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Mean value theorems for polynomial solutions
of linear elliptic equations with constant

coefficients in the complex plane
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Abstract. We characterize solutions of the mean value linear elliptic
equation with constant coefficients in the complex plane in case of regular
polygon.
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Introduction

Let n ∈ N, n ≥ 3. There is well-known result in theory of har-
monic functions, that was proved independently in works of Kakutani
and Nagumo [1], Walsh [2] and Privalov [3, Chapter 3, §11]: a function
f ∈ C(C) is a harmonic polynomial of order ≤ n − 1 if and only if the
mean value of the function f taken over vertices of any regular n-gon
equals to the value of this function at its center.

Ramsey and Weit obtained the similar result with the radius R = ∞
of the disk: the function f ∈ C(R2) satisfies

1

N + 1

N∑
k=0

f
(
z + e

2πki
N+1 ξ

)
= f(z)

for all z ∈ C and |ξ| = R for some fixed R > 0 if and only if f is a
harmonic polynomial of degree not exceeding N .

Then Volchkov V. [5, Part 5, Chapter 5, assertion (1) of Theorem 5.9]
obtained the following local variant of their result.
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Let V = {0, ν1, ..., νn}, λr are motions of the regular n-gon in the disk
Br.

Let R > inf{r > 0 : cl{∪λrV} = Br}. Then set of the functions,
which satisfy the equality

f(λ0) =
1

n

n∑
j=1

f (λRνj)

for almost all motions λR, coincides with a harmonic polynomial of degree
at most n− 1.

In present paper we prove the new similar theorem, which describes
classes of polynomial solutions for homogeneous linear elliptic equations
with constant coefficients on the complex plane. The left hand side of
these equations is representable in the form of the product of some non-
negative operators of complex differentiation. In case of Laplace operator
this theorem coincides with above Volchkov result [5] and hence contains
the all above results of the works [1,...,4]. The analogue of this result for
the circle domains is represented in [6].

The author is grateful to A. V. Pokrovskii for attention to this work.

1. Main results

Let BR := {z ∈ C : |z| < R}, m,n ∈ N, s ∈ N0, n ≥ 3, s < m < n+1,
dn := 2(5 + 4 cos πn)

−1/2 for odd n, dn := 2(4 + 5 cos2 πn)
−1/2 for even n.

Denote by E(n,m, s) the set of all pairs of integer nonnegative numbers
(k, l), such that the following conditions hold: k < m − s or l < m;
k < n+ s; l < n− s.

Theorem 1. Let R > 0, f ∈ C2m−s−2(BR), r ∈ (0, dnR). Then the
following assertions are equivalent:
1) for all z ∈ BR and α ∈ [0, 2π) such that {z+ reiα+i

2πν
n }n−1

ν=0 ⊂ BR we
have the equality

m−1∑
p=s

nr2p

(p− s)!p!
∂p−s∂̄pf(z) =

n−1∑
ν=0

(reiα+i
2πν
n )sf(z + reiα+i

2πν
n ); (1.1)

2) the function f is represented in the form

f(z) =
∑

(k,l)∈E(n,m,s)

ck,lz
kz̄l, ck,l ∈ C. (1.2)

It follows from the definition of the set E(n,m, s) that functions satis-
fying the condition(1.1) form a finite-dimensional linear space over field C,
whose elements are polynomial solutions of the equation ∂m−s∂

m
f = 0.
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2. Auxiliary results and constructions

Let U ∈ Rn, φ ∈ E ′(Rn) and Aφ(U) =
∩

τ∈SO(n)

D′
τφ(U). Let dk be

a dimension (over C) of the vector space of all spherical harmonics of
degree k. We associate with each function f ∈ Lloc(U) its Fourier series
into spherical harmonics and Fk,l,p(x) denote the term of the Fourier
series, where F k,l(x) = Fk,l,l(x), x ∈ U .

Consider the following Proposition (see p. 34 in monograph [5]).

Proposition 1. Let f ∈ Aφ(U). Then the following assertions hold.
1) ∂f/dxj ∈ Aφ(U) for all j ∈ 1, ..., n.
2) Di,jf ∈ Aφ(U) for all i, j ∈ 1, ..., n.
3) F k,l ∈ Aφ(U) for all k ∈ Z+, l ∈ 1, ..., dk. 4) If n ≥ 3, and f ∈ Lloc(U)
then Fk,l,p ∈ Aφ(U) for all k ∈ Z, l, p ∈ 1, ..., dk.
5) If n = 2, f ∈ Lloc(U), and

⟨φ, g(x1,−x2)⟩ = ⟨φ, g(x1, x2)⟩

for each g ∈ E(Rn), then Fk,l,p ∈ Aφ(U) for all k ∈ Z, l, p ∈ 1, ..., dk.

To each function f ∈ C(BR) we assign its Fourier series

f(z) ∼
+∞∑

k=−∞
fk(ρ)e

ikφ, (2.3)

where z = ρeiφ is the trigonometric form of z,

fk(ρ) =
1

2π

π∫
−π

f(ρeit)e−itkdt (z ̸= 0, k ∈ Z := {0,±1,±2, . . .}).

For z = 0 we define the Fourier coefficients by continuity, i.e., f0(0) =
f(0), fk(0) = 0 for all integer k ̸= 0.

Formulate the following well-known property of the Fourier coeffi-
cients [5, Part 1, §5.1].

Lemma 1. If f ∈ C∞(BR), then for any k ∈ Z the function fk(ρ)e
ikφ is

infinitely differentiable with respect to x and y (z = x+iy = ρeiφ) and the
Fourier series (3) converges to the function f in the space E(BR), i.e.,
converges uniformly together with its all partial derivatives of arbitrary
order on each compact subset of the ball BR.

Let ν1, .., νm ∈ Rn, where νi ̸= νj for 1 ≤ i, j ≤ m, i ̸= j and let
ε > 0. For ν = 1, ...,m we set Ων,ε = {x ∈ Rn : |vν | − ε < |x| < |vν |+ ε},
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ν = 1, ...,m. In addition, we set Hk(U) = spanC{Hk,1(U), ...,Hk,dk(U)},
where Hk,l(U) =

(
Lloc

∩
D′
k,l(U)

)
(l ∈ 1, ..., dk). Consider the following

Lemma (see theorem 3.1 on p. 250 from the monograph [5]).

Lemma 2. Assume that the functions Fν ∈ Lloc(Ων,ε), ν = 1, ...,m
satisfy the following conditions:

(1) there exists q ∈ Z+ such that

Fν ∈ spanC{H0(Ων,ε), ...,Hq(Ων,ε)}

for all ν = 1, ...,m;
(2)

m∑
ν=1

Fν(x+ vν) = 0

for almost all x ∈ Bε.
Then Fν is a polynomial in Ων,ε for all ν = 1, ...,m.

3. Proof of Theorem 1

Proof. Let R > 0, and r ∈ (0, R) with following property: set of points

∪z({z + reiα+i
2πν
n }n−1

ν=0 ∪ {z}) with all such z ∈ BR and α ∈ [0, 2π),

that {z + reiα+i
2πν
n }n−1

ν=0 ⊂ BR, coincides with the disk BR. It is clear
that all sufficiently small values r satisfy this condition. Assume that
f ∈ C∞(BR). Let Fq(z) = fq(ρ)e

iqφ is Fourier series q-summand of
the function f(z) (z = x + iy = reiφ, 0 < ρ < R, q ∈ Z). Then
Fq ∈ C∞(BR) (see Lemma 1), and from Proposition 1 function Fq(z)
satisfies the general mean value condition on polygonals (1.1) for all

z ∈ BR and α ∈ [0, 2π) such, that {z + reiα+i
2πν
n }n−1

ν=0 ⊂ BR.

Let tν = rei
2πν
n , ν = 0, 1, . . . , n− 1, tn = 0. Define the functions

Fq,ν(z) := tsνFq(z), ν = 0, 1, . . . , n− 1,

Fq,n(z) := −
m−1∑
p=s

nr2p

(p− s)!p!
∂p−s∂̄pFq(z).

Then we have from (1.1)

n∑
ν=0

tsνFq,ν(z + tν) ≡ 0

Using for these functions Lemma 2, similarly to constructions on p. 406
of the monograph [5], we obtain, that Fq(z) is a polynomial. Therefore
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it follows from uniqueness theorem that we can consider R = ∞. Using

again Proposition 1 we conclude that all functions ∂k∂
l
Fq(z), k, l ∈ N0

satisfy general mean value condition on polygons for all z ∈ C and α ∈
[0, 2π). This implies that all elements of the expansion for polynomial
Fq(z) in powers z, z̄ satisfy equation (1.1) for all z and α too.

Suppose that polynomial zkz̄l satisfies general mean value condition
on polygons. Then all polynomials zj z̄q with j ≤ k, q ≤ l also satisfy
this condition. Hence we have from binomial formula that polynomial
zkz̄l satisfies general mean value condition on polygons if and only if all
polynomials f(z) = zj z̄q where j ≤ k, q ≤ l satisfy condition

m−1∑
p=s

nr2p

(p− s)!p!
∂p−s∂̄pf(0) =

n−1∑
ν=0

(reiα+i
2πν
n )sf(reiα+i

2πν
n ). (3.4)

This implies that or k < m − s or l < m, because otherwise function
zm−sz̄m satisfies general mean value condition on polygons, but left side
(3.4) is equal zero and right side is not equal. On the other hand we have
from (3.4), that all functions zp−sz̄p, s ≤ p < m satisfy this condition.

Consider the case k + s ̸= l. Then left side of (3.4) equals to zero.
Then we have from geometric progression formula that right side of (3.4)
equals to zero only if (k − l + s)/n is integer. This implies k + s < n,
l−s < n, because otherwise for functions zn−s and z̄n+s left side of (3.4)
is equal zero and right side is not equal. Thus polynomial f(z) := zkz̄l

satisfies general mean value condition on polygons if and only if k < m−s
or l < m, and k < n− s, l < n+ s.

From the above we have statement from our theorem for the function
f ∈ C∞(BR) and for the following r: Ar := ∪z({z+reiα+i

2πν
n }n−1

ν=0∪{z} =

BR with all such z ∈ BR and α ∈ [0, 2π), that {z+ reiα+i
2πν
n }n−1

ν=0 ⊂ BR.
Consider the least upper bond for r.

Let regular n-gon Pn ⊂ BR with the center O1 and the radius r of the
circumscribed circle is a symmetric with respect to axis Ox and has two
vertices on the circle |z| = R in right half-plane. Then we have condition
from geometric considerations for Ar = BR. There are

r < 2|OO1| (3.5)

for odd n, and

r cos
π

n
< 2|OO1| (3.6)

where |OO1| is the Euclidean distance between center O1 of n-gon Pn
and origin O. Using elementary calculations we have

|OO1| =
√
R2 − r2 sin2

π

n
− r cos

π

n
.
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Then for odd n we obtain from (3.5):

r < 2

(√
R2 − r2 sin2

π

n
− r cos

π

n

)
,

r
(
1 + 2 cos

π

n

)
<

√
R2 − r2 sin2

π

n
,

r2
(
1 + 4 cos

π

n
+ 4 cos2

π

n

)
< 4R2 − 4r2 sin2

π

n
,

r2
(
5 + 4 cos

π

n

)
< 4R2,

r < dnR, dn = 2
(
5 + 4 cos

π

n

)−1/2
.

Similarly, for even n we obtain from (3.6)

2r cos
π

n
<

(√
R2 − r2 sin2

π

n
− r cos

π

n

)
,

r2
(
9 cos2

π

n
+ 4 sin2

π

n

)
< 4R2,

r < dnR, dn = 2
(
4 + 5 cos

π

n

)−1/2
.

Thus we proof the Theorem for f ∈ C∞(BR).
For the general case we for R > 0 and r ∈ (0, dnR) fix ε0 ∈ (0, R)

(r < dn(R− ε0)) and real nonnegative function φ ∈ C∞
0 (B1) such, that∫∫

C
φ(z) dxdy = 1.

Let

φε(z) = ε−n
∫∫

C
φ(z/ε) dxdy 0 < ε < ε0.

Using convolution’s standard properties we have, that function

fε(x) := f ∗ φε(x) =
∫
f(x− y)φε(y) dy

is defined in the disk BR−ε, belongs to the class C∞(BR−ε) and fε → f
for ε → 0 uniformly on compact subsets of the disk BR. On the other
hand, we have a proof, that every function fε has the form (1.2). Thus
we justify that function f has this form.
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