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Elastic strain distributions in SiGe heterostructures with quantum dots have been simulated
with the use of the finite element method. The effect of a non-uniform germanium distribution
in the nanoislands on the spatial dependence and the magnitude of elastic fields was studied. It
is shown that quantum dots with a uniform component content are more strained in comparison
with non-uniform nanoislands.
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1. Introduction

The unique electronic and optical properties of
silicon–germanium heterostructures with self-
organized quantum dots (nanoislands) create a
basis for their practical application as promising
materials to modern nano- and optoelectronics [1].
In particular, a high absorption factor of those
heterostructures in the range of energies lower than
the germanium energy gap width is successfully used
in the manufacture of infra-red radiation detectors of
a new generation [2]. Moreover, silicon–germanium
structures can serve as active elements in solar
batteries [3] and light emitting [4] and spintronic [5]
devices.

The properties of silicon heterostructures Si1−𝑥Ge𝑥
with quantum dots, where 𝑥 is the germanium
content in the compound, obtained following the
Stranski–Krastanov growth mode are closely con-
nected with elastic deformations and accompanying
mechanical stress fields in the structures. It is the
elastic fields arising owing to the mismatch between
the material lattices that play a crucial role in the
growing of a heterostructure, being responsible for
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a spatial ordering of nanoislands and their shape [6].
Moreover, elastic strains substantially affect the band
structure (the confinement-potential for charge carri-
ers) of crystals, the mobility and the effective masses
of electrons and holes in them, and, hence, change
the properties of heterostructures on the whole [7].
Therefore, an important task of the physics and the
technology of nanodimensional semiconducting struc-
tures consists in developing the methods for the deter-
mination of and the control over elastic strain fields,
as well as their manipulation by means of varying the
physical parameters of heterostructures.

Experimental researches of mechanical stresses in
low-dimensional heterostructures are based on the
Raman scattering technique [8, 9]. In particular, this
method enables the peculiarities in a crystal struc-
ture of strained germanium nanoislands in the sili-
con matrix [10] or their morphology [11] to be de-
termined. However, the analysis of Raman spectra
allows only the averaged values of strains to be esti-
mated and provides no information concerning their
distribution in the islands and near to them. Tak-
ing all the above into account, the methods of com-
puter simulation turn out an effective tool to re-
search nanosystems, in particular, silicon–germanium
heterostructures.
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For today, there are plenty of works devoted to the
study of elastic strain fields and their influence on the
properties of Si1−𝑥Ge𝑥 heterostructures with quan-
tum dots [12–14]. There are a number of approaches
to calculate the elastically deformed state of struc-
tures with nanoislands; they use the molecular dy-
namics, Green’s function, or finite element methods
[15–17]. The shortcoming of the former consists in
a considerable computation time even if objects with
small volume are calculated. The Green’s function
method is used mostly if the structures are analyzed
in the approximation of infinite or semiinfinite sub-
strate; however, it cannot be always applied to con-
fined systems. The most widespread is the method
of finite elements, which allows the calculations to
be carried out for objects with complicated geome-
try and does not require considerable computational
resources.

In the majority of the known works, where the
heterostructure properties induced by elastic fields
are studied, the obtained results are analyzed mak-
ing the assumption that the component content in
nanoislands is uniform. However, in the course of
high-temperature epitaxy of germanium onto a silicon
substrate, the components become partially mixed,
so that their contents change over the quantum dot
volume. As was shown in work [18], the redis-
tribution of the silicon and germanium concentra-
tions in nanoislands results in a decrease of the en-
ergy of the system, and this redistribution therefore
turns out to be energetically beneficial. The corre-
sponding distribution of germanium (silicon) is re-
lated to the shape of quantum dots and the con-
tent ratio between Si and Ge in them. Bearing in
mind that the concentration gradient can be rather
substantial, the account of a non-uniformity in the
contents of island components is an important fac-
tor, while studying the properties that are gov-
erned by the electron structure of quantum dots, be-
cause this structure is sensitive to deformations in
heterostructures.

In this work, we used the finite element method
to calculate the strain fields in silicon heterostruc-
tures with germanium quantum dots. The calcula-
tions were carried out in the framework of the elastic
continuum model. A comparative analysis of the re-
sults obtained for nanoislands with uniform and non-
uniform germanium distributions over their volume
was made. We also analyzed the influence of a com-

Fig. 1. Geometrical parameters of the studied SiGe het-
erostructure

ponent content non-uniformity on the band structure
in Si1−𝑥Ge𝑥 quantum dots.

2. Procedure for Calculating Strains
in SiGe Heterostructures

We will consider self-organized germanium quantum
dots on a silicon surface as a regular array of is-
lands with identical dimensions. The typical pe-
riod (the distance between neighbor nanoislands) in
such heterostructures equals a few tens of nanome-
ters. Therefore, while calculating elastic strains in
the silicon substrate–germanium quantum dot sys-
tem, let us confine the consideration to a single model
cell that includes one quantum dot in the form of a
regular square pyramid centered on a substrate with
the transverse dimensions 𝑙𝑥 × 𝑙𝑦 and the thickness
𝑙𝑧 (Fig. 1). Between the Si substrate and the germa-
nium quantum dot, there is a wetting layer of Ge of
the thickness 𝑑. The height and the base side length
of the pyramid equal ℎ and 𝑎, respectively. The ori-
gin of a coordinate system is fixed at the center of the
pyramid base, and the 𝑥, 𝑦, and 𝑧 axes are directed
along the crystallographic directions [100], [010], and
[001], respectively.

The strain fields in heterostructures with quantum
dots will be studied in the elastic continuum approxi-
mation with the use of the standard equations of elas-
ticity theory,

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
= 0, (1)
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𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 [𝜀𝑘𝑙 − 𝜀0𝑘𝑙], (2)

𝜀𝑘𝑙 =
1

2

(︂
𝜕𝑢𝑘

𝜕𝑥𝑙
+

𝜕𝑢𝑙

𝜕𝑥𝑘

)︂
, (3)

where 𝜎𝑖𝑗 , 𝜀𝑘𝑙 and 𝐶𝑖𝑗𝑘𝑙 are the tensors of mechanical
stresses, elastic strains, and elastic moduli, respec-
tively; and 𝑢𝑘 is the elastic displacement vector. The
quantities 𝜀0𝑘𝑙 in Eq. (2) stand for initial strains orig-
inated from a mismatch between the lattice parame-
ters in the substrate and nanoisland materials (misfit
strains),

𝜀0𝑖𝑗 =
𝑎𝑠 − 𝑎𝑖

𝑎𝑠
𝛿𝑖𝑗 , (4)

where 𝑎𝑠 and 𝑎𝑖 are the lattice constants for the sub-
strate and the quantum dot, respectively, and 𝛿𝑖𝑗 is
the Kronecker symbol. Since 𝑎𝑠 = 5.430 Å for sili-
con and 5.646 Å for germanium, the absolute value
of 𝜀0𝑖𝑗 amounts to approximately 4%. In the calcula-
tions, the initial strain was considered to be nonzero
only in the quantum dot. The subsequent structure
relaxation resulted in the appearance of strains in the
whole substrate as well.

Notice that the lattice mismatch is not the unique
source of mechanical stresses. Since the heterostruc-
tures are grown up at epitaxial temperatures, their
subsequent cooling down may invoke stresses stem-
ming from the difference Δ𝛼 between the thermal ex-
pansion coefficients. The corresponding strains 𝜀TE

arisen in the structure can be estimated from the re-
lation

𝜀TE = Δ𝛼Δ𝑇, (5)

where Δ𝑇 is the temperature change. We are inter-
ested in the strains that take place in heterostructures
at room temperature, i.e. Δ𝑇 ≃ 500 ∘C. Then, tak-
ing into account that Δ𝛼 = 3.3 × 10−6 ∘C−1 for the
heteropair Si–Ge, we obtain the value 𝜀TE ≈ 0.2%.
Hence, the value of 𝜀TE is an order of magnitude
less than the strains 𝜀0𝑖𝑗 , and we will consider be-
low only mechanical stress fields related to the lattice
mismatch between the substrate and nanoisland ma-
terials.

Equations (1)–(3) have to be appended by bound-
ary conditions for the unknown components of the
displacement vector. In particular, in view of the pe-
riodic character of heterostructure, the normal com-
ponents of the vector 𝑢𝑘 were fixed at the opposite

edges 𝑥 = ±𝑙𝑥/2 and 𝑦 = ±𝑙𝑦/2 of the model cell,

𝑢𝑥

(︂
𝑥 = ± 𝑙𝑥

2

)︂
= 𝑢𝑦

(︂
𝑦 = ± 𝑙𝑦

2

)︂
= 0. (6)

The thickness of the wetting layer near the quantum
dot, where the strain fields are considered, is much
narrower than the substrate thickness. Therefore, the
following “rigid” boundary conditions are selected at
the lower substrate edge 𝑧 = −𝑙𝑧:

𝑢𝑖 (𝑧 = −𝑙𝑧) = 0, 𝑖 = 𝑥, 𝑦, 𝑧. (7)

In addition, the absence of mechanical stresses is sup-
posed at all external surfaces, including the open sur-
faces of germanium nanoislands and the silicon sub-
strate.

The formulated problem has no analytical solution.
Therefore, in this work, the elastic fields in silicon–
germanium heterostructures are determined within
the finite element method. The calculations were car-
riued out according to a Fortran program written by
the author, in which the procedures of the Intel MKL
mathematical library were used. The model cell con-
taining a quantum dot on a silicon substrate was di-
vided into a mesh of tetrahedral elements, each of
them containing 10 nodes. Within every element, the
unknown components of the elastic displacement vec-
tor were approximated by a linear combination of the
so-called shape functions 𝜉 (𝑥, 𝑦, 𝑧) [16],

𝑢𝑘 (𝑥, 𝑦, 𝑧) =

10∑︁
𝑖=1

𝜈𝑖𝑘𝜉𝑖 (𝑥, 𝑦, 𝑧), (8)

where 𝜈𝑖𝑘 are the unknown coefficients equal to 𝑢𝑘-
values at the mesh nodes. The application of the
Galerkin method [19] allowed the differential equa-
tions (1)–(3) with the corresponding boundary con-
ditions to be transformed into a system of algebraic
equations for the unknown coefficients 𝜈𝑖𝑘,

[𝐾] [𝜈] = [𝑓 ], (9)

where the components of the matrices [𝐾] and [𝑓 ] are
determined by the relations

𝐾 =

∫︁
𝑉 𝑒

𝐵𝑇𝐶𝐵𝑑𝑉 , (10)

𝑓 =

∫︁
𝑉 𝑒

𝐵𝑇𝐶𝜀0𝑑𝑉 . (11)
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Integration in expressions (10) and (11) is carried out
over the element volume 𝑉𝑒, the upper index 𝑇 means
the transposition operation, and 𝐵𝑇 stands for the
operator of the following form:

𝐵𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕𝜉

𝜕𝑥
0 0 0

𝜕𝜉

𝜕𝑧

𝜕𝜉

𝜕𝑦

0
𝜕𝜉

𝜕𝑦
0

𝜕𝜉

𝜕𝑧
0

𝜕𝜉

𝜕𝑥

0 0
𝜕𝜉

𝜕𝑧

𝜕𝜉

𝜕𝑦

𝜕𝜉

𝜕𝑥
0

⎤⎥⎥⎥⎥⎥⎥⎦. (12)

The coefficients 𝜈𝑖𝑘 obtained from the solution of
Eqs. (9) were used to calculate the components of
the elastic displacement vector 𝑢𝑘. Then, with the
use of relation (3), the strain tensor components were
calculated.

3. Results and Their Discussion

Elastic strains in heterostructures were calculated for
the following parameters of nanoislands: the base side
length 𝑎 = 30 nm, height ℎ = 4.5 nm, and wetting
layer thickness 𝑑 = 0.5 nm. The dimensions of the
model cell were chosen to equal the average distance
between quantum dots in real structures, i.e. 𝑙𝑥 =
= 𝑙𝑦 = 60 nm. To exclude the influence of the lower
substrate face, the dimension 𝑙𝑧 was selected to be 10
times larger than the nanoisland height, 𝑙𝑧 = 10ℎ =
= 45 nm.

In the calculations connected with the non-uniform
content of germanium in quantum dots, the distri-
bution of the Ge concentration, whose profile is de-
picted in Fig. 2, was used. The exhibited depen-
dence is similar to that obtained earlier in work [18]
for pyramidal nanoislands. The maximum germa-
nium content, 𝑥 ≈ 1, was observed near the island
vertices, and its minimum, 𝑥 ≈ 0.3, in vicinities of
the vertices near the base. The value of germanium
content averaged over the whole quantum dot vol-
ume was about 0.7. Therefore, the data obtained for
Si1−𝑥Ge𝑥 heterostructures with non-uniform nanois-
lands were compared with the results of calcula-
tions for islands with a uniform component content,
Si0.3Ge0.7. The values of components of the tensor
of elastic moduli for pure silicon, 𝐶𝑖𝑗(Si), and germa-
nium, 𝐶𝑖𝑗(Ge), were taken from work [20]. For the
compound Si1−𝑥Ge𝑥, the following linear approxima-
tion was used:

𝐶𝑖𝑗(Si1−𝑥Ge𝑥) = [𝐶𝑖𝑗(Ge)− 𝐶𝑖𝑗(Si)]𝑥+𝐶𝑖𝑗(Si). (13)

Fig. 2. Non-uniform distribution of the germanium content 𝑥

in a pyramidal quantum dot Si1−𝑥Ge𝑥 used for the calculations
of elastic fields

Fig. 3. Spatial distribution of the strain tensor component
𝜀𝑥𝑥 in the 𝑥𝑧-plane for a heterostructure with non-uniform
Si1−𝑥Ge𝑥 nanoislands

In Fig. 3, the calculated distribution of the 𝜀𝑥𝑥
component of the strain tensor in the heterostructure
with a non-uniform nanoisland content is depicted.
The 𝜀𝑥𝑥 magnitude substantially varies in the quan-
tum dot and near its base, so that high strain gra-
dients arise in those heterostructure regions. One
can see that the stretching strains prevail in the sili-
con substrate along the Si–Si1−𝑥Ge𝑥 heterojunction,
with the maximum value 𝜀𝑥𝑥 = 0.6% attaining near
the island base. At the same time, the 𝜀𝑥𝑥 component
changes the sign in the quantum dot, and this section
of the heterostructure undergoes compressive strains
along the heterojunction with a maximum value of
2.5% near the base angles. The magnitude of com-
pressive strains gradually decreases from the pyramid
base to its vertex. The component 𝜀𝑦𝑦 of the strain
tensor has a similar dependence, and its distribution
is not shown.

In the elastic deformation interval, the ratio be-
tween the longitudinal and transverse elongations is
constant (the Poisson effect). Therefore, the strain
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Fig. 4. The same as in Fig. 3, but for the strain tensor com-
ponent 𝜀𝑧𝑧

Fig. 5. Distributions of the strain tensor component 𝜀𝑥𝑥 along
the axis 𝑂𝑧 in heterostructures with uniform (1 ) and non-
uniform (2 ) nanoislands

Fig. 6. The same as in Fig. 5, but for the strain tensor com-
ponent 𝜀𝑧𝑧

component 𝜀𝑧𝑧 has the opposite sign (Fig. 4): the
substrate near the heterojunction undergoes compres-
sive strains in the heterostructure growth direction,
whereas nanoislands undergo the action of stretching
strains. Moreover, the 𝜀𝑧𝑧 component changes its sign
in the substrate depth. At a distance of the order
of the island height, the stretching strains have the
maximum value, 𝜀𝑧𝑧 ≈ 0.17%; then, they gradually
decrease toward the substrate depth.

Qualitatively, the distributions of 𝜀𝑥𝑥 (𝜀𝑦𝑦) and 𝜀𝑧𝑧
in heterostructures with islands characterized by a
uniforn component content have the same features as
in the case considered above. To elucidate the quan-
titative effect of non-uniformity in the distribution of
elastic stress fields over heterostructures, let us con-
sider the profiles of the tensor components 𝜀𝑖𝑖 along
the 𝑂𝑧-axis (Figs. 5 and 6).

As is seen from Fig. 5, the compressive strains 𝜀𝑥𝑥
in the lower part (𝑧 < ℎ/2) of non-uniform quantum
dots are smaller by absolute value than the corre-
sponding values in uniform islands. The maximum
difference is observed near the pyramid base, being
equal to Δ𝜀𝑥𝑥 ≈ 0.45%. Approximately at the mid-
dle of the quantum dot height, the component 𝜀𝑥𝑥
is identical in the islands of both types and equals
𝜀𝑥𝑥 ≈ 1.4%. In the upper part of a quantum dot
(𝑧 > ℎ/2), the nanoislands with a non-uniform ger-
manium distribution turn out more deformed, with
the difference reaching its maximum near the pyra-
mid vertex, where Δ𝜀𝑥𝑥 ≈ 0.25%.

Islands with a non-uniform component content in-
duce larger stretching strains 𝜀𝑥𝑥 in the silicon sub-
strate than uniform islands do. The maximum differ-
ence is reached near the heterojunction and amounts
to Δ𝜀𝑥𝑥 ≈ 0.2%. At the substrate depth 𝑧 ∼ ℎ, this
difference is practically equal to zero.

The effect of non-uniformity also manifests itself
in a similar way in the profiles of the strain tensor
component 𝜀𝑧𝑧 (Fig. 6). In particular, in the lower
third of the quantum dot height (𝑧 < ℎ/3), stretch-
ing strains in uniform islands turn out larger than the
corresponding values in non-uniform quantum dots,
with the maximum difference attaining Δ𝜀𝑧𝑧 ≈ 0.13%
near the base. In the upper section of nanoislands, the
inverse relation takes place; namely, non-uniform is-
lands undergo larger stretching strains, and the maxi-
mum difference equals Δ𝜀𝑧𝑧 ≈ 0.14% near the vertex.
In contrast to the case of the tensor components 𝜀𝑥𝑥
and 𝜀𝑦𝑦, the difference between the components 𝜀𝑧𝑧
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for the considered types of quantum dots survives at
distances 𝑧 ∼ 4ℎ in the substrate depth.

The obtained spatial dependences 𝜀𝑖𝑖(𝑥, 𝑦, 𝑧) (𝑖 =
= 𝑥, 𝑦, 𝑧) were used to evaluate the average strain
values over the quantum dot volume 𝑉QD,

⟨𝜀𝑖𝑖⟩ =
∫︁

𝑉QD

𝜀𝑖𝑖(𝑥, 𝑦, 𝑧)𝑑𝑉 . (14)

The results of calculations showed that the nanois-
lands with a uniform component content turn out
more strained than the non-uniform ones. The av-
erage strain values in them are ⟨𝜀𝑧𝑧⟩ ≈ 0.66%, and
⟨𝜀𝑥𝑥⟩ ≈ −1.4% in uniform islands against ⟨𝜀𝑧𝑧⟩ ≈
≈ 0.63% and ⟨𝜀𝑥𝑥⟩ ≈ −1.1% in non-uniform ones.
The origin of such differences consists in weaker lo-
cal strains in non-uniform quantum dots in the region
near their bases, which provides the main contribu-
tion at the averaging.

As was indicated above, strains can cause changes
of the energy bands in heterostructures. The results
obtained in this work testify that the main differ-
ences between the elastically deformed states of uni-
form and non-uniform nanoislands are observed in
their bulk. Therefore, the largest variations of the
energy structure are to be expected in quantum dots.
In heterojunctions of the second type, to which the
junction Si–Ge belongs (see the inset in Fig. 7), it is
holes that are localized in the quantum dots. There-
fore, the non-uniformity in this region has to reveal
a dominating influence on the valence band bottom.
To confirm this conclusion, the energy bands in the
examined heterostructure were calculated in the de-
formation potential approximation. The change in
the valence band bottom induced by strains was cal-
culated according to the relation

𝛿𝐸𝑉 = 𝑎𝑆ℎ − 𝑏𝑆𝑏

2
+

Δ0

3
, (15)

where 𝑎 and 𝑏 are the constants of the deformation
potential for the valence band, Δ0 is the spin-orbit
splitting, and 𝑆ℎ and 𝑆𝑏 are the hydrostatic and biax-
ial strains, respectively, which are defined as follows:

𝑆ℎ = 𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧, (16)

𝑆𝑏 = 2𝜀𝑧𝑧 − 𝜀𝑥𝑥 − 𝜀𝑦𝑦. (17)

The results obtained testify (Fig. 7) that, in nanois-
lands with a uniform germanium content distribution,

Fig. 7. Profiles 𝐸𝑉 (𝑧) of the valence band bottom energy
in nanoislands with uniform (1 ) and non-uniform (2 ) compo-
nent contents. The inset illustrates the band diagram of the
Si1−𝑥Ge𝑥 heterojunction; the region depicted in the main fig-
ure is outlined by a dashed curve

misfit strains give rise to an increase of the valence
band bottom near the heterojunction Si–Si1−𝑥Ge𝑥
(curve 1 ). Therefore, the maximum of hole density is
observed in those quantum dots near the pyramidal
island base. In non-uniform nanoislands, the maxi-
mum of 𝐸𝑉 is attained approximately at the middle
of their height (curve 2 ). Hence, in quantum dots
with a non-uniform content distribution, one should
expect that a redistribution of the hole concentration
would take place with a shift of its maximum toward
the pyramid vertex. Moreover, the changes in the
dependence 𝐸𝑉 (𝑥, 𝑦, 𝑧) induced by the content non-
uniformity would also stimulate modifications in the
energy spectrum of charge carriers, which will make
a contribution to the formation of the properties of
heterostructures.

4. Conclusions

To summarize, the elastic strain fields in SiGe het-
erostructures with quantum dots synthesized follow-
ing the Stranski–Krastanov growth mode were calcu-
lated. The results of calculations revealed a difference
between the elastically deformed states of nanois-
lands with uniform and non-uniform distributions of
silicon and germanium contents over their volume.
The calculations testify that the non-uniformity of
the contents of components changes the spatial dis-
tributions of strain tensor components and diminishes
their magnitudes in quantum dots. Using the modifi-
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cation of the valence band bottom energy as an exam-
ple, the influence of the redistribution of germanium
in nanoislands on the properties of SiGe heterostruc-
tures is demonstrated.

The work was sponsored by the State Fund for Fun-
damental Researches (project F44, a “Grant of the
President of Ukraine to support scientific researches
of young scientists in 2012”).
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В.В. Курилюк

ПРУЖНI ДЕФОРМАЦIЇ
В SiGe-ГЕТЕРОСТРУКТУРАХ З КВАНТОВИМИ
ТОЧКАМИ НЕОДНОРIДНОГО СКЛАДУ

Р е з ю м е

Методом скiнченних елементiв розраховано розподiли пру-
жних деформацiй в гетероструктурах SiGe з квантовими
точками. Дослiджено вплив неоднорiдного розподiлу гер-
манiю всерединi наноострiвцiв на просторовi залежностi
та величину пружних полiв. Показано, що квантовi точки
сталого складу характеризуються бiльшими напруженнями
порiвняно з неоднорiдними наноострiвцями.
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