the fixed rate [1] . For example, assume the following data:

• fixed rate K = 3.5 %,
• floating rate L = 4 %,
• nominal N = $5m,
• days in contract period τ = 181.

Then at the end of the forward period there will be a settlement

FRA payment = (0.04− 0.035) · $5m · 181

360
= $12, 569.44.

Fixed rate which makes the initial price of the FRA to be equal 0 is called forward rate.
There exists an exotic in-arrears contract which is settled at the beginning of the

forward period not at the end. The forward rate of an in-arrears contract is greater than
the forward rate of a vanilla contract and the difference between these two rates depends
on stochastic model used to simulate financial processes and called convexity adjustment.
The purpose of this work is to study in-arrears contracts and calculate this adjustment.

Similar studies may be found in [2] where LIBOR in-arrears rate was considered. The
adjustment was calculated using the replication strategy and solving stochastic differen-
tial equation in the Libor market model. Another approach using the change of measure
was studied in [3]. However, simple lognormal stochastic model was chosen to calculate
an in-arrears forward LIBOR rate. There are also researches on in-arrears options –
caps and floors [4] where prices of options were found using the replication strategy for
option-like pay-off. In [5] and [6], authors explored the Vasicek and Cox–Ingersoll–Ross
models within LIBOR in-arrears rate. They obtained the adjustment from numerical
solution of convexity term SDE.
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We took a single-factor Vasicek stochastic model for the instantaneous interest spot-
rate [7] and analytically calculated the adjustment using the change of measure frame-
work. As a result, it was shown that the convexity adjustment is an increasing and
convex function of mean-reversion. Moreover, we proved using the no-arbitrage princi-
ple that the convexity adjustment is non-negative regardless the stochastic model used
in its modeling. Similar proof may be found in [8], but the author considers scenario
with three given particular cases, not the general one. At the end, we briefly studied
in-arrears options to find out that their prices also appear to be greater than those of
vanilla options due to the adjustment as in the case of in-arrears forward LIBOR rate.

This paper is organised as follows. Section 2 introduces some basic definitions which
we use further deriving the adjustment. Section 3 contains proof for no-arbitrage interval
of rates. In Section 4, we calculate the convexity adjustment and include some figures
which are consistent with results obtained in [5]. Section 5 summarises the properties of
the adjustment. Finally, in Section 6, in-arrears options on interest rate are considered.

2. Definitions

We introduce some definitions which we will use further in this paper. Zero-coupon
bond is often considered as a basic contract for interest rate derivative.

Definition 2.1. Zero-coupon bond (ZCB) with maturity T is a security which promises
to pay owner 1 currency unit at T . We denote ZCB price at the moment t by P (t, T ),
where P (t, T ) is an Ft-measurable function and P (T, T ) = 1.

LIBOR is the indicative rate on which banks are willing to lend money each other,
LIBID is the indicative rate on which banks are willing to borrow money. We assume
equivalence of LIBID and LIBOR. We also make standard “Black–Sholes–Merton model”
assumptions:

• no transaction costs,
• no default risk,
• no funding risk,
• no liquidity risk.

Now we define LIBOR rate and forward rate agreement more precisely.

Definition 2.2. We denote LIBOR spot rate at the moment t for a time period α > 0
by L(t, t, t + α). Bank can lend (or borrow) N currency units at the time t for a period
α and get (return) N(1 + αL(t, t, t + α)) currency units at the moment t + α.

Definition 2.3. Forward rate agreement (FRA) is an over-the-counter contract for the
exchange of two cash flows at some date. Floating reference rate is fixed at T1. Buyer
of this contract at t ≤ T1 with maturity T2, fixed rate K and principal N , agrees on
following obligation between counterparties at T2:

• pay (T2 − T1)K ·N currency units to contract counterparty,
• receive (T2 − T1)L(T1, T1, T2) ·N currency units from contract counterparty.

The price of the FRA at T2 is equal to (T2 − T1)(L(T1, T1, T2)−K)N .

For simplicity, we will assume that principal amount N = 1.

Definition 2.4. Forward rate L(t, T1, T2) is the fixed rate K which makes price of the
FRA contract at t equal to 0 for t ≤ T1 ≤ T2.

It can be shown [1] that L(t, T1, T2) = P (t,T1)−P (t,T2)
(T2−T1)P (t,T2) .

Now, we consider exotic in-arrears FRA: this contract is settled at time T1, rather
than T2 as plain vanilla FRA.
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Definition 2.5. In-arrears FRA (iFRA) is an over-the-counter contract for the exchange
of two cash flows at some date. Floating reference rate is fixed at T1. Buyer of this
contract at t ≤ T1 with maturity T1, fixed rate K and principal N , agrees on following
obligation between counterparties at T1 (not T2):

• pay (T2 − T1)K ·N currency units to counterparty,
• receive (T2 − T1)L(T1, T1, T2) ·N currency units from counterparty.

The price of the iFRA at T1 is equal to (T2 − T1)(L(T1, T1, T2)−K)N .

We will denote K which makes iFRA to have a 0 price at t by iL(t, T1, T2).
A portfolio of assets is called self-financed if its value changes only due to changes in

the asset prices.

Definition 2.6. Self-financed portfolio A is called an arbitrage portfolio on some prob-
ability space (Ω,F ,P) if its price (value) at the time t is V A(t) ≤ 0 and ∃T > t :
P(V A(T ) ≥ 0) = 1 and P(V A(T ) > 0) > 0.

We use the assumption of absence of any arbitrage portfolio on the market.

3. No-arbitrage values of in-arrears forward LIBOR rate

Statement 3.1. Suppose that P(L(T1, T1, T2) 6= L(t, T1, T2)) > 0 under real-word mea-
sure. Then the in-arrears forward rate iL(t, T1, T2) > forward rate L(t, T1, T2), t < T1 ≤
≤ T2.

Opportunity to get the same payoff in the iFRA as in the FRA should be more expen-
sive because it can be quickly used for one’s operation needs. We will prove statement
by contradiction assuming opposite and constructing an arbitrage portfolio.

Proof. Assume that iL(t, T1, T2) ≤ L(t, T1, T2). Without loss of generality, let (T2−T1) =
= 1 year. Consider the following strategy:

• t: buy iFRA contract with K = iL(t, T1, T2), principal amount N = $1, sell FRA
contract with K = L(t, T1, T2) and principal N = $1 · (1 +L(t, T1, T2)). Portfolio
value Vt = 0 because the contracts are made with forward rates.
• T1: iFRA settlement occurs

VT1 = (L(T1, T1, T2)− iL(t, T1, T2)).

We fund this payoff (lending it or borrowing depending on sign of payoff) using
L(T1, T1, T2) rate.
• T2: FRA settlement occurs

VT2
= (1 + L(t, T1, T2))(L(t, T1, T2)− L(T1, T1, T2))︸ ︷︷ ︸

FRA payoff

+

+ (L(T1, T1, T2)− iL(t, T1, T2))︸ ︷︷ ︸
iFRA payoff

(1 + L(T1, T1, T2)).

Using the fact that iL(t, T1, T2) ≤ L(t, T1, T2), rewrite the portfolio value as
VT2
≥ (L(t, T1, T2)− L(T1, T1, T2))2 ≥ 0.

We managed to construct an arbitrage portfolio which is in contradiction with our
assumption of no-arbitrage. Hence, iL(t, T1, T2) > L(t, T1, T2). �

Remark. It is worth noting that when t = T1 we get iL(t, T1, T2) = L(t, T1, T2) because
the reference rate L(T1, T1, T2) is fixed immediately at t and should be equal to the
forward rate.

We proved Statement 3.1 without assuming anything about the stochastic model.
Therefore, it holds regardless of the model which we use to simulate financial processes.
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4. Calculation of the in-arrears forward LIBOR rate

We use the Vasicek model as a model for instantaneous interest spot-rate

dr(t) = (θ− ar(t))dt + σdW (t).

Solving this SDE explicitly [2], one can see that

r(t) ∼ N

(
r(0)e−at + θ

1− e−at

a
,σ2 1− e−2at

2a

)
.

Zero-coupon bond with maturity T has the following value under this model

P (t, T ) = A(t, T )e−B(t,T )r(t),

where

B(t, T ) =
1− e−a(T−t)

a
,

A(t, T ) = exp

(
(B(t, T )− (T − t))

(
θ

a
− σ2

2a2

)
− σ2B(t, T )2

4a

)
.

Consider iFRA. Forward rate is the expected value of the future rate under appropriate
forward measure [10]:

iL(t, T1, T2) = EQT1
[L(T1, T1, T2)|Ft]. (1)

Process L(t, T1, T2) is not a martingale under QT1 as it is under QT2 . Therefore, we will
change measure using the Radon–Nykodym theorem [9]

dQT1

dQT2

=
P (0, T2)

P (0, T1)
(1 + (T2 − T1)L(T1, T1, T2)).

Changing measure in (1), we get

iL(t, T1, T2) =
P (t, T2)

P (t, T1)
L(t, T1, T2) + (T2 − T1)

P (t, T2)

P (t, T1)
EQT2

[L(T1, T1, T2)2|Ft]. (2)

To calculate iL(t, T1, T2), we should find

EQT2
[L(T1, T1, T2)2|Ft] =

1

(T2 − T1)2
EQT2

[(
P (T1, T1)

P (T1, T2)
− 1

)2∣∣∣∣Ft

]
. (3)

We need to know the distributions of the following functions:
(

P (T1,T1)
P (T1,T2)

)2

and P (T1,T1)
P (T1,T2) .

Using Ito’s lemma [10], we find P (t, Ti) under the risk-neutral measure

dP (t, T1) = r(t)P (t, T1)dt + σB(t, T1)P (t, T1)dW (t),

dP (t, T2) = r(t)P (t, T2)dt + σB(t, T2)P (t, T2)dW (t).

We denote σB(t, Ti) = ζTi(t). We write the dynamics of the ratio of bonds with maturity
T1 and T2 respectively under the risk-neutral measure [10]:

d

(
P (t, T1)

P (t, T2)

)
=

P (t, T1)

P (t, T2)

(
ζT1(t)− ζT2(t)

)(
dW (t)− ζT2(t)dt

)
.

Now, change the risk-neutral measure to the forward QT2
-measure using the Girsanov

theorem [10]

WT2(t) = W (t)−
∫ t

0

ζT2(s)ds.

Then

d

(
P (t, T1)

P (t, T2)

)
=

P (t, T1)

P (t, T2)
(ζT1(t)− ζT2(t))dWT2(t).
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We solve the following stochastic differential equation

d

(
ln

(
P (t, T1)

P (t, T2)

))
=

1
P (t,T1)
P (t,T2)

d

(
P (t, T1)

P (t, T2)

)
− 1

2

1(
P (t,T1)
P (t,T2)

)2 d

(
P (t, T1)

P (t, T2)

)2

=

= (ζT1(t)− ζT2(t))dWT2(t)− 1

2
(ζT1(t)− ζT2(t))2dt.

P (T1, T1)

P (T1, T2)
=

P (t, T1)

P (t, T2)
e
∫T1
t (ζT1 (t)−ζT2 (t))dWT2 (t)− 1

2

∫T1
t (ζT1 (t)−ζT2 (t))2dt.

Next, we find the expectation of this lognormal process

EQT2

[
P (T1, T1)

P (T1, T2)

∣∣∣∣Ft

]
=

P (t, T1)

P (t, T2)
. (4)

So, P (t,T1)
P (t,T2) is a martingale under QT2

-measure.

Now, we do the same for the
(

P (t,T1)
P (t,T2)

)2

under QT2-measure.

d

(
ln

(
P (t, T1)

P (t, T2)

)2
)

= 2 · d
(

ln

(
P (t, T1)

P (t, T2)

))
,

d

(
ln

(
P (t, T1)

P (t, T2)

)2
)

= 2(ζT1(t)− ζT2(t))dWT2(t)− (ζT1(t)− ζT2(t))2dt.

It follows that(
P (T1, T1)

P (T1, T2)

)2

=

(
P (t, T1)

P (t, T2)

)2

e2
∫T1
t (ζT1 (t)−ζT2 (t))dWT2 (t)−

∫T1
t (ζT1 (t)−ζT2 (t))2dt.

EQT2

[(
P (T1, T1)

P (T1, T2)

)2∣∣∣∣Ft

]
=

(
P (t, T1)

P (t, T2)

)2

eI , (5)

where I =
∫T1

t (ζT1(t)− ζT2(t))2dt,

I =
σ2

a2

(
1

2a
− 1

2a
e−2a(T1−t) − 1

a
e−a(T2−T1) +

1

2a
e−2a(T2−T1) +

+
1

a
e−a(T1+T2)+2at − 1

2a
e−2a(T2−t)

)
.

Substituting (4) and (5) in (3), we rewrite (2) distinguishing L(t, T1, T2)

iL(t, T1, T2) = L(t, T1, T2) + L(t, T1, T2)
P (t, T2)− P (t, T1)

P (t, T1)
+

+
P (t, T2)

(T2 − T1)P (t, T1)

[(
P (t, T1)

P (t, T2)

)2

eI − 2

(
P (t, T1)

P (t, T2)

)
+ 1

]
. (6)

It can be seen that CA has an upper bound, and we can find it for T1 → ∞. Let
T2 = T1 + τ, then

lim
T1→∞

CA =
1

τ
e( θ

a−
σ2

2a )τ(e
σ2

2a3 (1−2e−aτ+e−2aτ) − 1).

Here are some values of the convexity adjustment for different parameters as a function
of beginning of accruing period T1, speed of mean reversion θ and volatility σ.
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Figure 1. Figure of adjustment as a function of maturity with t = 0, σ = 10 %,
Ti+1 − Ti = 0.5, θ = 0.035, r(t) = 5 % and forward LIBOR rate

Figure 2. t = 0, σ = 10 %,
Ti+1−Ti = 0.5, a = 0.7, r(t) = 5 %

Figure 3. t = 0, θ = 0.035,
Ti+1−Ti = 0.5, a = 0.7, r(t) = 5 %

Figure 4. t = 0, T1 = 5 years,
T2 − T1 = 0.5, r(t) = 5 %

Figure 5. t = 0, T1 = 5 years,
T2 − T1 = 0.5, r(t) = 5 %

5. Properties

Now, we study the sign of the first and the second derivative of the CA with respect
to mean-reversion. Rewrite it from (6) as follows:

CA(t, T1, T2) =
1

T2 − T1

P (t, T1)

P (t, T2)
(eI − 1).
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Then the first derivative is

∂CA(t, T1, T2)

∂θ
=

eI − 1

T2 − T1

∂

∂θ

(
P (t, T1)

P (t, T2)

)
, (7)

∂

∂θ

(
P (t, T1)

P (t, T2)

)
=

1

a

P (t, T1)

P (t, T2)
(B(t, T1)−B(t, T2) + T2 − T1), (8)

B(t, T1) ≥ B(t, T2), I ≥ 0.

So,

∂CA(t, T1, T2)

∂θ
≥ 0. (9)

It is clear from the (7) and (8) that

∂2CA(t, T1, T2)

∂θ2
≥ 0. (10)

Finally, we can summarise the properties of the convexity adjustment:

• Fig. 1 confirms our Statement 3.1. that CA is non-negative.
• CA has a limit when T1 →∞.
• From (9) and (10) we could note that CA is increasing and convex function of

mean-reversion.

6. Options

As a part of our study of an in-arrears contract we also consider in-arrears options on
interest rate – caplet and floorlet.

Definition 6.1. An in-arrears caplet (floorlet) is a European-style call (put) option on
interest rate which is fixed at T1. Buyer of this option at t ≤ T1 with maturity T1, strike
K and principal amount N is offered with the following rights at time T1:

• pay (receive) (T2 − T1)K ·N currency units,
• receive (pay) (T2 − T1)L(T1, T1, T2) ·N currency units.

Now, we find prices of this options.

Cpl(t, T1, T2,K) = (T2 − T1)P (t, T1)EQT1
[(L(T1, T1, T2)−K)+|Ft],

Fl(t, T1, T2,K) = (T2 − T1)P (t, T1)EQT1
[(K − L(T1, T1, T2))+|Ft].

We apply the same change of measure technique as in Section 3.

Cpl(t, T1, T2,K) = P (t, T2)EQT2

[
P (T1, T1)

P (T1, T2)

(
P (T1, T1)

P (T1, T2)
− 1− (T2 − T1)K

)+∣∣∣∣Ft

]
. (11)

We split the mathematical expectation in (11) into 2 parts:

EQT2

[(
P (T1, T1)

P (T1, T2)

)2

1P (T1,T1)

P (T1,T2)
>1+(T2−T1)K

∣∣∣∣Ft

]
=

=

(
P (t, T1)

P (t, T2)

)2
1√
2π

∫ ∞

l

exp

(
−x2

2

)
exp

(
2x
√
I − I

)
dx =

=

(
P (t, T1)

P (t, T2)

)2

eI(1−N(l − 2
√
I)),
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and

EQT2

[
P (T1, T1)

P (T1, T2)
1P (T1,T1)

P (T1,T2)
>1+(T2−T1)K

∣∣∣∣Ft

]
=

=
P (t, T1)

P (t, T2)

1√
2π

∫ ∞

l

exp

(
−x2

2

)
exp

(
x
√
I − 1

2
I

)
dx =

=
P (t, T1)

P (t, T2)
(1−N(l −

√
I)),

where

l =

ln

(
1+(T2−T1)K

P (t,T1)

P (t,T2)

)
+ 1

2I

√
I

,

and

I =

∫ T1

t

(ζT1(t)− ζT2(t))2dt.

So, the caplet price is

Cpl(t, T1, T2,K) =
P (t, T1)2

P (t, T2)
eIN(2

√
I − l)− (1 + (T2 − T1)K)P (t, T1)N(

√
I − l).

We will find the floorlet price using put-call parity of European options.

Fl(t, T1, T2,K) = Cpl(t, T1, T2,K)− (T2 − T1)P (t, T1)(iL(t, T1, T2)−K).

Here, we compare vanilla and in-arrears options on the figures.

Figure 6. K = 5 %, t = 0,
T1 = 0.5 year, T2 = 1 year,
σ = 10 %, θ = 0.035, r(t) = 5 %

Figure 7. K = 5 %, t = 0,
T1 = 0.5 year, T2 = 1 year,
σ = 10 %, θ = 0.035, r(t) = 5 %

As in the case of iFRA, it is clear from Fig. 6 and Fig. 7 that prices of in-arrears
options are greater than of vanilla options due to the adjustment.

7. Conclusion

We derived the formula for calculation of the forward rate in iFRA. It was proved that
the convexity adjustment to the plain vanilla forward rate can not be negative. We also
studied in-arrears option contracts and found that their prices are greater than those of
vanilla options.

Further development of this work assumes usage of two-factor interest rate model
which captures more realistic forward curve. In addition, there may be cases when
contract is settled at any time, not only T2 or T1.
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ÐÎÇÐÀÕÓÍÎÊ ÏÎÏÐÀÂÊÈ ÄÎ ÔÎÐÂÀÐÄÍÎ� ÑÒÀÂÊÈ Â ÌÎÄÅËI
ÂÀÑI×ÅÊÀ ÄËß ÔÎÐÂÀÐÄÍÈÕ IN-ARREARS ÊÎÍÒÐÀÊÒIÂ

ÍÀ ÂIÄÑÎÒÊÎÂÓ ÑÒÀÂÊÓ LIBOR

Ì. Î. ÌÀËÈÕ, I. Ñ. ÏÎÑÒ�ÂÎÉ

Àíîòàöiÿ. Ó ðîáîòi ìè ðîçðàõóâàëè ïîïðàâêó äî ôîðâàðäíî¨ ñòàâêè â ìîäåëi Âàñi÷åêà äëÿ in-
arrears ôîðâàðäíèõ êîíòðàêòiâ. Ç óìîâ áåçàðáiòðàæíîñòi ðèíêó ïîêàçàíî, ùî òàêà ïîïðàâêà ïîâèí-
íà áóòè íåâiä'¹ìíîþ. Òàêîæ çíàéäåíî àíàëiòè÷íó ïîïðàâêó äëÿ in-arrears îïöiîíiâ íà âiäñîòêîâó
ñòàâêó.
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Àííîòàöèÿ. Â äàííîé ðàáîòå ìû ðàcñ÷èòàëè ïîïðàâêó ê ôîðâàðäíîé ñòàâêå â ìîäåëè Âàñè÷åêà
äëÿ in-arrears ôîðâàðäíûõ êîíòðàêòîâ. Èç óñëîâèé áåçàðáèòðàæíîñòè ðûíêà ïîêàçàíî, ÷òî òàêàÿ
ïîïðàâêà äîëæíà áûòü íåîòðèöàòåëüíîé. Òàêæå áûëà íàéäåíà àíàëèòè÷åñêàÿ ïîïðàâêà äëÿ in-
arrears îïöèîíîâ íà ïðîöåíòíóþ ñòàâêó.


