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CHRISTIAN SELINGER

ZETA FUNCTION REGULARIZED LAPLACIAN ON THE SMOOTH
WASSERSTEIN SPACE ABOVE THE UNIT CIRCLE

Via elements of second order differential geometry on smooth Wasserstein spaces of
probability measures we give an explicit formula for a Laplacian in the case that
the Wasserstein space is based on the unit circle. The Laplacian on this infinite
dimensional manifold is calculated as trace of the Hessian in the sense of Zeta func-
tion regularization. Its square field operator is the square norm of the Wasserstein
gradient.

1. Differential geometry of smooth probability densities

Definition 1.1. Let (M, 〈., .〉x) denote a complete simply connected Riemannian mani-
fold without boundary and T1 denote R mod Z equipped with the flat metric.

• P (M) := P = {μ Borel probability measure on M and
∫
dM (x, y)2μ(dx) <∞}

• Pac(M) := Pac = {μ ∈ P : μ! volM}
• P∞(M) := P∞ = {μ ∈ Pac : m(x) := dμ

d volM (x) > 0; for a.e. x ∈M}
• C∞

c (M) is the space of smooth compactly supported funtions on M .
• Given μ, ν ∈ P : Π(μ, ν) = Π := {π ∈ P (M×M) : π(A×M) = μ(A);π(M×B) =
ν(B) for all Borel sets A,B.}.
dW (μ, ν)2 := infπ∈Π

∫
dM (x, y)2π(dx, dy) is called quadratic Wasserstein dis-

tance.
• The metric space (P, dW ) is called Wasserstein space. Convergence in Wasser-

stein distance is equivalent to weak convergence plus convergence of second mo-
ments.
By Prokhorov’s theorem the Wasserstein space is Polish if the underlying space
is so, which is the case for M . The subspace (P∞, dW ) ⊂ (P, dW ) is not com-
plete, e.g. convolution of a positive density with rescaled Gaussians converges in
Wasserstein distance to a Dirac measure.

Theorem 1.1 (Brenier-McCann [2][5]). Given μ, ν ∈ Pac(M), then the optimal transport
plan π realizing the Wasserstein distance between μ and ν is given by

π = (id, exp(∇ϕ))#μ,

i.e.
π(dx, dy) = δ{y=expx(∇ϕ(x))}μ(dx),

where ϕ is a μ-a.s. unique (up to constants) function on M which satisfies (ϕc)c = ϕ
for ϕc(y) := min{x ∈M : d2(x, y)/2 − ϕ(x)}
Theorem 1.2 (Benamou-Brenier [1]). Given μ, ν ∈ Pac(Rd). We denote by Cμ,ν the
set of all curves c : [0, 1] → Pac(Rd) satisfying c(0) = μ and c(1) = ν such that there
exists a time-dependent L2(c(t))-integrable compactly supported vector field vt for which
the continuity equation

ċ(t) = −∇.(c(t)vt)
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holds, i.e. for all ϕ ∈ C∞
0 ([0, 1] ×M) it holds that∫

[0,1]×M
c(t)ϕ̇volMdt = −

∫
[0,1]×M

c(t)vt.∇ϕvolMdt.

Then
dW (μ, ν)2 = inf

Cμ,ν

∫
[0,1]×M

|vt|2c(t)volMdt.

Definition 1.2 (Tangent space). We define the tangent space at a measure μ ∈ P∞(M)
by:

TμP
∞(M) := {∇ϕ ;ϕ ∈ C∞

c (M)}L
2(μ)

and denote the inner product on TμP
∞(M) by 〈∇ϕ,∇ϕ′〉μ :=

∫
M 〈∇ϕ,∇ϕ′〉xμ(dx) for

any μ ∈ P∞(M).

Remark 1.1. P∞(M) is an infinite dimensional manifold in the sense of convenient cal-
culus [3], i.e. the modelling space is not a Banach but a locally convex one, for instance
if M is compact then P∞(M) ⊂ C∞(M), where the latter is a locally convex vector
space which is complete (in the sense that each Mackey-Cauchy sequence this space is
also converging in this space). As topological space P∞(M) is endowed with the smooth
topology, which is the final topology with respect to smooth curves into it. The tangent
space TμP∞ corresponds to notion of kinematic tangent space in [3] p.284. See also [4].

Vector fields are defined as smooth (in the sense of c∞-topology, see [3]) sections of
the tangent bundle and Otto’s formalism suggests to write V ∈ Γ(P∞ ← TP∞) as a
distribution:

V (μ) = −div(μ∇v),
i.e. for all ϕ ∈ C∞

c (M), a function v ∈ C∞(M) and m0 = dμ

dvol :

(V (μ)|ϕ) =
∫
M

〈∇v, ∇ϕ〉xm0(x)vol(dx).

We emphasize that the smooth function v : M � x �→ v̄(m0(x)) ∈ R for v̄ : R → R is a
possible choice, i.e. take v̄(x) = log(x) + 1, then ∇ v(x) = ∇ (log(m0(x)) + 1) = ∇m0(x)

m0(x)

gives the vector field associated to the entropy via Wasserstein gradient [6]:

∇P∞
∫
M

m0 log(m0) vol(dx) = −div(m0 ∇ v)

Tangent map. For a smooth mapping F : P∞(M) → R, an interval I = (−a, a) and
any smooth curve c : I → P∞(M) such that c(0) = μ and ċ(0) = −div(μ∇u) the
tangent map
T(F): TP → R × R

(μ, ċ(0)) �→ (F (μ), T (F )(μ).ċ(0)) := (F (μ), ddt |0(F ◦ c)(t))

Proposition 1.1 (smooth Lie bracket [7]). Given U, V ∈ Γ(TP∞ ← P∞). Since vector
fields are not complete we have to construct their respective flows explicitely: For 0 <
a! ε we define FlUt ,FlVt : (−a, a) × P∞ → P∞ by

∂

∂t
FlUt (μ) = U(FlUt (μ))

= −div(FlUt (μ)∇ū(FlUt (μ)))

resp.
∂

∂t
FlVt (μ) = V (FlVt (μ))

= −div(FlUt (μ)∇v̄(FlVt (μ)))
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Then the Lie bracket reads as follows:

[U, V ](μ) = div(V (μ)∇u) − div(U(μ)∇v) +
+div(μ∇T (u)(μ).V (μ)) − div(μ∇T (v)(μ).U(μ))

Here T (u)(μ) is the tangent map of u at μ, since u is a real-valued function on P it
is the differential of u at μ.

Proof. As a prerequisite we calculate
∂

∂t
T
(
FlU−t

)
(μ),

i.e. the expression we differentiate is the tangent map of FlU−t at μ. By the product rule
applied to the flow equation:

∂

∂t
T (FlU−t)(μ) = T

(
∂

∂t
FlU−t

)
(μ)

= −T
(
−div(FlU−t∇

{
u ◦ FlU−t

}
)
)

(μ)

= div
[
T (FlU−t)(μ)∇

{
u ◦ FlU−t

}
(μ)

]
+

+div
[
(FlU−t)(μ)∇

{
T (u ◦ FlU−t)

}
(μ)

]
= div

[
T (FlU−t)(μ)∇

{
u ◦ FlU−t

}
(μ)

]
+

+div
[
(FlU−t)(μ)∇

{
T (u)(FlU−t(μ))T (FlU−t)(μ)

}]
By definition

[U, V ](μ) =
∂

∂t
|0(FlUt )∗V (μ)

=
∂

∂t
|0(T (FlU−t) ◦ V ◦ FlUt )(μ)

=
(
∂

∂t
|0T (FlU−t)(V ◦ FlUt |0)

)
(μ) + T (FlU−t)|0 ◦

(
∂

∂t
|0V ◦ FlUt

)
(μ)

=
∂

∂t
|0T (FlU−t)(V (μ)) +

∂

∂t
|0V (FlUt (μ))

= div [V (μ)∇u(μ)] + div [μ∇ {T (u)(μ).V (μ)}] +

+
∂

∂t
|0
(
−div

[
FlUt (μ)∇ v(FlUt (μ))

])
= div [V (μ)∇u(μ)] + div [μ∇ {T (u)(μ).V (μ)}] +

−div [U(μ)∇ v(μ)] − div [μ∇ {T (v)(μ).U(μ)}]

�

In view of the Lie bracket we define the covariant derivative (compare to [4]):

Proposition 1.2 (smooth Levi-Cività connection).

∇̃UV (μ) := −div [U(μ)∇ v(μ)] − div [μ∇(T (v)(μ).U(μ))]
= div [div(μ∇u(μ))∇ v(μ)] − div [μ∇(T (v)(μ).U(μ))] ,

i.e. for all ϕ ∈ C∞
c (M) :

(∇̃UV (μ)|ϕ) :=
∫
M

〈∇〈∇ϕ,∇v〉x,∇u〉xμ(dx) +
∫
M

〈∇(T (v)(μ).U(μ)),∇ϕ〉xμ(dx)
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Note that if v does not depend on the density μ, then ∇̃UV (μ) ∈ TμP
∞, for details

see Lemma 4.14 in [4].

Proof. We have to show that

U〈V,W 〉μ = 〈∇̃UV,W 〉μ + 〈V, ∇̃UW 〉μ,

i.e. for I(μ) = 〈V (μ),W (μ)〉μ

U〈V,W 〉μ =
T (I).U

=
d

dt
|0
∫
M

{〈∇ v((id + t∇u(μ))#μ),∇w((id + t∇u(μ))#μ)〉x×

× (id + t∇u(μ))#μ)}

=
∫
M

〈
d

dt
|0∇ v((id + t∇u(μ))#μ),∇w(μ)

〉
x

μ(dx)

+
∫
M

〈
∇ v(μ),

d

dt
|0∇w((id + t∇u(μ))#μ)

〉
x

μ(dx)

+
∫
M

〈∇(〈∇ v(μ),∇w(μ)〉x),∇u(μ)〉x

=
∫
M

〈∇T (v).U, ∇w(μ)〉x μ(dx) +
∫
M

〈∇ v(μ),∇T (w).U〉x μ(dx)

+
∫
M

〈∇∇ v,∇w〉x,∇u〉x μ+
∫
M

〈〈∇ v,∇∇w〉x,∇u〉x μ

= −〈div(μ∇T (v).U), w〉μ − 〈div(μ∇T (w).U), v〉μ
+〈div(divμ∇u)∇ v), w〉μ + 〈div(divμ∇ v)∇u), v〉μ

= 〈∇̃UV,W 〉μ + 〈V, ∇̃UW 〉μ.

Taking some Riemannian connection ∇ definied in terms of the Koszul formula

2〈∇UV,W 〉μ = U〈V,W 〉μ + V 〈W,U〉μ −W 〈U, V 〉μ + 〈W, [U, V ]〉μ
−〈V, [U,W ]〉μ − 〈U, [V,W ]〉μ

and substituting the Lie bracket and the calculations of U〈V,W 〉μ into this formula shows
that ∇ = ∇̃. It is the Levi-Cività connection since ∇̃ is torsion-free by definition. �

2. Second order calculus

In [6] the Hessian of the entropy functional Ent(μ) =
∫

Rn μlog(μ) vol(dx) with respect
to Kantorovich-Rubinstein metric was calculated by second order variation of the entropy
functional along constant speed geodesics. This is possible for any smooth functional
E : Pac → R of the type

E(μ) =
∫
M

e(m(x)) vol(dx),
dμ

dvol
(x) = m(x), e : R+ → R C2.

The calculation of the Hessian will be done in normal coordinates, i.e. covariant deriva-
tives are calculated in directions U ∈ Γ(TP∞) giving rise to geodesics:

U(μ) = −div(μ∇u)

for some u ∈ C∞
c (M) depending not on μ:
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Proposition 2.1 (The Hessian: a variational approach). Let M have Ricci curvature
bounded from below. Given a functional E : Pac(M) → R of the type

E(μ) =
∫
M

e(μ(x))vol(dx)

where e : R+ → R is twice differentiable we define

p(μ) = μe′(μ) − e(μ)
p2(μ) = μp′(μ) − p(μ).

By Hess varE(μ̇, μ̇) we denote the second order variation of E along a geodesic path
t �→ μt in Pac of the form {

∂tμ+ ∇.(μ∇ϕ) = 0
∂tϕ+ |∇ϕ|2

2 = 0.

for ϕ a time-dependent compactly supported function on M . By Γ resp. Γ2 we denote the
square field resp. the iterated square field operator with respect to the Laplace-Beltrami
opererator Δ: Γ(f, g) := 1

2 {Δ(fg) − gΔf − fΔg} and Γ2(f) ≡ Γ2(f, f) := 1
2ΔΓ(f, f) −

Γ(f,Δf). Then

(1) Hess varE(μ̇, μ̇) =
∫
M

Γ2(ϕ0) p(μ) vol +
∫
M

(Δϕ0)2 p2(μ) vol.

Proof. See [9], p441f. �

3. A regularized Laplacian on P
∞(T1)

Proposition 3.1 (Renormalized Laplacian on P∞(T1)). Given a functional
E : P∞(T1) → R of the type

E(μ) =
∫

T1
e(μ(x))vol(dx),

where e : R+ → R is C3. For an orthonormal system {ek(μ)}k∈N of

TμP∞(T1) := C∞(T1)/R
L2(μ)

we define an operator A on TμP∞(T1) by diagonalization in the basis {ek(μ)}k∈N :

A : ek(μ) �→ &k/2'−aek(μ); k ∈ {2, 3, . . .}, a > 3
2

For the first mode we define A : e1(μ) �→ 2π
√

2e1(μ).
Let H̃essE be the Hessian operator associated to the the (variational) Hessian

Hess varE(., .)(μ). The renormalized Wasserstein Laplacian in an open neighbour-
hood of μ as defined below is finite:

Δa
P∞

(T1)
E(μ) :=

∞∑
k=1

〈H̃essEAek(μ), Aek(μ)〉μ <∞

Proof. For the inner product

〈ek, ek〉 vol ≡ 〈ek, ek〉H1( vol) :=
1

(2π)2
〈e′k, e′k〉L2

on T volP
∞(T1), we are given a complete orthonormal system on T volP

∞(T1) by⎧⎨⎩
e2k(x) =

√
2 k−1 sin 2πkx, k ∈ N

e2k+1(x) =
√

2 k−1 cos 2πkx, k ∈ N

e1(x) = 1.
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Likewise by

⎧⎪⎨⎪⎩
e2k(μ)(x) such that d

dxe2k(μ)(x) = 1√
μ(x)

d
dxe2k(x), k ∈ N

e2k+1(μ)(x) such that d
dxe2k+1(μ)(x) = 1√

μ(x)

d
dxe2k+1(x), k ∈ N

e1(μ)(x) = 1.

with inital data {
e2k(μ)(0) = 0, k ∈ N

e2k+1(μ)(0) = 0, k ∈ N

we are given a complete orthonormal system of TμP∞(T1): On the torus we can solve the
defining differential equation by integration and orthonormality of {ek(μ)}k∈N is given
by definition. To show that {ek(μ)}k∈N ⊂ TμP∞(T1) we consider a vector field u such
that divμu = 0. We have to show that ek(μ) ⊥ u with respect to 〈., .〉μ for all k ∈ N:

∫
T1
e′k(μ).uμ =

∫
T1
e′k.u

√
μ

= −
∫

T1
(
√
μ/μ)ek︸ ︷︷ ︸ .(uμ)′ +

∫
T1

(ekuμ)
μ′

2
√
μ3

ϕ1 ∈ C∞
c (T1)

= 0 +
∫

T1

(
ek

μ′

2
√
μ3

)
︸ ︷︷ ︸uμ = 0

ϕ′
2 for ϕ2 ∈ C∞

c (T1)

since
∫
μu.ϕ′ = 0 for any ϕ ∈ C∞

c (S1). Note that at this place it is crucial to deal with
differentiable densities with full support. The function ϕ2 is obtained by integration.

Given a functional E : P∞ → R and a distribution U ∈ TP∞ such that (U(μ)|ϕ) =∫
T1 u

′ϕ′μ for smooth, compactly supported functions u and ϕ. According to ([9]):

Hess varE(U,U)(μ) =
∫

T1
ΓΔ

2 (u)(μe′(μ) − e(μ))vol +
∫

T1
(Δu)2(μp′(μ) − p(μ))vol,

with

p(x) = xe′(x) − e(x) and p′(x) = xe′′(x) + e′(x) − e′(x) = xe′′(x)

and ΓΔ
2 the iterated carré du champ operator with respect to the flat Laplacian Δ =

ΔT1 = d2

dx2 . Then

Hess varE(U,U)(μ) =
∫

T1
(u′′)2(μe′(μ) − e(μ))vol

+
∫

T1
(u′′)2(μ2e′′(μ) − μe′(μ) + e(μ))vol

=
∫

T1
(u′′)2μ2e′′(μ)vol
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Δa
P∞

(T1)
E(μ) =

∫
T1

2(2π)2((e1(μ))′′)2μ2e′′(μ)vol(dx)

+
∞∑
k=2

∫
T1
&k/2'−2a((ek(μ))′′)2μ2e′′(μ)vol(dx)

= 2(2π)2
∫

T1

((log μ)′)2

4μ
μ2e′′(μ)vol(dx)

+
∞∑
k=1

∫
T1
k−2a(((μ−1/2e′2k)

′)2 + ((μ−1/2e′2k+1)
′)2)μ2e′′(μ)vol(dx)

Since e′′2k = 2πke′2k+1 resp. e′′2k+1 = −2πke′2k and (e′2k)
2 + (e′2k+1)

2 = 2(2π)2 it follows
that

((μ−1/2e′2k)
′)2 + ((μ−1/2e′2k+1)

′)2 = ((e′2k)
2 + (e′2k+1)

2)(1/4μ−3(μ′)2)

+ ((e′2k)
2 + (e′2k+1)

2)(μ−1(2πk)2)

+ e′2ke
′
2k+1(−μ−3/2μ′μ−1/22πk + μ−3/2μ′μ−1/22πk)

= 2(2π)2{1/4μ−3(μ′)2 + μ−1(2πk)2}.
Consequently

Δa
P∞

(T1)
E(μ) =

∞∑
k=1

∫
T1
k−2a2(2π)2

{
1/4μ−3(μ′)2 + μ−1(2πk)2

}
μ2e′′(μ)vol(dx)

+2(2π)2
∫

T1

((log μ)′)2

4μ
μ2e′′(μ)vol(dx)

= 2(2π)2
∞∑
k=1

k−2a

∫
T1

{
1/4((logμ)′)2 + (2πk)2

}
μe′′(μ)vol(dx)

+2(2π)2
∫

T1

((log μ)′)2

4
μe′′(μ)vol(dx)

< ∞
since

||((log μ)′)2μe′′(μ)||∞ < +∞
||μe′′(μ)||∞ < +∞,

which is guaranteed since the densities are supposed to have full support and to be
sufficiently regular. �

For the Riemann zeta function ζR(s) =
∑∞

k=1
1
ks ,((s) > 1 there exists a meromorphic

continuation (see [10]) to the complex plane with single pole at s = 1 which was proved
by Riemann in 1859 by the following functional equation:

ζR(s) = 2sπs−1 sin
sπ

2
Γ(1 − s)ζR(1 − s); s ∈ C \ {1}

which enables us to calculate a specific value:

ζR(0) =
1
π

lim
s→0

sin
sπ

2
Γ(1 − s)ζR(1 − s)

=
1
π

lim
s→0

(
sπ

2
− s3π3

48
+ . . .

)(
−1
s

+ . . .

)
= −1

2
.

We used that Res(ζ, 1) = lims→1(s − 1)ζR(s) = 1 = a−1 and the Laurent series reads
ζR(s) =

∑∞
n=−1 an(s− 1)n i.e. ζR(1 − s) = − 1

s + . . . .
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Definition 3.1 (Zeta function regularized Laplacian).

ΔP∞
(T1)E(μ) := lim

a→0
Δa

P∞
(T1)

E(μ)

is called (Zeta function) regularized Laplacian.

Proposition 3.2. Let e : R+ → R is C3. Given a functional E : P∞(T1) → R of the
type

E(μ) =
∫

T1
e(μ(x))vol(dx).

Then

ΔP∞
(T1)E(μ) = 2(2π)2(ζR(0) + 1)

∫
T1

{
((logμ)′/2)2}μe′′(μ)

}
vol(dx)

= π2

∫
T1

{(logμ)′)}2
μe′′(μ)vol(dx).

We used additionally the fact that for the analytical continuation of the Zeta function
ζR(−2) = 0 holds.

Example 3.1. For Ent(μ) =
∫

T1 μ(x) log μ(x) vol(dx) we have

ΔP∞
(T1)Ent(μ) = π2||(logμ)′||2

L2(vol)

Example 3.2. For functionals E(μ) =
∫

T1 f(x)vol(dx) with f a measurable function on
T1 we have ΔP∞

(T1)E(μ) = 0 for all μ ∈ P∞.

Example 3.3. Set E(μ) = 1
2

∫
T1 μ

2vol, then

ΔP∞E(μ) = π2||∇P∞
Ent(μ)||2μ

for all μ ∈ P∞.

In the following proposition we denote the L2(μ) inner product by 〈., .〉μ, if no measure
is specified we consider the inner product on L2(vol), furthermore 〈f, μ〉 :=

∫
fμ(dx).

Proposition 3.3. Given a functional F : P∞(T1) → R of the type

F (μ) = Φ (〈f, μ〉) ,
where f ∈ Cb(T1) and Φ ∈ Cb(R). Then

ΔP∞F (μ) = 2(2π)2Φ′′(〈f, μ〉)||f ′√μ||2L2

and the square-field operator with respect to ΔP∞ applied to functionals F reads:

Γ(F ) = 2(2π)2||∇P∞
F (μ)||2μ

Proof. Following ([4]) a geodesic (μt)t∈[0,T ] in P∞ starting at μ0 = μ satisfies

μ̇t = −div(μt∇vt)
where the smooth function vt satisfies

v̇t =
−|∇vt|2

2
.

The second order variation of F along (μt)t∈[0,T ] reads

d2

dt2
Φ(〈f, μt〉) =

d

dt
(Φ′(〈f, μt〉)〈f, μ̇t〉)

= Φ′′(〈f, μt〉)〈f, μ̇t〉2 + Φ′(〈f, μt〉)
d

dt
〈f, μ̇t〉
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Remark since v̇′t = −v′tv′′t and μ̇t = −(μtv′t)
′

d

dt
〈f, μ̇t〉 =

d

dt

∫
f ′v′tμtvol

= 〈f ′,−v′tv′′t μt + v′tμ̇t〉
= −〈f ′, ((v′t)

2)′μt + μ′
t(v

′
t)

2〉
= −〈f ′, ((v′t)

2μt)′〉

Hess(F )(v′, v′)(μ) =
d2

dt2 t=0
Φ(〈f, μt〉)

= Φ′′(〈f, μ〉)〈f ′, v′〉2μ + Φ′(〈f, μ〉)〈f ′′, (v′)2μ〉

In this formula at the place of v′ we plug in (here for s > 1/2) k−sek(μ)′ as in the proof
of Proposition 3.1 in order to calculate

Δs
P∞

(T1)
F (μ) =

∞∑
k=1

Φ′′(〈f, μ〉)〈f ′, k−sek(μ)′〉2μ + Φ′(〈f, μ〉)〈f ′′, (k−sek(μ)′)2μ〉

which equals

Φ′′(〈f, μ〉)
∞∑
k=1

〈f ′, k−sμ−1/2e′k〉2μ + 2(2π)2Φ′(〈f, μ〉)〈f ′′, 1〉ζ(2s)

Since ζ(2s) is finite for 2s > 1 and we now that 〈f ′′, 1〉 = 0 the second term vanishes and
by the functional equation for ζ we define again

ΔP∞
(T1)F (μ) := lim

s→0
Δs

P∞
(T1)

F (μ)

which equals

lim
s→0

Φ′′(〈f, μ〉)2(2π)2||f ′μ1/2||2H−s = Φ′′(〈f, μ〉)2(2π)2||f ′μ1/2||2L2 .

Note that the limit is taken for s ∈ C.
The square-field operator Γs(F ) with respect to Δs

P∞ is defined by

1
2
Δs

P∞(F 2) − FΔs
P∞(F ).

In a first step we remark that

1
2
d2

dt2
(F (μt))2 = (

d

dt
F (μt))2 + F (μt)

d2

dt2
F (μt)

and so
1
2
d2

dt2
(F (μt))2 − F

d2

dt2
(F (μt)) = (

d

dt
F (μt))2 = (Φ′(〈f, μ〉)〈f ′, v′〉μ)2

which entails

Γs(F ) =
∞∑
k=1

(Φ′(〈f, μ〉)〈f ′, k−sek(μ)′〉μ)2 = 2(2π)2(Φ′(〈f, μ〉))2||f ′||2
H−s

μ

But
lim
s→0

||f ′||2
H−s

μ
= ||f ′||2L2(μ)

and consequently
lim
s→0

Γs(F ) = 2(2π)2||∇P∞
F (μ)||2μ

�
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Remark 3.1. By the chain rule the formulas for the regularized Wasserstein Laplacian
can be extended to the set of test functions

Z =
{
F (μ) ≡ Φ (〈f, μ〉) ; Φ ∈ C2(Rd), f = (f1, . . . , fd) ∈ C2(T1; Rd);μ ∈ P∞(T1)

}
,

i.e.

ΔP∞F (μ) =
d∑

i,j=1

∂i∂jΦ (〈f, μ〉)
∫ 1

0

f ′
if

′
jμ

which equals the generator of the Wasserstein diffusion (see [8]) on P∞(T1) with inverse
temperature β = 0.
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