
GENERAL PROBLEMS OF THEORETICAL PHYSICS

160 ISSN 2071-0186. Ukr. J. Phys. 2016. Vol. 61, No. 2

doi: 10.15407/ujpe61.02.0160

M.V. USHCATS, S.J. USHCATS, A.A. MOCHALOV
Admiral Makarov National University of Shipbuilding
(9, Stalingrad Heroes Str., Mykolaiv 54025, Ukraine; e-mail: mykhailo.ushcats@nuos.edu.ua)

VIRIAL COEFFICIENTS OF MORSE POTENTIAL
PACS 05.20.-y, 05.70.Fh,
64.70.F-, 64.60.-i

Using the numerical quadrature integration method and a modification of the Mayer sampling
Monte Carlo technique proposed recently, the virial coefficients of the known three-parameter
Morse potential have been calculated to the seventh order inclusive for potential parameter, 𝛼𝐷,
values of 3.0, 4.0, 6.0, 8.0, and 10.0. At low temperatures, a certain regularity in the behavior
of the virial coefficients of all orders (beginning from the third one) is revealed for various 𝛼𝐷-
values. This regularity can be approximated by an equation similar to that previously obtained
for the Lennard-Jones (12–6) and modified Lennard-Jones models.
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1. Introduction

One of the known theoretical approaches to describe
dense states of matter is the virial equation of state
[1–3]. Recently, another approach [4–8] has been pro-
posed on the basis of the exact cluster expansion of
the configuration integral, in which the equation of
state also includes the so-called group irreducible in-
tegrals 𝛽𝑘 or the virial coefficients associated with
them [1],

𝐵𝑘+1 = − 𝑘

𝑘 + 1
𝛽𝑘. (1)

The corresponding equations of state can be ex-
act only if they contain a complete set of coeffi-
cients (𝑘 → ∞). Unfortunately, the problem of cal-
culating the high-order irreducible integrals is con-
nected with considerable technical difficulties even
for the simplest model potentials of interaction be-
tween molecules. Modern computation methods al-
lowed the irreducible integrals up to the sixth and
even the seventh order – in Eq. (1), these are the
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virial coefficients up to the seventh and eighth, re-
spectively, orders – to be determined with a cer-
tain accuracy in a limited temperature interval for
the known Lennard-Jones (LJ) potential [9–11] and
its modified (mLJ) version [12–14], the latter being
more adapted to numerical experiments [15–17]. The
results of those calculations even enabled a first at-
tempt to approximate the infinite virial series for
the LJ and mLJ potentials in the low-temperature
interval [18]. However, the Lennard-Jones potential,
as well as its modifications, reproduces the inter-
action between particles rather well only in inert
gases.

Effective ionic interaction in various metals is sim-
ulated the most often [19, 20] by the three-parameter
Morse potential [21]

𝑈 (𝑟) = 𝜀
[︁
𝑒−2𝛼(𝑟−𝐷) − 2𝑒−𝛼(𝑟−𝐷)

]︁
, (2)

where 𝜀 is the dissociation energy, and 𝐷 the equilib-
rium distance between the particles. The presence of
the third parameter 𝛼 in Eq. (2) expands the appli-
cation scope of this potential, but, at the same time,
considerably complicates its theoretical and numeri-
cal researches. At present, information concerning the
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virial coefficients of the Morse potential is rather in-
complete: irreducible integrals were calculated to the
fourth order (and the virial coefficients to the fifth
one) in a confined temperature interval and for three
values of the parameter 𝛼𝐷 [22].

This work is aimed at calculating the virial co-
efficients of the Morse potential to the seventh or-
der inclusive. A special attention is paid to the low-
temperature interval in order to test the possibility
to approximate the virial series of the Morse model,
similarly to what was proposed recently for the LJ
and mLJ models [18].

2. Calculation Technique

The irreducible integral of the 𝑘-th order, 𝛽𝑘, is
defined as the sum of all possible products of
Mayer functions 𝑓(𝑟) = exp

(︁
−𝑢(𝑟)

𝑘𝑇

)︁
− 1 for 𝑘 + 1

molecules integrated over the configuration part of
their phase space and divided by 𝑘!𝑉 , which is
not expressed in terms of lower-order irreducible in-
tegrals [1]. Various combinations of such products
are graphically represented by means of correspond-
ing diagrams [23]. For each of the irreducible in-
tegrals of the first and second orders (in Eq. (1),
these are the virial coefficients of the second and
third orders), there exists only one such a dia-
gram. However, the determination of the virial co-
efficients of the fourth, fifth, sixth, and seventh or-
ders requires the calculation of 3, 10, 56, and 468
various integrals, respectively, in accordance with
work [23].

A significant number of those integrals are simple
enough to be calculated using the quadrature meth-
ods, as was proposed in work [12]. In such a way, all
coefficients up to the fourth order can be calculated,
and, partially, the others. More complicated integrals
can be calculated, by using the modified method of
Mayer sampling, which was described in detail in
works [11, 13, 14]. The essence of this method is as
follows.

A sought integral Γ (or a certain group of integrals)
is determined, by using the already known (reference)
integral Γ0,

Γ = Γ0
⟨𝛾/𝜋⟩𝜋
⟨𝛾0/𝜋⟩𝜋

. (3)

Here, the notations 𝛾 and 𝛾0 mean integrands (a cer-
tain combinations of Mayer function products) for the

sought and reference integrals, respectively; and the
function 𝜋 is the probability density for the given
configuration (a point in the configuration space of
molecules) to be accepted or rejected according to
the Metropolis Monte-Carlo algorithm [24]. The sum
of the absolute values of 𝛾 and 𝛾0 is used as the
probability density 𝜋. The angular brackets in Eq. (3)
mean the averaging over the whole ensemble of con-
figurations.

This method differs, in principle, from the origi-
nal Mayer sampling in that the simple integrals (pre-
viously determined by quadrature methods for the
sought potential) rather than complicated ones (cal-
culated for the hard-sphere potential) are used as ref-
erences. This approach considerably reduces the com-
putational costs and improves the calculation accu-
racy for the virial coefficients.

3. Calculation Results

The technique described above was used to calcu-
late virial coefficients (1) in the dimensionless form
𝐵*

𝑘+1 = 𝐵𝑘+1/𝐷
3𝑘 for the Morse potential (2), which

was also reduced to the dimensionless form [25]

𝑈 (𝑟)

𝜀
= 𝑒−2𝛼*( 𝑟

𝐷−1) − 2𝑒−𝛼*( 𝑟
𝐷−1).

The calculations were carried out for various dimen-
sionless temperatures 𝑇 * = 𝑘B𝑇/𝜀 and the following
values of the reduced parameter 𝛼* = 𝛼𝐷: 3.0, 4.0,
6.0, 8.0, and 10.0.

The coefficients 𝐵*
2 , 𝐵*

3 , and 𝐵*
4 were integrated us-

ing the Gauss quadrature method. The same method
was used to calculate 9 of 10 𝐵*

5 -integrals, 41 of 56
𝐵*

6 -integrals, and 206 of 468 𝐵*
7 -integrals. The error

was estimated by means of Aitken’s process for 30,
60, and 120 integration nodes. All other (more com-
plicated) integrals were calculated using the Mayer
sampling. The resulting error consisted of the quadra-
ture integration error and the standard error for the
average of the Mayer sampling.

The results of calculations for the virial coefficients
from the third to the seventh order are shown in
Fig. 1 and in Appendix. In Fig. 1, the temperature,
𝑇 *, and virial coefficient, 𝐵*

𝑘+1, axes are presented
on the logarithmic scale. As a result, one can easily
detect a certain regularity in the behavior of those co-
efficients at various 𝑘 and 𝛼*. Despite a principle dif-
ference of the Morse potential from the LJ and mLJ
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Fig. 1. Virial coefficients 𝐵*
𝑘+1 of the Morse potential (circles; vertical segments show the 67% confidence interval) and their

approximation (4) with function (5) for various values of parameter 𝛼* = 3.0 (a), 4.0 (b), 6.0 (c), and 10.0 (d)

ones, the behavior of virial coefficients at low tem-
peratures turns out qualitatively similar for all those
models.

In work [18], it was demonstrated that, in the case
of LJ and mLJ models, the virial coefficient of any
order 𝑘 ≥ 2 can be approximately determined by the

equation

𝐵*
𝑘+1 = − 𝑎

𝑘 (𝑘 − 1)
[𝑏 (𝑇 *)]

𝑘
. (4)

The analysis of the results of calculations per-
formed in this work testifies that Eq. (4) remains
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Fig. 2. Isotherms for a system with the Morse potential
(𝛼* = 3.0 and 𝑇 * = 0.5) and various numbers of particles,
𝑁 , calculated on the basis of the exact cluster expansion of the
configuration integral [4–6] and with the use of approximation
(4)

valid for the coefficients of the Morse potential as
well. Moreover, even the constant 𝑎 ≈ 1/100 in
Eq. (4) remains the same as for the LJ and mLJ po-
tentials at absolutely different values of the parameter
𝛼* [18].

The search for the function 𝑏 (𝑇 *) in Eq. (4) be-
comes somewhat complicated owing to the influence
of the parameter 𝛼*. The corresponding calculations
show that, in a first approximation, this function may
look like

𝑏 (𝑇 *) = 𝑒5.25−0.825𝛼*
𝑇 *− 6+5𝛼*

9 , (5)

being qualitatively similar to 𝑏 (𝑇 *) obtained in work
[18] for the LJ and mLJ potentials. The behavior
of approximation (4) with function (5) is compared
with the actual 𝐵*

𝑘+1 (𝑇
*)-dependences in the same

Fig. 1.
The extrapolation of Eq. (4) to the coefficients

of higher orders allows the equations of state to be
obtained on the basis of the exact cluster expan-
sion of the configuration integral [4–6] for an arbi-
trary number of particles in the system (Fig. 2). As
was shown in work [18], in the thermodynamic limit
𝑁 → ∞, the corresponding equation of state has the

form

𝑃

𝑘B𝑇
=

⎧⎪⎪⎨⎪⎪⎩
𝜌 (1− 𝑎+𝐵2𝜌) + 𝑎𝜌 [1− 𝑏 (𝑇 ) 𝜌]×

× [1− ln {1− 𝑏 (𝑇 ) 𝜌}] ; 𝜌 < 𝜌0,

𝜌0 (1− 𝑎+𝐵2𝜌0) ; 𝜌 ≥ 𝜌0,

(6)

where 𝜌0 = [𝑏 (𝑇 )]
−1. The isotherms of Eq. (6) have a

discontinuity of the tangent at the condensation point
𝜌0 (Fig. 2), which makes them qualitatively similar to
isotherms of real substances.

4. Conclusions

To summarize, the virial coefficients of the Morse
potential have been calculated for the first time up
to the seventh order inclusive for various temper-
atures and potential parameter values 𝛼* = 3.0,
4.0, 6.0, 8.0, and 10.0. The data obtained allow the
theoretical description of the dilute states of cor-
responding media to be made more accurate with
the use of the virial equation of state or the ex-
act cluster expansion of the configuration integral
[4–8]. In addition, the analysis of the results ob-
tained reveals a certain regularity [see Eq. (4)] in
the behavior of virial coefficients at low temper-
atures. Earlier, this regularity was found only for
the Lennard-Jones potential and its modified ver-
sion [18]. On the one hand, such a regularity enables
the virial coefficients to be interpolated on the ba-
sis of minimum information including a confined set
of values for the parameter 𝛼*. On the other hand,
there is a possibility to extrapolate dependence (4)
to higher-order coefficients (even to 𝑘 → ∞), as
was proposed in work [18]. All that can facilitate
and make much more exact the researches of various
substances using the Morse potential with an arbi-
trary 𝛼*.

Certainly, the general dependence (4) is, to a great
extent, approximate, especially if rather a specific
function (5) is taken into account, and requires fur-
ther specifications as new data on the high-order
virial coefficients, as well as coefficients for other
potentials, will be accumulated. Most likely, such a
specification should more concern the function 𝑏 (𝑇 *)
in Eq. (5) rather than the whole dependence (4),
which means substantial quantitative, but not qual-
itative, changes in the corresponding equation of
state (6).
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APPENDIX
Dimensionless virial coefficients for the Morse potential, 𝐵*

𝑘+1 = 𝐵𝑘+1/𝐷
3𝑘,

at various values of reduced temperature 𝑇 * = 𝑘B𝑇/𝜀 and parameter 𝛼* = 𝛼𝐷 (the numbers
in parentheses indicate the 67%-confidence interval width corresponding to the least significant digit)

𝑇 * 𝐵*
3 𝐵*

4 𝐵*
5 𝐵*

6 𝐵*
7

𝛼* = 3.0

0.20 −2.7653799926 (5)× 106 −3.530 (4)× 1011 −3.868 (7)× 1017 −3.43 (8)× 1024 –
0.25 −2.0332541089 (7)× 105 −2.4205 (13)× 109 −1.3530 (19)× 1014 −3.28 (3)× 1019 –
0.30 −3.57307380 (3)× 104 −9.781 (3)× 107 −8.438 (9)× 1011 −2.123 (10)× 1016 –
0.35 −1.011113912 (6)× 104 −1.0220 (2)× 107 −2.5317 (19)× 1010 −1.414 (2)× 1014 –
0.40 −3.81685889 (8)× 103 −1.8718 (3)× 106 −1.9149 (11)× 109 −3.710 (3)× 1012 −1.3192 (18)× 1016

0.45 −1.73887308 (5)× 103 −4.9076 (5)× 105 −2.5921 (13)× 108 −2.3079 (14)× 1011 –
0.50 −902.19850 (2) −1.64200 (14)× 105 −5.176 (2)× 107 −2.5405 (12)× 1010 −1.8618 (15)× 1013

0.55 −514.297757 (5) −6.5386 (5)× 104 −1.3582 (5)× 107 −4.1486 (18)× 109 –
0.60 −314.6353616 (3) −2.96279 (18)× 104 −4.3523 (16)× 106 −9.017 (4)× 108 −2.5100 (18)× 1011

0.65 −203.286948244 (16) −1.48217 (8)× 104 −1.6227 (6)× 106 −2.4273 (10)× 108 –
0.70 −137.142540 (5) −8.0146 (4)× 103 −6.807 (3)× 105 −7.701 (4)× 107 −1.1046 (8)× 1010

0.75 −95.8007209 (7) −4.6132 (2)× 103 −3.1369 (13)× 105 −2.7839 (14)× 107 –
0.80 −68.860670 (3) −2.79460 (17)× 103 −1.5595 (8)× 105 −1.1177 (5)× 107 −9.793 (8)× 108

0.85 −50.684286 (3) −1.76637 (14)× 103 −8.261 (4)× 104 −4.891 (2)× 106 –
0.90 −38.055437 (7) −1.15696 (13)× 103 −4.614 (2)× 104 −2.2999 (8)× 106 −1.3682 (16)× 108

0.95 −29.058112 (7) −781.28 (9) −2.6947 (12)× 104 −1.1490 (4)× 106 –
1.00 −22.507884 (8) −541.58 (6) −1.6356 (7)× 104 −6.0453 (18)× 105 −2.618 (3)× 107

1.10 −13.983687 (8) −277.80 (3) −6.630 (2)× 103 −1.9028 (4)× 105 −6.312 (7)× 106

1.20 −9.004922 (11) −152.886 (16) −2.9782 (10)× 103 −6.8694 (11)× 104 −1.8120 (18)× 106

1.30 −5.948947 (14) −88.939 (9) −1.4506 (5)× 103 −2.7621 (3)× 104 −5.960 (5)× 105

1.40 −3.99718 (3) −54.100 (6) −754.0 (2) −1.21057 (8)× 104 −2.1854 (18)× 105

1.50 −2.70974 (4) −34.128 (4) −413.43 (12) −5.6951 (9)× 103 −8.757 (6)× 104

1.60 −1.83780 (4) −22.187 (3) −236.98 (7) −2.8403 (8)× 103 −3.777 (2)× 104

1.70 −1.23425 (3) −14.7892 (18) −141.01 (4) −1.4882 (6)× 103 −1.7322 (9)× 104

1.80 −0.80891 (3) −10.0668 (13) −86.62 (2) −813.1 (4) −8.373 (3)× 103

1.90 −0.50473 (2) −6.9735 (9) −54.691 (14) −460.61 (14) −4.2330 (11)× 103

2.00 −0.284624 (19) −4.9017 (7) −35.360 (8) −269.18 (6) −2.22539 (15)× 103

𝛼* = 4.0

0.20 −1.10370525 (4)× 106 −6.075 (8)× 1010 – – –
0.25 −7.9303916 (3)× 104 −4.281 (3)× 108 – – –
0.30 −1.35595699 (3)× 104 −1.7473 (6)× 107 −5.325 (13)× 1010 −3.289 (16)× 1014 −3.59 (3)× 1018

0.35 −3.71992629 (3)× 103 −1.8114 (3)× 106 – – –
0.40 −1.357093184 (7)× 103 −3.2485 (3)× 105 −1.3655 (12)× 108 −8.784 (9)× 1010 −8.030 (18)× 1013

0.45 −595.71793241 (7) −8.2628 (5)× 104 – – –
0.50 −296.884718 (3) −2.66429 (11)× 104 −3.6530 (13)× 106 −6.812 (3)× 108 −1.623 (2)× 1011

0.55 −161.9971019 (16) −1.01713 (3)× 104 – – –
0.60 −94.486646 (4) −4.39918 (10)× 103 −2.8619 (6)× 105 −2.3857 (7)× 107 −2.406 (3)× 109

0.65 −57.927680 (4) −2.09213 (4)× 103 – – –
0.70 −36.870595 (4) −1.071184 (17)× 103 −4.0356 (6)× 104 −1.8770 (5)× 106 −1.0232 (9)× 108

0.75 −24.130265 (4) −581.426 (8) – – –
0.80 −16.108022 (4) −330.677 (4) −8.1465 (11)× 103 −2.4085 (10)× 105 −8.173 (6)× 106

0.85 −10.888504 (6) −195.269 (2) – – –
0.90 −7.399287 (7) −118.8451 (14) −2.0790 (3)× 103 −4.251 (2)× 104 −9.835 (11)× 105

0.95 −5.013694 (9) −74.0915 (9) – – –
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Continuation

𝑇 * 𝐵*
3 𝐵*

4 𝐵*
5 𝐵*

6 𝐵*
7

1.00 −3.351857 (9) −47.0599 (6) −622.07 (9) −9.345 (14)× 103 −1.5625 (19)× 105

1.10 −1.333852 (17) −19.6821 (3) −207.51 (4) −2.390 (5)× 103 −3.020 (5)× 104

1.20 −0.27977 (2) −8.33902 (18) −74.34 (3) −681 (2) −6.732 (17)× 103

1.30 0.28552 (2) −3.37079 (12) −27.72 (2) −208.8 (10) −1.639 (9)× 103

1.40 0.59043 (2) −1.12537 (8) −10.40 (3) −67.3 (5) −426 (3)

1.50 0.751403 (15) −0.10557 (6) −3.776 (16) −21.7 (3) −113.6 (14)

1.60 0.830713 (10) 0.34241 (4) −1.231 (10) −7.27 (15) −28.9 (7)

1.70 0.862934 (7) 0.51839 (3) −0.290 (6) −2.35 (10) −6.5 (4)

1.80 0.867856 (6) 0.56497 (3) 0.015 (4) −0.82 (6) −1.30 (19)

1.90 0.857079 (5) 0.55169 (2) 0.077 (2) −0.42 (4) −0.12 (11)

2.00 0.837521 (4) 0.51294 (2) 0.0550 (15) −0.33 (3) −0.12 (12)

𝛼* = 6.0

0.20 −3.03377 (5)× 105 −5.272 (8)× 109 −2.674 (11)× 1014 −2.86 (14)× 1019 –
0.25 −2.08200 (5)× 104 −3.784 (5)× 107 −1.482 (4)× 1011 −9.83 (9)× 1014 –
0.30 −3.35696 (9)× 103 −1.512 (3)× 106 −1.210 (2)× 109 −1.433 (5)× 1012 −2.31 (6)× 1015

0.35 −857.68 (2) −1.484 (2)× 105 −4.068 (8)× 107 −1.516 (8)× 1010 −7.23 (9)× 1012

0.40 −287.430 (8) −2.452 (3)× 104 −3.056 (14)× 106 −4.90 (2)× 108 −9.51 (16)× 1010

0.45 −113.960 (3) −5.613 (7)× 103 −3.794 (15)× 105 −3.204 (17)× 107 −3.15 (5)× 109

0.50 −50.1404 (14) −1.5904 (19)× 103 −6.54 (2)× 104 −3.280 (17)× 106 −1.91 (3)× 108

0.55 −23.3605 (8) −518.9 (7) −1.404 (5)× 104 −4.55 (2)× 105 −1.66 (3)× 107

0.60 −11.0245 (4) −184.9 (3) −3.498 (13)× 103 −7.84 (5)× 104 −1.95 (4)× 106

0.65 −4.9527 (3) −68.67 (12) −955 (4) −1.550 (13)× 104 −2.84 (8)× 105

0.70 −1.82545 (19) −25.08 (6) −271.1 (13) −3.32 (4)× 103 −4.35 (18)× 104

0.75 −0.17036 (13) −8.02 (3) −74.7 (5) −757 (14) −7.7 (5)× 103

0.80 0.71314 (10) −1.301 (17) −17.7 (19) −165 (5) −1.08 (13)× 103

0.85 1.17771 (8) 1.217 (10) −1.62 (6) −36 (2) −330 (70)

0.90 1.40908 (7) 1.999 (6) 1.781 (18) −9.9 (12) −10 (30)

0.95 1.50875 (6) 2.075 (4) 1.682 (3) −6.7 (6) −31 (15)

1.00 1.53380 (6) 1.886 (3) – −4.6 (4) 0.9 (104)

𝛼* = 8.0

0.20 −1.21513770 (17)× 105 −9.585 (7)× 108 −1.826 (3)× 1013 −5.4 (10)× 1017 –
0.25 −7.984743 (6)× 103 −6.891 (14)× 106 −1.0873 (14)× 1010 −2.54 (2)× 1013 –
0.30 −1.2115570 (13)× 103 −2.637 (7)× 105 −9.059 (8)× 107 −4.15 (4)× 1010 −2.48 (16)× 1013

0.35 −285.38390 (13) −2.388 (7)× 104 −2.864 (7)× 106 −4.31 (5)× 108 −8.0 (4)× 1010

0.40 −85.67025 (3) −3.507 (13)× 103 −1.903 (13)× 105 −1.26 (2)× 107 −9.5 (6)× 108

0.45 −29.002901 (13) −681 (3) −1.962 (16)× 104 −6.71 (16)× 105 −2.7 (2)× 107

0.50 −9.890321 (9) −151.6 (11) −2.58 (3)× 103 −5.18 (19)× 104 −1.34 (15)× 106

0.55 −2.717772 (7) −33.3 (4) −366 (5) −4.7 (3)× 103 −6.2 (17)× 104

0.60 0.125016 (5) −4.56 (19) −42.7 (14) −370 (60) −6 (3)× 103

0.65 1.249978 (4) 2.02 (9) 1.39 (13) −44 (15) −1.3 (6)× 103

0.70 1.653371 (4) 2.91 (5) 3.32 (8) −10 (4) −100 (220)

0.75 1.745775 (4) 2.44 (3) 0.844 (12) −11.1 (19) −300 (1200)

0.80 1.705933 (4) 1.797 (16) −0.745 (6) −8.2 (10) −30 (40)

0.85 1.614401 (4) 1.260 (10) −1.361 (4) −4.8 (5) 9 (14)

0.90 1.507964 (4) 0.870 (7) −1.428 (3) −2.3 (3) 14 (8)

0.95 1.403163 (4) 0.605 (4) – – 6 (4)

1.00 1.306951 (4) 0.433 (3) – – 2 (2)
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End

𝑇 * 𝐵*
3 𝐵*

4 𝐵*
5 𝐵*

6 𝐵*
7

𝛼* = 10.0

0.20 −5.9702448 (11)× 104 −2.5949 (5)× 108 −2.503 (12)× 1012 −2.4 (9)× 1016 –
0.25 −3.761185 (5)× 103 −1.84565 (11)× 106 −1.542 (9)× 109 −1.69 (2)× 1012 –
0.28 −1.3235601 (3)× 103 −3.064256 (13)× 105 −1.115 (4)× 108 −5.31 (7)× 1010 –
0.30 −535.41698 (11) −6.6966 (3)× 104 −1.2381 (13)× 107 −2.90 (4)× 109 −9.8 (12)× 1011

0.33 −239.28227 (7) −1.7846 (12)× 104 −1.8688 (18)× 106 −2.44 (5)× 108 −4.1 (4)× 1010

0.35 −114.69715 (5) −5.485 (12)× 103 −3.528 (10)× 105 −2.76 (6)× 107 −2.5 (2)× 109

0.38 −57.56067 (4) −1.872 (6)× 103 −7.84 (4)× 104 −3.94 (11)× 106 −2.3 (3)× 108

0.40 −29.56351 (3) −686 (3) −1.960 (15)× 104 −6.5 (2)× 105 −2.9 (3)× 107

0.42 −15.13540 (3) −262 (2) −5.30 (6)× 103 −1.27 (5)× 105 −3.1 (6)× 106

0.45 −7.41754 (2) −101.1 (12) −1.49 (2)× 103 −2.51 (14)× 104 −3.0 (12)× 105

0.47 −3.182838 (17) −37.3 (7) −414 (11) −5.2 (4)× 103 −6 (3)× 104

0.50 −0.827546 (15) −11.6 (5) −106 (5) −1.14 (13)× 103 2 (12)× 103

0.53 0.482324 (13) −1.5 (3) −33 (8) −210 (50) −1 (5)× 103

0.55 1.197215 (11) 2.1 (2) 1.8 (13) −40 (20) −1 (2)× 103

0.57 1.568194 (9) 3.10 (14) 4.3 (6) 19 (16) 3 (3)× 103

0.60 1.738859 (8) 3.04 (10) 2.7 (3) −7 (6) 1.8 (9)× 103

0.63 1.793061 (8) 2.62 (7) 0.76 (4) −13 (5) −100 (400)

0.65 1.780540 (7) 2.12 (5) −0.568 (10) −7 (4) 10 (120)

0.68 1.731128 (7) 1.66 (4) −1.321 (5) −9.6 (18) 120 (80)

0.70 1.662797 (6) 1.27 (3) −1.640 (3) −5.7 (14) 20 (40)
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Virial coefficients of Morse Potential

М.В.Ушкац, С.Ю.Ушкац, О.О.Мочалов

ВIРIАЛЬНI КОЕФIЦIЄНТИ
ПОТЕНЦIАЛУ МОРЗЕ

Р е з ю м е

Iз використанням квадратурних методiв числового iнтегру-
вання у поєднаннi з нещодавно запропонованим модифiко-
ваним методом вибiрки Майера були розрахованi вiрiальнi
коефiцiєнти вiдомого трипараметричного потенцiалу Морзе

до сьомого порядку включно для рiзних значень парамет-
ра цього потенцiалу 𝛼𝐷: 3,0; 4,0; 6,0; 8,0; 10,0. В областi
низьких температур була виявлена певна закономiрнiсть у
поведiнцi вiрiальних коефiцiєнтiв усiх порядкiв (починаю-
чи з коефiцiєнта третього порядку) при рiзних значеннях
𝛼𝐷. Ця закономiрнiсть може бути апроксимована рiвнян-
ням, аналогiчним тому, що було одержано ранiше для по-
тенцiалу Ленард-Джонса (12–6) i модифiкованого потенцiа-
лу Ленард-Джонса.
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