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T. I. KOSENKOVA

WEAK CONVERGENCE OF A SERIES SCHEME OF MARKOV

CHAINS TO THE SOLUTION OF A LÉVY DRIVEN SDE

Under the assumptions analogous to those of Gnedenko’s theorem, the weak conver-
gence of a series scheme of Markov chains to the solution of a Lévy driven SDE is
obtained.

1. Introduction

In this paper, we establish the conditions sufficient for a sequence of stepwise processes
defined by a series scheme of Markov chains to converge in D to a solution of a Lévy
driven SDE. This topic is traditional and comes back to the famous Skorokhod invariance
principle (see [1]) for the sequence of stepwise processes associated with partial sums of
a triangular array of i.i.d. random variables, which satisfy conditions of Gnedenko’s the-
orem (see [2]). In the Markov setting, this result was extended in several directions. In
[3], the increments of Markov chains are represented as the images of a fixed measure
under some mappings, and the respective limit theorem is formulated in the terms of the
latter mappings. This leads to a highly implicit set of conditions on the increments of
the Markov chains under consideration.
Another approach, which leads to an explicit and transparent set of conditions, is devel-
oped in [4], the so-called “Lévy approximation scheme.” The model studied therein is
even more general and contains an additional semi-Markov switching component. The
kernel involved into the limit generator in Theorem 1 in [4] is integrable w.r.t. |u| and |u|2
on the sets {|u| ≤ 1} and {|u| ≥ 1}, respectively. Those properties are clearly stronger
than the standard properties of a Lévy measure. This shows that the approach developed
in [4] brings some additional moment restrictions in comparison with the conditions of
Gnedenko’s theorem.
Here, we prove a limit theorem for a sequence of Markov chains under conditions that
can be considered as straightforward analogs to those of Gnedenko’s theorem, with the
the solution of the Lévy driven SDE as the limit process.
The structure of the article is following. In Section 2, the main theorem is introduced.
The theorem consists of two statements: about the relative compactness of the associated
sequence and about the limit point identification. Section 3 contains the proof of this
theorem with two subsections related to the statements of the theorem. The proof of
the supplementary statement, the so-called “compact containment condition”, is given
in Appendix A.

2. Main Results

Let {Xn
k , k ≤ n}, n ≥ 1 be a sequence of Markov chains in Rd. Let θn = {tkn, 0 ≤

k ≤ n}, n ≥ 1 be a sequence of partitions of [0; 1] such that there exists a constant
S ≥ 1 such that, for all n,

(1)
1

nS
≤ Δtkn ≤ S

n
,
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where Δtkn = tkn − t(k−1)n. We consider the process

Xn(t) =

n−1∑
k=1

Xn
k · 1t∈[t(k−1)n;tkn) +Xn

n · 1t∈[t(n−1)n;tnn], t ∈ [0; 1].

We introduce a notational convention. By Ek, we denote conditional expectation w.r.t.
Fn
k = σ{Xn

i , i ≤ k}. Let
ξkn = Xn

k −Xn
k−1, k ≤ n, n ≥ 1

be an increment of the Markov chain. We assume that this increment has the form

ξkn = ηkn − γkn
(
Xn

k−1

)
,

where ηkn and γkn satisfy the conditions (G1)-(L3) below. Here, the functions γkn has
the role of a compensating term. Its appearance is related to the fact that, according to
Gnedenko’s theorem, it is possible to compensate the i.i.d. random variables in such a
way that the sums converge weakly. In the Markov setting, instead of the compensating
sequence of constants, we consider the compensating sequence of functions.
By

Πkn(x, dy) =
1

Δtkn
P
(
ηkn ∈ dy

∣∣∣Xn
k−1 = x

)
,

we denote the stochastic kernel that corresponds to ηkn. Denote

βkn
(
Xn

k−1

)
= Ek−1τ(ηkn),

where

τ(y) = y(1 ∧ 1

|y| ), y ∈ Rd.

By Csep
b

(
Rd,R

)
, we denote the set of bounded continuous functions, which vanish in

some neighborhood of zero, i.e.,

Csep
b

(
Rd,R

)
= {f ∈ Cb

(
Rd,R

)
: ∃ r > 0 f(x) = 0 as |x| ≤ r}.

Let Π(x, dy) be a Lévy kernel w.r.t. y, that is
∫
Rd(y

2∧1)Π(x, dy) <∞, x ∈ Rd. Condi-
tions (G1)-(G3′) are straightforward analogs of the conditions of Gnedenko’s theorem:
(G1)

• There exists a function B : Rd → Rd×d, such such that, for all R > 0,

lim
ε→0

lim
n→∞max

k≤n
sup
|x|≤R

∣∣∣∣∣
∫
|y|≤ε

(λ, y)2Πkn(x, dy)− 1

Δtkn
(λ, βkn(x))

2 −

− (B(x)λ, λ)

∣∣∣∣∣ = 0, λ ∈ Rd;

• for all f ∈ Csep
b

(
Rd,R

)
lim
n→∞max

k≤n
sup
|x|≤R

∣∣∣∣∣
∫
Rd

f(y)Πkn(x, dy)−
∫
Rd

f(y)Π(x, dy)

∣∣∣∣∣ = 0;

(G1′) for every R > 0,

lim
ε→0

sup
|x|≤R

∫
|y|≤ε

(λ, y)2Π(x, dy) = 0, λ ∈ Rd;

(G2) , there exists a : Rd → Rd such that, for every R > 0,

lim
n→∞max

k≤n
sup
|x|≤R

∣∣∣∣ 1

Δtkn
(βkn(x)− γkn(x)) − a(x)

∣∣∣∣ = 0;
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(G3) for every R > 0,

lim
ε→0

lim
n→∞max

k≤n
sup
|x|≤R

∫
|y|≤ε

|y|3Πkn(x, dy) = 0;

(G3′) for every R > 0 :

lim sup
n→∞

max
k≤n

sup
|x|≤R

|γkn(x)|3
Δtkn

= 0.

Conditions (L1)-(L3) below are the modification of the linear growth rate conditions.
(L1) There exists a family {Dr, r > 0} such that

sup
n

max
k≤n

∫
|y|>r(|x|+1)

Πkn(x, dy) ≤ Dr, x ∈ Rd, r > 0,

and Dr → 0, r → ∞;
(L1′) there exists a constant D > 0 such that

sup
n

max
k≤n

∫
|y|>1

Πkn(x, dy) ≤ D, x ∈ Rd;

(L2) there exists a nondecreasing family {Cr, r > 0} such that

sup
n

max
k≤n

[ ∫
|y|≤r(|x|+1)

y2Πkn(x, dy)

]
≤ Cr(|x|+ 1)2, x ∈ Rd;

(L3) there exists a constant K > 0 such that

sup
n

max
k≤n

1

Δtkn
|βkn(x) − γkn(x)| ≤ K(|x|+ 1), x ∈ Rd

sup
n

max
k≤n

1

Δtkn
|γkn(x)|2 ≤ K(|x|+ 1)2

and

|a(x)|2 + ‖B(x)‖ ≤ K(|x|+ 1)2, x ∈ Rd.

Theorem 1. (1) Suppose that conditions (L1)− (L3) hold and supn |Xn
0 | <∞ a.s.

Then {Xn} is relatively compact in Skorokhod’s space D ([0; 1]) .
(2) Assume that, in addition, conditions (G1)− (G3′) hold. Let X be a limit point

of the sequence {Xn} in the sense of the weak convergence of finite-dimensional
distributions.
Then X is the solution of the martingale problem for the operator

(2)

Af(x) =
∑
i

ai(x)f
′
i(x) +

1

2

∑
i,j

Bij(x)f
′′
ij(x)+

+

∫
Rd

(f(x+ y)− f(x)− f ′(x)τ(y)) Π(x, dy), x ∈ Rd, f ∈ D,

where D = D(Rd,R) is the space of test functions.

Remark 1. If, instead of the series scheme of Markov chains {Xn
k , k ≤ n}, n ≥ 1 we

consider a series scheme associated with a triangular array of i.i.d. random variables,
and Π(x, dy) ≡ Π(dy) is a Lévy measure, then conditions (G1)−(G3′) are the conditions
of Gnedenko’s theorem for a triangular array. The form of conditions (L1) − (L3) is a
modification of the standard form of the linear growth rate conditions.
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Remark 2. Note that (2) can be written in the form

(3)

Af(x) =
∑
i

ãi(x)f
′
i(x) +

1

2

∑
i,j

Bij(x)f
′′
ij(x)+

+

∫
Rd

(
f(x+ y)− f(x)− f ′(x)y1|y|≤1

)
Π(x, dy), x ∈ Rd,

f ∈ D(Rd,R),

where
ã(x) = a(x) −Π(x,Rd \B(0, 1)).

Let the family {Π(x, dy)}, x ∈ Rd be defined by a measure Π0 and a function c : Rd×Θ →
Rd as follows:

Π(x,A) = Π0{θ : c(x, θ) ∈ A}.
Then, combining (3) and Corollary 2 §3 Section 5 [3], we obtain that the limit process is
a solution of the SDE

(4)

X(t) = X(0) +

∫ t

0

ã(X(s))ds+

∫ t

0

B(X(s))dW (s)+

+

∫ t

0

∫
Θ

c1 (X(s−), u) ν̃(du, ds)+

+

∫ t

0

∫
Θ

c2 (X(s−), u)ν(du, ds), with

c1(x, u) = c(x, u)1|c(x,u)|≤1, c2(x, u) = c(x, u)1|c(x,u)|>1,

where W is a Wiener process, ν is a Poisson point measure with intensity Π0, ν̃(du, ds) =
ν(du, ds)−Π0(du)ds is the respective compensated Poisson point measure, and W and ν
are independent.

Remark 3. The fact that the martingale problem for A is well-posed, together with
Theorem 1, implies the weak convergence of the sequence {Xn} to the solution of the
martingale problem. The problem of the weak uniqueness of a solution of the martingale
problem respective to SDE’s with jumps was studied in detail. For typical results in this
direction, we refer, for instance, to Bass (see [5]) and to Gikhman and Skorokhod (see
Theorem 1 §1 section 6 [3]).

3. Proof of Theorem 1

3.1. Relative compactness in D. To prove the first statement of Theorem 1, it is
sufficient, by Theorem 8.6 (see 3 §8 [6]), to show that

(5) lim sup
δ→0

lim sup
n→∞

sup
τ∈Sn

0

sup
u≤δ

Eq2 (Xn((τ + u) ∧ 1), Xn(τ)) = 0,

where q(x, y) = |x−y|∧1, and Sn
0 is a collection of all discrete Fn

t -stopping times bounded
by 1. Let τ ∈ Sn

0 and {sm}Mm=1 be the set of all possible values of τ. Then

(6) Eq2 (Xn((τ + u) ∧ 1), Xn(τ)) =

M∑
m=1

E (|Xn((sm + u) ∧ 1)−Xn(sm)| ∧ 1)
2
1τ=sm .

Let sm ∈ [tjn; t(j+1)n) and either sm + u ∈ [tkn; tk+1n), 0 ≤ j < k, k ≤ n − 2, or
(sm+u)∧1 ∈ [t(n−1)n; tnn]. Then the function 1τ=sm is Fn

j -measurable. Using the above

notation, we have, for the one summand on the r.h.s. of (6),

(7) E (|Xn((sm + u) ∧ 1)−Xn(sm)| ∧ 1)2 1τ=sm = E

⎛⎝∣∣∣∣∣∣
k∑

l=j+1

ξln

∣∣∣∣∣∣ ∧ 1

⎞⎠2

1τ=sm .
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For every R > 0, the expression under the sign
(
. . .

)
on the r.h.s. of (7) can be estimated

by (|∑| ∧ 1)1maxi≤n|Xn
i |≤R+1 ·1maxi≤n|Xn

i |>R. Therefore, the r.h.s. of (7) is not greater

than

(8)

2E

⎛⎝∣∣∣∣∣∣
k∑

l=j+1

ξln

∣∣∣∣∣∣ ∧ 1

⎞⎠2

1τ=sm1maxi≤n|Xn
i |≤R+

+2P

(
max
i≤n

|Xn
i | > R

)
P (τ = sm) .

By Lemma 1 (see Appendix A), the second term in (8) reads

(9) lim
R→∞

lim sup
n→∞

P

(
max
i≤n

|Xn
i | > R

)
= 0.

Denote the first term in (8) by S1. Fix some r > 1 and put

(10) ξ̄ln := ξln · 1|ξln|≤r(|Xn
l−1|+1)1|Xn

l−1|≤R.

Using this notation, S1 can be estimated as follows:

(11)

S1 ≤ F · E
⎛⎝ k∑

l=j+1

ξ̄ln

⎞⎠2

1τ=sm+

+F ·E
⎛⎝∣∣∣∣∣∣

k∑
l=j+1

ξln1|ξln|>r(|Xn
l−1|+1)

∣∣∣∣∣∣ ∧ 1

⎞⎠2

1τ=sm .

Here and below, by F, we denote some positive constant. Denote the first expectation
in (11) by I1. Because 1τ=sm is Fn

j -measurable, we obtain

(12)

I1 =

k∑
l=j+1

E1τ=smEj

(
El−1

(
ξ̄ln

)2)
+

+2
∑

j+1≤p<q≤k

E1τ=smEj

(|Ep−1ξ̄pn| · |Eq−1ξ̄qn|
)
.

Let us estimate El−1

(
ξ̄ln

)2
, l ≤ n. By (10), it is sufficient to estimate

El−1ξ
2
ln1|ξln|≤r(|Xn

l−1|+1).

Recall that ξln = ηln − γln(X
n
l−1), and the conditional distributions of ηln w.r.t. Fn

l−1

equal ΔtlnΠln(X
n
l−1, dy). Denote

Γr
ln(x) := {y : |y − γln(x)| ≤ r(|x| + 1)}.

Then

(13) El−1ξ
2
ln1|ξln|≤r(|Xn

l−1|+1) =

∫
Γr
ln

(Xn
l−1

)

(
y − γln(X

n
l−1)

)2
ΔtlnΠln(X

n
l−1, dy).

Using (L3) , we obtain that there exists n0 such that, for all n ≥ n0,

(14) max
l≤n

|γln(x)| ≤ 1

2
(|x|+ 1).

By Θr(x), we denote the ball centered at 0 with radius r(|x| + 1) :

(15) Θr(x) := {y : |y| ≤ r(|x| + 1)}.
Let n ≥ n0. Then, by (14), we have

(16) Γr
ln(x) ⊆ Θr+1(x). x ∈ Rd,
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Hence,

(17)

∫
Γr
ln(x)

(y − γln(x))
2
ΔtlnΠln(x, dy) ≤

∫
Θr+1(x)

(y − γln(x))
2
ΔtlnΠln(x, dy).

Combining this with (L2) , (L3) , and (1), we obtain

(18) El−1ξ
2
ln1|ξln|≤r(|Xn

l−1|+1) ≤ L0(r)

n

(|Xn
l−1|2 + 1

)
,

where L0(r) = F · (Cr+1 +K). Using (18), we get the estimate for El−1

(
ξ̄ln

)2
(19) El−1

(
ξ̄ln

)2 ≤ L0(r)

n

(
R2 + 1

)
.

Further, let us estimate |Ep−1ξ̄pn|, p ≤ n. As before, we will obtain firstly the estimate
for

(20)
∣∣∣Ep−1ξpn1|ξpn|≤r(|Xn

p−1|+1)

∣∣∣ = ∣∣∣∣∣
∫
Γr
pn(X

n
p−1)

(
y − γpn(X

n
p−1)

)
ΔtpnΠpn(X

n
p−1, dy)

∣∣∣∣∣ .
Recall that

βpn(x) =

∫
Rd

y

(
1 ∧ 1

|y|
)
ΔtpnΠpn(x, dy).

Consequently, the integral on the r.h.s. of (20) can be written in the form

(21)

βpn(x)− γpn(x) + γpn(x)ΔtpnΠpn(x,R
d \ Γr

pn(x))−

−
∫
Θr+1(x)\Γr

pn(x)

yΔtpnΠpn(x, dy)+

+

∫
Θr+1(x)\B(0,1)

yΔtpnΠpn(x, dy)−
∫
Rd\B(0,1)

y

|y|ΔtpnΠpn(x, dy).

Here, by B(0, 1), we denote the ball centered at 0 with radius 1. Using (14), we have

(22) Θ
1
2 (x) ⊆ Γr

pn(x).

Therefore, by (L1) ,

(23) max
p≤n

Πpn(x,R
d \ Γr

pn(x)) ≤ D 1
2
.

Thus, we obtain, for the second term of (21),

(24)
∣∣γpn(x)ΔtpnΠpn(x,R

d \ Γr
pn(x))

∣∣ ≤ F ·D 1
2

n
(|x|+ 1).

The same argument can be applied to estimate the third term of (21):

(25)

∣∣∣∣∣
∫
Θr+1(x)\Γr

pn(x)

yΔtpnΠpn(x, dy)

∣∣∣∣∣ ≤ F · (r + 1)D 1
2

n
(|x|+ 1).

By (L1′) , for the fourth and fifth terms of (21), we have

(26)

∣∣∣∣∣
∫
Θr+1(x)\B(0,1)

yΔtpnΠpn(x, dy)

∣∣∣∣∣+
∣∣∣∣∣
∫
Rd\B(0,1)

y

|y|ΔtpnΠpn(x, dy)

∣∣∣∣∣ ≤
≤ F · (r + 1) ·D

n
(|x| + 1).

Combining (21), (L3) for the first term and estimates (24), (25), and (26) and taking
(20) into account, we get

(27)
∣∣∣Ep−1ξpn1|ξpn|≤r(|Xn

p−1|+1)

∣∣∣ ≤ L(r)

n
(|Xn

p−1|+ 1),
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where L(r) := F · (K + D 1
2
+ (r + 1)D 1

2
+ (r + 1) · D). Thus, we obtain the following

estimate for |Ep−1ξ̄pn|:

(28) |Ep−1ξ̄pn| ≤ L(r)

n
(R+ 1).

Combining (19), (28), and the fact that k − j ≤ δS · n (see (1)), we obtain

(29) I1 ≤ P (τ = sm)F · (SδL0(r) + S2δ2L2(r)
) (
R2 + 1

)
.

Denote the second term of the r.h.s. of (11) by I2. Note that |∑| ∧ 1 can be estimated
by 1⋃k

l=j+1{|ξln|>r(|Xn
l−1|+1)}. Moreover, because 1τ=sm is Fn

j -measurable, we have that I2

can be estimated in the following way:

(30) E1τ=smEj1⋃k
l=j+1{|ξln|>r(|Xn

l−1|+1)}.

Using the standard fact that 1A = 1 − 1Ā, taking the conditional expectations w.r.t.
Fn
l , l = j + 1, . . . , k, and using (23) and (1) for El−11{|ξln|>r(|Xn

l−1|+1)}, we obtain the

following estimate for the expression in (30):

(31)

(
1−

(
1− SD 1

2

n

)k−j
)
P (τ = sm).

Because k − j ≤ δS · n, we finally obtain the estimate I2 in the form

(32) I2 ≤ F · S2D 1
2
δP (τ = sm).

Combining (8), (29), and (32) we have finally the following estimate for the r.h.s. of (6):

(33) F ·
(
P

(
max
i≤n

|Xn
i | > R

)
+
(
SδL0(r) + S2δ2L2(r)

) (
R2 + 1

)
+ S2D 1

2
δ

)
.

Passing to the limit as δ → 0+ and using (9), we obtain (5). �

3.2. Identification of the limit point. To obtain the second statement of Theorem
1, let us firstly note that the family of distributions of {Xn} is uniformly continuous in
probability; that is, for all ε > 0,

(34) lim
δ→0

lim sup
n→∞

sup
|t−s|<δ

P (|Xn(t)−Xn(s)| > ε) = 0.

This property follows from the stronger one (5), proved in Section 3.1. Thus, by Theorem
8.2 (see §8 Section 5, [6]), it is sufficient to show that, for f ∈ D,

(35) max
k≤n

E

∣∣∣∣Ek−1

(
1

Δtkn

(
f(Xn

k )− f(Xn
k−1)

)−Af(Xn
k−1)

)∣∣∣∣ → 0, n→ ∞.

The expression under the sign | . . . | in (35) can be written in the form

(36)

Ek−1

(
1

Δtkn

(
f(Xn

k )− f(Xn
k−1)

)− aT (Xn
k−1)f

′(Xn
k−1)−

1

2

∑
i,j

Bij(x)f
′′
ij(x)−

−
∫
Rd

(
f(Xn

k−1 + y)− f(Xn
k−1)− τ(y)T f ′(Xn

k−1)
)
Π(Xn

k−1, dy)

)
:= gkn(X

n
k−1).

Recall that Xn
k = Xn

k−1 + ηkn − γkn(X
n
k−1), and the conditional distribution ηkn w.r.t.

Fn
k−1 equals ΔtknΠkn(X

n
k−1, dy). Hence, the function gkn on the r.h.s. of (36) has the
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form

(37)

gkn(x) =

∫
Rd

(f(x+ y − γkn(x)) − f(x)) Πkn(x, dy)−

−aT (x)f ′(x) − 1

2

∑
i,j

Bij(x)f
′′
ij(x)−

−
∫
Rd

(
f(x+ y)− f(x)− τ(y)T f ′(x)

)
Π(x, dy).

For every f ∈ D, there exists f̂ ∈ S such that

f(x) =

∫
Rd

ei(λ,x)f̂(λ)dλ where S = S(Rd,R) is the Schwarz space.

Therefore, the first term in (37) can be written as

(38)

∫
Rd

f̂(λ)ei(λ,x)
∫
Rd

[
ei(λ,y−γkn(x)) − 1

]
Πkn(x, dy)dλ.

The term under the sign [. . .] in (38) can be represented as follows:

(39)
ei(λ,y−γkn(x)) − 1 = e−i(λ,γkn(x))

[
ei(λ,y) − 1− i(λ, τ(y))

]
−

−e−i(λ,γkn(x))
[
ei(λ,γkn(x)) − 1− i(λ, τ(y))

]
.

In view of the definition of βkn, we get∫
Rd

i(λ, τ(y))Πkn(x, dy) =
i(λ, βkn(x))

Δtkn
.

Using (38) and (39), we obtain, for the function gkn, the expression

(40)

gkn(x) =

∫
Rd

f̂(λ)ei(λ,x) ·
(
e−i(λ,γkn(x))

∫
Rd

[
ei(λ,y) − 1− i(λ, τ(y))

]
Πkn(x, dy)−

−
∫
Rd

[
ei(λ,y) − 1− i(λ, τ(y))

]
Π(x, dy)−

−i(λ, a(x)) + 1

2
λTB(x)λ−

−e−i(λ,γkn(x))
1

Δtkn

[
ei(λ,γkn(x)) − 1− i(λ, βkn(x))

])
dλ.

We note that, for all R > 0,

(41) max
k≤n

E|gkn(Xn
k−1)| ≤ max

k≤n
sup
|x|≤R

|gkn(x)|+max
k≤n

∫
|x|>R

|gkn(x)|PXn
k−1

(dx).

To estimate the first and second summands in (41), we need the following statements,
which will be proved below.

Proposition 1. If conditions (G1) - (G3′) and (L1) - (L3) hold, then, for all R > 0
and f ∈ D,
(42) max

k≤n
sup
|x|≤R

|gkn(x)| → 0, n→ ∞.

Proposition 2. Let f ∈ D and gkn be defined by (37). If conditions (L1) - (L3) are
fulfilled, and supn |Xn

0 | <∞ a.s., then

(43) lim
R→∞

lim sup
n→∞

max
k≤n

E1{Xn
k−1>R}|gkn(Xn

k−1)| = 0.
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Taking (41) into account, these two statements are sufficient to obtain (35) and, thus,
the second statement of Theorem 1.
Proof of Proposition 1.
For 0 < ε < 1 and δ > 0, consider the function

(44) fε
δ (x) =

⎧⎨⎩
1, x ∈ B(0, ε);

1− |x|−ε
δ , x ∈ B(0, ε+ δ) \B(0, ε);

0, Rd \B(0, ε+ δ).

Note that, for every x ∈ Rd,

(45) f ε
δ (x) → 1B(0,ε)(x) as δ → 0.

The function under the sign
(
. . .

)
in (40) can be represented in the form

(46)

Ikn(x, λ) :=

(
e−i(λ,γkn(x))

∫
Rd

(1− f ε
δ (y))

[
ei(λ,y) − 1− i(λ, τ(y))

]
Πkn(x, dy)−

−
∫
Rd

(1− f ε
δ (y))

[
ei(λ,y) − 1− i(λ, τ(y))

]
Π(x, dy)

)
+

+

(
e−i(λ,γkn(x)) · i(λ, γkn(x)− βkn(x))

Δtkn
− i(λ, a(x))

)
+

+

(
e−i(λ,γkn(x))

∫
Rd

f ε
δ (y)

[
ei(λ,y) − 1− i(λ, y)

]
Πkn(x, dy)−

−e−i(λ,γkn(x))
1

Δtkn

[
ei(λ,γkn(x)) − 1− i(λ, γkn(x))

]
+

1

2
(B(x)λ, λ)

)
−

−
(∫

Rd

f ε
δ (y)

[
ei(λ,y) − 1− i(λ, y)

]
Π(x, dy)

)
=:

=: Jkn(x, λ) + Skn(x, λ) + Uε,δ
kn (x, λ) − Uε,δ(x, λ).

Let us prove that for every λ ∈ Rd

(47) max
k≤n

sup
|x|≤R

|Ikn(x, λ)| → 0, n→ ∞.

By (L3) and (1), we have

(48) lim sup
n→∞

max
k≤n

sup
|x|≤R

∣∣∣1− e−i(λ,γkn(x))
∣∣∣ = 0.

Note that Jkn(x, λ) can be presented as follows:

(49)

e−i(λ,γkn(x))

∫
Rd

(1− f ε
δ (y))

(
ei(λ,y) − 1− i(λ, τ(y))

)
[Πkn(x, dy) −Π(x, dy)] +

+
(
e−i(λ,γkn(x)) − 1

)∫
Rd

(1− f ε
δ (y))

[
ei(λ,y) − 1− i(λ, τ(y))

]
Π(x, dy).

Using (G1) for the first term of (49) and (48) for the second one, we obtain

(50) max
k≤n

sup
|x|≤R

|Jkn(x, λ)| → 0, n→ ∞, λ ∈ Rd.

Note that, for the integrand in (49), the following inequality holds:∣∣∣(1− fε
δ (y)) [e

i(λ,y) − 1− i(λ, τ(y))]
∣∣∣ ≤ 1|y|>ε · F · (1 ∨ |λ|), y ∈ Rd.
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Here and below, F stands for some positive constant. By (L1) ,

max
k≤n

Πkn(x, {|y| > ε}) ≤ D ε
2R
, |x| ≤ R.

Hence, using (G1) , we obtain

(51) max
k≤n

sup
|x|≤R

|Jkn(x, λ)| ≤ F · (1 ∨ |λ|)D ε
2R
.

Further, applying (G2) and (48) to the function Skn(x, λ), we obtain

(52) max
k≤n

sup
|x|≤R

|Skn(x, λ)| → 0, n→ ∞, λ ∈ Rd.

In addition, (L3) implies the inequality

(53) max
k≤n

sup
|x|≤R

|Skn(x, λ)| ≤ F · (R + 1)|λ|.

Recall the function Uε,δ
kn (x, λ) :

(54)

Uε,δ
kn (x, λ) = e−i(λ,γkn(x))

∫
Rd

f ε
δ (y)

[
ei(λ,y) − 1− i(λ, y)

]
Πkn(x, dy)−

−e−i(λ,γkn(x))
1

Δtkn

[
ei(λ,γkn(x)) − 1− i(λ, γkn(x))

]
+

1

2
(B(x)λ, λ) .

Adding and subtracting the expressions (λ,y)2

2 and (λ,γkn(x))
2

2 from the terms under the
sign [. . .], respectively, we obtain the following form of Uε

kn(x, λ) :

(55)
e−i(λ,γkn(x)) ·

(
−
∫
Rd

f ε
δ (y)

(λ, y)2

2
Πkn(x, dy) +

(λ, βkn(x))
2

2Δtkn
+

1

2
(B(x)λ, λ)

)
+

+ Γε,δ
kn (x, λ).

Here,

(56)

Γε,δ
kn (x, λ) :=

(
1− e−i(λ,γkn(x))

) 1

2
(B(x)λ, λ) +

+e−i(λ,γkn(x))

(∫
Rd

�δ
ε(y, λ)Πkn(x, dy)−

−ωkn(x, λ)

Δtkn
+

(λ, γkn(x))
2 − (λ, βkn(x))

2

2Δtkn

)
,

�δ
ε(y, λ) := f ε

δ (y)

[
ei(λ,y) − 1− i(λ, y) +

(λ, y)2

2

]
and

ωkn(x, λ) := ei(λ,γkn(x)) − 1− i(λ, γkn(x)) +
(λ, γkn(x))

2

2
.

In addition, for some F > 0 and for all δ > 0 and ε > 0

(57)
|�δ

ε(y, λ)| ≤ F · |λ|3|y|31|y|≤ε+δ,

|ωkn(x, λ)| ≤ F · |λ|3|γkn(x)|3, y ∈ Rd, |x| ≤ R.

Furthermore, by (G2) , there exists N such that, for all n ≥ N,

(58) (λ, γkn(x))
2 ≤ (λ, βkn(x))

2 + (Δtkn · (λ, a(x)))2 +Δtkn |Υkn(x)| |λ|2,
where

(59) max
k≤n

sup
|x|≤R

Υkn(x) → 0, n→ ∞.
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Combining (56) with (48), (57), conditions (G3) , (G3′) , and (58), we obtain

(60) lim
ε→0

lim
n→∞max

k≤n
sup
|x|≤R

lim
δ→0

∣∣∣Γε,δ
kn (x, λ)

∣∣∣ = 0, λ ∈ Rd.

Passing to the limit as δ → 0+ in the first term of (55) and using (45), by (G1) and
(60), we obtain

(61) lim
ε→0

lim
n→∞max

k≤n
sup
|x|≤R

∣∣∣Uε,δ
kn (x, λ)

∣∣∣ = 0, λ ∈ Rd.

In addition, using (54), we obtain that there exists positive F such that, for all k ≤ n,
and n ≥ 1,

(62)

∣∣∣Uε,δ
kn (x, λ)

∣∣∣ ≤ F ·
(∫

|y|≤ε+δ

|λ|2|y|2Πkn(x, dy)+

+
1

Δtkn
|λ|2|γkn(x)|2 + ‖B(x)‖|λ|2

)
, |x| ≤ R.

Hence, by (L2) and (L3) , we have

(63) max
k≤n

sup
|x|≤R

∣∣∣Uε,δ
kn (x, λ)

∣∣∣ ≤ F · (R+ 1)2|λ|2.

Here, again, F is a positive constant.
Finally, using ∣∣∣f ε

δ (y)
[
ei(λ,y) − 1− i(λ, y)

]∣∣∣ ≤ 1|y|≤ε+δ|λ|2|y|2,
(G1′) , and (45), we obtain

(64) lim
ε→0

sup
|x|≤R

lim
δ→0

∣∣Uε,δ(x, λ)
∣∣ = 0, λ ∈ Rd.

It follows from (L2) and (G1) that there exists some F > 0 such that

(65) sup
|x|≤R

∣∣Uε,δ(x, λ)
∣∣ ≤F (R+ 1)2|λ|2.

Combining (50), (52), (61), and (64), we obtain the needed convergence (47). In addition,
from (51), (53), (63), and (65), we have

sup
n

max
k≤n

sup
|x|≤R

|Ikn(x, λ)| ≤ P (λ),

where P (λ) is some polynomial w.r.t. λ. Because of f̂ ∈ S, the function f̂ · P (λ) ∈ S is
integrable on Rd. Then, using representation (40), convergence (47), and the dominated
convergence theorem, we obtain the statement of the proposition. �
Proof of Proposition 2.
We will show that, for some n0,

(66) sup
n≥n0

max
k≤n

sup
x∈Rd

|gkn(x)| <∞;

this, together with Lemma 1 below, would provide the required statement. For a given
f ∈ D, take Rf such that

(67) f(x) = 0, f ′(x) = 0, f ′′(x) = 0, |x| > Rf .

Combining (67) and (37), we obtain

(68) gkn(x) =

∫
Rd

f(x+ y − γkn(x))Πkn(x, dy)−
∫
Rd

f(x+ y)Π(x, dy), |x| > Rf .
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If |x+y| > Rf , then the term f(x+y) under the second integral vanishes. If |x+y| ≤ Rf

and |y| ≤ 1
2 (|x|+ 1), then

|x| ≤ 2Rf + 1.

This means that, for |x| > 2Rf + 1, the second integral in (68) equals∫
|y|≥ 1

2 (|x|+1)

f(x+ y)Π(x, dy).

From (G1) and (L1) , we obtain

(69)

∣∣∣∣∫
Rd

f(x+ y)Π(x, dy)

∣∣∣∣ ≤ sup
x∈Rd

|f(x)| ·D 1
2
.

A similar argument can be applied to the first integral in (68). Using (L3) , we obtain
that there exists n0 such that |γkn(x)| ≤ 1

4 (|x|+ 1) for n ≥ n0. Then, for |x| > 4Rf + 3,
the first integral in (68) equals∫

|y|≥ 1
2 (|x|+1)

f(x+ y − γkn(x))Πkn(x, dy).

Using (L1) , we obtain

(70)

∣∣∣∣∫
Rd

f(x+ y − γkn(x))Πkn(x, dy)

∣∣∣∣ ≤ sup
x∈Rd

|f(x)| ·D 1
2
.

�

Appendix A. Compact Containment Condition

Lemma 1. Let supn |Xn
0 | <∞ a.s., and let conditions (L1)− (L3) be fulfilled. Then

lim
R→∞

lim inf
n→∞ P

(
max
k≤n

|Xn
k | ≤ R

)
= 1.

The proof.
The proof consists of three steps.
Step I. Fix any r > 1. For all n, denote, by τrn, a Markov time w.r.t. {Fn

k , k ≤ n}.
We have

(71)
τrn = inf{k ≤ n :|ξ1n| ≤ r(|Xn

0 |+ 1), . . . |ξk−1n| ≤ r(|Xn
k−2|+ 1),

|ξkn| > r(|Xn
k−1|+ 1)},

if the set is nonempty, and τrn = ∞ otherwise. Put ξ̃kn = ξkn · 1{τr
n>k}. We denote

X̃n
k =

n∑
k=1

ξ̃kn.

Note that

(72) P (max
k≤n

|Xn
k | ≤ R) ≥ P

(
{max
k≤n

|Xn
k | ≤ R}

⋂
{τrn = ∞}

)
.

Clearly, when τrn = ∞, we have Xn
k = X̃n

k . Consequently, the probability on the r.h.s. of
(72) is equal to

(73) P

(
{max
k≤n

|X̃n
k | ≤ R}

⋂
{τrn = ∞}

)
.

Combining (73) and the fact that P (A
⋂
B) ≥ P (A)+P (B)− 1, we obtain the following

estimate for P (maxk≤n |Xn
k | ≤ R):

(74) P (max
k≤n

|Xn
k | ≤ R) ≥ P

(
max
k≤n

|X̃n
k | ≤ R

)
+ P (τrn = ∞)− 1.
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We claim that

(75) lim
r→∞ lim inf

n→∞ P (τrn = ∞) = 1.

Indeed, {τrn = ∞} =
⋂

k≤n{|ξkn| ≤ r
(|Xn

k−1|+ 1
)}. Then, to obtain the lower bound

for P (τrn = ∞), it is sufficient to obtain the upper bound for Ek−11|ξkn|>r(|Xn
k−1|+1). By

(L3) and (1), we obtain |γkn(x)| ≤ c(|x| + 1), n ≥ 1, where c =
√
KS. Hence, using

(L1) and (1), we have

(76) Ek−11|ξkn|>r(|Xn
k−1|+1) ≤

SDr+c

n
.

Consequently, we obtain

(77) P (τrn = ∞) ≥
(
1− SDr+c

n

)n

.

Thus, (75) holds.
Let us take (74) into account. To obtain the statement of the lemma, it is sufficient to
show that

(78) lim
R→∞

lim sup
n→∞

P

(
max
k≤n

|X̃n
k | > R

)
= 0.

Step II. The proof of (78).
Denote

ψk−1n = Ek−1ξ̃kn, Mn
k = X̃n

k −
k∑

i=1

ψi−1n,

and notice that Mn
k is a martingale w.r.t. Fn

k . Using Doob’s maximum inequality for the

martingale part of X̃n
k and Chebyshev’s inequality for the predictable part of X̃n

k , we
obtain

P

(
max
k≤n

|X̃n
k | > R

)
≤ F

R2

⎛⎝E (Mn
n )

2
+ E

(
n∑

k=1

|ψk−1n|
)2

⎞⎠ .

Here and below, F is some positive constant. Note that

(Mn
n )

2
=

(
X̃n

n −
n∑

k=1

ψ(k−1)n

)2

≤ 2
(
X̃n

n

)2

+ 2

(
n∑

k=1

|ψ(k−1)n|
)2

.

Using the inequality (a1 + . . .+ an)
2 ≤ n · (a21 + . . .+ a2n), we get

(79) P

(
max
k≤n

|X̃n
k | > R

)
≤ F

R2

(
E
(
X̃n

n

)2

+ n ·
n∑

k=1

Eψ2
k−1n

)
.

We will show in Step III below that there exists n0 such that, for n ≥ n0, the following

estimates hold for ψk−1n and E
(
X̃n

n

)2

:

(80) E
(
X̃n

k

)2

≤ L2(r)

(
1 +

L1(r)

n

)k

, k ≤ n,

(81) Eψ2
k−1n ≤ L3(r)

n2

(
1 +

L1(r)

n

)k

, k ≤ n,

where Li(r), i = 1, 2, 3 are positive constants.
Using (79), (80), and (81), we obtain (78).
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Step III. The proof of inequalities (80) and (81).
In the above notation,

ψk−1n = Ek−1ξ̃kn = 1{τr
n>k−1}Ek−1ξkn1|ξkn|≤r(|Xn

k−1|+1).

Using (27), we get that there exists n0 such that for n ≥ n0

(82) |ψk−1n| ≤ 1{τr
n>k−1}

L(r)

n

(|Xn
k−1|+ 1

)
,

where L(r) := K +D 1
2
+ (r + 1)D 1

2
+ (r + 1) · D. Because |Xn

k−11{τr
n>k−1}| ≤ |X̃n

k−1|,
we obtain

(83) |ψk−1n| ≤ L(r)

n

(
|X̃n

k−1|+ 1
)
.

To prove (80), we note that

E|X̃n
k − X̃n

k−1|2 = E|X̃n
k |2 − E|X̃n

k−1|2 − 2E|ψk−1n| · |X̃n
k−1|.

Using (83), we have

(84) E|ψk−1n| · |X̃n
k−1| ≤ 2

L(r)

n
|
(
E|X̃n

k−1|2 + 1
)
.

On the other hand,

E|X̃n
k − X̃n

k−1|2 = EEk−1(ξ̃kn)
2 =

= E1{τr
n>k−1}Ek−1ξ

2
kn1|ξkn|≤r(|Xn

k−1|+1).

Using (18), we get

(85) E|X̃n
k − X̃n

k−1|2 ≤ 1

n

[
L0(r)E|X̃n

k−1|2 + L0(r)
]
,

where L0(r) = Cr+1 +K. Combining this with (84), we have

(86) E|X̃n
k |2 ≤

(
1 +

L1(r)

n

)
E|X̃n

k−1|2 +
L1(r)

n
.

Iterating the estimate in (86), we get

(87) E|X̃n
k |2 ≤ L2(r)

(
1 +

L1(r)

n

)k

, k ≤ n,

where Li(r), i = 1, 2 are positive constants. Inequality (81) follows from (83) and (87).
�
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