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A NOTE ON UNITS IN F_SL(2,Zs)
MOBIJIOMJIEHHSI ITIPO OJUHUIIL ¥V F,SL(2,Zs)

Let R be a ring, and SL(2, R) be the special linear group of 2 X 2 matrices with determinant 1 over R. We obtain the
FoSL(2,Z3)
J(FgSL(2,Z3))
a finite field with ¢ = p* elements of characteristic 2 and 3.

Wedderburn decomposition of and show that 1 4+ J(F4SL(2,Zs3)) is a non-Abelian group, where Fy is

Hexait R — kinbue, a SL(2, R) — crneuiansHa niniiiHa rpyma (2 X 2)-marpuup Hax R 3 gerepminantom 1. OTpnMano
JeKoMITo3uIlito BennepOypHa mis M

J(F,SL(2.Zs))
CKiHUEHHE TI0Ie 3 ¢ = p* elTeMeHTaMH Ta XapaKTePHCTHKOI 2 abo 3.

i mokazano, o 1+ J(F,SL(2,Z3)) € neabenesoro rpymoio, ae F, —

1. Introduction. Let FG be a group algebra of a group G over a field F and U(FG) denotes the
unit group of FG. It is a classical problem to study units and their properties in group ring theory.
The case, when G is a finite Abelian group and characteristic of ' does not divide order of (G, the
structure of FG is studied by Perlis and Walker in [18]. If characteristic of F divides order of G,
the structure of U(FG) is studied by Makhijani [12, p. 10—12]. Hurley introduced a correspondence
between group ring and certain ring of matrices [6]. As an application of units of a group ring,
Hurley gave a method to construct convolutional codes from units in group rings [7].

Many authors have found the unit group of group algebra F,G, where G is a finite non-Abelian
group and F, denotes a finite field with ¢ = p* elements. Monaghan [17] has found U/ (F,G), for
some non-Abelian groups GG of order 24 over a field of characteristic 3. In this paper, we have
obtained the Wedderburn decomposition of F,G/J(F,G) for G = SL(2,7Z3) over a finite field of
characteristic 2 and 3. When characteristic of I, does not divide order of G, then the structure of
U(F,G) for G = SL(2,7Z3) has been obtained by Maheshwari et al. [11]. Here we are providing
some literature survey for the same. For dihedral group, the structure of the unit group U (F,G) has
been discussed in [1, 5, 13, 14]. Gildea et al. [4] and Sharma et al. [19] have given the structure of
the unit group U(FF,G), where G is alternating group A4. The unit group of group algebras of some
non-Abelian groups of small orders have been studied in [9, 20-22].

2. Preliminaries. We are summarizing some results that provide useful information about the
decomposition of A/J(A), where A = F,G and J(A) be its Jacobson radical. For basic definitions
and results, see [16]. We briefly introduce some definitions and notations those will be needed
subsequently.

Let G be a finite group and F, be a finite field with characteristic p. We have some definitions
due to Ferraz.

Definition 2.1. An element g € G is said to be p-regular if p does not divide order of g. Let |
be the l.c.m. of the orders of the p-regular elements of G, n be a primitive lth root of unity over
Fy. Then Tq r, be the multiplicative group consisting of those integers t, taken modulo s, for which
¢ — n' defines an automorphism of F(n) over F.
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Note that if ¢ is a power of a prime such that (¢,/) = 1 and d = ord; (q) is the multiplicative
order of ¢ modulo [, then

TG,Fq = {17Q7"-,qd_1}m0d5

and Fy(¢) & Fa follow using [10] (Theorem 2.21).
Definition 2.2. If g € G is a p-regular element, then the sum of all conjugates of g € G is
denoted by vy, and the cyclotomic Fy-class of g is defined to be the set

Sr,(vg) = {1gt 1t €Tar,}-

Proposition 2.1 ([3], Theorem 1.2). The number of simple components of F,G | J(F,G) is equal
to the number of cyclotomic F,-classes in G.

Theorem 2.1 ([3], Theorem 1.3). Suppose that Gal(F4(¢)/Fq) is cyclic. Let w be the number
of cyclotomic Fy-classes in G. If K1, Ko, ..., K, are the simple components of Z(F,G/J(F,G))
and S1,S52,...,S, are the cyclotomic F,-classes of G, then with a suitable reordering of indices

| Si |= [Ki: ).

Proposition 2.2 ([8, p. 31], Proposition 6.24). Let f: R — S be a surjective homomorphism of
rings. Then f(J(R)) C J(S) with equality if ker, f C J(R).

Proposition 2.3 ([8, p. 108], Proposition 1.7). Let G be a finite group and F, be a finite field.
Then GN (1 + J(F,G)) = OpG, where O,G denotes the maximal normal p-subgroup of G.

Theorem 2.2 ([13], Lemma 3.2). Let F be a perfect field, G be a finite group and J(FG) be
the Jacobson radical of FG. Then

UFG) = (1 + J(FG)) x U(FG/J(FG)).

Lemma 2.1 ([15], Lemma 3.1). Let B,, B, be two finite dimensional F'-algebras such that
B, is semisimple. If f: B, — B, is an onto homomorphism of F-algebras, then there exists a

semisimple F-algebra ¢ such that
B,/J(B,) 2 LDB,.

Theorem 2.3 ([2, p. 146], Theorem 7.9(i)). Let q be a power of a prime. If E is a finite field
extension of ¥, then

E ®p, (F,G/J(F,G)) = (E @r, F,G) / (E @r, J(F,G)),
J (E @r, F,G) = E @5, J(F,G).

Theorem 2.4 ([8, p. 110], Proposition 1.9). Let N be a normal subgroup of G such that G/N
is p-solvable. If |G /N| = np®, where (n,p) = 1, then

J(F,G)Y" CF,GJ(F,N) C J(F,G).

In particular, if G is p-solvable of order np®, where (n,p) = 1, then J(]FqG)pa =0.
Corollary2.1 ([15], Corollary 3.3). Let q be a power of prime. Then, for any k,m € N,

- (m.k)
Fox ®F, Form = (Fqlm’k>
as [ -algebras, where L, = l.c.m.(m, k) and (m, k) = g.c.d.(m, k).
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Throughout this paper, [F, is a field of characteristic p, where ¢ is a power of positive prime
integer. The conjugacy class of g € GG is denoted by [¢].
We can see that G has 7 conjugacy classes as follows:

Representative Elements in the class Order of element
[] z, (yx)*, (zy)*,y~ oy 3
[z~ z ! (yx)?, (xy)?, wya 3
] y,y~ " 2tya, aya® vy~ 2t 2ty e 4
[y?] Y 2
[zy] xy, yr, 2ya®, vy? 6
[(zy)~"] (wy) ' 2%y Ly e, 2y 6

Theorem 2.5. Let p =2, q = p* and G = SL(2,73). Then

F,G
J(FqG)

—t Fq @Fq2.

Proof. Suppose k is odd. Hence there exists an element of order 3, say 1 € F 2 \ IF,. We define
the [F,-algebra homomorphism
0 FqGHFq@qu
by the assignment
e (1,m), y—(L1).

By using Table 1, we see that € is onto.
Table 1. Ontoness of

Basis element | Pre-image under 6
(1,0) v +aty
(0,1) T+l
(0,7) alty

|SF, (72)| = 2, now by using Theorem 2.1 and Lemma 2.1, we get

F,G
— 2, DF2.
JEG)
Now suppose k is even, then we have
F,G FoG
=F —=F FopFy) =2F,BF,e. 2.1
J(FqG) q ®F2 J(]FQG) q ®F2 ( 2 2 4) q S5 q2 ( )

Theorem 2.5 is proved.

F,G
Corollary2.2. The structure of U < 1

J(F,G)

FQG ~
Z/l (J(FqG)> = qul @ O(]271

> is given by

and 1+ J(F,G) is a non-Abelian group of exponent 8.
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Proof. We know that G has unique 2-Sylow subgroup of order 8. By using Proposition 2.3, we
have GN 1+ J(F,G) = O,G. Suppose that X = zy +x and Y = y? + y, then X,Y € J(F,G).
We see that XY # Y X, this proves that 1 + J(F,G) is a non-Abelian subgroup of U(F,G). Now
by using Theorem 2.4, we have (1 + J(F,G))® = 1. Since X* # 0, it implies that (1 + J(F,G))
has exponent 8.

Theorem 2.6. Let p =3, q = p* and G = SL(2,7Z3). Then

F,G

4q ~
J(FqG) - IE‘q & M(27Fq) ©® M<37IFQ)

Proof. Suppose k is odd. We define the [F;-algebra homomorphism
0':F,G — F, & M(2,F,) & M(3,F,)

by an assignment

1 -1 0
-1 -1
z— |1, , |1 1 1
1 0
0 1 1
and
1 -1 0
0o -1
y— |1, , | 0 -1 0
1 0
-1 -1 -1
Since

‘S]Fq(’yy)‘ = ‘S]Fq (792)‘ = ‘SFQ(’Yl)‘ =L
Now by using Table 2, Theorem 2.1 and Lemma 2.1, we see that
F,G
J(FG)

~F, & M(2,F,) & M(3,F,).

Now suppose k is even, then apply the same argument as in equation (2.1). We get
F,G
J(FqG)

~F, & M(2,F;) & M(3,F,).

Theorem 2.6 is proved.

F,G
Corollary2.3. The structure of U < 7 (IE?q G)> is given by

F,G
= Cy-1 ®GL(2,F GL(3,F
u(J(FqG)> q 19D (7 q)@ ( ’ Q)

and 1+ J(F,G) is a non-Abelian group of exponent 3.

F,G
J(F,G)
p-solvable, so we have (1+.J(F,G))3 = 1 is a group of exponent 3 as a consequence of Theorem 2.4.
Let X = —z '4y—y ' —yay+y?r 42y e tand Y = -1+ 4ay—yar ' —zy ' +y ot
we can see that X,Y € J(F,G). Further, XY # Y X, hence 1 + J(F,G) is a non-Abelian group.

Proof. We can directly obtain the structure of U/ ( ) , by Theorem 2.6. Observe that G is
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Table 2. Ontoness of 8’

Basis element Pre-image under 6’
1,0,0 — 'yt -yttt ey gy e - 2y —
— xyx_l + a:y_lx — a:y_la:_l — x_lyx — a:_ly_lsc
2 — T _ =1 o .2 =1 —1,2 =T, -1 _ 1, _
O,E{,,0 T+ y+y tay—yr—azy tryt+ta oy tay Yy
—y eyl —alyr a7y ey
0, Ei2, 0] I+t ly letay? +aly+ay—y ' —yr—a tya 2+ ly et 4
+y e —ayrtry et oyl — o byl — 2yt
O0,E5,,0 | —yz+y o> -y’ —ay o —w—aly fay et ayr —xyt — a7 +
tyr o lyz 4 1+ oy —y e+ aya!
0,E5,0 | —l4o—y '—yr—y’—ap?—a ' —y ' —aly+y lo—y ot —ay o —
—ayrt—ay el b aly e 4 a lyr ! — g ly gl
3 1 =T 7, -1 S R e P N ——
0,0,E7, l—-z+o +y+y " —y  +ay—2ay Ty —x Yy yr —yr~ -+
+y ety et —ay e — T lya T Ty e
0,0,E}, | -1—z—a'y+y*—y ' —ay—ay -zt 2ty fyztyst —y -
—y ety —ayr Myl —a lyr eyt ly T e — Tt
0,0, Eig L+t —y+y?+y—ay? —oly+aly Lyt —y ot — oy —
— xyxfl — myilx — xyflel — xilyx + mflyafl — :cflyflafl
0,0, E%l l—z+aot+y—v+ytt+aytay’+ay ! —aoly—aly? +yz ! -
—y e tayr—ayr ™ —axy e —xly e+ lyr 2y et
0,0,Ejy | —14+az ' —y—y* +ay’ —ay ' +aoly+aly ' —yz—ya ' —y o+
+yte —ayr +xyrt Fay e — a7y — oy et
0,0, E§’73 —y t—azy—ay ey ey —yr —y ey e —aya +
faylel — o lyz + oty e + oty lg
0,0,Ef, |1—y—y ' —ay—ay’+ay ' —a P +aly ™ —yr+ya™' —y o+
+y le —ayr+ay e —ayr fay e —a lyr oy — 2yl
0,0,E3, |1—a+y—y =y’ +ay ' —oly+aly? +yz+yz +y ot —aya +
+ayr —ay e alyeT —aly Tl ly Tt
0,0, E§,3 I+t —y oy —ay? oy P+ y+yr Py oyl —ayx —
—ayzt —ayte —axlyx
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