DOI: 10.37863/umzh.v73i8.588

UDC 512.5

S. Maheshwari (KIET Group of Institutions Delhi-NCR, Ghaziabad, India),

R. K. Sharma (Indian Inst. Technology Delhi, India)

A NOTE ON UNITS IN $\mathbb{F}_q SL(2,\mathbb{Z}_3)$

ПОВІДОМЛЕННЯ ПРО ОДИНИЦІ У $\mathbb{F}_a SL(2,\mathbb{Z}_3)$

Let R be a ring, and SL(2,R) be the special linear group of 2×2 matrices with determinant 1 over R. We obtain the Wedderburn decomposition of $\frac{\mathbb{F}_qSL(2,\mathbb{Z}_3)}{J(\mathbb{F}_qSL(2,\mathbb{Z}_3))}$ and show that $1+J(\mathbb{F}_qSL(2,\mathbb{Z}_3))$ is a non-Abelian group, where \mathbb{F}_q is a finite field with $q=p^k$ elements of characteristic 2 and 3.

Нехай R — кільце, а SL(2,R) — спеціальна лінійна група (2×2) -матриць над R з детермінантом 1. Отримано декомпозицію Веддербурна для $\frac{\mathbb{F}_qSL(2,\mathbb{Z}_3)}{J(\mathbb{F}_qSL(2,\mathbb{Z}_3))}$ і показано, що $1+J(\mathbb{F}_qSL(2,\mathbb{Z}_3))$ є неабелевою групою, де \mathbb{F}_q — скінченне поле з $q=p^k$ елементами та характеристикою 2 або 3.

1. Introduction. Let $\mathbb{F}G$ be a group algebra of a group G over a field \mathbb{F} and $\mathcal{U}(\mathbb{F}G)$ denotes the unit group of $\mathbb{F}G$. It is a classical problem to study units and their properties in group ring theory. The case, when G is a finite Abelian group and characteristic of \mathbb{F} does not divide order of G, the structure of $\mathbb{F}G$ is studied by Perlis and Walker in [18]. If characteristic of \mathbb{F} divides order of G, the structure of $\mathcal{U}(\mathbb{F}G)$ is studied by Makhijani [12, p. 10-12]. Hurley introduced a correspondence between group ring and certain ring of matrices [6]. As an application of units of a group ring, Hurley gave a method to construct convolutional codes from units in group rings [7].

Many authors have found the unit group of group algebra $\mathbb{F}_q G$, where G is a finite non-Abelian group and \mathbb{F}_q denotes a finite field with $q=p^k$ elements. Monaghan [17] has found $\mathcal{U}(\mathbb{F}_q G)$, for some non-Abelian groups G of order 24 over a field of characteristic 3. In this paper, we have obtained the Wedderburn decomposition of $\mathbb{F}_q G/J(\mathbb{F}_q G)$ for $G=SL(2,\mathbb{Z}_3)$ over a finite field of characteristic 2 and 3. When characteristic of \mathbb{F}_q does not divide order of G, then the structure of $\mathcal{U}(\mathbb{F}_q G)$ for $G=SL(2,\mathbb{Z}_3)$ has been obtained by Maheshwari et al. [11]. Here we are providing some literature survey for the same. For dihedral group, the structure of the unit group $\mathcal{U}(\mathbb{F}_q G)$ has been discussed in [1, 5, 13, 14]. Gildea et al. [4] and Sharma et al. [19] have given the structure of the unit group $\mathcal{U}(\mathbb{F}_q G)$, where G is alternating group A_4 . The unit group of group algebras of some non-Abelian groups of small orders have been studied in [9, 20–22].

2. Preliminaries. We are summarizing some results that provide useful information about the decomposition of A/J(A), where $A = \mathbb{F}_q G$ and J(A) be its Jacobson radical. For basic definitions and results, see [16]. We briefly introduce some definitions and notations those will be needed subsequently.

Let G be a finite group and \mathbb{F}_q be a finite field with characteristic p. We have some definitions due to Ferraz.

Definition 2.1. An element $g \in G$ is said to be p-regular if p does not divide order of g. Let l be the l.c.m. of the orders of the p-regular elements of G, η be a primitive lth root of unity over \mathbb{F}_q . Then T_{G,\mathbb{F}_q} be the multiplicative group consisting of those integers t, taken modulo s, for which $\zeta \mapsto \eta^t$ defines an automorphism of $\mathbb{F}_q(\eta)$ over \mathbb{F}_q .

Note that if q is a power of a prime such that (q, l) = 1 and $d = ord_l(q)$ is the multiplicative order of q modulo l, then

$$T_{G,F_q} = \left\{1, q, \dots, q^{d-1}\right\} \operatorname{mod} s$$

and $F_q(\zeta) \cong F_{q^d}$ follow using [10] (Theorem 2.21).

Definition 2.2. If $g \in G$ is a p-regular element, then the sum of all conjugates of $g \in G$ is denoted by γ_g and the cyclotomic \mathbb{F}_q -class of g is defined to be the set

$$S_{\mathbb{F}_q}(\gamma_q) = \left\{ \gamma_{q^t} \mid t \in T_{G,\mathbb{F}_q} \right\}.$$

Proposition 2.1 ([3], Theorem 1.2). The number of simple components of $\mathbb{F}_qG/J(\mathbb{F}_qG)$ is equal to the number of cyclotomic \mathbb{F}_q -classes in G.

Theorem 2.1 ([3], Theorem 1.3). Suppose that $Gal(\mathbb{F}_q(\zeta)/\mathbb{F}_q)$ is cyclic. Let w be the number of cyclotomic \mathbb{F}_q -classes in G. If K_1, K_2, \ldots, K_w are the simple components of $Z(\mathbb{F}_qG/J(\mathbb{F}_qG))$ and S_1, S_2, \ldots, S_w are the cyclotomic \mathbb{F}_q -classes of G, then with a suitable reordering of indices

$$|Si| = [K_i : \mathbb{F}_q].$$

Proposition 2.2 ([8, p. 31], Proposition 6.24). Let $f: R \to S$ be a surjective homomorphism of rings. Then $f(J(R)) \subseteq J(S)$ with equality if $\ker, f \subseteq J(R)$.

Proposition 2.3 ([8, p. 108], Proposition 1.7). Let G be a finite group and \mathbb{F}_q be a finite field. Then $G \cap (1 + J(\mathbb{F}_q G)) = O_p G$, where $O_p G$ denotes the maximal normal p-subgroup of G.

Theorem 2.2 ([13], Lemma 3.2). Let \mathbb{F} be a perfect field, G be a finite group and $J(\mathbb{F}G)$ be the Jacobson radical of $\mathbb{F}G$. Then

$$\mathcal{U}(\mathbb{F}G) = (1 + J(\mathbb{F}G)) \rtimes \mathcal{U}(\mathbb{F}G/J(\mathbb{F}G)).$$

Lemma 2.1 ([15], Lemma 3.1). Let \mathfrak{B}_1 , \mathfrak{B}_2 be two finite dimensional F-algebras such that \mathfrak{B}_2 is semisimple. If $f: \mathfrak{B}_1 \to \mathfrak{B}_2$ is an onto homomorphism of F-algebras, then there exists a semisimple F-algebra ℓ such that

$$\mathfrak{B}_1/J(\mathfrak{B}_1) \cong \ell \oplus \mathfrak{B}_2.$$

Theorem 2.3 ([2, p. 146], Theorem 7.9(i)). Let q be a power of a prime. If E is a finite field extension of \mathbb{F}_q , then

$$E \otimes_{\mathbb{F}_q} (\mathbb{F}_q G/J(\mathbb{F}_q G)) \cong \left(E \otimes_{\mathbb{F}_q} \mathbb{F}_q G \right) / \left(E \otimes_{\mathbb{F}_q} J(\mathbb{F}_q G) \right),$$
$$J \left(E \otimes_{\mathbb{F}_q} \mathbb{F}_q G \right) = E \otimes_{\mathbb{F}_q} J(\mathbb{F}_q G).$$

Theorem 2.4 ([8, p. 110], Proposition 1.9). Let N be a normal subgroup of G such that G/N is p-solvable. If $|G/N| = np^a$, where (n, p) = 1, then

$$J(\mathbb{F}_q G)^{p^a} \subseteq \mathbb{F}_q GJ(\mathbb{F}_q N) \subseteq J(\mathbb{F}_q G).$$

In particular, if G is p-solvable of order np^a , where (n,p)=1, then $J(\mathbb{F}_qG)^{p^a}=0$.

Corollary 2.1 ([15], Corollary 3.3). Let q be a power of prime. Then, for any $k, m \in \mathbb{N}$,

$$\mathbb{F}_{q^k} \otimes_{\mathbb{F}_q} \mathbb{F}_{q^m} \cong \left(\mathbb{F}_{q^{l_{m,k}}}\right)^{(m,k)}$$

as \mathbb{F}_{q^k} -algebras, where $l_{m,k} = l.c.m.(m,k)$ and (m,k) = g.c.d.(m,k).

Throughout this paper, \mathbb{F}_q is a field of characteristic p, where q is a power of positive prime integer. The conjugacy class of $g \in G$ is denoted by [g].

We can see that G has 7 conjugacy classes as follows:

Representative	Elements in the class	Order of element
[x]	$x, (yx)^4, (xy)^4, y^{-1}xy$	3
$[x^{-1}]$	$x^{-1}, (yx)^2, (xy)^2, xyx$	3
[y]	$y, y^{-1}, x^2yx, xyx^2, xy^{-1}x^2, x^2y^{-1}x$	4
$[y^2]$	y^2	2
[xy]	xy, yx, x^2yx^2, xy^2	6
$[(xy)^{-1}]$	$(xy)^{-1}, x^2y^{-1}, xy^{-1}x, x^2y^2$	6

Theorem 2.5. Let p = 2, $q = p^k$ and $G = SL(2, \mathbb{Z}_3)$. Then

$$\frac{\mathbb{F}_q G}{J(\mathbb{F}_q G)} \cong \mathbb{F}_q \oplus \mathbb{F}_{q^2}.$$

Proof. Suppose k is odd. Hence there exists an element of order 3, say $\eta \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$. We define the \mathbb{F}_q -algebra homomorphism

$$\theta: \mathbb{F}_q G \longrightarrow \mathbb{F}_q \oplus \mathbb{F}_{q^2}$$

by the assignment

$$x \mapsto (1, \eta), \quad y \mapsto (1, 1).$$

By using Table 1, we see that θ is onto.

Table 1. Ontoness of θ

Basis element	Pre-image under θ	
(1,0)	$x^{-1} + x + y$	
(0,1)	$x + x^{-1}$	
$(0,\eta)$	$x^{-1} + y$	

 $|S_{\mathbb{F}_q}(\gamma_x)|=2,$ now by using Theorem 2.1 and Lemma 2.1, we get

$$\frac{\mathbb{F}_q G}{J(\mathbb{F}_q G)} \cong \mathbb{F}_q \oplus \mathbb{F}_{q^2}.$$

Now suppose k is even, then we have

$$\frac{\mathbb{F}_q G}{J(\mathbb{F}_q G)} \cong \mathbb{F}_q \otimes_{\mathbb{F}_2} \frac{\mathbb{F}_2 G}{J(\mathbb{F}_2 G)} \cong \mathbb{F}_q \otimes_{\mathbb{F}_2} (\mathbb{F}_2 \oplus \mathbb{F}_4) \cong \mathbb{F}_q \oplus \mathbb{F}_{q^2}. \tag{2.1}$$

Theorem 2.5 is proved.

Corollary 2.2. The structure of $\mathcal{U}\left(\frac{\mathbb{F}_q G}{J(\mathbb{F}_q G)}\right)$ is given by

$$\mathcal{U}\left(\frac{\mathbb{F}_q G}{J(\mathbb{F}_q G)}\right) \cong C_{q-1} \oplus C_{q^2-1}$$

and $1 + J(\mathbb{F}_q G)$ is a non-Abelian group of exponent 8.

ISSN 1027-3190. Укр. мат. журн., 2021, т. 73, № 8

Proof. We know that G has unique 2-Sylow subgroup of order 8. By using Proposition 2.3, we have $G \cap 1 + J(\mathbb{F}_q G) = O_p G$. Suppose that X = xy + x and $Y = y^2 + y$, then $X, Y \in J(\mathbb{F}_q G)$. We see that $XY \neq YX$, this proves that $1 + J(\mathbb{F}_q G)$ is a non-Abelian subgroup of $\mathcal{U}(\mathbb{F}_q G)$. Now by using Theorem 2.4, we have $(1 + J(\mathbb{F}_q G))^8 = 1$. Since $X^4 \neq 0$, it implies that $(1 + J(\mathbb{F}_q G))$ has exponent 8.

Theorem 2.6. Let p = 3, $q = p^k$ and $G = SL(2, \mathbb{Z}_3)$. Then

$$\frac{\mathbb{F}_q G}{J(\mathbb{F}_q G)} \cong \mathbb{F}_q \oplus \mathcal{M}(2, \mathbb{F}_q) \oplus \mathcal{M}(3, \mathbb{F}_q).$$

Proof. Suppose k is odd. We define the \mathbb{F}_q -algebra homomorphism

$$\theta': \mathbb{F}_q G \longrightarrow \mathbb{F}_q \oplus \mathcal{M}(2, \mathbb{F}_q) \oplus \mathcal{M}(3, \mathbb{F}_q)$$

by an assignment

$$x \mapsto \left(1, \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}\right)$$

and

$$y \mapsto \left(1, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 & 0 \\ 0 & -1 & 0 \\ -1 & -1 & -1 \end{bmatrix}\right).$$

Since

$$\left|S_{\mathbb{F}_q}(\gamma_y)\right| = \left|S_{\mathbb{F}_q}(\gamma_{y^2})\right| = \left|S_{\mathbb{F}_q}(\gamma_1)\right| = 1.$$

Now by using Table 2, Theorem 2.1 and Lemma 2.1, we see that

$$\frac{\mathbb{F}_q G}{J(\mathbb{F}_q G)} \cong \mathbb{F}_q \oplus \mathcal{M}(2, \mathbb{F}_q) \oplus \mathcal{M}(3, \mathbb{F}_q).$$

Now suppose k is even, then apply the same argument as in equation (2.1). We get

$$\frac{\mathbb{F}_q G}{J(\mathbb{F}_q G)} \cong \mathbb{F}_q \oplus \mathcal{M}(2, \mathbb{F}_q) \oplus \mathcal{M}(3, \mathbb{F}_q).$$

Theorem 2.6 is proved.

Corollary 2.3. The structure of $\mathcal{U}\left(\frac{\mathbb{F}_q G}{J(\mathbb{F}_q G)}\right)$ is given by

$$\mathcal{U}\left(\frac{\mathbb{F}_q G}{J(\mathbb{F}_q G)}\right) \cong C_{q-1} \oplus GL(2, \mathbb{F}_q) \oplus GL(3, \mathbb{F}_q)$$

and $1 + J(\mathbb{F}_q G)$ is a non-Abelian group of exponent 3.

Proof. We can directly obtain the structure of $\mathcal{U}\left(\frac{\mathbb{F}_qG}{J(\mathbb{F}_qG)}\right)$, by Theorem 2.6. Observe that G is p-solvable, so we have $(1+J(\mathbb{F}_qG))^3=1$ is a group of exponent 3 as a consequence of Theorem 2.4. Let $X=-x^{-1}+y-y^{-1}-yxy+y^2x^{-1}+x^{-1}y^{-1}x^{-1}$ and $Y=-1+y^2+xy-yx^{-1}-xy^{-1}+y^{-1}x^{-1}$, we can see that $X,Y\in J(\mathbb{F}_qG)$. Further, $XY\neq YX$, hence $1+J(\mathbb{F}_qG)$ is a non-Abelian group.

Table 2. Ontoness of θ'

Basis element	Pre-image under θ'
1, O, O	
$O, E_{1,1}^2, O$	
$O, E_{1,2}^2, O$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$O, E_{2,1}^2, O$	
$O, E_{2,2}^2, O$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$O, O, E_{1,1}^3$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$O, O, E_{1,2}^3$	$ \begin{vmatrix} -1 - x - x^{-1} + y + y^2 - y^{-1} - xy - xy^{-1} - x^{-1}y^2 - x^{-1}y^{-1} + yx + yx^{-1} - y^{-1}x - y^{-1}x^{-1} - xyx - xyx^{-1} + xy^{-1}x - x^{-1}yx + x^{-1}yx^{-1} - x^{-1}y^{-1}x - x^{-1}y^{-1$
$O, O, E_{1,3}^3$	$ \begin{vmatrix} 1 + x^{-1} - y + y^2 + y^{-1} - xy^2 - x^{-1}y + x^{-1}y^{-1} + y^{-1}x - y^{-1}x^{-1} - xyx - y - y - xy - y - y - y - y - y $
$O, O, E_{2,1}^3$	
$O, O, E_{2,2}^3$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$O, O, E_{2,3}^3$	$ \begin{vmatrix} -y^{-1} - xy - xy^2 + x^{-1}y^2 + x^{-1}y^{-1} + x^{-1}y - yx - y^{-1}x + y^{-1}x^{-1} - xyx + y + xy^{-1}x^{-1} - xyx + xy^{-1}x^{-1} - xyx + xy^{-1}x^{-1} + xy^{-1}x^{-1} \end{vmatrix} $
$O, O, E_{3,1}^3$	
$O, O, E_{3,2}^3$	
$O, O, E_{3,3}^3$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

References

- 1. L. Creedon, J. Gildea, *The structure of the unit group of the group algebra* $\mathbb{F}_{2^k}D_8$, Canad. Math. Bull., **54**, 237 243 (2011).
- 2. C. W. Curtis, I. Reiner, Methods of representation theory, vol. I, Wiley-Intersci., New York (1981).
- 3. R. A. Ferraz, Simple components of the center of $\mathbb{F}G/J(\mathbb{F}G)$, Commun. Algebra, 36, No 9, 3191–3199 (2008).
- 4. J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_2^k A_4$, Czechoslovak Math. J., **61**, No. 136, 531 539 (2011).
- 5. J. Gildea, F. Monaghan, *Units of some group algebras of groups of order 12 over any finite field of characteristic 3*, Algebra and Discrete Math., 11, 46-58 (2011).
- 6. T. Hurley, *Group rings and ring of matrices*, Int. J. Pure and Appl. Math., 31, No 3, 319-335 (2006).
- 7. T. Hurley, Convolutional codes from units in matrix and group rings, Int. J. Pure and Appl. Math., 50, № 3, 431 463 (2009).
- 8. G. Karpilvosky, The Jacobson radical of group algebras, North-Holland, Amsterdam (1987).
- 9. M. Khan, R. K. Sharma, J. B. Srivastava, *The unit group of* $\mathbb{F}S_4$, Acta Math. Hungar., **118**, \mathbb{N} 1 2, 105 113 (2008).

- 10. R. Lidl, H. Niederreiter, Introduction to finite fields and their applications, Cambridge Univ. Press, New York (1986).
- 11. S. Maheshwari, R. K. Sharma, *The unit group of group algebra* $\mathbb{F}_q SL(2,\mathbb{Z}_3)$, J. Algebra Comb. Discrete Struct. and Appl., 3, No 1, 1–6 (2016).
- 12. N. Makhijani, Units in finite group algebras, Ph.D. thesis, IIT Delhi (2014).
- 13. N. Makhijani, R. K. Sharma, J. B. Srivastava, A note on units in $\mathbb{F}_{p^m}D_{2p^n}$, Acta Math. Acad. Paedagog. Nyházi. (N. S.), **30**, 17–25 (2014).
- 14. N. Makhijani, R. K. Sharma, J. B. Srivastava, The unit group of $\mathbb{F}_q[D_{30}]$, Serdica Math. J., 41, 185 198 (2015).
- 15. N. Makhijani, R. K. Sharma, J. B. Srivastava, A note on the structure of $\mathbb{F}_{p^k}A_5/J(\mathbb{F}_{p^k}A_5)$, Acta Sci. Math. (Szeged), 82, 29 43, (2016).
- 16. C. P. Milies, S. K. Sehgal, An introduction to group rings, Kluwer Acad. Publ. (2002).
- 17. F. Monaghan, *Units of some group algebras of non-abelian groups of order 24 over any finite field of characteristic* 3, Int. Electron. J. Algebra, **12**, 133–161 (2012).
- 18. S. Perlis, G. L. Walker, Abelian group algebras of finite order, Trans. Amer. Math. Soc., 68, № 3, 420 426 (1950).
- 19. R. K. Sharma, J. B. Srivastava, M. Khan, *The unit group of* FA₄, Publ. Math. Debrecen, 71, 1−6 (2006).
- 20. R. K. Sharma, J. B. Srivastava, M. Khan, *The unit group of* $\mathbb{F}S_3$, Acta Math. Acad. Paedagog. Nyházi. (N. S.), 23, No 2, 129–142 (2007).
- 21. R. K. Sharma, Pooja Yadav, The unit group of \mathbb{Z}_pQ_8 , Algebras Groups and Geom., **24**, 425 430 (2008).
- 22. G. Tang, Y. Wei, Y. Li, *Unit groups of group algebras of some small groups*, Czechoslovak Math. J., **64**, № 1, 149–157 (2014).

Received 15.12.18