
ISSN 2706-8145, Control systems and computers, 2022, № 3 63

DOI https://doi.org/10.15407/csc.2022.03.063

UDC 004.94

O.S. BULGAKOVA, PhD (Eng.) Sciences, Associate Professor, Department of Applied

Information Systems, Taras Shevchenko National University of Ukraine,

Bohdan Hawrylyshyn str. 24, Kyiv, 04116, Ukraine,

ORCID: https://orcid .org/0000-0002-6587-8573, Scopus Author ID 57188687900,

sashabulgakova2@gmail.com

V.V. ZOSIMOV,D. (Eng.) Sciences , Professor, Department of Applied Information

Systems, Taras Shevchenko National University of Ukraine,

Bohdan Hawrylyshyn str. 24, Kyiv, 04116, Ukraine,

ORCID: https://orcid .org/ 0000-0003-0824-4168, Scopus Author ID 57188682230,

zosimovvv@gmail.com

A.V. KUDRIAVTSEV, Master degree of Computer Science, GlobalLogic, Protasov Business Park,

str. M. Grinchenko, 2/1, Kiev, 03038, Ukraine,

extosis.vt@gmail.com

APPLICATION OF PROCEDURAL GENERATION ALGORITHMS IN
REAL-TIME GAME STRATEGY ENVIRONMENT BASED ON THE
MVC CONCEPT

This paper presents an example of using procedural generation methods in a real-time strategy environment created on the basis

of the MCC concept. The most important feature of the presented project is its modularity. All game level objects are independent

of each other. An algorithm for visualizing objects based on procedural generation is described. The problems and their solutions

that arose during the creation of the game are considered.

Keywords: procedural generation, MVC concept, game, 3D modeling, real-time strategy, unity.

Introduction

Procedural generation algorithms are indispen-

sable for creating artificial clouds, mountains, sea

surface [1–3]. That is why in the development of

modern games algorithms for generating three-

dimensional structures are used.

However, it is easy to make mistakes in under-

standing and applying procedural generation: it is

very important to understand that it is not a tool

to solve all problems. It can be used to get a lot of

digital content, or to add an element of random-

ness to objects that are long and difficult to make

by hand. It takes a programmer time to write and

test algorithms, especially when they interact with

other systems. Therefore, this paper considers an

example of using procedural generation methods

in a game environment created on the basis of the

MVC concept with Unity.

The most important feature of the presented

project is its modularity, the user should be able

to change parts of the project at will with the same

ease as the developer. All game level objects are

independent of each other — adding new ones or

removing existing ones should not harm the entire

project as a whole.

O.S. Bulgakova, V.V. Zosimov, A.V. Kudriavtsev

64 ISSN 2706-8145, Системи керування та комп'ютери, 2022, № 3

MVC Concept

Model-View-Controller (MVC, “Model-View-

Controller”) is a program data separation scheme

designed to present the user interface and control

logic into three separate components: model, view

and controller — modification each component

can be carried out independently (Fig.1). For these

properties, it was decided to take this template as

the basis for the project [4].

With the development of object-oriented pro-

gramming and the concept of design patterns, a

number of modifications of the MVC concept have

been created, which, when implemented by diffe-

rent authors, may differ from the original. So, for

example, E. Vermi in 2004 described an example of

a generalized MVC. The main purpose of applying

this concept is to separate the logic (model) from

its visualization (view). Due to this division, the

possibility of code reuse increases. This concept is

most useful when the user needs to see the same

data at the same time in different contexts and/or

from different points of view.

The concept of MVC allows you to separate the

model, view and controller into three separate

components.

The model provides data and methods for wor-

king with them: queries to the database, checking

for correctness. The Model is independent of the

View (doesn't know how to render the data) and

the Controller (has no user interaction points), just

providing access to and manipulation of the data.

The model, due to independence from the visual

representation, can have several different represen-

tations for one model. The view is responsible for

getting the required data from the model and sen-

ding it to the user.

The controller provides the “communication”

between the user and the system — controls and di-

rects data from the user to the system. Conversely,

it uses the model and view to implement the re-

quired action.

Since MVC does not have a strict implemen-

tation, it can be implemented in different ways.

There is no generally accepted definition of where

logic should be placed. It can be in both the con-

troller and the model. In the latter case, the model

will contain all objects with all data and functions.

Some frameworks rigidly specify where the logic

should go, others do not have such rules.

It is also not specified where the validation of

data entered by the user should be located. Simple

validations can even occur in a view, but they are

more common in a controller or model.

Procedural Generation in Global
Real-Time Strategy with Elements of
an Economic Simu-lator

On the basis of the MVC concept, the strategy of

the stellar world was implemented with its infra-

Fig. 1. MVC concept

Fig. 2. Algorithm visualization

ISSN 2706-8145, Control systems and computers, 2022, № 3 65

Application of Procedural Generation Algorithms in Real-Time Game Strategy Environment Based on the Mvc Concept

structure, production, and resources. The most

important feature of this project is its modularity,

the user should be able to change parts of the pro-

ject at will with the same ease as the developer. All

game level objects are independent of each other —

adding new ones or removing existing ones should

not harm the entire project as a whole. This point is

the most important in the project – its implemen-

tation is primary.

The second feature of the project is the in-depth

economic part of the game, the player needs to

set quite difficult, but solvable tasks, this point is

achieved by the depth of processing the severity of

the industrial chains of the game world.

The main elements of the economic process of

the game are the extraction of resources, the pro-

cessing of resources, technological research, the

development of infrastructure on the planets.

Galaxy Procedural Generation Algorithm

Structure generation algorithm includes 4 steps,

Fig.2:

S t e p 1. Offset from the origin by a radius dis-

tance.

S t e p 2. Rotate by an angle, depending on the

value of the radius and the calculation of the point.

S t e p 3. Sequential calculation of point coor-

dinates, conversion to Cartesian coordinate system

and saving to the queue.

S t e p 4. Full rotation and offset by a radius.

The developed method for generating the ga-

lactic structure works on the basis of the polar

coordinate system; it takes the number of stars as

an argument and returns an array of coordinates in

the form: vector4{float x; float y; float z; float w;},

which are then used to build stars by coordinates.

The algorithm for generating the galactic struc-

ture starts from the beginning of the coordinate

grid, successively increasing the radius until it

reaches the end of iterations, the step of increasing

the radius is calculated depending on the number

of stars — _iteration Size = 1/(_size/4,5f); where

_iteration Size is the step, _size is the number of

stars (function argument). At each iteration, a

sequential rotation is performed by some angle,

which can take a value from zero to the function

boundary, which depends on the current radius.

After the rotation, a random value is added to

the radius and a transformation into a Cartesian

coordinate system is performed, during which the

height of the coordinate is calculated.

Fig. 3. The result of the algorithm

O.S. Bulgakova, V.V. Zosimov, A.V. Kudriavtsev

66 ISSN 2706-8145, Системи керування та комп'ютери, 2022, № 3

Subsequently, the coordinate is added to the

queue and the next rotation is performed until a full

rotation is completed.

The algorithm presented in this paper has the

following disadvantages:

 the speed of work is almost impossible to cal-

culate, because it depends on a random variable;

 It is impossible to control the operation of the

algorithm without direct intervention and modifi-

cation of the program code.

Algorithm advantages:

 despite the fact that the speed of the algorithm

cannot be calculated, experiments show that the

algorithm works quite fast even on weak systems;

 the algorithm practically does not use RAM to

process values only for storage;

 the result of the work can be applied without

current processing by other algorithms.

The result of the algorithm is shown in Fig. 3.

Ancillary Generation Algorithms

After the operation of the map generator, static

algorithms of ancillary generation are used to fur-

ther calculate the map. To separate the generation

sectors of a galaxy, we use such a concept as an

array-distribution.

Array-distribution — describes the frequency of

meeting an object in certain areas of the game map.

The distribution array is a part of separate objects —

generation participants. In work, stars and constel-

lations have such vulnerability. The view of the dis-

tribution arrays of objects a-d is shown in Fig. 4

Using the construction function, based on the

distribution arrays of all objects, a two-dimensional

array of frequencies is built, which in turn is the

main tool for pseudo-random selection of an ob-

ject from the list.

The random selection function works on a sepa-

rate part of the frequency array, recalculating the

weight coefficient for each object, Fig.5.

In the case of stars, using this method, you can

specify in which part of the galaxy which star should

have generation priority by setting a certain grada-

tion of the distribution of objects. For example, in

the work, white and blue stars are generated mainly

in the center of the galaxy, while red and brown

ones are closer to the edge of the galaxy. However, it

is these algorithms that need a new generation sys-

tem, which, in addition to the usual coordinates,

indicates the dis-tance from the center of the ga-

laxy, Fig.6.

The division of the game map levels and its effect

on the generation

The method of dividing the map into two parts

was used in the work: global and local. The global

map includes the galaxy and builtin user interface

tools. The local map includes the planetary system,

which is described on the global map. During the

game, the user can only open one of these cards,

the other is automatically disabled.

The construction of both maps at once makes

it necessary to generate the positions of objects

placed on both maps. For example, a function for

generating the positions of stars in a constellation

must simultaneously calculate global coordinates,

local coordinates, and orbital centers.

On the other hand, such a division of the game

level reduces the simultaneous display of a large

number of objects, and this is one of the types of

CPU time optimization.

Fig. 4. View of arrays of distribution of objects a-d

Fig. 5. Type of array of frequencies of objects a-d and the

principle of its construction

ISSN 2706-8145, Control systems and computers, 2022, № 3 67

Application of Procedural Generation Algorithms in Real-Time Game Strategy Environment Based on the Mvc Concept

To simplify the interaction of such objects dur-

ing generation, they are mostly generated separate-

ly, and some of them are generated at the request of

the user. For example: a graphical user interface is

assigned to a separate planet, it is generated imme-

diately when the user needs to view the resources

of the planet.

Problems and Solutions

Optimization of the number of frames/second while

viewing a global map

In computer games, frame rate refers to the rate

at which the game process updates the image in

the frame buffer. Typically, the frame rate of the

gameplay is not a multiple of the frame rate of the

monitor, resulting in a ragged image. This is due to

the order in which the object is drawn by the video

card, namely the number of draw calls sent — draw

call [5].

To reproduce an object on the screen, the engine

sends a command (draw call) to a graphics API

(for example, OpenGL or Direct3D). The graphics

API does a lot of work for each instruction, which

greatly affects the performance of the CPU. In the

process of rendering any object on the screen, the

CPU must find out which light sources affect the

object, adjust the shader and its parameters, send

playback commands to the graphics driver, which

will prepare commands for sending to the video

card. All these processes load the CPU.

There are two approaches to solving this problem:

1. Geometry Instancing.

Geometry Instancing is a software technique in

mostly real-time 3D computer graphics. The es-

sence of Geometry Instancing is to render multiple

copies of the same polygonal mesh in a 3D scene in

one go. This technique is used, as a rule, for many

objects of the same type on the stage, which are far

enough from the virtual camera [6].

Geometry Instancing is primarily an optimiza-

tion technique designed primarily to increase ren-

dering speed without compromising quality.

When using the standard approach to rendering

a scene and all its objects, only one object is formed

per Direct3D call (by vertices, lighting, etc.). Be-

fore Geometry Instancing, distant identical ob-

jects could be rendered as sprites, that is, two-di-

mensional textures. However, when approaching

such two-dimensional objects and changing the

observer's point of view, their two-dimensional na-

ture becomes visible. Geometry Instancing solves

this problem. When using it, you can immediately

render the geometry of all similar identical objects

in one call to Direct3D. This will save system re-

sources and increase the realism of the scene as a

whole compared to sprites. Despite the fact that

the geometry data is the same when duplicating,

however, each copy can have different parameters.

This reduces the visibility of repeating objects in

the scene.

2. Mesh Combine

Mesh Combine is a way to create a combined object

from multiple objects. So instead of having mul-

Fig. 6. Description of coordinate type “Vector4”

O.S. Bulgakova, V.V. Zosimov, A.V. Kudriavtsev

68 ISSN 2706-8145, Системи керування та комп'ютери, 2022, № 3

tiple objects and therefore multiple play calls, you

end up with one big game object containing several

smaller ones connected together. This allows you to

increase the performance of the game [7].

In this project, we had to use a combined ap-

proach to optimize the geometry: the part of the

geometry that supports duplication is duplicated,

and the part of the geometry that does not support

is merged, which allowed us to significantly in-

crease the frame rate.

The problem of streaming loading resources into

the project

Compilation in the Unity engine works in such

a way that all used materials, models, images, are

packed into the internal format of the game, with-

out the possibility of further changes. To be able to

change files at the request of the user, it was neces-

sary to implement streaming downloads.

There are two solutions to this problem: stream-

ing normal files and converting them to formats

that the game engine can handle, or packaging al-

ready converted files into assets and loading them

at run time. In the work on the project, from the

point of view of implementation, the second op-

tion was chosen.

AssetBundles are files that can be exported from

Unity to package resources (assets) into a single file

of your choice. These files use their own compres-

sion format and can be downloaded by the user's

application as needed. This allows you to load dif-

ferent content, such as models, textures, audio

clips, or even entire scenes, separate from those in

which they will be used.

Here is a typical workflow using a server archi-

tecture as an example: during the development

process, the developer prepares AssetBundles and

sends them to the server. Collection of AssetBun-

dles. Asset bundles are created in the scene re-

source editor, Fig.7.

While running on the user's computer, the app-

lication will load AssetBundles on demand and al-

low individual Assets within each AssetBundle to

be managed as needed, Fig.8.

Content extension problems and the possibility of

adding it to the compiled project

The problem of expanding content with custom

modifications is partially solved by using a system

for loading add-ons and custom modifications

from a special folder in the project's file system.

With the help of stream loading, all necessary

components can be added to the project, which

have been previously packaged in asset format and

moved to the appropriate folder in the uncompiled

or compiled project.

Fig. 7. Loading resources on the server

Fig. 8. Loading resources from the server

ISSN 2706-8145, Control systems and computers, 2022, № 3 69

Application of Procedural Generation Algorithms in Real-Time Game Strategy Environment Based on the Mvc Concept

Conclusion

The paper proposed the main tools that are cur-

rently used to create procedurally generated game

content, and identifies the capabilities and advan-

tages of game engines. Based on procedural gen-

eration algorithms, a real-time economic strategy

was developed using the Unity environment. The

most important feature of the presented project is

its modularity.

All game level objects are independent of each

other. An algorithm for visualizing objects based on

procedural generation is described. The problems

and their solutions that arose during the creation of

the game are considered.

REFERENCES

1. Bulgakova, O.S., Kudriavtsev, A.V., Zosimov, V.V., Pozdeev V.O. (2019). “Algorithmic modifications in procedural ge-

neration systems”. Control Systems and Computers. Vol. 3, pp. 52-59.

2. Pereira, L., Viana, B., Toledo, C. (2021). “Procedural Enemy Generation through Parallel Evolutionary Algorithm”.

Proceeding of SBGames 2021.

3. Yannakakis, G., Togelius, J. (2018). “Artificial Intelligance and Games”. Springer, 2018.

4. Unity With MVC: How to Level Up Your Game Development. [online]. Available at: <https://www.toptal.com/unity-

unity3d/unity-with-mvc-how-to-level-up-your-game-development> [Accessed 06 Sept. 2022].

5. Unity Scripting Reference. [online]. Available at: <https://docs.unity3d.com/ScriptReference/> [Accessed

10 Aug. 2022].

6. GPU instancing on Geometry Shader. [online]. Available at: <https://forum.unity.com/threads/gpu-instancing-on-

geometry-shader.1106152/> [Accessed 22 Aug. 2022].

7. Simple Mesh Combine. [online]. Available at: <https://unityassets4free.com/simple-mesh-combine/> [Accessed

02 Aug. 2022].

Received 30.10.2022

ЛІТЕРАТУРА

1. Bulgakova O.S., Kudriavtsev A.V., Zosimov V.V., Pozdeev V.O. Algorithmic modif-?cations in procedural generation

systems. Control Systems and Computers. 2019. Vol. 3, pp. 52-59.

2. Pereira L., Viana B., Toledo C. Procedural Enemy Generation through Parallel Evolutionary Algorithm. Proceeding of

SBGames 2021.

3. Yannakakis G., Togelius J. Artificial Intelligance and Games. Springer, 2018.

4. Unity With MVC: How to Level Up Your Game Development. URL: https://www.toptal.com/unity-unity3d/unity-with-

mvc-how-to-level-up-your-game-development (дата звернення: 6 вересня 2022).

5. Unity Scripting Reference. URL: <https://docs.unity3d.com/ScriptReference/> (дата звернення: 10 серпня 2022).

6. GPU instancing on Geometry Shader. URL: <https://forum.unity.com/threads/gpu-instancing-on-geometry-sha-

der.1106152/> (дата звернення: 22 серпня).

7. Simple Mesh Combine. URL: <https://unityassets4free.com/simple-mesh-combine/> (дата звернення: 02 сер-

пня 2022).

Надійшла 30.10.2022

О.С. Булгакова, кандидат техн. наук, доцент, Київський національний університет

України імені Тараса Шевченка, 04116, м. Київ, вул. Богдана Гаврилишина, 24, Україна,

ORCID: https://orcid .org/0000-0002-6587-8573, Scopus Author ID 57188687900,

sashabulgakova2@gmail.com

В.В.Зосімов, доктор техн. наук, професор, Київський національний університет

України імені Тараса Шевченка, 04116, м. Київ, вул. Богдана Гаврилишина, 24, Україна,

ORCID: https://orcid .org/ 0000-0003-0824-4168, Scopus Author ID 57188682230,

zosimovvv@gmail.com

А.В. Кудрявцев, магістр, GlobalLogic, Протасов Бізнес-Парк,

03038, м. Київ, вул. М. Грінченка, 2/1, Україна,

extosis.vt@gmail.com

O.S. Bulgakova, V.V. Zosimov, A.V. Kudriavtsev

70 ISSN 2706-8145, Системи керування та комп'ютери, 2022, № 3

ЗАСТОСУВАННЯ АЛГОРИТМІВ ПРОЦЕДУРНОЇ ГЕНЕРАЦІЇ В СЕРЕДОВИЩІ ІГРОВОЇ СТРАТЕГІЇ

РЕАЛЬНОГО ЧАСУ НА ОСНОВІ КОНЦЕПЦІЇ MVC

Вступ. Алгоритми процедурної генерації є незамінними для створення штучних хмар, гір, морської поверхні.

Саме тому при розробці сучасних ігор використовуються алгоритми генерації тривимірних структур. Однак легко

помилитися в розумінні та застосуванні процедурної генерації: дуже важливо розуміти, що це не інструмент для

подолання всіх проблем. Його можна використовувати для отримання великої кількості цифрового контенту або

для додавання елемента випадковості до об’єктів, які довго й важко виготовляти вручну. Програмісту потрібен

час, щоб написати та перевірити алгоритми, особливо коли вони взаємодіють з іншими системами. Тому в цій

статті розглядається приклад використання методів процедурної генерації в ігровому середовищі, створеному на

основі концепції MVC з Unity.

Мета статті: розглянути основні інструменти, які використовуються для створення процедурно згенерованого

ігрового контенту, а також визначити можливості та переваги ігрових рушіїв; на основі процедурних алгоритмів

генерації розробити економічну стратегію реального часу з використанням середовища Unity.

Методи. Системний підхід, аналіз.

Результати. Представлено приклад використання процедурних методів генерації в середовищі стратегії

реального часу, створеного на основі MVC концепції. Найважливішою особливістю представленого проєкту є

його модульність. Усі об’єкти рівня гри є незалежними один від одного. Описано алгоритм візуалізації об'єктів на

основі процедурної генерації. Розглянуто проблеми та способи їх розв’язання, що виникли під час створення гри.

Висновки. Результати цього дослідження показують, що використання методів процедурної генерації в ігрово-

му середовищі є достатньо ефективним. Найважливішою особливістю представленого проєкту є його модуль-

ність, користувач має можливість змінювати частини проєкту за бажанням з такою ж легкістю, як і розробник. Усі

об'єкти рівня гри є незалежними один від одного — додавання нових або видалення наявних не шкодить усьому

проєкту як цілому.

Ключові слова: процедурна генерація, концепція MVC, гра, 3D моделювання, стратегія реального часу, ігрові системи.

