DOI https://doi.org/10.15407/csc.2022.03.063
UDC 004.94

0.S. BULGAKOVA, PhD (Eng.) Sciences, Associate Professor, Department of Applied
Information Systems, Taras Shevchenko National University of Ukraine,

Bohdan Hawrylyshyn str. 24, Kyiv, 04116, Ukraine,

ORCID: https://orcid .org/0000-0002-6587-8573, Scopus Author ID 57188687900,

sashabulgakova2@gmail.com

V.V. ZOSIMOV,D. (Eng.) Sciences , Professor, Department of Applied Information
Systems, Taras Shevchenko National University of Ukraine,

Bohdan Hawrylyshyn str. 24, Kyiv, 04116, Ukraine,

ORCID: https://orcid .org/ 0000-0003-0824-4168, Scopus Author ID 57188682230,

zosimovvv@gmail.com

A.V. KUDRIAVTSEYV, Master degree of Computer Science, GlobalLogic, Protasov Business Park,

str. M. Grinchenko, 2/1, Kiev, 03038, Ukraine,
extosis.vt@gmail.com

APPLICATION OF PROCEDURAL GENERATION ALGORITHMS IN
REAL-TIME GAME STRATEGY ENVIRONMENT BASED ON THE

MVYC CONCEPT

This paper presents an example of using procedural generation methods in a real-time strategy environment created on the basis
of the MCC concept. The most important feature of the presented project is its modularity. All game level objects are independent
of each other. An algorithm for visualizing objects based on procedural generation is described. The problems and their solutions

that arose during the creation of the game are considered.

Keywords: procedural generation, MVC concept, game, 3D modeling, real-time strategy, unity.

Introduction

Procedural generation algorithms are indispen-
sable for creating artificial clouds, mountains, sea
surface [1—3]. That is why in the development of
modern games algorithms for generating three-
dimensional structures are used.

However, it is easy to make mistakes in under-
standing and applying procedural generation: it is
very important to understand that it is not a tool
to solve all problems. It can be used to get a lot of
digital content, or to add an element of random-
ness to objects that are long and difficult to make
by hand. It takes a programmer time to write and

test algorithms, especially when they interact with
other systems. Therefore, this paper considers an
example of using procedural generation methods
in a game environment created on the basis of the
MVC concept with Unity.

The most important feature of the presented
project is its modularity, the user should be able
to change parts of the project at will with the same
ease as the developer. All game level objects are
independent of each other — adding new ones or
removing existing ones should not harm the entire
project as a whole.

ISSN 2706-8145, Control systems and computers, 2022, N2 3 63

0.S. Bulgakova, V.V. Zosimov, A.V. Kudriavtsev

[Con troller
Update / \ User Action
Notify Update
[Model l View]
Fig. 1. MVC concept
1 2
ANGLE(RADIUS)
_RADIUS
3 4
DISTANCE = RADIUS + RANDOM /

Fig. 2. Algorithm visualization

MVC Concept

Model-View-Controller (MVC, “Model-View-
Controller”) is a program data separation scheme
designed to present the user interface and control
logic into three separate components: model, view
and controller — modification each component
can be carried out independently (Fig.1). For these
properties, it was decided to take this template as
the basis for the project [4].

With the development of object-oriented pro-
gramming and the concept of design patterns, a
number of modifications of the MVC concept have
been created, which, when implemented by diffe-

rent authors, may differ from the original. So, for
example, E. Vermi in 2004 described an example of
a generalized MVC. The main purpose of applying
this concept is to separate the logic (model) from
its visualization (view). Due to this division, the
possibility of code reuse increases. This concept is
most useful when the user needs to see the same
data at the same time in different contexts and/or
from different points of view.

The concept of MVC allows you to separate the
model, view and controller into three separate
components.

The model provides data and methods for wor-
king with them: queries to the database, checking
for correctness. The Model is independent of the
View (doesn't know how to render the data) and
the Controller (has no user interaction points), just
providing access to and manipulation of the data.

The model, due to independence from the visual
representation, can have several different represen-
tations for one model. The view is responsible for
getting the required data from the model and sen-
ding it to the user.

The controller provides the “communication”
between the user and the system — controls and di-
rects data from the user to the system. Conversely,
it uses the model and view to implement the re-
quired action.

Since MVC does not have a strict implemen-
tation, it can be implemented in different ways.
There is no generally accepted definition of where
logic should be placed. It can be in both the con-
troller and the model. In the latter case, the model
will contain all objects with all data and functions.
Some frameworks rigidly specify where the logic
should go, others do not have such rules.

It is also not specified where the validation of
data entered by the user should be located. Simple
validations can even occur in a view, but they are
more common in a controller or model.

Procedural Generation in Global
Real-Time Strategy with Elements of
an Economic Simu-lator

On the basis of the MVC concept, the strategy of
the stellar world was implemented with its infra-

64 ISSN 2706-8145, CHCcTeMH KepyBaHHA Ta KOMM'toTepH, 2022, N° 3

Application of Procedural Generation Algorithms in Real-Time Game Strategy Environment Based on the Mvc Concept

Fig. 3. The result of the algorithm

structure, production, and resources. The most
important feature of this project is its modularity,
the user should be able to change parts of the pro-
ject at will with the same ease as the developer. All
game level objects are independent of each other —
adding new ones or removing existing ones should
not harm the entire project as a whole. This point is
the most important in the project — its implemen-
tation is primary.

The second feature of the project is the in-depth
economic part of the game, the player needs to
set quite difficult, but solvable tasks, this point is
achieved by the depth of processing the severity of
the industrial chains of the game world.

The main elements of the economic process of
the game are the extraction of resources, the pro-
cessing of resources, technological research, the
development of infrastructure on the planets.

Galaxy Procedural Generation Algorithm

Structure generation algorithm includes 4 steps,
Fig.2:

Step 1. Offset from the origin by a radius dis-
tance.

Step 2. Rotate by an angle, depending on the
value of the radius and the calculation of the point.

Step 3. Sequential calculation of point coor-
dinates, conversion to Cartesian coordinate system
and saving to the queue.

Step 4. Full rotation and offset by a radius.

The developed method for generating the ga-
lactic structure works on the basis of the polar
coordinate system; it takes the number of stars as
an argument and returns an array of coordinates in
the form: vector4{float x; float y; float z; float w;},
which are then used to build stars by coordinates.

The algorithm for generating the galactic struc-
ture starts from the beginning of the coordinate
grid, successively increasing the radius until it
reaches the end of iterations, the step of increasing
the radius is calculated depending on the number
of stars — _iteration Size = 1/(_size/4,5f); where
_iteration Size is the step, _size is the number of
stars (function argument). At each iteration, a
sequential rotation is performed by some angle,
which can take a value from zero to the function
boundary, which depends on the current radius.

After the rotation, a random value is added to
the radius and a transformation into a Cartesian
coordinate system is performed, during which the
height of the coordinate is calculated.

ISSN 2706-8145, Control systems and computers, 2022, N2 3 65

0.S. Bulgakova, V.V. Zosimov, A.V. Kudriavtsev

a 10 | 20 | 50 | 40 | 35 | 15
b 15 [20 | 25 | 16 | s 0
C 0 0 5 | 10 | 15 | 10
d 0 0 0 0 5 | 15

Fig. 4. View of arrays of distribution of objects a-d

35 40 55 60

15 15 5 40

Fig. 5. Type of array of frequencies of objects a-d and the
principle of its construction

Subsequently, the coordinate is added to the
queue and the next rotation is performed until a full
rotation is completed.

The algorithm presented in this paper has the
following disadvantages:

= the speed of work is almost impossible to cal-
culate, because it depends on a random variable;

= [t is impossible to control the operation of the
algorithm without direct intervention and modifi-
cation of the program code.

Algorithm advantages:

= despite the fact that the speed of the algorithm
cannot be calculated, experiments show that the
algorithm works quite fast even on weak systems;

= the algorithm practically does not use RAM to
process values only for storage;

= the result of the work can be applied without
current processing by other algorithms.

The result of the algorithm is shown in Fig. 3.

Ancillary Generation Algorithms
After the operation of the map generator, static
algorithms of ancillary generation are used to fur-

ther calculate the map. To separate the generation
sectors of a galaxy, we use such a concept as an
array-distribution.

Array-distribution — describes the frequency of
meeting an object in certain areas of the game map.
The distribution array is a part of separate objects —
generation participants. In work, stars and constel-
lations have such vulnerability. The view of the dis-
tribution arrays of objects a-d is shown in Fig. 4

Using the construction function, based on the
distribution arrays of all objects, a two-dimensional
array of frequencies is built, which in turn is the
main tool for pseudo-random selection of an ob-
ject from the list.

The random selection function works on a sepa-
rate part of the frequency array, recalculating the
weight coefficient for each object, Fig.5.

In the case of stars, using this method, you can
specify in which part of the galaxy which star should
have generation priority by setting a certain grada-
tion of the distribution of objects. For example, in
the work, white and blue stars are generated mainly
in the center of the galaxy, while red and brown
ones are closer to the edge of the galaxy. However, it
is these algorithms that need a new generation sys-
tem, which, in addition to the usual coordinates,
indicates the dis-tance from the center of the ga-
laxy, Fig.6.

The division of the game map levels and its effect
on the generation

The method of dividing the map into two parts
was used in the work: global and local. The global
map includes the galaxy and builtin user interface
tools. The local map includes the planetary system,
which is described on the global map. During the
game, the user can only open one of these cards,
the other is automatically disabled.

The construction of both maps at once makes
it necessary to generate the positions of objects
placed on both maps. For example, a function for
generating the positions of stars in a constellation
must simultaneously calculate global coordinates,
local coordinates, and orbital centers.

On the other hand, such a division of the game
level reduces the simultaneous display of a large
number of objects, and this is one of the types of
CPU time optimization.

66 ISSN 2706-8145, CuCcTeMH KepyBaHHA Ta KOMIT'IOTepH, 2022, N° 3

Application of Procedural Generation Algorithms in Real-Time Game Strategy Environment Based on the Mvc Concept

To simplify the interaction of such objects dur-
ing generation, they are mostly generated separate-
ly, and some of them are generated at the request of
the user. For example: a graphical user interface is
assigned to a separate planet, it is generated imme-
diately when the user needs to view the resources
of the planet.

Problems and Solutions

Optimization of the number of frames/second while
viewing a global map

In computer games, frame rate refers to the rate
at which the game process updates the image in
the frame buffer. Typically, the frame rate of the
gameplay is not a multiple of the frame rate of the
monitor, resulting in a ragged image. This is due to
the order in which the object is drawn by the video
card, namely the number of draw calls sent — draw
call [5].

To reproduce an object on the screen, the engine
sends a command (draw call) to a graphics API
(for example, OpenGL or Direct3D). The graphics
API does a lot of work for each instruction, which
greatly affects the performance of the CPU. In the
process of rendering any object on the screen, the
CPU must find out which light sources affect the
object, adjust the shader and its parameters, send
playback commands to the graphics driver, which
will prepare commands for sending to the video
card. All these processes load the CPU.

There are two approaches to solving this problem:

1. Geometry Instancing.

Geometry Instancing is a software technique in
mostly real-time 3D computer graphics. The es-
sence of Geometry Instancing is to render multiple
copies of the same polygonal mesh in a 3D scene in
one go. This technique is used, as a rule, for many
objects of the same type on the stage, which are far
enough from the virtual camera [6].

Geometry Instancing is primarily an optimiza-
tion technique designed primarily to increase ren-
dering speed without compromising quality.

When using the standard approach to rendering
ascene and all its objects, only one object is formed
per Direct3D call (by vertices, lighting, etc.). Be-
fore Geometry Instancing, distant identical ob-

Vector 4 Vector 3
float x; ——float x;
float y:—float y:
float zz—float z

Pt it 3

float w;

e i,

Fig. 6. Description of coordinate type “Vector4”

jects could be rendered as sprites, that is, two-di-
mensional textures. However, when approaching
such two-dimensional objects and changing the
observer's point of view, their two-dimensional na-
ture becomes visible. Geometry Instancing solves
this problem. When using it, you can immediately
render the geometry of all similar identical objects
in one call to Direct3D. This will save system re-
sources and increase the realism of the scene as a
whole compared to sprites. Despite the fact that
the geometry data is the same when duplicating,
however, each copy can have different parameters.
This reduces the visibility of repeating objects in
the scene.
2. Mesh Combine

Mesh Combine is a way to create a combined object
from multiple objects. So instead of having mul-

ISSN 2706-8145, Control systems and computers, 2022, N2 3 67

0.S. Bulgakova, V.V. Zosimov, A.V. Kudriavtsev

Asset Bundle

Asset

Asset Bundle

Asset
Asset

Fig. 8. Loading resources from the server

tiple objects and therefore multiple play calls, you
end up with one big game object containing several
smaller ones connected together. This allows you to
increase the performance of the game [7].

In this project, we had to use a combined ap-
proach to optimize the geometry: the part of the
geometry that supports duplication is duplicated,
and the part of the geometry that does not support
is merged, which allowed us to significantly in-
crease the frame rate.

The problem of streaming loading resources into
the project

Compilation in the Unity engine works in such
a way that all used materials, models, images, are
packed into the internal format of the game, with-
out the possibility of further changes. To be able to
change files at the request of the user, it was neces-
sary to implement streaming downloads.

There are two solutions to this problem: stream-
ing normal files and converting them to formats
that the game engine can handle, or packaging al-
ready converted files into assets and loading them
at run time. In the work on the project, from the
point of view of implementation, the second op-
tion was chosen.

AssetBundles are files that can be exported from
Unity to package resources (assets) into a single file

Asset

of your choice. These files use their own compres-
sion format and can be downloaded by the user's
application as needed. This allows you to load dif-
ferent content, such as models, textures, audio
clips, or even entire scenes, separate from those in
which they will be used.

Here is a typical workflow using a server archi-
tecture as an example: during the development
process, the developer prepares AssetBundles and
sends them to the server. Collection of AssetBun-
dles. Asset bundles are created in the scene re-
source editor, Fig.7.

While running on the user's computer, the app-
lication will load AssetBundles on demand and al-
low individual Assets within each AssetBundle to
be managed as needed, Fig.8.

Content extension problems and the possibility of
adding it to the compiled project

The problem of expanding content with custom
modifications is partially solved by using a system
for loading add-ons and custom modifications
from a special folder in the project's file system.

With the help of stream loading, all necessary
components can be added to the project, which
have been previously packaged in asset format and
moved to the appropriate folder in the uncompiled
or compiled project.

638 ISSN 2706-8145, CuCcTeMH KepyBaHHA Ta KOMIT'IOTepH, 2022, N° 3

Application of Procedural Generation Algorithms in Real-Time Game Strategy Environment Based on the Mvc Concept

Conclusion

The paper proposed the main tools that are cur-

most important feature of the presented project is
its modularity.

All game level objects are independent of each
other. An algorithm for visualizing objects based on
procedural generation is described. The problems
and their solutions that arose during the creation of
the game are considered.

rently used to create procedurally generated game
content, and identifies the capabilities and advan-
tages of game engines. Based on procedural gen-
eration algorithms, a real-time economic strategy
was developed using the Unity environment. The

REFERENCES

1. Bulgakova, O.S., Kudriavtsev, A.V., Zosimov, V.V., Pozdeev V.O. (2019). “Algorithmic modifications in procedural ge-
neration systems”. Control Systems and Computers. Vol. 3, pp. 52-59.

2. Pereira, L., Viana, B., Toledo, C. (2021). “Procedural Enemy Generation through Parallel Evolutionary Algorithm”.
Proceeding of SBGames 2021.

3. Yannakakis, G., Togelius, J. (2018). “Artificial Intelligance and Games”. Springer, 2018.

4. Unity With MVC: How to Level Up Your Game Development. [online]. Available at: <https://www.toptal.com/unity-
unity3d/unity-with-mvc-how-to-level-up-your-game-development> [Accessed 06 Sept. 2022].

5. Unity Scripting Reference. [online]|. Available at: <https://docs.unity3d.com/ScriptReference/>
10 Aug. 2022].

6. GPU instancing on Geometry Shader. [online]. Available at: <https://forum.unity.com/threads/gpu-instancing-on-
geometry-shader.1106152/> [Accessed 22 Aug. 2022].

7. Simple Mesh Combine. [online]. Available at: <https://unityassets4free.com/simple-mesh-combine/>
02 Aug. 2022].

[Accessed

[Accessed

Received 30.10.2022
JIITEPATYPA
1. Bulgakova O.S., Kudriavtsev A.V., Zosimov V.V., Pozdeev V.O. Algorithmic modif-?cations in procedural generation
systems. Control Systems and Computers. 2019. Vol. 3, pp. 52-59.
2. Pereira L., Viana B., Toledo C. Procedural Enemy Generation through Parallel Evolutionary Algorithm. Proceeding of
SBGames 2021.
3. Yannakakis G., Togelius J. Artificial Intelligance and Games. Springer, 2018.
4. Unity With MVC: How to Level Up Your Game Development. URL: https://www.toptal.com/unity-unity3d/unity-with-
mvc-how-to-level-up-your-game-development (1ata 3BepHeHHsT: 6 BepecHst 2022).
5. Unity Scripting Reference. URL: <https://docs.unity3d.com/ScriptReference/> (nara 3sepHenHst: 10 cepriast 2022).
6. GPU instancing on Geometry Shader. URL: <https://forum.unity.com/threads/gpu-instancing-on-geometry-sha-
der.1106152/> (nara 3BepHEHHSL: 22 CEpITHS).
7. Simple Mesh Combine. URL: <https://unityassets4free.com/simple-mesh-combine/> (mata 3BepHeHHs: 02 cep-
mHs 2022).
Hagniiiia 30.10.2022

0.C. byaseakosea, KaHIUIAT TeXH. HayK, MoleHT, KuiBChKuii HalliOHAJIbHUI YHIBEpCUTET
Vkpainn imeni Tapaca IlleBuenka, 04116, m. Kuis, By;i1. bornana Ilaspunininnna, 24, Ykpaina,
ORCID: https://orcid .org/0000-0002-6587-8573, Scopus Author ID 57188687900,
sashabulgakova2@gmail.com

B.B.30cimos, TOKTOp TeXH. HayK, mpodecop, KniBChKMii HalliOHAIBHUI YHIBEPCUTET
Vkpainu imeni Tapaca IlleBuenka, 04116, m. Kuis, By;1. Bormana IaBpunuinnna, 24, Ykpaina,
ORCID: https://orcid .org/ 0000-0003-0824-4168, Scopus Author ID 57188682230,
zosimovvv@gmail.com

A.B. Kyopssuyes, marictp, GlobalLogic, [IpotacoB biznec-Ilapk,

03038, m. KuiB, Bya. M. Ipinuenka, 2/1, YkpaiHa,

extosis.vt@gmail.com

ISSN 2706-8145, Control systems and computers, 2022, N2 3 69

0.S. Bulgakova, V.V. Zosimov, A.V. Kudriavtsev

3ACTOCYBAHHS AJITOPUTMIB MPOLIEAYPHOI TEHEPALLIl B CEPEAOBMUILII ITPOBOI CTPATETIT
PEAJIBHOT'O YACY HA OCHOBI KOHUETLIIT MVC

Beryn. Airoputmu npoueaypHoi reHepallii € He3aMiHHMMM JJIsi CTBOPEHHS IITYYHUX XMap, Tip, MOPCbKOi MOBEPXHi.
Came ToMy NpH po3po0lii CydacHUX irop BUKOPUCTOBYIOThCS aJITOPUTMU TeHepallii TPUBUMipHUX CTPYKTYp. OHAK JIETKO
MOMWIUTKUCS B PO3YMiHHI Ta 3aCTOCYBaHHI MPOLIEAYPHOI TeHepallii: Ay>Ke BaKJIUMBO PO3YMITH, 1110 LI€ HE iIHCTPYMEHT IS
HOIOJIaHHS Beix po6ieM. Moro MoxHa BUKOPUCTOBYBATH ULl OTPUMAHHS BEIMKOI KiTbKOCTI I(POBOro KOHTEHTY 260
IIJIST TOaBaHHSI eJIeMEHTa BUIMAIKOBOCTI 10 00’ €KTIB, AKi JOBro i BaXKO BUTOTOBJISITA Bpy4Hy. [Iporpamicty motpibeH
yac, 100 HarucaTy Ta MEPEBIpUTU aAJITOPUTMHU, OCOOJIMBO KOJIM BOHM B3aEMOMIIOTH 3 IHIIMMU cucTeMaMu. ToMy B Liiit
CTaTTi PO3MISIAAETHCS TIPUKJIIA] BUKOPUCTAHHS METO/IiB MPOLIEAYPHOI reHepallii B irpoOBOMY CepeIOBHIL, CTBOPEHOMY Ha
ocHoBi koHuenuii MVC 3 Unity.

Merta cTarTi: pO3IJISIHYTU OCHOBHI iHCTPYMEHTH, $IKi BUKOPUCTOBYIOTBCS JIJIS1 CTBOPEHHSI MPOLIEAYPHO 3reHEPOBAHOTO
irpoBOro KOHTEHTY, a TAKOX BU3HAUMTU MOXJIMBOCTI Ta MepeBaru irpOBUX pyliliiB; Ha OCHOBI MTPOLIEAYPHUX aJITOPUTMIB
reHepallii po3poOUTH EKOHOMIUHY CTpATeTilo peaJbHOrOo Yacy 3 BAKOPUCTaHHSIM cepenoBuiia Unity.

Metoau. CucteMHMI TiAXia, aHai3.

Pesynbratu. [lpeacraBiieHO TNpuUKIaa BUKOPUCTaHHS MPOLIEAYPHUX METOMIB TeHepallii B CepedoBHILi CTpaTerii
peasibHOro yacy, cTBopeHoro Ha ocHoBi MVC konuenuii. HaliBaX1uBilIow 0COOAMBICTIO MPENCTABIEHOTO MPOEKTY €
10TO MOMYJTBHICTB. YCi 00’€KTH PiBHS TPU € He3aJIeXKHUMU OIMH Bii omHOTO. OTIMcCaHO alTOPUTM Bi3yaizallii 00'eKTiB Ha
OCHOBI TIpOIIeIypHOI reHepallii. Po3risgHyTo mpobaeMu Ta criocoOu iX po3B’si3aHHS, 110 BUHUKIIU TTiJI 9aC CTBOPEHHS TPU.

BucnoBku. Pe3ynbraTi IbOTo JOCTIIKEHHS TTOKA3yI0Th, 1110 BAKOPUMCTAHHS METO/IiB MPOLEAYPHOI reHepallii B irpoBo-
MY CEpelOBHILI € TOCTaTHLO edeKTMBHUM. HaliBaX/IMBillIOI0 OCOOJMBICTIO MPEACTABICHOTO MPOEKTY € MOT0 MOAYJIb-
HIiCTb, KOPUCTYBAy MA€ MOXKJIMBICTh 3MiHIOBATU YaCTUHU MTPOEKTY 3a Oa’KaHHSIM 3 TAKOIO K JIETKICTIO, SIK i pO3pOOHUK. Yci
00'eKTH PiBHS TPU € He3aJIEXKHUMU OJIMH BiJl OMTHOTO — MOJaBaHHs HOBUX a00 BUIAJIEHHs HAasSIBHUX HE IIKOIUTH YChOMY
MPOEKTY SIK LIJIOMY.

Karouogi caosa: npouedypna eenepayis, konyenyis MVC, epa, 3D modearosanns, cmpameeis peanvhoeo 4acy, ieposi cucmemu.

70 ISSN 2706-8145, CuCcTeMH KepyBaHHA Ta KOMIT'IOTepH, 2022, N° 3

