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On recent advances in boundary value
problems in the plane

VLADIMIR GUTLYANSKII AND VLADIMIR RYAZANOV

Abstract. The survey is devoted to recent advances in nonclassical
solutions of the main boundary value problems such as the well-known
Dirichlet, Hilbert, Neumann, Poincare and Riemann problems in the
plane. Such solutions are essentially different from the variational solu-
tions of the classical mathematical physics and based on the nonstandard
point of view of the geometrical function theory with a clear visual sense.
The traditional approach of the latter is the meaning of the boundary
values of functions in the sense of the so-called angular limits or limits
along certain classes of curves terminated at the boundary. This become
necessary if we start to consider boundary data that are only measur-
able, and it is turned out to be useful under the study of problems in
the field of mathematical physics, too. Thus, we essentially widen the
notion of solutions and, furthermore, obtain spaces of solutions of the
infinite dimension for all the given boundary value problems. The latter
concerns to the Laplace equation as well as to its counterparts in the
potential theory for inhomogeneous and anisotropic media.
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1. Introduction

The Dirichlet, Hilbert (Riemann—Hilbert), Neumann, Poincare and
Riemann boundary value problems are basic in the theory of analytic
functions and they are closely interconnected, see e.g. the monographs
[24,56] and |72] for the history, and also the recent papers [21,34,61-69]
and [74].
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Recall that twice continuously differentiable solutions of the Laplace
equation ) )

Au :zg;;+‘g;;:0 VzeD (1.1)
are called harmonic functions. As well known, they are infinitely dif-
ferentiable. The classic Dirichlet problem in the unit disk D = {z €
C: |z| < 1}, z = = + 1y, is the problem on the existence of harmonic
functions u : D — R such that

limu(z) = ¢(() vV (e oD (1.2)
z—(
for a prescribed continuous function ¢ : 0D — R.

The request (1.2) is too strong and has no sense if the boundary func-
tion ¢ is only measurable. However, Luzin has shown in his dissertation
that, for every measurable function ¢ : 0D — R, there exists a harmonic
function in D such that (1.2) holds for a.e. ( € 9D along any nontan-
gential path, see, e.g., [51]. F. Gehring in [26] has rediscovered this fact
in a similar way on the basis of another deep Luzin result, see Section 2.
Furthermore, it was proved in [61] that the space of such solutions has
the infinite dimension, see also [63].

Moreover, it was demonstrated in [34,61-69] and [74] that all other
boundary value problems mentioned above for harmonic and analytic
functions as well as their generalizations in the extended sense are suc-
cessively reduced to the first boundary value problem. In particular, it
is well-known that the Neumann problem has no classical solutions gen-
erally speaking even for smooth boundary data, see e.g. [54]. The main
goal of the short note [65] was to show that the problem has nonclassical
solutions for arbitrary measurable data. The result was based on a re-
duction of this problem to the Hilbert boundary value problem recently
solved for arbitrary measurable coefficients and for arbitrary measurable
boundary data in [61].

Let us start from a more general problem on directional deriva-
tives. The classic setting of the latter problem is to find a harmonic
function u : D — R that admits a continuous extension to the boundary
of D together with its first partial derivatives and satisfies the boundary
condition

du

ov

with a prescribed continuous date ¢ : 0D — R where % denotes the

derivative of u at ¢ in a direction v = v((), |v({)| = 1:
ou .u(C+t-v)—u(Q)

— =1
ov 150 t

= ¢(¢) V({edD (1.3)

(1.4)
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The Neumann problem is a special case of the above problem on
directional derivatives with the boundary condition

X_ e veed (15)

where n denotes the unit interior normal to dD at the point (.
In turn, the above problem on directional derivatives is a special case
of the Poincare problem with the boundary condition
ou
a-u+ b-— = ¢) vV (€ oD (1.6)
ov
where a = a(¢) and b = b(({) are real-valued functions given on 9D.
Recall that the classical setting of the Riemann problem in a
smooth Jordan domain D of the complex plane C was on finding an-
alytic functions f*: D — C and f~ : C\ D — C that admit continuous
extensions to 0D and satisfy the boundary condition

RO = AQ)- f(Q) + B(C) vV ({edD (1.7)

with prescribed Holder continuous functions A : 9D — C and B : 0D —
C.

Recall also that the Riemann problem with shift in D was on
finding such functions f* : D — C and f~ : C\ D — C satisfying the
condition

Fra(Q) = AQ)- (O + B(C) v({eaD (1.8)

where o : 0D — 0D was a one-to-one sense preserving correspondence
having the non-vanishing Holder continuous derivative with respect to
the natural parameter on 9D. The function « is called a shift function.
The special case A = 1 gives the so-called jump problem.

The classical setting of the Hilbert (Riemann—Hilbert) bound-
ary value problem was on finding analytic functions f in a domain
D C C bounded by a rectifiable Jordan curve with the boundary condi-
tion

lim Re {AQ) - f(2)} = »(0) v ({edD (1.9)

with functions A and ¢ that are continuously differentiable with respect
to the natural parameter s on 9D and, moreover, |A| # 0 everywhere on
0D. Hence without loss of generality one can assume that |A\| = 1 on 0D.

It is clear that if we start to consider the Hilbert and Riemann prob-
lems with measurable boundary data, the requests on the existence of
the limits at all points ¢ € 0D and along all paths terminating in ¢ lose
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any sense (as well as the conception of the index). Thus, the notion of
solutions of the Hilbert and Riemann problems should be widened in this
case. The nontangential limits were a suitable tool from the function the-
ory of one complex variable, see e.g. [61-69] and [74]. In [34] and [62], it
was proposed an alternative approach based on the use of special families
of curves terminating at the boundary, see 7], and admitting tangential
curves.

Moreover, we extend the results on the boundary value problems to
the case of quasiconformal functions (the Beltrami equations) as well as
to A-harmonic functions that leads to problems of mathematical physics
in inhomogeneous and anisotropic media, see [34,69] and |74|. The latter
demands the application of the so-called logarithmic capacity zero that
is invariant under quasiconformal mappings.

2. Angular limits in Dirichlet problem for Laplace equa-
tion

The following deep (non-trivial) result of Luzin was one the main
theorems of his (1915) dissertation, see e.g. [51, p. 78].

Theorem A. For any measurable function ¢ : [0,1] — R, there is
a continuous function ® : [0,1] — R such that ' = ¢ a.e.

Just on the basis of Theorem A, Luzin proved the next significant
result of his dissertation, see e.g. [51, p. 80|, that is key for our goals.

Theorem B. Let (1) be real, measurable, almost everywhere finite
and have the period 2w. Then there exists a harmonic function u in the
unit disk D such that u(z) — @(¥) for a.e. ¥ as z — € along any
nontangential path.

Here a path in D terminating at a point ¢ = e € 9D is called
nontangential if its part in a neighborhood of ( lies inside of an angle
in D with the vertex at (. Hence such limits are called also angular
limits. The latter is a traditional tool of the geometric function theory,
see e.g. monographs [19,44,51, 59| and [60].

Note that the Luzin dissertation was published only in Russian in
the book [51]| prepared by his pupils Barri and Men’shov after his death
but Theorem A was published with a complete proof in English in the
book [70, p. 217|, as Theorem VII(2.3). Hence Frederick Gehring in [26]
has rediscovered Theorem B and his proof on the basis of Theorem A has
in fact coincided with the original proof of Luzin. Since the proof is very
short and nice and has a common interest, we give it for completeness
here.
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Proof. By Theorem A we can find a continuous function ®(+J) such that
P’ () = ¢(¥) for a.e. ¥. Considering the Poisson integral

27

Ulre?) = — / L (1) dt
21 ) 1—2rcos(¥ —t)+1r2

for 0 < r < 1, U(0) := 0, we see by the Fatou result, see e.g. 3.441
in [76], p. 53, that 8% U(z) = ®'(9) as z — ¢ along any nontangential
path whenever ®'(1}) exists. Thus, the conclusion follows for the function

u(z) = a% U(z). O

Remark 2.1. Note that the given function u is harmonic in the punc-
tured unit disk D \ {0} because the function U is harmonic in D and
the differential operator a% is commutative with the Laplace operator
A. Setting u(0) = 0, we see that

0 r (1 —7r2)sin(9 —t)

== - @

u(re™) / 0= 2rcos(d — 1) 7 1) (t)dt — 0 asr — 0,
0

i.e. u(z) — u(0) as z — 0, and, moreover, the integral of u over each circle
|z| =7, 0 < r <1,is equal to zero. Thus, by the criterion for a harmonic
function on the averages over circles we have that w is harmonic in D.
The alternative argument for the latter is the removability of isolated
singularities for harmonic functions, see e.g. [57].

Corollary 5.1 to Theorem 5.1 in [61] has strengthened Theorem B as
the next.

Theorem C. For each (Lebesgue) measurable function ¢ : 0D — R,
the space of all harmonic functions u : D — R with the angular limits
©(C) for a.e. ¢ € D has the infinite dimension.

Theorem C is the direct consequence of Theorem B and Theorem 5.1
in [61]:

Theorem 2.2. The space of all harmonic functions in D with angular
limit O at a.e. point of 0D has the infinite dimension.

We give its complete proof here in view of its importance because we
will successively reduce all other boundary value problems to Theorem

C.
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Proof. Indeed, let ® : [0,27] — R be integrable and differentiable a.e.
with ®'(¢) = 0. Then the function

2T
1 1—r? ;
U(z) : = — dt)dt, z=re’ r<i,
(2) 2 ) 1—2rcos(¥ —t)+r? t) FTres T
0

is harmonic on D with U(z) — ®(0) as z — €©, see e.g. Theorem 1.3

n [25] or Theorem IX.1.1 in [28], and % U(z) — ®'(0) as z — ¢©
along any nontangential path whenever ®'(©) exists, see e.g. 3.441 in
[76], p. 53, or Theorem IX.1.2 in [28]. Thus, the harmonic function
u(z) = a% U(z) has nontangential limit 0 at a.e. point of JD.

Let us give a subspace of such functions u with an infinite basis.
Namely, let ¢ : [0,1] — [0,1] be the Cantor function, see e.g. 8.15
in [27], and let ¢y, : [0,27] — [0, 1] be equal to ¢((t — an—1)/(an —an—1))
on [an_1,a,) where ag = 0 and a, = 27(27 4+ ... +27"), n =1,2,...
and 0 outside of [a,,—1, a,,). Denote by U,, and w,, the harmonic functions
corresponding to ¢, as in the first item.

By the construction the supports of the functions ¢, are mutually

o0
disjoint and, thus, the series > v,¢;, is well defined for every sequence

n=1
Yo € R, n=1,2,.... If in addition we restrict ourselves to the sequences

[e.e]

v = {7n} in the space | with the norm ||v|| = >_ |yx|, then the series is
n=1

a suitable function ® for the first item.

Denote by U and u the harmonic functions corresponding to the
function ® as in the first item and by Hg the class of all such u. Note
that u,, n = 1,2,..., form a basis in the space Hy with the locally
uniform convergence in D which is metrizable.

o0
Firstly, > vnen # 0 if v # 0. Really, let us assume that v, # 0 for

n=1
some n = 1,2,.... Then u # 0 because the limits lim U(z) exist for all
2=

¢ = e with 9 € (an—1,a,) and can be arbitrarily close to 0 as well as
to vn.

m

Secondly, u}, = > Ynpn — u locally uniformly in D as m — oc.
n=1

Indeed, elementary calculations give the following estimate of the re-

mainder term

e}

el < B S 50w moe

n=m-+1

in every disk D(r) ={z € C:|z| <r}, r <1 O
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Remark 2.3. In Section 5, one can find our more refined results which
are counterparts of Theorem A, B, C as well as 2.2 in terms of logarith-
mic capacity that makes possible to extend the theory of boundary value
problems to the so-called A—harmonic functions corresponding to gen-
eralizations of the Laplace equation in inhomogeneous and anisotropic
media.

By the well-known Lindel6f maximum principle, see e.g. Lemma 1.1
in [25], it follows the uniqueness theorem for the Dirichlet problem in
the class of bounded harmonic functions w on the unit disk D = {z €
C : |z| < 1}. In general there is no uniqueness theorem in the Dirichlet
problem for the Laplace equation even under zero boundary data. In
comparison with the examples in the proof of Theorem 2.2, here we give
more elementary examples and constructions of solutions from [63].

Many such nontrivial solutions u for the Laplace equation can be
given by the Poisson—Stiltjes integral

2w
1 .
ue) = 5 [RO-HdE, s=rer<l. ()
0

with an arbitrary singular function ® : [0,27] — R, i.e., where ® is
of bounded variation and ® = 0 a.e., and where we use the standard
notation for the Poisson kernel

1—7r?

F(®) = 1—2rcos®+r2’ r<l. (22)

Indeed, w in (2.1) is harmonic for every function ® : [0,27] — R of
bounded variation and by the Fatou theorem, see e.g. Theorem 1.D.3.1
in [44], u(z) — ®'(©) as z — ¢'© along any nontangential path whenever
®'(O) exists. Thus, u(z) — 0 as z — €'© for a.e. © € [0,27] along any
nontangential paths for every singular function ®.

Example 2.4. The first natural example is given by the formula (2.1)
with ®(t) = ¢(t/2m) where ¢ : [0,1] — [0,1] is the well-known Cantor
function, see e.g. [18] and further references therein.

Example 2.5. However, the simplest example of such a kind is given
by nondecreasing step-like data ®y, with values 0 and 27 and with the
jump at ¥y € (0, 27):

1-— T2 9

) = B =) :1—2TCOS(19—290)+7“2’ z=re’, r<l1.
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We see that u(z) — 0 as z — €'© for all © € (0,27) except © = .
Note that the function « is harmonic in the unit disk I because
Co+ 2 1—|z]?

u(z) = Re = — , = zeD,
=) Go—2 1 —2Rez(+ |22 =

where the function w = g(2) = g¢,(2): = (¢o + 2)/(¢o — 2) is analytic
(conformal) in D and maps D onto half-plane Rew > 0, g(0) = 1, g({p) =
00.

Remark 2.6. On the basis of the latter examples, it was given an al-
ternative proof of Theorem 2.2 and its strengthening for the class of all
harmonic functions in D with the angular limit 0 at every point of 9D
except a countable collection of points, see Theorem 2.1 in [63]. In par-
ticular, that makes possible to formulate the corresponding more refined
results in terms of the so-called logarithmic capacity.

Note also that the harmonic functions u given in the proof of Theorem
2.2 and in (2.1) cannot be represented in the form of the Poisson integral
with any integrable function ¢ : [0, 27] — R because such integral would
have nontangential limits ¢ a.e. in dD, see e.g. Corollary IX.1.1 in [28].
Consequently, v do not belong to the classes h, for any p > 1, see e.g.
Theorem IX.2.3 in [28]. However, the functions w in (2.1) belong to the
class hy, see e.g. Theorem IX.2.2 in [28].

Recall that hP, p € (0,00), denotes the class of harmonic functions u
in D with
2 P
sup / lu(re) P dy < o0
re(0,1) 0

and functions in h! have angular limits a.e. in 0D, see e.g. Corollary
IX.2.2 in [28].

3. Angular limits in Hilbert problem for analytic func-
tions

Boundary value problems for analytic functions are due to the well-
known Riemann dissertation (1851) contained a general setting of a prob-
lem on finding analytic functions with a connection between its real and
imaginary parts on the boundary. However, it has contained no concrete
boundary value problems.

The first concrete problem of such a type has been proposed by Hilbert
(1904) and called by the Hilbert problem or the Riemann—Hilbert prob-
lem. Recall that this problem consists in finding an analytic function
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f in a domain bounded by a rectifiable Jordan curve C' with the linear
boundary condition

lim Re {M(C) - f(2)} = ¢(C) v(el (3.1)

where it was assumed that the functions A and ¢ are continuously dif-
ferentiable with respect to the natural parameter s on C' and, moreover,
|A| # 0 everywhere on C'. Hence without loss of generality we may assume
that [A|=1on C.

The first way for solving this problem based on the theory of singular
integral equations was given by Hilbert (1904), see [35]. This attempt was
not quite successful because of the theory of singular integral equations
has been not yet enough developed at that time. However, just that way
became the main approach in this research direction with important con-
tributions of Georgian and Russian mathematicians and mechanicians,
see e.g. [24,56] and [72]. In particular, the existence of solutions to this
problem was in that way proved for Holder continuous A and ¢. But sub-
sequent weakening conditions on A and ¢ led to strengthening conditions
on the contour C, say to the Lyapunov curves or the Radon condition of
bounded rotation or even to smooth curves.

However, Hilbert (1905) has solved his problem with the above set-
tings to (3.1) in the second way based on the reduction it to solving
the corresponding two Dirichlet problems, see e.g. [36]. The main goal
of the paper [61] was to show that this approach is more simple and
leads to perfectly general results in the problem for the arbitrary recti-
fiable Jordan domains with coefficients A and boundary data ¢ that are
only measurable with respect to the natural parameter. The key was the
Gehring—Luzin result, see Theorem B in Section 2, on the Dirichlet prob-
lem for harmonic functions. But the way of the reduction of the Hilbert
problem to the corresponding 2 Dirichlet problems was original in [61].

First we have the result in the unit disk D, see Theorems 2.1 and 5.2
in [61].

Theorem 3.1. Let A : D — C, [A(Q)] = 1, and ¢ : D — R be
measurable functions. Then there exist analytic functions f : D — C
such that along any nontangential path

lim Re {AQ) - f(2)} = () Jor a.e. (edD (3.2)

and the space of such analytic functions has the infinite dimension.

The proof is short and, in view of its importance, we give it here.
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Proof. First, consider the function «(¢) = arg A(¢) where argw is the
principal value of the argument of w € C with |w| = 1, i.e., the unique
number a € (—, 7] such that w = €. Note that the function argw is
continuous on 9D \ {—1} and the sets A=1(dD \ {—1}) and A~1(—1) are
measurable because the function A\(¢) is measurable. Thus, the function
a(() is measurable on dD. Furthermore, o € L*>°(0D) because |a(¢)| <«
for all ¢ € dD. Hence

L ZHdg, 2eD, (3.3)

o)+ = g [al0 25

oD

is an analytic function in D with u(z) = Re ¢g(z) — «(¢) as z — ¢ along
any nontangential path in D for a.e. ¢ € dD, see e.g. Corollary IX.1.1
in [28] and Theorem L.E.1 in [44]. Denote A(z) = exp{ig(z)} that is an
analytic function.

Since o € L*°(9D), we have that uw € hP for all p > 1, see e.g.
Theorem I1X.2.3 in [28], and then also v = Im g € h? for all p > 1 by
the theorem of M. Riesz (1927), see e.g. Theorem IX.2.4 in [28]. Hence
there exists a function 5 : 0D — R, § € LP, for all p > 1 such that
v(z) = B(¢) as z — ( for a.e. ¢ € 0D along any nontangential path,
see e.g. Theorem IX.2.3 and Corollary IX.2.2 in [28]. Thus, by Theorem
B there exists an analytic function B : D — C such that Re B(z) —
B(() : = ¢(C) - exp{B(¢)} as z — ( along any nontangential path for
a.e. ¢ € dD. Finally, elementary calculations show that one of the desired
analytic functions in (3.7) is f = A - B.

Let U : D — R be a harmonic function with angular limit 0 at
a.e. point of 9D from Theorem 2.2. Then there is the unique harmonic
function V : D — R with V(0) = 0 such that C = U + 4V is an analytic
function. Thus, setting in the last item f = A(B+C) instead of f = A-B,
we obtain by Theorem 2.2 the space of analytic functions of the infinite
dimension satisfying (3.7). O

Remark 3.2. As it follows from formula (3.3), the first analytic function
A in the proof is calculated in the explicit form. The function 5 : 0D — R
in the proof can also explicitly be calculated by the following formula,
see e.g. Theorem L.LE.4.1 in [44], for a.e. ( € 9D

A —ity it
MO:zlm,l/@@eﬁgﬂ@)
2

Jim = dt . (3.4)
€

The second analytic function B in the proof is equal to 8% G(z),
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I

Glz) 1 = —— /@(g) 2t 2eD, (3.5)

21 z—
oD

S
C )

I

where @ : 0D — R is a continuous function such that % ®(¢) = B(Q),
¢ = ¢, for a.e. ¥ € [0,27], see the nontrivial construction of Theorem
VII(2.3) in [70].

The case of arbitrary rectifiable Jordan curves is reduced to the case
of the unit circle as in Theorem 3.1 and Remark 5.2 in [61].

Theorem 3.3. Let D be a Jordan domain in C with a rectifiable bound-
ary and let X : 0D — C, |A({)] = 1, and ¢ : ID — R be measurable
functions with respect to the natural parameter on OD. Then there exist
analytic functions f : D — C such that along any nontangential path

lm Re (NO)-/(2)} = (O for ae. C€OD  (36)

with respect to the natural parameter on 0D and the space of such analytic
functions has the infinite dimension.

Proof. This case is reduced to the case of the unit disk D in the following
way. First, by the Riemann theorem, see e.g. Theorem I1.2.1 in [28], there
exists a conformal mapping w of any Jordan domain D onto D. By the
Caratheodory (1912) theorem w can be extended to a homeomorphisms
of D onto D and, if D is rectifiable, then by the theorem of F. and M.
Riesz (1916) length w™!(E) = 0 whenever E C 9D with |E| = 0, see
e.g. Theorem II.C.1 and Theorems II1.D.2 in [44]. Conversely, by the
Lavrentiev (1936) theorem |w(&)| = 0 whenever £ C 9D and length £ =
0, see [49], see also the point II1.1.5 in [60].

Hence w and w™! transform measurable sets into measurable sets.
Indeed, every measurable set is the union of a sigma-compact set and
a set of measure zero, see e.g. Theorem III(6.6) in [70], and continuous
mappings transform compact sets into compact sets. Thus, a function
¢ : 0D — R is measurable with respect to the natural parameter on 9D
if and only if the function ® = g ow™! : D — R is measurable with
respect to the linear measure on 9.

By the Lindelof (1917) theorem, see e.g. Theorem I1.C.2 in [44], if D
has a tangent at a point ¢, then arg [w(¢) — w(z)] — arg [( — z] — const
as z — (. In other words, the conformal images of sectors in D with
a vertex at ( is asymptotically the same as sectors in D with a vertex
at w = w({). Thus, nontangential paths in D are transformed under w
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into nontangential paths in . Finally, a rectifiable Jordan curve has a
tangent a.e. with respect to the natural parameter and, thus, Theorem
3.3 follows from Theorem 3.1. O

Remark 3.4. The conceptions of a harmonic measure introduced by R.
Nevanlinna in [57] and a principal asymptotic value based on one nice
result of F. Bagemihl [6] make possible with a great simplicity and gen-
erality to formulate the existence theorems for the Dirichlet and Hilbert
problems in arbitrary Jordan domains, see Theorem 4.1 and Remark 5.2
in [61].

In view of the theorems of Riemann and Caratheodory, this approach
makes possible also to formulate the corresponding theorems for arbitra-
ry simply connected domains D in C having at least 2 boundary points.
The only difference is that the functions A and ¢ should be given as
functions of prime ends of D but not of points of 9D and harmonic
measures of sets of prime ends are given through the natural one-to-one
correspondence between the prime ends of D and the boundary points
of D under Riemann mappings w : D — D, see e.g. [17].

Moreover, in [64] it was proved the existence of multivalent solutions
with the infinite number of branches for the Hilbert problem in the gen-
eral settings of finitely connected domains bounded by mutually disjoint
Jordan curves, measurable coefficients and measurable boundary data.
The general theorem is formulated in terms of harmonic measure and
principal asymptotic values. It is also given the corresponding reinforced
criterion for domains with rectifiable boundaries stated in terms of the
natural parameter and nontangential limits. Furthermore, it is shown
that the dimension of the spaces of these solutions is infinite.

Let us start from the simplest kind of multiply connected domains.
Recall that a domain D in C = CU{cc} is called circular if its boundary
consists of finite number of mutually disjoint circles and points. We call
such a domain nondegenerate if its boundary consists only of circles.
The following statement was first proved as Theorem 2.1 in [64].

Theorem 3.5. Let D, be a bounded nondegenerate circular multiply con-
nected domain and let X : 0D, — C, [A(Q)] = 1, and ¢ : D, — R be
measurable functions. Then there exist multivalent analytic functions
f D, — C with the infinite number of branches such that

lm Re (X(0)- /(2)} = ¢(0) (37

along any nontangential path to a.e. { € IDy.
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Proof. Indeed, by the Poincare theorem, see e.g. Theorem VI.1 in [28],
there is a locally conformal mapping ¢ of the unit disc D = {z € C :
|z| < 1} onto D,. Let h : D, — D be the corresponding multivalent
analytic function that is inverse to g. D, without a finite number of cuts
is simply connected and hence h has there only single-valued branches
that are extended to the boundary by the Caratheodory theorem.

By Section VI.2 in [28], 0D without a countable set of its points con-
sists of a countable collection of arcs every of which is a one-to-one image
of a circle in dD, without its one point under every extended branch of
h. Note that by the reflection principle ¢ is conformally extended into
a neighborhood of every such arc and, thus, nontangential paths to its
points go into nontangential paths to the corresponding points of circles
in 0D, and inversely.

Setting A = Ao g and & = ¢ o g with the extended g on the given
arcs of D we obtain measurable functions on dD. Thus, by Theorem 2.1
in [61], see Theorem 3.1 above, there exist analytic functions F': D — C
such that

lim Re {A(n) - F(w)} = ®(n) (3.8)

along any nontangential path to a.e. n € dD. By the above arguments,
we see that f = F o h are desired multivalent analytic solutions of (3.7).
O

To solve the Riemann—Hilbert problem in the case of domains boun-
ded by a finite number of rectifiable Jordan curves we should extend
to this case the known results of Caratheodory (1912), Lindelof (1917),
F. and M. Riesz (1916) and Lavrentiev (1936) for Jordan’s domains.
Namely, it was proved as Lemma 3.1 in [64] the following statements.

Lemma 3.6. Let D be a bounded domain in C whose boundary compo-
nents are Jordan curves, D, be a bounded nondegenerate circular domain
i C and let w: D — Dy be a conformal mapping. Then

(i) w can be extended to a homeomorphism of D onto Dy;

(ii) arg [w(¢) — w(z)] — arg [( — z] — const as z — ¢ whenever 0D
has a tangent at ¢ € OD;

(iii) for rectifiable D, length w™!(E) = 0 whenever |E| = 0, E C
0Dy

(iv) for rectifiable 0D, |w(€)| = 0 whenever length £ =0, £ C dD.

Proof. (i) Indeed, we are able to transform D, into a simply connected
domain D* through a finite sequence of cuts. Thus, we come to the
desired conclusion applying the Caratheodory theorems to simply con-
nected domains D* and D* := w™!(D*), see e.g. Theorem 9.4 in [17] and
Theorem II.C.1 in [44].
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(ii) In the construction from the previous item, we may assume that
the point ( is not the end of the cuts in D generated by the cuts in D, un-
der the extended mapping w™!. Thus, we come to the desired conclusion
twice applying the Caratheodory theorems, the reflection principle for
conformal mappings and the Lindelof theorem for the Jordan domains,
see e.g. Theorem I1.C.2 in [44].

Points (iii) and (iv) are proved similarly to the last item on the basis of
the corresponding results of F. and M. Riesz and Lavrentiev for Jordan
domains with rectifiable boundaries, see e.g. Theorem I1.D.2 in [44],
and [49], see also the point II1.1.5 in [60]. O

Lemma 3.6 makes possible to reduce the case of domains with rectifi-
able boundaries to the case of circular domains, see Theorem 3.1 in [64].

Theorem 3.7. Let D be a bounded multiply connected domain in C
whose boundary components are rectifiable Jordan curves and X\ : 0D —
C, INQ)| =1, and ¢ : 0D — R be measurable functions with respect
to the natural parameter on 0D. Then there exist multivalent analytic
functions f : D — C with the infinite number of branches such that along
any nontangential path

lim Re Q- f(2)} = () for a.e. Ce€dD (3.9)

with respect to the natural parameters of the boundary components of D.

Proof. This case is reduced to the case of a bounded nondegenerate circu-
lar domain D, in the following way. First, there is a conformal mapping
w of D onto a circular domain D, see e.g. Theorem V.6.2 in [28]. Note
that D, is not degenerate because isolated singularities of conformal map-
pings are removable that is due to the well-known Weierstrass theorem,
see e.g. Theorem 1.2 in [17]. Without loss of generality, we may assume
that D, is bounded.

By point (i) in Lemma 3.6 w can be extended to a homeomorphisms
of D onto D,. If D is rectifiable, then by point (iii) in Lemma 3.6
length w™}(E) = 0 whenever E C 0D, with |E| = 0, and by (iv) in
Lemma 3.6, conversely, |w(€)| = 0 whenever £ C 9D with length £ = 0.

In the last case w and w™! transform measurable sets into measur-
able sets. Indeed, every measurable set is the union of a sigma-compact
set and a set of measure zero, see e.g. Theorem III(6.6) in [70], and
continuous mappings transform compact sets into compact sets. Thus,
a function ¢ : D — R is measurable with respect to the natural pa-
rameter on 9D if and only if the function ® = pow™' : D, — R is
measurable with respect to the natural parameter on 0D,.
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By point (ii) in Lemma 3.6, if 0D has a tangent at a point ( € 9D,
then arg [w(¢) —w(z)] —arg [( —z] — const as z — (. In other words, the
conformal images of sectors in D with a vertex at { is asymptotically the
same as sectors in D, with a vertex at w = w({). Thus, nontangential
paths in D are transformed under w into nontangential paths in D, and
inversely. Finally, a rectifiable Jordan curve has a tangent a.e. with
respect to the natural parameter and, thus, Theorem 3.3 follows from
Theorem 3.1. O

Theorem 4.1 in [64] is formulated for finitely connected domains boun-
ded by arbitrary Jordan curves in terms of harmonic measure and the
so-called principal asymptotic values. Finally, Theorems 5.1 in [64] says
on the dimension of these spaces of solutions:

Theorem 3.8. The spaces of solutions of the Hilbert boundary value
problem in Theorems 3.5 and 3.7 have the infinite dimension.

Proof. By Theorem 5.1 in [61], see Theorem 3.1 above, the space of
solutions of the problem (3.8) has the infinite dimension. Thus, the
conclusion follows by the construction of these solutions in the given
theorems through the successive reduction to (3.8). O

Remark 3.9. Of course, results concerning to the infinite dimension of
the space of solutions are not in some sense new and treated in terms of
the infinite index of the Hilbert boundary value problem, see e.g. [29] and
[55]. By the general theory of boundary value problems, each additional
singularities, including singularities on the boundary contour, increases
the index. Hence the above results can be also interpreted as the case of
the infinite index.

Note that the considered situations admit the boundary functions
with uncountable singularities. Such examples are given by Poisson-
Stiltjes integral with the Cantor type functions under its differential, see
e.g. [63] or Section 2 above, and the corresponding examples of analytic
functions in the simplest case of the Hilbert problem under A = 1 and
p=0a.e.

Indeed, a Cantor type set C is perfect, i.e. it is closed and without
isolated points. Hence C' is of the continuum cardinality by the well-
known W.H. Young theorem, see [75]. The corresponding Cantor type
function has the symmetric Lebesgue derivative +oo at every point in
C except ends, see e.g. the survey [18]. Then by the Fatou theorem,
see e.g. Theorem 1.D.3.2 in [44], the corresponding harmonic function
has the radial limit 400 on the set of the continuum (maximal possible)
cardinality.
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In this connection, it would be also interesting to study the prob-
lem on a maximal possible cardinality of the dimension of the spaces of
solutions for the Hilbert problem.

4. Angular limits in Neumann problem for Laplace
equation

It is well-known that the Neumann problem has no classical solutions
generally speaking even for smooth boundary data, see e.g. [54]. On the
basis of solving of Hilbert boundary value problem in [61], see the last
section, it was proved in [65] the existence of nonclassical solutions of
the Neumann problem for the harmonic functions in the Jordan rectifi-
able domains with arbitrary measurable boundary distributions of normal
derivatives. The same is stated for a special case of the Poincare problem
on directional derivatives. Moreover, it is shown that the spaces of the
found solutions have the infinite dimension.

Let us start from the more general problem on directional derivatives,
see Theorem 1 and Remark 1 in [65].

Theorem 4.1. Let v : D — C, [v(¢)] = 1, and ¢ : 0D — R be
measurable functions. Then there exist harmonic functions v : D — R
such that

lim 20 (2) = @(Q) (4.1)

along any nontangential paths to a.e. point { € OD.

Remark 4.2. We are able to say more in the case of Re n(¢)r(¢) > 0.
Indeed, the latter magnitude is a scalar product of n = n(¢) and v = v(()
interpreted as vectors in R? and it has the geometric sense of projection
of the vector v onto the inner normal n to 0D at the point {. In view of
(4.1), since the limit ¢(¢) is finite, there is a finite limit u(¢) of u(z) as
z — (¢ in D along the straight line passing through the point ¢ and being
parallel to the vector v because along this line

Q|
S

X

1
u(z) = u(zo) — / — (20 +7(2 — 20)) dr . (4.2)
0

Thus, at each point with condition (4.1), there is the directional deriva-
tive

ou Cou(C+tov) —u(c

000y =y IO oy (43)

t—0 t
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In particular, in the case of the Neumann problem, Re n({)v(¢) = 1
and we have by Theorem 4.1 and Remark 4.2 the following result, see
Theorem 2 in [65].

Theorem 4.3. For each measurable function ¢ : 0D — R, one can find
harmonic functions u : D — R such that, at a.e. point { € ID, there
exist:

1) the finite radial limit

u(¢) = lim u(r() (4.4)

2) the normal derivative

ou u((+t-n)—u(()

o, (&) = lim " = »(Q) (4.5)
3) the nontangential limit
. Ou ou
il_)né on (2) = on (©) (4.6)

where n = n(¢) denotes the unit interior normal to 0D at the point .

Proof. To prove Theorem 4.1, let us show that the problem on directional
derivatives is equivalent to the corresponding Riemann—Hilbert problem.

Indeed, let u be a harmonic function u : D — R satisfying the bound-
ary condition (4.1). Then the functions U = u, and V = —u, satisfy
the system of Cauchy-Riemann: U, = -V, and U, = V, in view of
(1.1). Thus, the function f = U + iV is analytic in D and along any
nontangential path to a.e. € 0D

lim Re () - f(2) = ¢(C) (4.7)
z—C

that is equivalent to (4.1). Inversely, let f : D — C be an analytic

function satisfying the boundary condition (4.7). Then any indefinite

integral I of f is also a single-valued analytic function in D and u = Re F’

is a harmonic function satisfying the boundary condition (4.1) because

the directional derivative

gz = Re?-Vu = Rev-Vu = (v,Vu) (4.8)

is the scalar product of v and the gradient Vu interpreted as vectors in
R2.

Thus, Theorem 4.1 is a direct consequence of Theorem 2.1 in [61], see
Theorem 3.1 above on the Hilbert boundary value problem with \({) =
v((), ¢ € ID. O
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The proof of the following result in domains bounded by rectifiable
Jordan curves, Theorem 3 in [65], is perfectly similar to the proof of
Theorem 4.1 above but it is based on more general Theorem 3.1 in [61],
see Theorem 3.3 in Section 3.

Theorem 4.4. Let D be a domain in C bounded by a rectifiable Jordan
curve, v : 0D — C, [v(¢)] = 1, and ¢ : dD — R be measurable func-
tions with respect to the natural parameter. Then there exist harmonic
functions u : D — R such that along any nontangential paths

lim 20 (2) = @(C) (4.9)

for a.e. point ( € 0D with respect to the natural parameter.

Remark 4.5. Again we are able to say more in the case with Re n-7 > 0
where n = n(() is the unit inner normal at a point ¢ € 9D with a tangent
to 0D. In view of (4.9), since the limit ¢(¢) is finite, there is a finite
limit u(¢) of u(z) as z — ¢ in D along the straight line passing through
the point ¢ and being parallel to the vector v because along this line, for
z and zg that are close enough to (,

Q| Q
S

N

uw(z) = u(zo0) — / — (20 +7(2 — 20)) dr . (4.10)
0

Thus, at each point with the condition (4.9), there is the directional
derivative

R T GEENTEt:

t—0 t

In particular, in the case of the Neumann problem, Re n(() m =
1 > 0 and we have by Theorem 4.6 and Remark 4.5 the following signif-
icant result, Theorem 4 in [65]. Here we also apply the well-known fact
that any rectifiable curve has a tangent a.e. with respect to the natural
parameter.

Theorem 4.6. Let D be a domain in C bounded by a rectifiable Jordan
curve and ¢ : 0D — R be a measurable function with respect to the
natural parameter. Then one can find harmonic functions u : D — R
such that, at a.e. point ( € 0D with respect to the natural parameter,
there exist:

1) the finite normal limit

u(¢) = lim u(z) (4.12)

z—(
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2) the normal derivative

Ao R e CR 0 Rt LCY RS S PR )

% t—0 t

3) the nontangential limit

lim 2= () = 22 (¢) (4.14)

where n = n(C) denotes the unit interior normal to D at the point C.

Note that here the tangent 7(s) to 0D is measurable with respect
to the natural parameter s as the derivative d((s)/ds and, thus, the
inner normal n(s) to 9D is also measurable with respect to the natural
parameter.

Finally, we have the following significant result, Theorem 5 in [65].

Theorem 4.7. The spaces of harmonic functions in Theorems 4.1, 4.3,
4.4 and 4.6, being nonclassical solutions of the problem on directional
derivatives and the Neumann problem, correspondingly, have the infinite
dimension for any prescribed measurable boundary data.

Proof. In view of the equivalence of the problem on the directional deriva-
tives to the corresponding Hilbert boundary value problem established
under the proof of Theorem 4.1, the conclusion of Theorem 4.7 follows
directly from Theorem 5.2 and Remark 5.2 in [61], see Theorems 3.1 and
3.3 in Section 3 above. O

5. Logarithmic capacity in Hilbert problem for analytic
functions

Here we give more refined results for harmonic and analytic func-
tions in terms of the so-called logarithmic capacity that makes possi-
ble to extend the theory of boundary value problems to quasiconformal
functions (Beltrami equations) and to A—harmonic functions (generaliza-
tions of the Laplace equation in inhomogeneous and anisotropic media),
see [21,34,69,74] and Sections 6-7 and 9-10 further.

Recall some notions and facts which are relevant to logarithmic ca-
pacity, see e.g. [16,57] and [58|. First of all, given a bounded Borel set E
in the plane C, a mass distribution on F is a nonnegative completely
additive function of a set v defined on its Borel subsets with v(E) = 1.
The function

U"(z) == /log dv(() (5.1)
E

=
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is called a logarithmic potential of the mass distribution v at a point
z € C. A logarithmic capacity C(F) of the Borel set E is the quantity

CE)=e", V = inf Vo(E),  Vu(E) = sup U"(2) . (5.2)

Note that it is sufficient to take the supremum in (5.2) over the set E
only. If V.= oo, then C(E) = 0. It is known that 0 < C(F) < oo,
o0

n=1

n=1,2,..., see e.g. Lemma III.4 in [16].
It is well-known the following geometric characterization of the loga-
rithmic capacity, see e.g. the point 110 in [57]:

C(E) = 7(E) = lim YD (5.3)

n—oo

where V,, denotes the supremum (really, maximum) of the product

I=1,....n
V(Zla SRR Zn) = H ‘Zk - Zl| (54)
k<l
taken over all collections of points zi,...,2, in the set E. Following

Fékete, see [23], the quantity 7(E) is called the transfinite diameter
of the set E. By the geometric interpretation of the logarithmic capacity
as the transfinite diameter we immediately see that if C(E) = 0, then
C(f(E)) = 0 for an arbitrary mapping f that is continuous by Holder
and, in particular, for conformal and quasiconformal mappings on the
compact sets, see e.g. Theorem I1.4.3 in [50].

In order to introduce sets that are measurable with respect to log-
arithmic capacity, we define, following [16|, inner C, and outer C*
capacities:

Cy(E) : = sup C(F) (5.5)
FCE

where supremum is taken over all compact sets F' C C, and

C*(E) : = jnf C(0) (5.6)

where infimum is taken over all open sets O C C. Further, a bounded
set &£ C C is called measurable with respect to the logarithmic
capacity if

C*(E) = C.(E), (5.7)
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and the common value of Cy(E) and C*(E) is still denoted by C(F).
Note, see e.g. Lemma II1.5 in [16], that the outer capacity is semiadditive,

C* (G En> < iC*(En). (5.8)
n=1

n=1

ie.,

A function ¢ : F — C defined on a bounded set £ C C is called
measurable with respect to logarithmic capacity if, for all open
sets O C C, the sets

N={ze€ E:¢(z) €0} (5.9)

are measurable with respect to logarithmic capacity. It is clear from the
definition that the set E is itself measurable with respect to logarithmic
capacity.

Note also that sets of logarithmic capacity zero coincide with sets of
the so-called absolute harmonic measure zero introduced by Nevan-
linna, see Chapter V in [57|. Hence a set E is of (Hausdorff) length zero if
C(F) =0, see Theorem V.6.2 in [57]. However, there exist sets of length
zero having a positive logarithmic capacity, see e.g. Theorem IV.5 in [16].

Remark 5.1. It is known that Borel sets and, in particular, compact and
open sets are measurable with respect to logarithmic capacity, see e.g.
Lemma I.1 and Theorem III.7 in [16]. Moreover, as it follows from the
definition, any set ¥ C C of finite logarithmic capacity can be represented
as a union of the sigma-compactum (union of countable collection of
compact sets) and the set of logarithmic capacity zero. It is also known
that the Borel sets and, in particular, compact sets are measurable with
respect to all Hausdorff’s measures and, in particular, with respect to
measure of length, see e.g. theorem II(7.4) in [70]. Consequently, any
set £ C C of finite logarithmic capacity is measurable with respect to
measure of length. Thus, on such a set any function ¢ : F — C being
measurable with respect to logarithmic capacity is also measurable with
respect to measure of length on E. However, there exist functions that
are measurable with respect to measure of length but not measurable
with respect to logarithmic capacity, see e.g. Theorem IV.5 in [16].

We are especially interested by functions ¢ : 0D — C defined on
the unit circle 9D = {z € C : |z|] = 1}. However, in view of (5.3),
it suffices to examine the corresponding problems on the segments of
the real axis because any closed arc on 0D admits a bi-Lipschitz (even
infinitely smooth, the so-called stereographic) mapping g onto such a
segment.
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In this connection, recall that a mapping g : X — X’ between metric
spaces (X,d) and (X', d’) is said to be Lipschitz if d'(g(z1),g(x2)) <
C-d(x1,x9) for any x1,x9 € X and for a finite constant C. If, in addition,
d(z1,22) < c-d'(g(z1),g(x2)) for any x1, 29 € X and for a finite constant
¢, then mapping g is called bi-Lipschitz.

First of all, it was proved the following analog of the Luzin theorem,
see Theorem 3.1 in [69], cf. Theorem A in Section 2.

Theorem 5.2. Let ¢ : [a,b] — R be a measurable function with respect to
logarithmic capacity. Then there is a continuous function ® : [a,b] — R
such that ®'(x) = p(z) a.e. on (a,b) with respect to logarithmic capacity.
Furthermore, the function ® can be choosen such that ®(a) = ®(b) =0
and |®(z)| < e for a prescribed € > 0 and all x € [a,b].

Then, on this basis, it was obtain the following analog of the Gehring—
Luzin theorem, see Theorem 4.1 in [69], ¢f. Theorem B in Section 2.

Theorem 5.3. Let ¢ : R — R be 2w-periodic, measurable and finite a.e.
with respect to logarithmic capacity. Then there is a harmonic function
u(z), z € D, such that u(z) — (V) as z — e along any nontangential
path for all 9 € R except a set of logarithmic capacity zero.

We call A : 0D — C a function of bounded variation, write
A € BY(ID), if

=k
VA@D) : = sup > [MG1) = A < o0 (5.10)

J=1

where the supremum is taken over all finite collections of points ¢; € OD,
Jj=1,...,k, with the cyclic order meaning that (; lies between (j41 and
Gj—1 for every j = 1,..., k. Here we assume that (341 = (1 = (p. The
quantity V) (0D) is called the variation of the function .

Remark 5.4. Note that by the definition V3 (9D) = Vo, (9D), i.e., the
variation is invariant under every homeomorphism A : 9D — 0D and,
thus, the definition can be extended in a natural way to an arbitrary
Jordan curve in C because a Jordan curve is a continuous one-to-one
image of the unit circle in C.

It was established in [69], see Theorem 5.1, the following interesting
fact.

Theorem 5.5. Let o : D — R be a function of bounded variation and
let f: D — C be an analytic function such that

liné Re f(z) = «a(() for a.e. (e€0D (5.11)
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with respect to logarithmic capacity along any nontangential path. Then

li_}n% Im f(z) = B(() for a.e. (€0D (5.12)

with respect to logarithmic capacity along any nontangential path where
B : 0D — R is a function that is finite a.e. and measurable with respect
to logarithmic capacity.

Remark 5.6. Recall a subtle fact due to N. Luzin: the harmonic func-
tions in a unit disk with continuous (even absolutely continuous!) bound-
ary values can have conjugate harmonic functions whose boundary val-
ues are not continuous functions. Moreover, they are not even essentially
bounded in a neighborhood of any point of the unit circle, see e.g. [8].
Thus, the interconnection between the boundary values of conjugate har-
monic functions is a quite complicated item, see also L.E in [44].

Moreover, correspondingly to Proposition 5.1 in [69], we have the
following;:

Lemma 5.7. For every function X\ : 0D — 0D of the class BY(0D)
there is a function ay : 0D — R of the class BV(ID) such that \(() =

exp{ia)(¢)}, ¢ € OD.

Finally, on the basis of Theorems 5.3 and 5.5, Lemma 5.7, see also
Remark 2.3, it was derived similarly to the proof of Theorem 3.1 the
following significant result on the Hilbert boundary value problem, see
Theorems 6.1 and 8.1 in [69].

Theorem 5.8. Let A : 0D — 0D be of bounded variation and ¢ : 0D — R
be measurable with respect to logarithmic capacity. Then the space of all
analytic functions f: D — C such that along any nontangential path

,ll—>n% Re {\Q)- f(2)} = ¢(¢) for a.e. (€0D (5.13)

with respect to logarithmic capacity has the infinite dimension.

Note that, in view of Remark 5.1, we strengthen in Theorem 5.8 in
comparison with Theorem 3.1 its hypothesis as well as its conclusion.
Thus, Theorem 5.8 is not a consequence of Theorem 3.1.

6. Angular limits in Hilbert problem for quasiconformal
functions

Let D be a domain in the complex plane