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SEMIGROUPS OF m-POINT MOTIONS OF THE ARRATIA FLOW,

AND BINARY FORESTS

We present a core for the generator of the semigroup of an m-point motion of the

Arratia flow. We represent an action of the semigroup on functions from this core in
terms of binary forests.

1. Introduction

The subject of our investigation is a stochastic flow of coalescing particles. One of the
approaches to the study of flows with singular interaction is to construct and analyze its
discrete-time approximation. In the article [1] Nishchenko developed an approximation
scheme, which is driven by a sequence of smooth Gaussian processes, and obtained condi-
tions under which the discrete time flow approximates Harris flow of Brownian particles
[2]. The approximations were constructed via recurrence equation

xn0 (u) = u,

xnk+1(u) = xnk (u) +
1√
n
ξnk+1(xnk (u)),

where {ξnk (·), k ≤ n} are independent stationary Gaussian processes with zero mean and
a covariance function Γn. Using these iterations one can build the random processes

{xn(u, t), t ∈ [0, 1]} as polygonal lines with edges
(
k
n , x

n
k (u)

)
, k = 0, . . . , n. Under certain

conditions on the convergence of the covariance functions Γn to the indicator of zero, m-
point motions {xn(u1, ·), . . . , xn(um, ·)}n≥1 converge weakly to m-point motions of the
Arratia flow X(u, ·) = (x(u1, ·), . . . , x(um, ·)) and the random function xnn(·) converges
weakly in D([0, 1]) to the value of the Arratia flow x(·, 1). Note that estimations that
guarantee weak convergence of the discrete-time flows depend on the convergence rate
of the covariance functions Γn [1].

It should be pointed out that there is a disordering in the approximation scheme,
namely, trajectories of the particles intersect one another. Since in the limiting flow the
order between particles does not change, it is natural to suspect that in the approximation
scheme “amount” of disordering tends to zero. An interesting question in this area is
an investigation of the rate of convergence of this “amount”. For example, one of the
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functionals which detect disordering in the discrete time system of particles is

Φn =

∫ 1

0

1I{xn(u2,t)−xn(u1,t)<0}dt

with u1 < u2. In the paper [3], we obtained that the rate of decrease to zero of Φn is
governed by convergence of the covariance functions Γn. This brings up the question:
”does the rate of convergence of an “amount” of disordering depends on the rate of weak
convergence of {xn(u1, ·), . . . , xn(um, ·)}n≥1 to an m-point motion of the Arratia flow?”.

The investigation of weak convergence of a discrete-time m-point motion necessitated
us to study functionals of the limiting flow’s trajectories. In this paper we consider the
semigroup of an m-point motion of the Arratia flow and present a system of boundary
value problems for functions

Qm,tf(u) = Ef(X(u, t)),

where f ∈ C0(Rm). We rewrite obtained integral representation for Qm,tf in terms of
binary forests that correspond to the order of trajectories’ coalescence.

2. Generator for semigroup of m-point motion of the Arratia flow

In this section we consider semigroups of an m-point motions of the Arratia flow and
present a core for its generator. At the informal level, the Arratia flow can be described
as a collection of Brownian particles that start from points at the real line and move
independently until they meet. Upon their meeting, two particles coalesce. Coalescing
stochastic flow was investigated in [2]. We give here a definition of the Arratia flow as it
was given in [4, 5]

Definition 1. The Arratia flow is a family (x(u, t)), u ∈ R, t ≥ 0 of continuous mar-
tingales adapted to a common filtration (Ft), satisfying the following conditions:

(i) For each u x(u, ·) is an Ft-Brownian motion starting at u.
(ii) For each u, v the joint covariation of (x(u, ·)) and (x(v, ·)) is given by

d〈x(u, ·), x(v, ·)〉(t) = 1I{x(u,t)=x(v,t)}dt,

where 〈·, ·〉 is quadratic covariation.
(iii) (x(·, t)) is monotone in u for each t.

In the paper [6] Y. Le. Jan and O. Raimond constructed a system of n coalescing

particles on a manifold in terms of transition semigroups. Precisely, let (P
(n)
t , n ≥ 1) be

a compatible family of Feller semigroups on a locally compact separable metric space M,
i.e. for all k ≤ n

P
(k)
t f(x1, . . . , xk) = P

(n)
t g(y1, . . . , yn),

where f and g are any continuous functions such that

g(y1, . . . , yn) = f(yi1 , . . . , yik),

with {i1, . . . , ik} ⊂ {1, . . . , n} and (x1, . . . , xk) = (yi1 , . . . , yik).

Denote by P
(n)
(x1,...,xn) the law of the Markov process X

(n)
t associated with P

(n)
t starting

from (x1, . . . , xn). This Markov process will be called the n-point motion of this family
of semigroups. It is defined on the set of càdlàg paths on Mn. Let δn = {x ∈ Mn,∃i 6=
j, xi = xj} and Tδn = inf{t ≥ 0, X

(n)
t ∈ δn},

Theorem 1 (Theorem 4.1, [6]). There exists a unique compatible family (P
(n),c
t , n ≥ 1)

of Markovian semigroups on M such that if X(n),c is the associated n-point motion and

T cδn = inf{t ≥ 0, X
(n),c
t ∈ δn}, then

(i) (X
(n),c
t , t ≤ T cδn) is equal in law to (X

(n)
t , t ≤ Tδn),
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(ii) for t ≥ T cδn , X
(n),c
t ∈ δn.

Moreover, this family is constituted of Feller semigroups if condition (c) is satisfied:
(c) For all t > 0, ε > 0 and x ∈M

lim
y→x

P(2)
(x,y)({Tδ2 > t} ∩ {d(Xt, Yt) > ε}) = 0,

where (Xt, Yt) = X
(2)
t . And for some x and y in M P(2)

(x,y)[Tδ2 <∞] > 0.

In this case the family (P
(n),c
t , n ≥ 1) satisfies

P
(2),c
t f⊗2(x, x) = Ptf

2(x)

and is associated with a coalescence flow.

Applying this theorem with M = R and a family (P⊗nt , n ≥ 1) of Feller semigroups,
where Pt is the semigroup of a Brownian motion, Y. Le Jan and O. Raimond (exam-
ple 4.4.1, [6]) obtained a family (Qn,t, n ≥ 1) of Feller semigroups such that the flow
associated with (Qn,t, n ≥ 1) is an n-point motion of the Arratia flow.

For u = (u1, ..., um) ∈ Rm we will denote by X(u, t) = (x(u1, t), . . . , x(um, t)) the
m-point of the Arratia flow which starts from the point u1 < u2 < . . . < um.

Let us denote ∆m = {u ∈ Rm : u1 ≤ u2 ≤ . . . ≤ um},

C2
0 (∆m) = {f ∈ C2(∆m) : f(x)→ 0,

∂2f

∂xi∂xj
(x)→ 0, as ||x|| → ∞}

Recall the definition of a core of a closed linear operator A with domain D(A) [7]. A
subspace D of D(A) is said to be a core for A if the closure of the restriction of A to D is
equal to A. A subspace D ⊂ C0 is said to be invariant under semigroup (Tt) if TtD ⊂ D
for all t ≥ 0. It is known ([7]) that the generator of a Feller semigroup is closed. To show
that some set D is a core for A we will use next proposition:

Proposition 1 (Proposition 19.9, [7]). If (A,D) is the generator of a Feller semigroup,
then any dense, invariant subspace D ⊂ D is a core for A

In the next theorem we present a core for the generator A of the semigroup (Qm,t) of
m-point motion of the Arratia flow.

Theorem 2. The set of functions

Dm ={f ∈ C2
0 (∆m) :

∂2f

∂xi∂xj
∈ C0(∆m),

∂2f

∂xi∂xj
1I{xi=xj}(x) = 0, i 6= j}

is a core for a generator A of the semigroup Qm,t and for any f ∈ Dm

Af(u) =
1

2
∆f(u), u ∈ ∆m.

Proof. Let D be a domain of the generator A of the semigroup Qm,t. First, we show that
Dm ⊂ D, i.e. for any function f ∈ Dm

Qm,tf − f
t

→ Af in C0(∆m) as t→ 0.

By the Ito formula we get

f(X(u, t)) = f(u) +

m∑
i=1

∫ t

0

f ′i(X(u, s)) dx(ui, s)+

+
1

2

m∑
i,j=1

∫ t

0

f ′′ij(X(u, s)) d〈x(ui, ·), x(uj , ·)〉(s) =
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= f(u) +

m∑
i=1

∫ t

0

f ′i(X(u, s)) dx(ui, s) +
1

2

m∑
i=1

∫ t

0

f ′′ii(X(u, s)) ds,

where we use condition (ii) from the definition 1. Taking the expectation we obtain:

1

t
E[f(X(u, t))− f(u)] =

1

2t

m∑
i=1

E
∫ t

0

f ′′ii(X(u, s)) ds =

=
1

2t

m∑
i=1

∫ t

0

Qm,sf
′′
ii(u) ds.

For any g ∈ C0(∆m) using strong continuity of the Feller semigroup (Qm,t)∥∥∥1

t

∫ t

0

Qm,sg ds− g
∥∥∥ ≤ 1

t

∫ t

0

‖g −Qm,sg‖ ds→ 0 as t→ 0.

By assumption, f ′′ii ∈ C0(∆m), so by the same argument,

1

t

m∑
i=0

∫ t

0

Qm,sf
′′
ii(u) ds→ 1

2
∆f(u) as t→ 0

uniformly in u ∈ ∆m.
To prove the invariance of Dm under Qm,t

(1) Qm,tDm ⊂ Dm

we will use mathematical induction. The next lemma gives the base of induction.

Lemma 1. For m = 2 relation (1) holds.

Proof. Let f be any function of class D2. Note that 2-point motion of the Arratia flow
can be represented via two independent Brownian motions {w(u1, t)}t≥0, {w(u2, t)}t≥0,
w(ui, 0) = ui :

x(u2, t) = w(u2, t),

x(u1, t) = w(u1, t)1I{t<τ} + w(u2, t)1I{t≥τ},

where τ = inf{t : w(u1, t) = w(u2, t)}.
We will use the transition density for non-intersecting Brownian motions obtained by

Karlin and McGregor [8]:

P{w1(t) ∈ dy1, . . . , w
m(t) ∈ dym, w1(s) < . . . < wm(s), 0 ≤ s ≤ t} =

= det
(
pt(ui, yj)

)
i=1,...,m
j=1,...,m

dy1 . . . dym,

where (w1(t), . . . , wm(t))t≥0 is a Brownian motion that starts at (x1, . . . , xm), x1 < x2 <

. . . < xm, and pt(u, y) = 1√
2πt

e−
(u−y)2

2t .

So we get

Q2,tf(u1, u2) = Ef(w(u1, t), w(u2, t))1I{t<τ} + Ef(w(u2, t), w(u2, t))(1− 1I{t<τ}) =

=

∫∫
y1≤y2

(f(y1, y2)− f(y2, y2))

∣∣∣∣pt(u1, y1) pt(u1, y2)
pt(u2, y1) pt(u2, y2)

∣∣∣∣ dy2 dy1+

+

∫
R
f(y1, y2)pt(u2, y2) dy2,

The second summand in the obtained expression belongs to D2 since it does not
depend on u1. To check that the first summand belongs to D2, we note, that under
assumption of f, the function

g(u1, u2, y1) =

∫ +∞

y1

(f(y1, y2)− f(y2, y2))

∣∣∣∣pt(u1, y1) pt(u1, y2)
pt(u2, y1) pt(u2, y2)

∣∣∣∣ dy2
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is differentiable with respect to u1, u2 and

∂2

∂u1∂u2

∫
R
g(u1, u2, y1) dy1 =

∫
R

∂2

∂u1∂u2
g(u1, u2, y1) dy1 =

=

∫
R

∫ +∞

y1

(f(y1, y2)− f(y2, y2))

∣∣∣∣pt(u1, y1)y1−u1

t pt(u1, y2)y2−u1

t

pt(u2, y1)y1−u2

t pt(u2, y2)y2−u2

t

∣∣∣∣ dy2 dy1,

where we use
∂

∂u

∣∣∣∣g(u) g(u)
g(v) g(v)

∣∣∣∣ =

∣∣∣∣g′(u) g′(u)
g(v) g(v)

∣∣∣∣ .
From this expression and properties of Gaussian distribution one can see that

∂2

∂u1∂u2

∫
R
g(u1, u2, y1) dy1 ∈ C0(∆2) .

Notice that

∣∣∣∣pt(u1, y1)y1−u1

t pt(u1, y2)y2−u1

t

pt(u2, y1)y1−u2

t pt(u2, y2)y2−u2

t

∣∣∣∣ = 0 when u1 = u2, so we get

∂2

∂u1∂u2

∫
R
g(u1, u2, y1) dy1

∣∣∣
u2=u1

= 0.

Thus we obtain that Q2,tf ∈ D2 whenever f ∈ D2. The lemma 1 is proved. �

Suppose now that property (1) holds for m− 1 and prove it for m. For any function
f ∈ Dm

Qm,tf(u) = Ef(X(u, t))1I{τ>t} + Ef(X(u, t))1I{τ≤t} =

= Ef(w(u1, t), . . . , w(um, t))1I{τ>t} + Ef(X(u, t))1I{τ≤t},
(2)

where {w(u1, t)}t≥0, . . . , {w(um, t)}t≥0 are independent Brownian motions such that
w(ui, 0) = ui, and

τ = inf{t : X(u, t) ∈ ∂∆m}
d
= inf{t : (w(u1, t), . . . , w(um, t)) ∈ ∂∆m}.

Using the Karlin–McGregor formula for the transition density for non-intersecting Brow-
nian motions we get:

Ef(w(u1, t), . . . , w(um, t))1I{t<τ} =

∫
. . .

∫
y1<...<ym

f(y) det
(
pt(ui, yj)

)
i=1,...,m
j=1,...,m

dy.

Using properties of Gaussian distribution, as in case m = 2, one can check that under
the assumption on f, the last integral as function of u1, . . . , um belongs to the class Dm.
It is more difficult to check that the second summand in (2) is in Dm. Using the strong
Markov property for the m-point motion of the Arratia flow we can write:

Ef(X(u, t))1I{τ≤t} = EE
(
f(X(u, t))1I{τ≤t}

∣∣Fu1,...,um
τ

)
=

= E 1I{τ≤t}Qm,t−τf(X(u, τ)) = E 1I{τ≤t}Qm,t−τf(w(u1, τ), . . . , w(um, τ)),

where Fu1,...,um

t = σ{x(u1, s), . . . , x(um, s), s ≤ t}.
We will now prove that the obtained expression is a solution to some boundary value

problem and then establish properties of this solution depending on boundary condition.
Denote

(3) Smi = {u ∈ ∂∆m : ui = ui+1}.
Define functions πi : ∆m → ∆m−1 by the rule:

(4) πi(u1, u2, . . . , um) = (u1, . . . , ui, ui+2, . . . , um)

and functions π−1
i : ∆m−1 → ∆m by the rule

(5) π−1
i (u1, . . . , um−1) = (u1, . . . , ui, ui, ui+1, . . . , um−1).
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For any function ϕ ∈ C2(∂∆m) let ϕi be a restriction of ϕ on Smi , i.e. ϕi = ϕ|Sm
i
. Define

a set of functions on ∂∆m :

D(∂∆m) = {ϕ ∈ C2(∂∆m) : ϕi ◦ π−1
i ∈ Dm, i = 1, . . . ,m}.

We will denote by
◦
A the interior of a set A.

Lemma 2. Let F be a solution to a boundary value problem:

(6)
∂

∂s
F (u, s) = −1

2
∆F (u, s) in

◦
∆m × [0, t)

(7) lim
s→t

F (u, s) = 0

(8) F (u, s) = ϕ(u), u ∈ ∂∆m,

F ∈ C2(
◦
∆m × (0, t)).

Let {ws(ui, t), t ≥ s}mi=1 be independent Brownian motions, ws(ui, s) = ui, u ∈ ∆m.
Denote

τ = inf{t ≥ s : (ws(u1, t), . . . , ws(um, t)) ∈ ∂∆m}.
Then for ϕ ∈ C2

0 (∂∆m) and t > s

f(u) = E 1I{t≥τ}ϕ(w0(u1, τ), . . . , w0(um, τ)) = F (u, 0).

Proof. It is easy to see that the Green function G to the problem (6)-(8) can be obtained
by the method of images [9] and that G ∈ C∞(∆m). Since F (u, s) = ϕ(u), u ∈ ∂∆m

and ϕ ∈ C2
0 (∂∆m), solution to (6)–(8) belongs to C2(∆m). Applying the Ito formula

to F (w(s), s) and using Doob’s optional sampling theorem with bounded stopping time
t ∧ τ

F (ws(u1, t ∧ τ), . . . , ws(um, t ∧ τ), t ∧ τ) = F (u, s)+

+

m∑
i=1

∫ t∧τ

s

F ′i (ws(u1, r ∧ τ), . . . , ws(um, r ∧ τ), r ∧ τ)dw(ui, r)+

+

∫ t∧τ

s

F ′m+1(ws(u1, r), . . . , ws(um, r), r)dr+

+
1

2

m∑
i=1

∫ t∧τ

s

F ′′ii(ws(u1, r), . . . , ws(um, r), r)dr.

Since F satisfies (6) we get

F (ws(u1, t ∧ τ), . . . , ws(um, t ∧ τ), t ∧ τ) = F (u, s)+

+

m∑
i=1

∫ t∧τ

s

F ′i (ws(u1, r), . . . , ws(um, r), r)dw(ui, r).

Taking the expectation:

F (u, s) = EF (ws(u1, t ∧ τ), . . . , ws(um, t ∧ τ), t ∧ τ).

Conditions (7), (8) imply that

F (u, 0) = EF (w0(u1, t ∧ τ), . . . , w0(um, t ∧ τ), t ∧ τ)1I{t<τ}+

+EF (w0(u1, t ∧ τ), . . . , w0(um, t ∧ τ), t ∧ τ)1I{t≥τ} =

= Eϕ(w0(u1, τ), . . . , w0(um, τ))1I{t≥τ}.

�

The next lemma gives some properties of a solution to the boundary value problem
(6)–(8).



SEMIGROUPS OF m-POINT MOTIONS OF THE ARRATIA FLOW, AND BINARY FORESTS 37

Lemma 3. Let ϕ be some function of class D(∂∆m) and let F be a solution to the
problem (6)–(8). Then F (·, 0) belongs to the set Dm.

Proof. The Green function for the boundary value problem (6)–(8) is the Karlin–McGregor
determinant

G(x, y, s, r) = det
(
pr−s(xi, yj)

)
i=1,...,m
j=1,...,m

.

Then the solution to the problem (6)–(8) has the form [9]

F (u, s) = −
m−1∑
i=1

∫ t

s

∫
Ki

1

2
ϕ(y)

∂

∂Ny
G(u, y, s, r) dSy dr,

where ∂
∂N is the operator of differentiation along the outward normal to Ki = {u ∈

∂∆m : ui = ui+1, uj < uj+1, j 6= i} and Sy is a surface measure. Since for y ∈ Ki,
∂

∂Ny
=
(

∂
∂yi+1

− ∂
∂yi

)
, we get

F (u, s) =
1

2

m−1∑
i=1

∫ t

s

∫
Ki

ϕ(y)
( ∂

∂yi+1
− ∂

∂yi

) 1√
2
G(u, y, s, r) dSy dr =

=
1

2

m−1∑
i=1

∫ t

s

∫
∆m−1

ϕ(π−1
i v)

( ∂

∂yi+1
− ∂

∂yi

)
G(u, y, s, r)

∣∣∣y1=v1,...,yi=vi
yi+1=vi,...,ym=vm−1

dv dr

Denote

G(i)(u, v, s, r) =
( ∂

∂yi+1
− ∂

∂yi

)
G(u, y, s, r)

∣∣∣y1=v1,...,yi=vi
yi+1=vi,...,ym=vm−1

,

where u = (u1, ..., um) ∈ ∆m and v = (v1, ..., vm−1) ∈ ∆m−1. One can obtain the explicit
formula for G(i):

G(i)(u, v, s, r) = 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pr−s(u1, v1) . . . pr−s(um, v1)
...

pr−s(u1, vi) . . . pr−s(um, vi)
pr−s(u1, vi)

u1−vi
r−s . . . pr−s(um, vi)

um−vi
r−s

pr−s(u1, vi+1) . . . pr−s(um, vi+1)
...

pr−s(u1, vm−1) . . . pr−s(um, vm−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Representation for a solution to boundary value problem via functions G(i) allows to
check that F (u, 0) ∈ D(∆m). Condition ϕ(π−1

i v) ∈ C0(∆m) and smoothness of Gaussian
distribution make it possible to differentiate the integral in the representation for the

solution and F (·, s) ∈ C2
0 (∆m). Property ∂2F

∂uk∂uj
1I{uk=uj} = 0 follows from the same

property for functions G(i). �

Lemma 3 completes the proof of invariance of the set Dm under semigroup Qm,t if we
note that

E1I{τ≤t}Qm,t−τf(w(u1, τ), . . . , w(um, τ)) = E1I{τ≤t}ϕ(w(u1, τ), . . . , w(um, τ)),

where ϕ is defined on ∂∆m and by inductive hypothesis ϕ ∈ D(∂∆m).
The proof of density of the set Dm in C0(∆m) is easy and omitted. �
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3. The action of the semigroup Qm,t in terms of binary forests

In the previous section we described the core Dm for the generator of the semigroup
Qm,t, and obtained the action of the generator on functions from Dm. The function
Qm,tf(u), f ∈ Dm satisfies Kolmogorov forward equation (Theorem 19.6 [7]):

∂

∂t
Qm,tf(u) = AQm,tf(u), u ∈ ∆m, t > 0.

Taking into consideration the action of Qm,t on f at points of boundary of the set ∆m

we get

Qm,tf(u) = Ef(x(u1, t), . . . , x(ui, t), x(ui, t), x(ui+2, t), . . . , x(um, t)) =

= Ef ◦ π−1
i (x(u1, t), . . . , x(ui, t), x(ui+2, t), . . . , x(um, t)) =

= Qmp−1,tf ◦ π−1
i (πiu),

for u ∈ Km
i = {u ∈ ∂∆m : ui = ui+1, uj < uj+1, i 6= j} (recall that πi, π

−1
i were defined

in the previous section in (4), (5)). Therefore, we obtain an iterative scheme of boundary
value problems:

(9)
∂

∂t
Qm,tf(u) =

1

2
∆Qm,tf(u), u ∈ ∆m, t ≥ 0,

(10) Qm,0f(u) = f(u)

(11) Qm,tf(u) = (Qm−1,tf ◦ π−1
i )(πiu), u ∈ Km

i , Qm,tf(·) ∈ Dm.

A solution to the boundary value problem (9)–(11) we will represent as a sum in which
each summand is indexed by a binary forest.

Let us define a class of forests Tmk , k < m with m leaves and k roots. Denote by Umk
a set of vertices:

Umk = {u(k)
1 , u

(k)
2 , . . . , u

(k)
k , u

(k+1)
1 , . . . , u

(k+1)
k+1 , . . . , u

(m)
1 , . . . , u(m)

m , u(j) ∈ ∆j}.
Edges of a forest will be defined via a set of mappings

Gj = {σj : {1, 2, . . . , j} → {1, 2, . . . , j − 1}, σj is a surjection }.
For any mapping σj ∈ Gj there exists a unique pair

(l1, l2) = (l1(σj), l2(σj)) ⊂ {1, 2, . . . , j}
such that σj(l1) = σj(l2), l1 < l2.

For a fixed set of mappings {σm, σm−1, . . . , σk+1}, where σj ∈ Gj define edges

Rmk ≡ Rmk (σm, σm−1, . . . , σk+1) =
{(
u

(i)
j , u

(i−1)
σi(j)

)
, i = k + 1, . . . ,m, j = 1, . . . , i

}
.

Let us define a set of binary forests as

Tmk =
{

(Umk , R
m
k (σm, . . . , σk+1)), σj ∈ Gj

}
.

We assign time tj to the set of vertices
{
u

(j)
1 , u

(j)
2 , . . . , u

(j)
j

}
for every j ∈ {k, . . . ,m}.

We say that the edges
(
u

(n)
j , u

(n−1)
σn(j)

)
and

(
u

(n)
i , u

(n−1)
σn(i)

)
intersect if i < j, σn(i) >

σn(j) and denote by ε(T ) the number of intersection of edges in a forest T ∈ Tmk . We
assign a weight to any edge of a forest T ∈ Tmk , which depends on connected vertices
and corresponding moments of time

g
(
u

(i)
j , u

(i−1)
σi(j)

, ti, ti−1

)
= pti−ti−1

(
u

(i)
j , u

(i−1)
σi(j)

)√u
(i)
l2
− u(i)

l1

ti − ti−1

for j = l1, l2, where l1 < l2, σi(l1) = σi(l2), and

g(u
(i)
j , u

(i−1)
σi(j)

, ti, ti−1) = pti−ti−1

(
u

(i)
j , u

(i−1)
σi(j)

)
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Figure 1. An example of T ∈ T 5
2 .

for j 6= l1, j 6= l2, where ps(u1, u2) = 1√
2πs

e−
(u1−u2)2

2s .

Denote by |T | a product of weights of all edges in a forest T ∈ Tmk :

|T | = |T (u(m), . . . , u(k), tm, . . . , tk)| =
m∏

i=k+1

i∏
j=1

g
(
u

(i)
j , u

(i−1)
σi(j)

, ti, ti−1

)
.

For any forest T ∈ Tmk we put into correspondence a set of indexes (im−1, im−2, . . . , ik),

where each index ij is a coordinate of a vector u(j) such that σj+1(l1) = σj+1(l2) =
ij , l1 6= l2. Define an action of a forest T ∈ Tmk on a function f : ∆m → R by the rule:

fT = f ◦ π−1
m−1 · · · ◦ π

−1
k

Now we are ready to represent the action of the semigroup of m-point motions in terms
of binary forests. Denote by Gm the Green function of the boundary value problem
(9)–(11).

Theorem 3. Let f be a function of class Dm. Then

Qm,tf(u) =

∫
∆m

f(y)Gm(u, y, t, 0) dy+

+
∑

T∈Tm
m−1

(−1)ε(T )

∫ t

0

∫
∆m−1

∫
∆m−1

fT (y)Gm−1(u(m−1), y, tm−1, 0)·

· |T (u, u(m), t, tm−1)| du(m−1) dy dtm−1+

+
∑

T∈Tm
m−2

∫ t

0

∫ tm−1

0

∫
∆m−1

∫
∆m−2

∫
∆m−2

(−1)ε(T )fT (y)Gm−2(u(m−2), y, tm−2, 0)·

· |T (u, u(m−1), u(m−2), t, tm−1, tm−2)| dy du(m−2) du(m−1) dtm−2 dtm−1 + . . .

. . .+
∑
T∈Tm

1

(−1)ε(T )

∫ t

0

∫ tm−1

0

. . .

∫ t2

0

∫
∆m−1

∫
∆m−2

. . .

∫
R

∫
R
fT (y)G1(u(1), y, t1, 0)·

· |T (u, u(m−1), . . . , u(2), u(1), t, tm−1, . . . , t1)| dy du(1) . . . du(m−1) dt1 . . . dtm−1.

Proof. Let us write the solution to boundary value problem via the Green function:

Qm,tf(u) =

∫
∆m

f(y)Gm(u, y, t, 0) dy+
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+
1

2

m−1∑
i=1

∫ t

0

∫
Km

i

Qm−1,tm−1f ◦ π−1
i (πiv)

( ∂

∂vi+1
− ∂

∂vi

)
Gm(u, v, tm−1, t)

1√
2
dSv dtm−1.

Denoting by

G(i)
m (u, y, s, t) =

( ∂

∂vi+1
− ∂

∂vi

)
Gm(u, v, s, t)

∣∣∣v1=y1,...,vi=yi
vi+1=yi,...,vm=ym−1

we get

Qm,tf(u) =

∫
∆m

f(y)Gm(u, y, t, 0)dy+

+
1

2

m−1∑
i=1

∫ t

0

∫
∆m−1

Qm−1,tm−1
f ◦ π−1

i (πiy)G(i)
m (u, y, tm−1, t)dydtm−1.

Since Gm(u, v, t, s) = det
(
pt−s(ui, vj)

)
i=1,...,m
j=1,...,m

we have

G(i)(u, y, s, t) = 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pt−s(u1, y1) . . . pt−s(um, y1)
...

pt−s(u1, yi) . . . pt−s(um, yi)
pt−s(u1, yi)

u1−yi
t−s . . . pt−s(um, yi)

um−yi
t−s

pr−s(u1, vi+1) . . . pr−s(um, vi+1)
...

pt−s(u1, ym−1) . . . pt−s(um, ym−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

=
∑
l1<l2

(−1)l1+l2+1

∣∣∣∣ pt−s(ul1 , yi) pt−s(ul2 , yi)

pt−s(ul1 , yi)
ul1
−yi

t−s pt−s(ul2 , yi)
ul2
−yi

t−s

∣∣∣∣det
(
pt−s(uj , yk)

)
j 6=l1,l2
k 6=i

=

=
∑
l1<l2

(−1)l1+l2+1pt−s(ul1 , yi)pt−s(ul2 , yi)
ul2 − ul1
t− s

det
(
pt−s(uj , yk)

)
j 6=l1,l2
k 6=i

Let us check that

(12) G(i)
m (u, y, t, s) =

∑
T∈Tm

m−1,im−1=i

|T (u, y, t, s)|,

where the last sum is taken over forests T ⊂ Tmm−1, such that i = σm(l1) = σm(l2), l1 6=
l2. Denote

Gl1,l2,im = {σ ∈ Gm : σm(l1) = σm(l2) = i}.
Then ∑

T∈Tm
m−1,im−1=i

|T (u, y, t, s)| =

=
∑
l1<l2

∑
σ∈Gl1,l2,i

m

pt−s(ul1 , yi)pt−s(ul2 , yi)
ul2 − ul1
t− s

(−1)ε(T )
∏

j 6=l1,l2

pt−s(uj , yσ(j)) =

=
∑
l1<l2

pt−s(ul1 , yi)pt−s(ul2 , yi)
ul2 − ul1
t− s

∑
σ∈Gl1,l2,i

m

∏
j 6=l1,l2

pt−s(uj , yσ(j))(−1)ε(T ).

Note that∑
σ∈Gl1,l2,i

m

∏
j 6=l1,l2

pt−s(uj , yσ(j))(−1)ε(T ) = (−1)l1+l2+1 det
(
pt−s(uj , yk)

)
j 6=l1,l2
k 6=i

,

so the equality (12) holds.
Hence, we can write the solution to the boundary value problem (9)–(11) in the form:

Qm,sf(u) =

∫
∆m

f(y)Gm(u, y, t, 0) dy+
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+
∑

T∈Tm
m−1

∫ t

0

∫
∆m−1

(−1)ε(T )Qm−1,tm−1fT (y(m−1))|T (u, y(m−1), t, tm−1)| dy(m−1) dtm−1.

We replace Qm−1,tm−1
fT (y(m−1)) with the solution of the corresponding boundary value

problem in the obtained formula and note that for T ∈ Tmm−1, T1 ∈ Tm−1
m−2

T ∪ T1 ∈ Tmm−2, (fT )T1
= fT∪T1

, |T ||T1| = |T ∪ T1|;
so we get

Qm,tf(u) =

∫
∆m

f(u)Gm(u, y, t, 0)dy+

+
∑

T∈Tm
m−1

∫ t

0

∫
∆m−1

∫
∆m−1

(−1)ε(T )fT (y)Gm−1(y(m−1), y, tm−1, 0)·

·|T (u, y(m−1), t, tm−1)|dydy(m−1)dtm−1+

+
∑

T∈Tm
m−2

∫ t

0

∫ tm−1

0

∫
∆m−1

∫
∆m−2

(−1)ε(T )Qm−2,tm−2fT (y(m−2))

|T (u, y(m−1), y(m−2), t, tm−1, tm−2)|dy(m−2)dy(m−1)dtm−2dtm−1.

We continue this iterative scheme by replacing Qk,tkf, k = 1, . . . ,m − 1 with the
solutions of the corresponding boundary value problems. The theorem is proved.

�
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