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ON THE GROWTH OF MEROMORPHIC SOLUTIONS
OF DIFFERENCE EQUATION *

IHOPAJOK POCTY MEPOMOP®HUX PO3B’A3KIB PI3BHUIIEBUX PIBHAHDb

We estimate the order of growth of meromorphic solutions of some linear difference equations and study the relationship
between the exponent of convergence of zeros and the order of growth of the entire solutions of linear difference equations.

OUiHIOETHCS TTOPSIIOK POCTY MEPOMOP(GHUX PO3B’S3KIB JISSKUX JIIHIHHUX PI3HUIEBUX PIBHSHb Ta BUBYAETHCS CITIBBITHO-
LIEHHS MK NOKa3HUKaMH 301KHOCTI HyJIiB Ta MOPSAIKOM 3pOCTaHHS LUINX PO3B’SA3KiB JMIHIMHUX PI3HUIEBHX PiBHSIHb.

1. Introduction and results. In this paper, we use the basic notions of Nevanlinna’s theory (see
[8, 12, 13]). In addition, we use the notations o(f) to denote the order of growth of the meromorphic
function f(z), and A\(f) to denote the exponent of convergence of zeros of f(z).

Recently, many results of complex differences and difference equations are rapidly obtained
(see [1-3, 5, 7, 9, 10]). Chiang and Feng [7] studied the growth of meromorphic solutions of
homogeneous linear difference equation, when there exists only one coefficient having the maximal
order, they obtained the following result.

Theorem A. Let Ay(z),...,An(z) be entire functions such that there exists an integer [, 0 <
<1 < n, such that

o(A) > max {o(4;)}.
GAL

If f(z) is a meromorphic solution to
An(2)y(z+n)+ ...+ Ai1(2)y(z+ 1) + Ao(2)y(z) =0,

then we have o(f) > o(4;) + 1.

Laine and Yang [11] obtained that when the dominating coefficient depending on type but not
order, Theorem A still holds. The result may be stated as follows.

Theorem B. Let Ay(z),...,An(z) be entire functions of finite order such that among those
coefficitets having the maximal order 0 = max{o(Ay),0 < k < n}, exactly one has its type strictly
greater than the others. If f(z) # 0 is a meromorphic solution of equation

A(2) (24 wn) + o+ A1) (2 +wr) + Ao(2) () = 0, (L1)

then o(f) > o + 1.

Laine and Yang [11] raised the following question.

Question: Whether all meromorphic solutions f(z)(# 0) of equation (1.1) satisfy o(f) >
> 1+ maxo<;<n 0(A;), if there is no dominating coefficient.

Giving some restriction on the coefficients of difference equation, we answer this question and
obtain the following results.
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Theorem 1.1. Let ¢;, j = 1,...,n, be distinct constants, A;(z) = Pj(z)ehj(z) +Qj(2), j =
=1,...,n, where h;(z) are polynomials with degree k > 1, P;(z)(# 0), Q;(2) are entire functions
of order less than k. Among leading coefficients of hj(z), j € {1,...,n}, having the maximal
modulus, there exists a term being unequal to the others. If f(z)(# 0) is a meromorphic solution of

equation
Ap(2)f(z+cn) + .o+ Ar(2) f(2 + 1) =0, (1.2)

then o(f) > k+ 1.

Corollary 1.1. Let k,A;(z), j =1,...,n, be defined as in Theorem 1.1, B;(z), i =1,...,m,
be entire functions of order less than k, and c;, j = 1,...,n+ m, be distinct constants. If f(z)
(£ 0) is a meromorphic solution of equation

B (2)f(z+cngm) +- ..+ B1(2) f(z4+cny1) + An(2) f(z+en) + ...+ A1(2) f(z+ 1) =0, (1.3)

then o(f) > k+ 1.
Example 1.1. The function f(z) = e* satisfies difference equation

e 22 f(z+1i)+ ¥ f(z—1i) —2e L f(2) = 0.

Obviously, o(f) = 2 = deg h1+1 = deg ho+1. This example shows that the equality in Corollary 1.1
can be arrived. So the estimation in Corollary 1.1 is precise.

By Theorems A, B and 1.1, we deduce the following Corollary 1.2.

Corollary 1.2. Let c;, j = 1,2, be distinct nonzero constants, hj(z), j = 1,2, be polynomials,
and Aj(z) (£0), j =0,1,2, be entire functions such that

max{o(4;),0 < j <2} < max{deghi,deghsa}.
If f(2) (£ 0) is a meromorphic solution of equation
As(2)em B f(2 4 e2) + A1(2)e" B f(2 + 1) + Ag(2) f(2) = O, (1.4)

then o(f) > max{deghi,deghs} + 1.

Chen [6] studied complex oscillation problems of entire solutions f(z) to homogeneous and
nonhomogeneous linear difference equations respectively, and obtained some relations between A(f)
and o(f). These results may be stated as follows.

Theorem C. Let Aj(z2), j =1,...,n, be entire functions such that there is at least one A; being
transcendental, c;, j = 1,...,n, be constants which are unequal to each other. Suppose that f(z)
is a finite order transcendental entire solution of the homogeneous linear difference equation (1.2)
and satisfies o(f) > max{o(4;): 1 <j<n}+1.

Then \(f) > o(f) — 1. Moreover, if assume n = 2, then \(f) = o(f).

Theorem D. Let F'(z), Aj(2), j =1,...,n, be entire functions such that F(z)A,(z) # 0, ci,
k =1,...,n, be constants which are unequal to each other. Suppose that f(z) is a finite order entire
solution of the nonhomogeneous linear difference equation

Ap(2)f(z4+cn) + ...+ Ai(2)f(z + 1) = F(2).

If o(f) > max{o(F),0(A;): 1 < j <n}, then \(f) = o(f).
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In the following, we continue to study the complex oscillation problems of entire solutions to
linear difference equations (1.2) and (1.4), and obtain the following results, which extend Theorems C
and D.

Theorem 1.2. Let ¢;, j = 1,...,n, be distinct constants, and Aj(z) (#0), j =1,...,n, be
entire functions with finite order. Suppose that f(z) is a finite order entire solution of equation (1.2)
and satisfies o(f) > max{co(A;): 1< j <n}+1. Then f(z) assumes every finite value d infinitely
often and \(f — d) = o(f).

Example 1.2. The entire function f(z) =e

2 . . . .
#" satisfies linear difference equation

Flz+1) = e2FLE() = 0,

Obviously, As(z) = 1,A1(z) = —e**TL We see o(f) = 2 = max{o(4;),0(A2)} + 1, but
A(f) = 0 < o(f). This example shows that the condition in Theorem 1.2, o(f) > max{c(A4;):
1 <j <n}+1, can not be weaken.

By Theorems D and 1.2, we have the following corollary.

Corollary 1.3. Under conditions of Theorem 1.2, for any small entire function o(z) (£ 0)
satisfying o (@) < o(f), we have \(f — ) = o(f).

Corollary 1.4. Let hy(z), ha(z) be polynomials such that

hi(z) = apz" + ...+ ao, ho(z) = by 2™ + ... + bo,

where anby, # 0, Aj(z) (£ 0), j =0,1,2, be entire functions of order less than max{n, m} and
ck, k = 1,2, be distinct nonzero constants such that caay, — c1by, # 0 while n = m. If f(z) (#0)
is a finite order entire solution of (1.4), then \(f) = o(f) > max{n,m} + 1.

Example 1.1 shows that the condition, cea,, — ¢1b,, # 0 while n = m, in Corollary 1.4 can not
be weaken.

2. Proofs of Theorems and Corollaries. We need the following lemmas for the proof of
theorems and corollaries.

Lemma 2.1 [4]. Suppose that f(z) is a meromorphic function with o(f) = o < oo, then for
any given € > 0, there is a set E C (1,00) that has finite linear measure or finite logarithmic
measure, such that

|[f(2)] < exp{r”*¢},

Sor all z satisfying |z| =r & [0,1]UE, r — oc.

Lemma 2.2 [7]. Let n1, n2 be two arbitrary complex numbers, and let f(z) be a meromorphic
function of finite order o. Let € > 0 be given, then there exists a subset E C (0,00) with finite
logarithmic measure such that for all z satisfying |z| =r ¢ E U0, 1], we have

Z+m)

_.0—14e f( o—1+e
exp{—r } < ‘f(z—l—ng) }.

< exp{r

Proof of Theorem 1.1. Contrary to our assertion, we assume o(f) < k + 1. Let
hj(2) = ajpz" + hi(2), 2.1
where a;, # 0 are constants, h;f(z) are polynomials with degh’ <k -1, j=1,...,n.
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Set
I= {z |a;x| = max |ajk|}, 0; = argaj, € [0,2m), jel.
1<i<n

There exists [ € I such that aj;, # aji,j € 1\ {l}. By this and the definitions of I and 6;, we see
|ajk| = lawl, 05 # 6, jeI\{l}.

Choosing 6 such that
cos(k0 + 6;) = 1. (2.2)

By 6; # 0;, j € I\ {l}, we have
cos(k@+6;) <1, jel\{l}. (2.3)
Denote

a= max {lapl},  b=max{apl}, e max{bacos(k +0,). jeI\{l}} <a.
J

1<j<n
2.4)
and

oc=o(f)<k+1, B = max {o(P}),0(Q;)} < k. (2.5)

1<j<n

Obviously,

By Lemma 2.1, for any given ¢, 0 < 2¢ < min{l,k+1—0,k—3,a—c}), there is aset E; C (1, 00)
with finite logarithmic measure such that for all z satisfies |z| = r & E; U [0, 1], we obtain

P;(2) Q;(2) e :
% Pj(z) ‘ <exp{r’t¢}, 1<j<n. (2.6)

‘ <exp{rP*}, 1<j<nj#l

It is clear that exp{—h;(2)} is of regular order degh}, exp{hj(2)}, 1 < j <mn, j # 1, is of
regular order deg h}. By deghl <k —1, 1 <j <n, then for all large z, |z| =7, we get

lexp{—h} ()} < exp{r"*°},  Jexp{Bj(2)}] Sexp{r" 7}, 1<j<nj#L @27)

Applying Lemma 2.2 to f(z), there is a set Eo C (1,00) with finite logarithmic measure such
that for all z satisfies |z| = r & E» U [0, 1], we have

‘fHCJ <exp{r ), 1<j<n, jAL 2.8)

z—|—c

By (1.2) and (2.1), we obtain

—exp{azF = exp{—hj(z fz+¢) P‘(z)ex aipz"} exp{h*(z Q;(2)
R (B ewlensrenien + Z5) +
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e fCTE) (B Q)
—i—%eXp{ hl( )}f(2+cl> <P[(Z> p{ 7k } p{h ( )}+ l(z)>+

Qi(2)

(2.9)

Let z = re'®, where r ¢ F1 U E5 U [0, 1]. Substituting (2.2) - (2.4), (2.6)—(2.8) into (2.9), we get

exp{arf} < Z exp{rFT1Te 4 po=ite 4 pitey (exp{a cos(kO + 0;)rk + rk=1tey 4 1) +
Jjen{}

+ Z exp{rF1te fpo-lte o potey <exp{(b +e)rk - phmiter 4 1) +
JEI
+ exp{rk_1+€ + rﬂ+5} <
< nexp{(c + 6)7’k + 27J~c—1+a + po—lte + Tﬁ-l-a} <

< nexp{(c+ 2e)r}. (2.10)

Dividing by exp{ar*} both sides of (2.10) and letting » — oo, we have 1 < 0. A contradiction.
Hence, o(f) > k + 1.

Proof of Corollary 1.1. We assume o(f) < k + 1. Using a same method as the proof of
Theorem 1.1, we also obtain (2.1)—(2.7).

By Lemma 2.1, there is a set E3 C (1,00) with finite logarithmic measure such that for all z
satisfies |z| = r ¢ E3 U [0, 1], we obtain

|Bj(2)| < exp{r”*e}, 1<j<m, 2.11)

where 1 = max{o(B;), 1 <j <m} <k.
Applying Lemma 2.2 to f(z), there is a set F4 C (1,00) with finite logarithmic measure such
that for all z satisfies |z| =r & E4 U [0, 1], we get

f z+cj

<exp{r° '},  1<j<n+m, j#L (2.12)
z + c

By (1.3) and (2.1), we have

~oxpfant) = Y et T (P expfapst el + B ) +

2 7+ a) \R() A()
exp{—hj(z fz4e) (B(2) exp{a;rz"} exp{h’( Q(2)
+; p{ hl( )}f(Z+Cl) <P[(Z) p{ ik } p{h )}+P(Z)>+
n+m ) 2
+3Y B Zi —i—exp{—hf(z)}%l((z)). (2.13)
Jj=n+1

Let z = re'?, where r ¢ Ey U E> U E3U E4 U [0, 1]. Substituting (2.2)—(2.7), (2.11) and (2.12) into
(2.13), we obtain
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exp{arf} < Z exp{rk=1Fe 4 polte 4 ph+ey (exp{a cos(k@ + 0;)rk + rF=11ey 4 1) +
JENT}
+ Z exp{rF1te fpo-lte | potey (exp{(b +e)rk g pkmite) 4 1) +
J¢l
+m eXp{TﬁH—a + TU—l-‘rE} + eXp{’I"k_H_a + 7“5—"_5} <
< nexp{(c + E)Tk + opk—1te + po—lte + Tﬂ+5} + meXp{TﬂlJrE + T071+5} <

< nexp{(c+ 2e)rF} + mexp{rf1 e 4 ro1+e} (2.14)

Dividing by exp{ar*} both sides of (2.14) and letting 7 — oo, we have 1 < 0. It is a contradiction.
So, o(f) > k + 1 holds.

Proof of Theorem 1.2. Consider the following two cases.

Case 1. d=0.

Contrary to our assertion, suppose that A(f) < o(f). Then f(z) can be written as
f(z) = H(2)e"?), (2.15)
where H(z)( 0) is canonical product (or polynomial) formed by zeros of f(z) such that
AH) = o(H) = A(f) <o(f)

and
h(z) = apz® + ap_12"" + ...+ ao, (2.16)

where k € N* satisfying & = o(f) > A(f), and ag(# 0),ax_1, ..., ap are constants.
Substituting (2.15) into (1.2), we obtain

Apn(2)H(z + cp) exp{h(z +cn)} + ... + A1(2)H(z + c1) exp{h(z + c1)} = 0,

Ap(z)exp{h(z +cn) —h(z+c1)}H(z+cp) + ...
oo+ As(z)exp{h(z+c2) —h(z+c1)}H(z + c2) + A1(2)H(z 4+ ¢1) = 0. (2.17)

Since o(f) > max{o(A;): 1 < j <n}+1, then degh(z) = k > 2. By (2.16), we get
h(z +¢j) — h(z +c1) = kag(c; —c1)2" 1 + h3(2), (2.18)

where h7(2) are polynomials with degh; <k —2, j=2,...,n.
Set
I={it|e; —ar| = g?jag}(n'% —al}.

We consider two cases in the following.
Case 1.1. I contains exactly one term.
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Without loss of generality, assume I = {n}. By 0(4;) < o(f)-1=k—-1,j=1,..., and
(2.18), we have

o(Ajexp{h(z+¢j) —h(z+c1)}) =deg(h(z+¢j) —h(z+c1))=k—-1, j=2,...,n.

By the definition of I and I = {n}, we see in the equation (2.17), the type k|ar(c, — ¢1)| of
coefficient A, exp{h(z+c,) — h(z+c1)} is strictly greater than types k|aj(c; — c1)| of coefficients
Ajexp{h(z+c¢;j)—h(z+c1)}, j =2,...,n—1. By this and applying Theorem B to equation (2.17),
we have o(H) > (k—1)+ 1=k = o(f). A contradiction. So, A(f) = o(f).

Case 1.2. I contains more than one term.

Without loss of generality, assume [ = {s, s+ 1,...,n}, 2 < s < n. Set

ar, = |ag|e, 0; = arg(cj —c1), j=s,...,n.

From the definition of I, we deduce
{\Cj—61!<!cn—cll, j=1,...,5s—1,
|Cj_cl’:|cn—01’, J=5,...,Mn.

Since ¢; are distinct constants, #; are distinct constants, too. So we may choose § € [0, 27) such
that
cos((k —1)0 4+ 6y +0,) = 1. (2.19)

By 0; #0,, j=s,...,n—1, and (2.19), we see

cos((k—1)0+60+6;) <1, j=s,...,n—1. (2.20)
Denote
a=lag(cn —c1)l,  B= g?gs{lak(% —c)l}
2.21)

b= max 1{acos((k —1)0+60+0;),6}, a = max {o(A4;),A\(f) — 1,k —2}.

s<j<n— 1<j<n

Obviously,
B <a, b < a, a<k-—1. (2.22)

By Lemma 2.1, for any given ¢, 0 < ¢ < min{a — b, 1}), there exists a set F; C (1, 00) having
finite logarithmic measure such that for all z satisfying |z| = ¢ [0, 1] U E7, we have

z‘ <exp{r**¢}, j=1,...,n—1. (2.23)
z

We know both exp{—h;} and exp{h} — h},} are of regular order < k — 2 < a. Then for large
z,|z| = r, we obtain

lexp{—h:}| < exp{r®te}, ‘exp{h; — h;}‘ <exp{r**t?}, j=2,...,n—1 (2.24)

Applying Lemma 2.2 to H(z), there exists a set F5 C (1, 00) having finite logarithmic measure
such that for all z satisfying |z| = & [0, 1] U Ea, we get
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arer j=1,...,n—1, (2.25)

'H(z )| ootr

H(z+cp)

By (2.17), we have

A H(z+¢j) . . _
—explkai(en — en)2 ) = Z e exp{l; — o exp{kag(e; — )2 1)+

— A
g A— ; exp{h} — hjy} exp{kay(c; — c1)2" ' }+
j=2
AL H(z + ¢1) .
i 7H(2 o) exp{—h}. (2.26)

Take z = re'?, where r ¢ [0,1] U Ey U Es. Substituting (2.19) - (2.25) into (2.26), we obtain
exp{kar®* 1} < (n — 2) exp{3r®T} exp{kbrf~1} + exp{3r®*c} <
< (n — 1) exp{kbrf=1 4 3rate},
thus,
1< (n—1)exp{3r®T® + kbr*~! — kar*~1}.

Letting » — oo, by (2.22), we get 1 < 0. It is impossible. Hence, A(f) = o(f).
Case 2. d# 0.
Set g(z) = f(z) — d, then
f(z)=g(2) +d (2.27)
and
o(g) =o0(f) >max{o(4;): 1 <j<n}+1 (2.28)

Substituting (2.27) into (1.2), we obtain
Ap(2)g(z+cn) + ...+ A1(2)g(z + 1) = —=d(An(2) + ... + A1(2)). (2.29)

If A,(2) + ...+ Ai(z) # 0, by (2.28), (2.29) and Theorem D, we have \(g) = o(g), that is,
A(f —d) =a(f).
If A,(2)+ ...+ Ai(z) =0, then g(z) is an entire solution of difference equation
Ap(2)g(z+cn) + ...+ A1(2)g(z + 1) = 0.

By (2.28) and the above Case 1, we have A(g) = o(g), that is, A(f — d) = o(f).
From the above Cases 1 and 2, we see f(z) assumes every finite value d infinitely often and

A(f —d) =a(f).

Proof of Corollary 1.4. Without loss of generality, assume that n > m. By Corollary 1.2, we
know o(f) > n+ 1. If o(f) > n + 1, by Theorem 1.2, A\(f) = o(f) holds. So, we assume
o(f)y=n+1.

Suppose that A(f) < o(f), then f(z) can be written as

F(2) = g(2)e"®, (2.30)
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where g(z)(z 0) is canonical product (or polynomial) formed by zeros of f(z) such that

a(g9) = AMg) = A(f) <a(f) =n+1,

and
hz) = dp12" '+ dpz" + ..+ do (2.31)

is a polynomial, where d,,+1 # 0,d,, ..., dy are constants.
Substituting (2.30), (2.31) into (1.4) and dividing by e"(?), we obtain

Ay (z)ehEre2)=h@)+ha(2) g 4 ooy 4 Ay (2)eMEHe)=hHmE) (5 4 ) + Ag(2)g(2) = 0. (2.32)
By (2.31), we see

h(z4c1) —h(z) + hi(z) = ((n+ Derdpt1 + an)z™ + hi(2), 233
h(z+ c2) — h(2) + ha(2) = (n+ 1)cadns12™ + bmz™ + h3(2), '

where hi(z), h3(z) are polynomials with degree no more than n — 1.
Consider the following two cases.
Case 1. n > m.
By (n + 1)cadp41 # 0, we see

deg(h(z + c2) — h(z) + ha(z)) = n > deg(h(z + ¢1) — h(z) + hi(2)).

Combining this with (2.32) and Corollary 1.2, we have o(g) > n + 1. A contradiction. So,
() = o(f) =n+1.

Case 2. n=m.
If (n+1)cidp+1 + an # 0, it follows from (2.33) that

deg(h(z 4+ c1) — h(z) + h1(2)) = n > deg(h(z + c2) — h(2) + ha(z)).

Combining this with (2.32) and Corollary 1.2, we have o(g) > n+ 1 = o(f). A contradiction. So,
Mf)=0o(f)=n+1.
If (n+ 1)c1dpy1 + an, = 0, since ¢1 # 0, we get
c1bm — coay

(0 + 1)cadnit + bm = — ey + by = 20 g,
C1 C1

then
deg(h(z + c2) — h(z) + ha(z)) = n > deg(h(z + c1) — h(z) + h1(2)).

Together with (2.32) and Corollary 1.2, we have o(g) > n+ 1. A contradiction. So, A\(f) = o(f) =
=n+1
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