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ENERGY SPECTRA OF ELECTRON
EXCITATIONS IN GRAPHITE AND GRAPHENE
AND THEIR DISPERSION MAKING
ALLOWANCE FOR THE ELECTRON SPIN
AND THE TIME-REVERSAL SYMMETRY

The dispersion dependences of electron excitations in crystalline graphite and single-layer
graphene have been studied taking the electron spin into consideration. The correlations of
the energy spectra of electron excitations and, for the first time, the compatibility conditions
for two-valued irreducible projective representations characterizing the symmetry of spinor ex-
citations in the indicated structures are determined, as well as the distributions of spinor quan-
tum states over the projective classes and irreducible projective representations for all high-
symmetry points in the corresponding Brillouin zones. With the help of theoretical symmetry-
group methods for the spatial symmetry groups of crystalline graphite and single-layer graphene
(in particular, the splitting of 𝜋-bands at the Dirac points), the spin-dependent splittings in
their electron energy spectra are found. The splitting magnitude can be considerable, e.g., for
dichalcogenides of transition metals belonging to the same spatial symmetry group. But it is
found to be small for crystalline graphite and single-layer graphene because of a low spin-orbit
interaction energy for carbon atoms and, as a consequence, carbon structures.
K e yw o r d s: crystalline graphite, single-layer graphene, spinor representations, factor-
systems, dispersion of electron excitations, projective classes, two-valued irreducible projective
representations.

1. Introduction

In work [1], a theoretical symmetry-group descrip-
tion was presented for the dispersion of vibrational
and electron excitations in crystalline graphite. The
analysis was carried out on the basis of projective
classes of representations following from the spatial
symmetry of crystalline graphite structure and deter-
mined at various points of the corresponding Bril-
louin zone. For high-symmetry points in the Bril-
louin zone of crystalline graphite, irreducible pro-
jective representations were constructed according to
which the wave functions of elementary excitations
in this substance are transformed. In work [1], cor-
relations between phonon and electron excitations in
graphite and single-layer graphene were also demon-
strated. For both structures, only 𝜋-bands – i.e. the
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electron bands of 𝜋-orbitals producing 𝜋-electrons
and 𝜋-holes, whose wave functions are orthogonal to
the functions of 𝜎-zones of 𝑠𝑝2-hybridized 𝜎-orbitals –
were considered as electron ones. In so doing, we did
not consider the spin-orbit interaction for electron
states, because it is insignificant for 𝜋-bands in car-
bon structures [2].

The symmetry of the crystal lattice of Bernal
graphite [3] is described by the spatial group
𝑃63/𝑚𝑚𝑐 (𝐷4

6ℎ), which is also the spatial symmetry
group of the crystal lattices of hexagonal boron ni-
tride (BN) and hexagonal polytypes 2H 𝑎 and 2H 𝑐

of the dichalcogenides of transition metals (MoS2,
MoSe2, WS2, WSe2, TeS2, and TeSe2). Therefore,
it was important for us to determine the qualita-
tive character of the influence of an electron spin on
the structure of 𝜋-bands in graphite and other com-
pounds, whose crystal lattice is described by the spa-
tial symmetry group 𝑃63/𝑚𝑚𝑐 (𝐷4

6ℎ). Another issue,
also important for us, was to consider the influence of
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a b
Fig. 1. Structure of a standard unit cell of graphite crystals 𝛾-𝐶 (𝑎) and arrangement and orientation of the elements of the
point symmetry group 6/𝑚𝑚𝑚 (𝐷6ℎ) (𝑏). Circles indicate the positions of carbon atoms (reproduced from work [1])

the time-reversal symmetry on elementary excitations
in lattices with the indicated spatial symmetry.

2. Standard Unit Cells, Brillouin Zones,
and Basic Symmetry Elements of Graphite
and Single-Layer Graphene

In Fig. 1, 𝑎, a standard unit cell of the crystal lat-
tice of Bernal graphite, 𝛾-𝐶, is shown [3]. It corre-
sponds to the standard diagram of its spatial sym-
metry group 𝑃63/𝑚𝑚𝑐 (𝐷4

6ℎ) [4]. In Fig 1, 𝑏, the ar-
rangement and orientation of the symmetry elements
for the point group 6/𝑚𝑚𝑚 (𝐷6ℎ) are demonstrated.

Figure 2 illustrates the Brillouin zone in 𝛾-𝐶 crys-
tals and its symmetry points. The points are denoted
by letters corresponding to Herring’s notation for
hexagonal structures [5, 6].

The Wigner–Seitz unit cell and the Brillouin zone
for single-layer graphene 𝐶𝐿,1 are depicted in Fig. 3, 𝑎
and Fig. 3, 𝑏, respectively. Solid lines are used in
Fig. 3, 𝑎 to schematically mark the unit cell of
graphene 𝐶𝐿,1. The figure also illustrates the corre-
sponding primitive translation vectors 𝑎1 and 𝑎2, as
well as the orientation of cell symmetry elements in
the three-dimensional space, which were used in cal-
culations. The dashed lines in Fig. 3, 𝑎 demonstrate
the reciprocal lattice vectors 𝑏1 and 𝑏2 on an arbi-

Fig. 2. Brillouin zone of graphite 𝛾-𝐶 crystals and its sym-
metry points (reproduced from work [1])

trary scale and the positions of reciprocal lattice sites
in the reciprocal space. In Fig. 3, 𝑏, on the contrary,
solid lines are used to show the reciprocal lattice vec-
tors, and the dashed ones to demonstrate the direct
lattice vectors. The unit cells (the Wigner–Seitz cells)
of the graphene layer in the coordinate (Fig. 3, 𝑎) and
reciprocal (Fig. 3, 𝑏) spaces (in the latter case, this
cell coincides with the first Brillouin zone) are col-
ored grey. In Fig. 3, 𝑏, the high-symmetry points Γ ,
𝐾, and 𝑀 in the Brillouin zone of graphene are also
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a b
Fig. 3. Wigner–Seitz unit cell (𝑎) and Brillouin zone of single-layer graphene 𝐶𝐿,1 (b) (reproduced from work [1])

shown. The equivalent points are marked by one or
two primes.

The spatial symmetry group of the crystalline lat-
tice of graphite, 𝑃63/𝑚𝑚𝑐 (𝐷4

6ℎ), is nonsymmor-
phic. It is determined by the basic (main) elements,
which can be chosen as follows:

ℎ1 = (0|𝑒), ℎ2 = (0|𝑐3), ℎ3 = (0|𝑐23), ℎ4 = (0|(𝑢2)1),

ℎ5 = (0|(𝑢2)2), ℎ6 = (0|(𝑢2)3), ℎ7 =
(︁𝑎1

2

⃒⃒⃒
𝑐2

)︁
,

ℎ8 =
(︁𝑎1

2

⃒⃒⃒
𝑐56

)︁
, ℎ9 =

(︁𝑎1

2

⃒⃒⃒
𝑐6

)︁
, ℎ10 =

(︁𝑎1

2

⃒⃒⃒
(𝑢′

2)1

)︁
,

ℎ11 =
(︁𝑎1

2

⃒⃒⃒
(𝑢′

2)2

)︁
, ℎ12 =

(︁𝑎1

2

⃒⃒⃒
(𝑢′

2)3

)︁
, ℎ13 = (0|𝑖),

ℎ14 = (0|𝑖𝑐3), ℎ15 = (0|𝑖𝑐23), ℎ16 = (0|𝑖(𝑢2)1),

ℎ17 = (0|𝑖(𝑢2)2), ℎ18 = (0|𝑖(𝑢2)3), ℎ19 =
(︁𝑎1

2

⃒⃒⃒
𝑖𝑐2

)︁
,

ℎ20 =
(︁𝑎1

2

⃒⃒⃒
𝑖𝑐56

)︁
, ℎ21 =

(︁𝑎1

2

⃒⃒⃒
𝑖𝑐6

)︁
, ℎ22 =

(︁𝑎1

2

⃒⃒⃒
𝑖(𝑢′

2)1

)︁
,

ℎ23 =
(︁𝑎1

2

⃒⃒⃒
𝑖(𝑢′

2)2

)︁
, ℎ24 =

(︁𝑎1

2

⃒⃒⃒
(𝑢′

2)3

)︁
,

where 𝑎1 is a primitive vector of the crystal lattice
directed along the axis 𝑂𝑍 (𝑂𝑧). At the same time,

the spatial symmetry group of the crystal lattice of
single-layer graphene, 𝑃6/𝑚𝑚𝑚 (𝐷𝐺80) [7], whose
diagram coincides with that of the tri-periodic spatial
group 𝑃6/𝑚𝑚𝑚 (𝐷1

6ℎ), is symmorphic, and all its
“rotational” elements–the symmetry elements of the
point group 6/𝑚𝑚𝑚 (𝐷6ℎ)–do not contain nontrivial
(partial) translations.

3. Qualitative Character
of the Influence of Electron Spin and
Time-Reversal Symmetry on the Energy
Spectra of Elementary Excitations
in Crystalline Graphite, Their Dispersion
at the Points Along the Lines Γ–Δ–A,
K–P–H, and M–U–L of Its Brillouin Zone,
and the Energy Spectra and Dispersion
of Electron 𝜋-Bands of Single-Layer
Graphene at Points Γ , K, and M

3.1. Line Γ–Δ–A of crystalline graphite and
point Γ of single-layer graphene

3.1.1. Points Γ

At points Γ, the factor groups of the wave-vector
groups with respect to the subgroups of trivial trans-
lations are isomorphic to the same point symmetry
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group 6/𝑚𝑚𝑚, (𝐷6ℎ) for both crystalline graphite 𝛾-
𝐶 and single-layer graphene 𝐶𝐿,1. This point group
is a symmetry group of equivalent directions in the
both structures: in crystalline graphite 𝛾-𝐶, where it
is a group of the crystalline class, and in single-layer
graphene 𝐶𝐿,1, where it characterizes the symmetry
of the macromolecular class [1].

The wave functions of vibrational elementary ex-
citations at points Γ − Γvib (Γlat.vib) are trans-
formed, for both crystalline graphite and single-layer
graphene, by the single-valued vector irreducible rep-
resentations of the point group 6/𝑚𝑚𝑚 (𝐷6ℎ), which
are irreducible representations of the projective class
𝐾0 of this group. The representations of those exci-
tations are determined by the formula [8]

Γvib = Γeq ⊗ Γvector, (1)

where Γeq is the atomic equivalence representation 1

at point Γ , and Γvector is the representation of a polar
vector r with the components 𝑥, 𝑦, and 𝑧.

Among the electron excitations at points Γ , we
will consider only the excitations of electron 𝜋-bands,
whose wave functions are orthogonal to those of
the 𝑠𝑝2-hybridized 𝜎-bands (i.e. the bands of 𝑠𝑝2-
hybridized 𝜎-electrons). In work [1], when determin-
ing the representations Γ𝜋 for states neglecting the
spin (at a weak spin-orbit interaction), we used the
following formula, which, in addition to the represen-
tation Γeq, includes only the representation Γ𝑧:

Γ𝜋 = Γeq ⊗ Γ𝑧, (2)

where Γ𝑧 is a representation that is an irreducible
representation of the group 6/𝑚𝑚𝑚 (𝐷6ℎ) for a vec-
tor directed along the 𝑧-axis, because the electron
𝜋-bands in graphite and graphene are formed by the
nondegenerate electron orbitals 𝑝𝑧.

In order to determine the electron representation of
𝜋-bands making allowance for the electron spin, Γ′

𝜋,
we have to use the formula

Γ′
𝜋 = Γeq ⊗ Γ′

𝑧. (3)

Here, Γ′
𝑧 is the representation of the electron 𝜋-orbital

taking the spin into account. It is determined using

1 A technique used for determining the character of the atomic
equivalence representations and the results of corresponding
calculations for the high-symmetry points in the Brillouin
zones of graphite and single-layer graphene were presented
in work [1].

the formula

Γ′
𝑧 = Γ𝑧 ⊗𝐷+

1/2. (4)

In turn, 𝐷+
1/2 is an even two-dimensional (spinor) rep-

resentation of the rotation group for the quantum
number of total electron angular momentum 𝑗 = 1

2 .
Its characters in the case of the rotation by the angle
𝜑 are equal to [9]

𝜒𝑗(𝑐𝜑) =
sin

[︀(︀
𝑗 + 1

2

)︀
𝜑
]︀

sin
(︁
𝜑
2

)︁ . (5)

In Table 1, the irreducible representations of the
projective class 𝐾0 for the group 6/𝑚𝑚𝑚 (𝐷6ℎ) are
given. They describe the symmetry of vibrational
and electron excitations at points Γ of crystalline
graphite 𝛾-𝐶 and single-layer graphene 𝐶𝐿,1 mak-
ing no allowance for the spin. They are identical to
the ordinary single-valued vector irreducible repre-
sentations. In addition, Table 1 contains the irre-
ducible representations of the projective class 𝐾1 for
the group 6/𝑚𝑚𝑚 (𝐷6ℎ). They characterize the sym-
metry of electron states making allowance for the
spin. They are two-valued spinors.

In Table 2, the characters of equivalence repre-
sentations, Γeq, and the characters of representa-
tions that characterize the symmetry of electron 𝜋-
bands making allowance for the electron spin (𝜋′-
bands), Γ′

𝜋 = Γeq ⊗ Γ′
𝑧, are presented for points Γ

in the Brillouin zones of crystalline graphite 𝛾-𝐶 and
single-layer graphene 𝐶𝐿,1. The table also presents
the characters of the representations Γ𝑧, 𝐷+

1/2, and
Γ′
𝑧 = Γ𝑧 ⊗𝐷+

1/2, as well as the corresponding projec-
tive representations, for other high-symmetry points
in the Brillouin zones of those structures.

The electron excitation distributions at the high-
symmetry points in the Brillouin zones of crystalline
graphite and single-layer graphene with respect to
irreducible two-valued spinor projective representa-
tions are shown in Table 3. For the sake of compari-
son, the distributions of electron excitations with re-
spect to irreducible projective representations for 𝜋-
bands without taking the electron spin into consider-
ation are also included.

In Table 3, the following notations for the irre-
ducible projective representations are applied in order
to clearly distinguish two-valued spinor representa-
tions in various projective classes for various points
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Table 1. Characters of the one- and two-valued irreducible projective
representations for points Γ in the Brillouin zones of crystalline graphite 𝛾-𝐶 and single-layer graphene 𝐶𝐿,1

Projec-
tive
class

Notation for
irreducible
projective

representation

6/𝑚𝑚𝑚(𝐷6ℎ)

𝑒 𝑐3 𝑐23 3𝑢2 𝑐2 𝑐56 𝑐6 3𝑢′
2 𝑖 𝑖𝑐3 𝑖𝑐23 3𝑖𝑢2 𝑖𝑐2 𝑖𝑐56 𝑖𝑐6 3𝑖𝑢′

2

𝐾0 Γ+
1 𝐴+

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Γ−
1 𝐴−

1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

Γ+
2 𝐴+

2 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

Γ−
2 𝐴−

2 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
Γ+
3 𝐴+

3 1 1 1 −1 1 1 1 −1 1 1 1 −1 1 1 1 −1

Γ−
3 𝐴−

3 1 1 1 −1 1 1 1 −1 −1 −1 −1 1 −1 −1 −1 1
Γ+
4 𝐴+

4 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1
Γ−
4 𝐴−

4 1 1 1 −1 −1 −1 −1 1 −1 −1 −1 1 1 1 1 −1

Γ+
5 𝐸+

1 2 −1 −1 0 2 −1 −1 0 2 −1 −1 0 2 −1 −1 0
Γ−
5 𝐸−

1 2 −1 −1 0 2 −1 −1 0 −2 1 1 0 −2 1 1 0
Γ+
6 𝐸+

2 2 −1 −1 0 −2 1 1 0 2 −1 −1 0 −2 1 1 0
Γ−
6 𝐸−

2 2 −1 −1 0 −2 1 1 0 −2 1 1 0 2 −1 −1 0

𝐾1 Γ+
7 (𝐸′

1)
+ 2 1 −1 0 0

√
3 −

√
3 0 2 1 −1 0 0

√
3 −

√
3 0

Γ−
7 (𝐸′

1)
− 2 1 −1 0 0

√
3 −

√
3 0 −2 −1 1 0 0 −

√
3

√
3 0

Γ+
8 (𝐸′

2)
+ 2 1 −1 0 0 −

√
3

√
3 0 2 1 −1 0 0 −

√
3

√
3 0

Γ−
8 (𝐸′

2)
− 2 1 −1 0 0 −

√
3

√
3 0 −2 −1 1 0 0

√
3 −

√
3 0

Γ+
9 (𝐸′

3)
+ 2 −2 2 0 0 0 0 0 2 −2 2 0 0 0 0 0

Γ−
9 (𝐸′

3)
− 2 −2 2 0 0 0 0 0 −2 2 −2 0 0 0 0 0

in the Brillouin zones: letters denote points in the
Brillouin zone of the structure; primed letters de-
note two-valued spinor representations, whereas non-
primed letters denote ordinary single-valued vector
ones; parenthesized figures in the superscript indi-
cate projective classes; figures in the internal sub-
script mean the ordinal number of an irreducible rep-
resentation in the given projective class; and the signs
“+” and “−” in the external superscript indicate the
representation parity. It is evident that in those no-
tations, ((Γ′)

(1)
1 )+ ≡ Γ+

7 and ((Γ′)
(1)
2 )− ≡ Γ−

8 , where
Γ+
7 and Γ−

8 are the spinor representations (written
in the conventional notation system) that were used,
e.g., to denote two-valued spinor representations in
Table 1. An additional external subscript, if any, in-
dicates the ordinal number of the representation, if
there are several ones.

3.1.2. Point 𝐴

The wave-vector star of point 𝐴 in the Brillouin zone
of crystalline graphite 𝛾-𝐶, similarly to that of point
Γ , is composed of a single vector 𝑘𝐴 = − 1

2 𝑏1 [1]. The

factor group of the wave-vector group with respect to
the invariant translation subgroup for graphite crys-
tals is, as it takes place for point Γ , also isomorphic
to the group 6/𝑚𝑚𝑚 (𝐷6ℎ).

It was shown in work [1] that the two-valued (spi-
nor) irreducible projective representations at point 𝐴
in the Brillouin zone of crystalline graphite 𝛾-𝐶 be-
long to the projective class 𝐾4 of the point symme-
try group of equivalent directions 𝐹𝑘, 6/𝑚𝑚𝑚 (𝐷6ℎ),
coinciding with the crystal class group. It is so be-
cause the single-valued (vector) projective represen-
tations for point 𝐴, which are determined by the
properties of the spatial symmetry group of graphite,
𝑃63/𝑚𝑚𝑐 (𝐷6ℎ), at this point, belong to the pro-
jective class 𝐾5 [1], the transformation of spinors
at symmetry operations of the directional groups
of wave-vector groups to the projective class 𝐾1,
and the product of the projective classes 𝐾5 and
𝐾1, which is determined by the pairwise multipli-
cation of the values of the coefficients 𝛼, 𝛽, and 𝛾
(i.e. 𝛼(5)𝛼(1), 𝛽(5)𝛽(1), and 𝛾(5)𝛾(1)), equals 𝐾5𝐾1 =
𝐾4 in the system of notations used for projective
classes [1].
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Table 2. Characters of the equivalence representations 𝐷eq, the representations 𝐷𝑧

characterizing the spatial symmetry of 𝜋-orbitals, the spinor representations 𝐷
+
1/2

, and the spinor

representations 𝐷′
𝑧 = 𝐷𝑧 × 𝐷

+
1/2

characterizing the symmetry of 𝜋-orbitals taking the spin
into account (the spin 𝜋-orbitals); and the characters of the representations 𝐷′

𝜋

that characterize the symmetry of electron 𝜋-bands taking the spin into account for various
points of Brillouin zones in crystalline graphite 𝛾-𝐶 and single-layer graphene 𝐶𝐿,1

Points Γ
Point groups 6/𝑚𝑚𝑚(𝐷6ℎ)

Projective classes 𝐾1 except for the representations Γeq and Γ𝑧

6/𝑚𝑚𝑚(𝐷6ℎ) 𝑒 𝑐3 𝑐23 3𝑢2 𝑐2 𝑐56 𝑐6 3𝑢′
2 𝑖 𝑖𝑐3 𝑖𝑐23 3𝑖𝑢2 𝑖𝑐2 𝑖𝑐56 𝑖𝑐6 3𝑖𝑢′

2

𝛾 − 𝐶 𝑘 = 0 Γeq 4 4 4 0 0 0 0 4 0 0 0 4 4 4 4 0
Γ𝑧 1 1 1 −1 1 1 1 −1 −1 −1 −1 1 −1 −1 −1 1

𝐷+
1/2

2 1 −1 0 0 −
√
3

√
3 0 2 1 −1 0 0 −

√
3

√
3 0

Γ′
𝑧 2 1 −1 0 0 −

√
3

√
3 0 −2 −1 1 0 0

√
3 −

√
3 0

Γ′
𝜋 8 4 −4 0 0 0 0 0 0 0 0 0 0 4

√
3 −4

√
3 0

𝐶𝐿,1 𝑘 = 0 Γeq 2 2 2 0 0 0 0 2 0 0 0 2 2 2 2 0
Γ′
𝜋 4 2 −2 0 0 0 0 0 0 0 0 0 0 2

√
3 −2

√
3 0

Point 𝐴
Point group 6/𝑚𝑚𝑚(𝐷6ℎ)

Projective class 𝐾4 except for the representation 𝐴eq and 𝐴′
𝑧

6/𝑚𝑚𝑚(𝐷6ℎ) 𝑒 𝑐3 𝑐23 3𝑢2 𝑐2 𝑐56 𝑐6 3𝑢′
2 𝑖 𝑖𝑐3 𝑖𝑐23 3𝑖𝑢2 𝑖𝑐2 𝑖𝑐56 𝑖𝑐6 3𝑖𝑢′

2

𝛾 − 𝐶 𝑘𝐴 =

= −(1/2)𝑏1

𝐴eq 4 4 4 0 0 0 0 0 0 0 0 4 0 0 0 0
𝐴′

𝑧 2 1 −1 0 0 −
√
3

√
3 0 −2 −1 1 0 0

√
3 −

√
3 0

𝐴′
𝜋 8 4 −4 0 0 0 0 0 0 0 0 0 0 0 0 0

Points 𝐾
Point groups 6̄𝑚2(𝐷3ℎ)

Projective classes 𝐾1 except for the representations 𝐾eq, 𝐾𝑧 and 𝐾𝜋

6̄𝑚2(𝐷3ℎ) 𝑒 𝑐3 𝑐23 3𝑢2 𝑖𝑐2 𝑖𝑐56 𝑖𝑐6 3𝑖𝑢′
2

𝛾 − 𝐶 (𝑘𝐾)1 = −(1/3)(2𝑏2 − 𝑏3) 𝐾eq 4 1 1 0 4 1 1 0
(𝑘𝐾)2 = (1/3)(2𝑏2 − 𝑏3) 𝐾𝑧 1 1 1 −1 −1 −1 −1 1

𝐾𝜋 4 1 1 0 −4 −1 −1 0
𝐷+

1/2
2 1 −1 0 0 −

√
3

√
3 0

𝐾′
𝑧 2 1 −1 0 0

√
3 −

√
3 0

𝐾′
𝜋 8 1 −1 0 0

√
3 −

√
3 0

𝐶𝐿,1 (𝑘𝐾)1 = −(1/3)(2𝑏1 − 𝑏2) 𝐾eq 2 −1 −1 0 2 −1 −1 0
(𝑘𝐾)2 = (1/3)(2𝑏1 − 𝑏2) 𝐾𝜋 2 −1 −1 0 −2 1 1 0

𝐾′
𝜋 4 −1 1 0 0 −

√
3

√
3 0

Point 𝐻
Point group 6̄𝑚2(𝐷3ℎ)

Projective classes 𝐾1 (𝐻eq, 𝐻𝜋 , 𝐷+
1/2

and 𝐻′
𝑧) and 𝐾0(𝐻′

𝑧)

6̄𝑚2(𝐷3ℎ) 𝑒 𝑐3 𝑐23 3𝑢2 𝑖𝑐2 𝑖𝑐56 𝑖𝑐6 3𝑖𝑢′
2

𝛾 − 𝐶 (𝑘𝐻)1 = −(1/2)𝑏1 − (1/3)(2𝑏2 − 𝑏3) 𝐻eq 4 1 1 0 0
√
3 −

√
3 0

(𝑘𝐻)2 = −(1/2)𝑏1 + (1/3)(2𝑏2 − 𝑏3) 𝐻𝑧 1 1 1 −1 −1 −1 −1 1
𝐻𝜋 4 1 1 0 0 −

√
3𝑖

√
3𝑖 0

𝐷+
1/2

2 1 −1 0 0 −
√
3

√
3 0

𝐻′
𝑧 2 1 −1 0 0

√
3 −

√
3 0

𝐻′
𝜋 8 1 −1 0 0 3𝑖 3𝑖 0
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Point 𝑃
Point group 3𝑚(𝐶3𝜐)
Projective class 𝐾0

3𝑚(𝐶3𝜐) 𝑒 𝑐3 𝑐23 3𝑖𝑢′
2

𝛾 − 𝐶 (𝑘𝑃 )1 = −𝑘𝑧 − (1/3)(2𝑏2 − 𝑏3) 𝑃eq 4 1 1 0
(𝑘𝑃 )2 = −𝑘𝑧 + (1/3)(2𝑏2 − 𝑏3) 𝑃𝑧 1 1 1 1
(𝑘𝑃 )3 = 𝑘𝑧 − (1/3)(2𝑏2 − 𝑏3) 𝑃𝜋 4 1 1 0
(𝑘𝑃 )4 = 𝑘𝑧 + (1/3)(2𝑏2 − 𝑏3) 𝐷+

1/2
2 1 −1 0

𝑃 ′
𝑧 2 1 −1 0

𝑃 ′
𝜋 8 1 −1 0

Points 𝑀
Point groups 𝑚𝑚𝑚(𝐷2ℎ)

Projective classes 𝐾0 (𝑀eq, 𝑀𝑧 and 𝑀𝜋) and 𝐾1 (𝐷+
1/2

, 𝑀 ′
𝑧 and 𝑀 ′

𝜋)

𝑚𝑚𝑚(𝐷2ℎ) 𝑒 (𝑢2)1 𝑐2 (𝑢′
2)1 𝑖 𝑖(𝑢2)1 𝑖𝑐2 𝑖(𝑢′

2)1

𝛾 − 𝐶 (𝑘𝑀 )1 = −(1/2)𝑏3, 𝑀eq 4 0 0 4 0 4 4 0
(𝑘𝑀 )2 = (1/2)𝑏2 𝑀𝑧 1 −1 1 −1 −1 1 −1 1

(𝑘𝑀 )3 = −(1/2)(𝑏2 − 𝑏3), 𝑀𝜋 4 0 0 –4 0 4 –4 0
𝐷+

1/2
2 0 0 0 2 0 0 0

𝑀 ′
𝑧 2 0 0 0 –2 0 0 0

𝑀 ′
𝜋 8 0 0 0 0 0 0 0

𝐶𝐿,1 (𝑘𝑀 )1 = −(1/2)𝑏2 𝑀eq 2 0 0 2 0 2 2 0
(𝑘𝑀 )2 = (1/2)𝑏1 𝑀𝜋 2 0 0 –2 0 2 –2 0
(𝑘𝑀 )3 = −(1/2)(𝑏1 − 𝑏2) 𝑀 ′

𝜋 4 0 0 0 0 0 0 0

Point 𝐿
Point group 𝑚𝑚𝑚(𝐷2ℎ)

Projective classes 𝐾5 (𝐿𝜋) and 𝐾4 (𝐿′
𝜋)

𝑚𝑚𝑚(𝐷2ℎ) 𝑒 (𝑢2)1 𝑐2 (𝑢′
2)1 𝑖 𝑖(𝑢2)1 𝑖𝑐2 𝑖(𝑢′

2)1

𝛾 − 𝐶 (𝑘𝐿)1 = −(1/2)(𝑏1 + 𝑏3) 𝐿eq 4 0 0 0 0 4 0 0
(𝑘𝐿)2 = −(1/2)(𝑏1 − 𝑏2) 𝐿𝑧 1 –1 1 –1 –1 1 –1 1
(𝑘𝐿)3 = −(1/2)(𝑏1 + 𝑏2 − 𝑏3) 𝐿𝜋 4 0 0 0 0 4 0 0

𝐷+
1/2

2 0 0 0 2 0 0 0

𝐿′
𝑧 2 0 0 0 –2 0 0 0

𝐿′
𝜋 8 0 0 0 0 0 0 0

The factor-system for point 𝐴 with making al-
lowance for the spin, 𝜔2,𝐴(𝑟2, 𝑟1), is the prod-
uct of the factor-systems 𝜔1,𝐴(𝑟2, 𝑟1) and 𝜔2(𝑟2, 𝑟1),
i.e. 𝜔2,𝐴(𝑟2, 𝑟1) = 𝜔1,𝐴(𝑟2, 𝑟1)𝜔2(𝑟2, 𝑟1). The former
is determined by the structure of the spatial group of
a graphite crystal, 𝑃63/𝑚𝑚𝑐 (𝐷4

6ℎ), at point 𝐴 ne-
glecting the spin, and the latter describes the trans-
formations of spinors at point Γ (in the point symme-
try group 6/𝑚𝑚𝑚 (𝐷6ℎ)). They and their structure
are described in details in work [1] (see Tables 1 and
6 in the cited work). The factor-system 𝜔2,𝐴(𝑟2, 𝑟1) is
presented in Table 4.

The standard factor-system for point 𝐴 with mak-
ing allowance for the spin, 𝜔′

2,𝐴(𝑟2, 𝑟1), which belongs
to the projective class 𝐾4, coincides with the standard
factor-system of this class, 𝜔′

(4)(𝑟2, 𝑟1), and is the
product of the standard factor-systems 𝜔′

1,𝐴(𝑟2, 𝑟1) ≡
≡ 𝜔′

(5)(𝑟2, 𝑟1) and 𝜔′
2(𝑟2, 𝑟1), i.e. 𝜔′

2,𝐴(𝑟2, 𝑟1) ≡
≡ 𝜔′

(4)(𝑟2, 𝑟1) = 𝜔′
(5)(𝑟2, 𝑟1)𝜔

′
2(𝑟2, 𝑟1). This factor-

system is presented in Table 5. The reduction
coefficients 𝑢2,𝐴(𝑟) of the factor-system 𝜔2,𝐴(𝑟2, 𝑟1)
to the standard form 𝜔′

2,𝐴(𝑟2, 𝑟1) ≡ 𝜔′
(4)(𝑟2, 𝑟1) are

determined as the products of the corresponding
reduction coefficients 𝑢1,𝐴(𝑟) and 𝑢2(𝑟) of the factor-

348 ISSN 2071-0186. Ukr. J. Phys. 2020. Vol. 65, No. 4



Energy Spectra of Electron Excitations

Table 3. Distributions of electron excitations over the irreducible projective
representations of corresponding projective classes for electron 𝜋-bands at high-symmetry
points in the Brillouin zones of the crystalline graphite 𝛾-𝐶 and single-layer graphene
𝐶𝐿,1 structures not taking (𝑎) and taking (𝑏) the electron spin into account

Crystalline
graphite 𝛾-𝐶

Single-layer
graphene 𝐶𝐿,1

Points Γ
Point groups 6/𝑚𝑚𝑚(𝐷6ℎ)

a) Projective classes 𝐾0

Γ𝜋 = 2(Γ
(0)
2 )+ + 2(Γ

(0)
3 )−(Γ𝜋 = 2Γ+

2 + 2Γ−
3 ) Γ𝜋 = (Γ

(0)
2 )+ + (Γ

(0)
3 )−(Γ𝜋 = Γ+

2 + Γ−
3 )

b) Projective classes 𝐾1

Γ′
𝜋 = 2((Γ′)

(1)
1 )+ + 2((Γ′)

(1)
2 )−(Γ′

𝜋 = 2Γ+
7 + 2Γ−

8 ) Γ′
𝜋 = ((Γ′)

(1)
1 )+ + (Γ′)

(1)
2 )−(Γ′

𝜋 = Γ+
7 + Γ−

8 )

Points 𝐴
Point group 6𝑚𝑚𝑚(𝐷6ℎ)

a) Projective class 𝐾5

𝐴𝜋 = 2𝐴
(5)
1 [(𝐴

(5)
1 )1 + (𝐴

(5)
1 )2]

b) Projective class 𝐾4

𝐴′
𝜋 = 2(𝐴′)

(4)
3 [((𝐴′)

(4)
3 )1 + ((𝐴′)

(4)
3 )2]

Points 𝐾
Point groups 6̄𝑚2(𝐷3ℎ)
Projective classes 𝐾0

𝐾𝜋 = 𝐾
(0)
2 +𝐾

(0)
4 +𝐾

(0)
6 𝐾𝜋 = 𝐾

(0)
6

Projective classes 𝐾1

𝐾′
𝜋 = 2(𝐾′)

(1)
1 + (𝐾′)

(1)
2 + (𝐾′)

(1)
3 𝐾′

𝜋 = (𝐾′)
(1)
2 + (𝐾′)

(1)
3

Points 𝐻
Point group 6̄𝑚2(𝐷3ℎ)

a) Projective class 𝐾1

𝐻𝜋 = 𝐻
(1)
1 +𝐻

(1)
3

b) Projective class 𝐾0

𝐻′
𝜋 = ((𝐻′)

(0)
1 + (𝐻′)

(0)
3 ) + (𝐻′)

(0)
5 + 2(𝐻′)

(0)
6

Points 𝑃
Point group 3𝑚(𝐶3𝜐)

a) Projective class 𝐾0

𝑃𝜋 = 𝑃
(0)
1 + 𝑃

(0)
2 + 𝑃

(0)
3

b) Projective class 𝐾0

𝑃 ′
𝜋 = ((𝑃 ′)

(0)
1 + (𝑃 ′)

(0)
2 ) + 3(𝑃 ′)

(0)
3

Points 𝑀
Point groups 𝑚𝑚𝑚(𝐷2ℎ)
a) Projective classes 𝐾0

𝑀𝜋 = 2(𝑀
(0)
2 )+ + 2(𝑀

(0)
3 )− 𝑀𝜋 = (𝑀

(0)
2 )+ + (𝑀

(0)
3 )−

b) Projective classes 𝐾1

𝑀 ′
𝜋 = 2((𝑀 ′)(1))+ + 2((𝑀 ′)(1))− 𝑀 ′

𝜋 = ((𝑀 ′)(1))+ + ((𝑀 ′)(1))−

Point 𝐿
Point group 𝑚𝑚𝑚(𝐷2ℎ)

а) Projective class 𝐾5

𝐿𝜋 = 2𝐿
(5)
1

b) Projective class 𝐾4

𝐿′
𝜋 = 2((𝐿′)

(4)
1 ) + (𝐿′)

(4)
2 )
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Table 6. Characters of the irreducible projective representations
of the projective class 𝐾4 corresponding to the standard factor-system 𝜔′

(4)
(𝑟2, 𝑟1) of this class

Projec-
tive
class

Notation
for irreducible

projective
representation

6/𝑚𝑚𝑚(𝐷6ℎ)

𝑒 𝑐1 𝑐23 3𝑢2 𝑐2 𝑐56 𝑐6 3𝑢′
2 𝑖 𝑖𝑐3 𝑖𝑐23 3𝑖𝑢2 𝑖𝑐2 𝑖𝑐56 𝑖𝑐6 3𝑖𝑢′

2

𝐾4 𝑃
(4)
1 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0

𝑃
(4)
2 2 2 2 –2 0 0 0 0 0 0 0 0 0 0 0 0

𝑄(4) 4 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0

𝑢2,𝐴(𝑟) 1 –1 1 𝑖 𝑖 −𝑖 −𝑖 –1 1 –1 1 𝑖 −𝑖 𝑖 𝑖 1

Table 7. Characters of the two-valued (spinor) irreducible
projective representations of point 𝐴 in the Brillouin zone of crystalline graphite 𝛾-𝐶

Projec-
tive
class

Notation
for irreducible

projective
representation

6/𝑚𝑚𝑚(𝐷6ℎ)

𝑒 𝑐3 𝑐23 3𝑢2 𝑐2 𝑐56 𝑐6 3𝑢′
2 𝑖 𝑖𝑐3 𝑖𝑐23 3𝑖𝑢2 𝑖𝑐2 𝑖𝑐56 𝑖𝑐6 3𝑖𝑢′

2

𝐾4 (𝐴′)
(4)
1 2 −2 2 2𝑖 0 0 0 0 0 0 0 0 0 0 0 0

((𝐴′)
(4)
1 + (𝐴′)

(4)
2 )<

(𝐴′)
(4)
2 2 −2 2 −2𝑖 0 0 0 0 0 0 0 0 0 0 0 0

(𝐴′)
(4)
3 4 2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0

systems 𝜔1,𝐴(𝑟2, 𝑟1) and 𝜔2(𝑟2, 𝑟1) to the standard
form, i.e. 𝑢2,𝐴(𝑟) = 𝑢1,𝐴(𝑟)𝑢2(𝑟) [1]. The values of
the coefficients 𝑢2,𝐴(𝑟) are shown in the bottom part
of Table 4.

The characters of the irreducible projective rep-
resentations of the projective class 𝐾4, which cor-
respond to the standard factor-system of this class,
𝜔′
(4)(𝑟2, 𝑟1), are given in Table 6, and the characters

of the two-valued (spinor) irreducible projective rep-
resentations of point 𝐴 are quoted in Table 7. In the
bottom part of Table 6, the values of the coefficients
𝑢2,𝐴(𝑟) are shown. As it has to be, the equalities

(𝐴′)
(4)
𝑖 = 𝑢2,𝐴(𝑟)𝑃

(4)
𝑖 (6)

are satisfied.
The characters of the projective equivalence repre-

sentation at point 𝐴, i.e. the representation 𝐴eq and
the two-valued representations 𝐴′

𝑧 ≡ Γ′
𝑧 and 𝐴′

𝜋 are
given in Table 2. The distributions of electron exci-
tations at point 𝐴 in the Brillouin zone of crystalline
graphite 𝛾-𝐶 for the 𝜋-bands neglecting the electron
spin and taking it into account are presented in Ta-
ble 3. It is of interest that electron excitations of 𝜋-
bands at point 𝐴 in the Brillouin zone of crystalline

graphite 𝛾-𝐶 making allowance for the spin are four-
fold degenerate, because their states are transformed
according to the four-dimensional irreducible projec-
tive representations of the projective class 𝐾4. In the
absence of external magnetic fields, additional condi-
tions associated with the time-reversal invariance are
imposed on the wave functions of states and, accord-
ingly, on the representations. In this case, some of the
states may become additionally degenerate.

Let us account for the time-reversal invariance of
the states at points Γ and 𝐴 in the Brillouin zone of
crystalline graphite and point Γ in the Brillouin zone
of single-layer graphene with the help of the Herring
criterion [5, 6, 9]. The corresponding calculation pro-
cedure is described in works [9,10] in detail. In partic-
ular, the summation is carried out over the elements
𝑔′ = (𝛼|𝑟′) of the wave-vector group 𝐺𝑘 that satisfy
the condition 𝑔′𝑘 = −𝑘 (𝑟′𝑘 = −𝑘).

For points Γ and 𝐴 of crystalline graphite 𝛾-𝐶
and point Γ of single-layer graphene 𝐶𝐿,1, each wave-
vector star has one ray. At those points, the wave vec-
tors −𝑘 and 𝑘 are equivalent (−𝑘 ≡ 𝑘), and the con-
dition 𝑔′𝑘 = −𝑘 is satisfied, for crystalline graphite
𝛾-𝐶, by the elements 𝑔′1 = (0 |𝑒 ), 𝑔′2 = (0 |𝑐3 ),
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𝑔′3 = (0
⃒⃒
𝑐23 ), 𝑔′4 = (0 |(𝑢2)1 ), 𝑔′5 = (0 |(𝑢2)2 ), 𝑔′6 =

= (0 |(𝑢2)3 ), 𝑔′7 = (𝑎1

2 |𝑐2 ), 𝑔′8 = (𝑎1

2

⃒⃒
𝑐56 ), 𝑔′9 =

= (𝑎1

2 |𝑐6 ), 𝑔′10 = (𝑎1

2 |(𝑢′
2 )1), 𝑔′11 = (𝑎1

2 |(𝑢′
2 )2),

𝑔′12 = (𝑎1

2 |(𝑢′
2 )3), 𝑔′13 = (0 |𝑖 ), 𝑔′14 = (0 |𝑖𝑐3 ), 𝑔′15 =

= (0
⃒⃒
𝑖𝑐23 ), 𝑔′16 = (0 |𝑖(𝑢2)1 ), 𝑔′17 = (0 |𝑖(𝑢2)2 ), 𝑔′18 =

= (0 |𝑖(𝑢2)3 ), 𝑔′19 = (𝑎1

2 |𝑖𝑐2 ), 𝑔′20 = (𝑎1

2

⃒⃒
𝑖𝑐56 ), 𝑔′21 =

= (𝑎1

2 |𝑖𝑐6 ), 𝑔′22 = (𝑎1

2 |𝑖(𝑢′
2 )1), 𝑔′23 = (𝑎1

2 |𝑖(𝑢′
2 )2),

and 𝑔′24 = (𝑎1

2 |𝑖(𝑢′
2 )3) and, for single-layer graphene

𝐶𝐿,1, by the same values, for which the nontrivial
translation 𝑎1

2 = 0, because the spatial group of
single-layer graphene is symmorphic and, unlike the
spatial group of crystalline graphite, does not contain
nontrivial translations.

It is easy to calculate the squares of those ele-
ments, (𝑔′)2 = (𝑟𝛼+𝛼

⃒⃒
𝑟2 ). In particular, for points

Γ and 𝐴 of crystalline graphite, (𝑔′1)
2 = (0 |𝑒 ),

(𝑔′2)
2 = (0

⃒⃒
𝑐23 ), (𝑔′3)

2 = (0 |𝑞𝑐3 ), (𝑔′4)
2 = (0 |𝑞 ),

(𝑔′5)
2 = (0 |𝑞 ), (𝑔′6)

2 = (0 |𝑞 ), (𝑔′7)
2 = (𝑎1 |𝑞 ),

(𝑔′8)
2 = (𝑎1

⃒⃒
𝑞𝑐23 ), (𝑔′9)

2 = (𝑎1 |𝑐3 ), (𝑔′10)
2 = (0 |𝑞 ),

(𝑔′11)
2 = (0 |𝑞 ), (𝑔′12)

2 = (0 |𝑞 ), (𝑔′13)
2 = (0 |𝑒 ),

(𝑔′14)
2 = (0

⃒⃒
𝑐23 ), (𝑔′15)

2 = (0 |𝑞𝑐3 ), (𝑔′16)
2 = (0 |𝑞 ),

(𝑔′17)
2 = (0 |𝑞 ), (𝑔′18)

2 = (0 |𝑞 ), (𝑔′19)
2 = (0 |𝑞 ),

(𝑔′20)
2 = (0

⃒⃒
𝑞𝑐23 ), (𝑔′21)

2 = (0 |𝑐3 ), (𝑔′22)
2 = (𝑎1 |𝑞 ),

(𝑔′23)
2 = (𝑎1 |𝑞 ), (𝑔′24)2 = (𝑎1 |𝑞 ) where 𝑞 is the rota-

tion by the angle 2𝜋 around the corresponding axis;
and, for point Γ of single-layer graphene 𝐶𝐿,1, these
are the same values, for which the trivial translation
vector 𝑎1 = 0.

The stages of calculations according to the Her-
ring criterion and the results obtained are presented
in Table 18 (see Appendix). From the values of the
Herring criterion, it is easy to see that both the
single- and two-valued projective representations at
points Γ and 𝐴 of crystalline graphite 𝛾-𝐶 and
point Γ of single-layer graphene 𝐶𝐿,1, except for
the representations (𝐴′)

(4)
1 and (𝐴′)

(4)
2 for crystalline

graphite, are related to the case 𝑎1 [9], where there
is no additional degeneration of the states provided
that their invariance with respect to the time re-
versal is taken into account. At the same time, the
projective representations at point 𝐴 for crystalline
graphite – these are the representations (𝐴′)

(4)
1 and

(𝐴′)
(4)
2 – are related to the case 𝑏1 [9] and, be-

ing representations with complex-conjugated char-
acters, group together to increase the degeneracy
order of electron states to four. This grouping of
complex-conjugated representations is illustrated in
Table 7.

3.1.3. Point Δ

The group of equivalent directions of the wave-vector
group at point Δ of crystalline graphite 𝛾-𝐶 is the
group 6𝑚𝑚(𝐶6𝑣). The wave-vector star at this point
contains two rays. The irreducible single- and two-
valued projective representations for point Δ are
given in work [1]. The condition 𝑔′𝑘 = −𝑘 at this
point is satisfied by the elements 𝑔′𝑘 = −𝑘: 𝑔′4 =
= (0 |(𝑢2)1), 𝑔′5 = (0 |(𝑢2)2), 𝑔′6 = (0 |(𝑢2)3), 𝑔′10 =
= (𝑎1

2 |(𝑢′
2)1), 𝑔′11 = (𝑎1

2 |(𝑢′
2)2), 𝑔′12 = (𝑎1

2 |(𝑢′
2)3),

𝑔′13 = (0 |𝑖), 𝑔′14 = (0 |𝑖𝑐3), 𝑔′15 = (0
⃒⃒
𝑖𝑐23), 𝑔′19 =

= (𝑎1

2 |𝑖𝑐2), 𝑔′20 = (𝑎1

2

⃒⃒
𝑖𝑐56) and 𝑔′21 = (𝑎1

2 |𝑖𝑐6).
The squares of those elements can be easily calcu-
lated: (𝑔′4)

2 = (0 |𝑞), (𝑔′5)
2 = (0 |𝑞 ), (𝑔′6)

2 = (0 |𝑞),
(𝑔′10)

2 = (0 |𝑞), (𝑔′11)
2 = (0 |𝑞), (𝑔′12)

2 = (0 |𝑞),
(𝑔′13)

2 = (0 |𝑒), (𝑔′14)
2 = (0

⃒⃒
𝑐23), (𝑔′15)

2 = (0 |𝑞𝑐3),
(𝑔′19)

2 = (0 |𝑞), (𝑔′20)2 = (0
⃒⃒
𝑞𝑐23) and (𝑔′21)

2 = (0 |𝑐3).
After calculating the Herring criteria, it is easy to

see that all, both single- and two-valued, irreducible
projective representations at this point belong to the
case 𝑎2 [9] (subscript 2 means that 𝑘 is not equiva-
lent to −𝑘, but the space group contains an element
𝑅 that transforms 𝑘 into −𝑘), when there is no addi-
tional degeneration of the states provided that their
invariance with respect to the time reversal is taken
into account. The consistency conditions for the irre-
ducible projective representations along the direction
Γ −Δ−𝐴, which is the direction of the highest sym-
metry in the Brillouin zone of a crystal structure with
the spatial symmetry group 𝑃63/𝑚𝑚𝑐(𝐷4

6ℎ), were
shown in Fig. 5 of work [1].

3.2. Line K–P–H of crystalline
graphite and point K of single-layer graphene

3.2.1. Redesignation

First of all, let us make an important clarifica-
tion. The matrices of the irreducible representations
of the wave-vector groups, 𝐷𝑘(ℎ), and their charac-
ters 𝜒𝐷𝑘(ℎ) contain the phase factor 𝑒−𝑖𝑘(𝛼+𝑎), where
𝑘 is the wave vector, 𝛼 the vector of nontrivial trans-
lation, and 𝑎 the vector of trivial translation for
the element 𝑔 = (𝛼 + 𝑎|𝑟) of the spatial symmetry
group. This factor was not taken into consideration,
when constructing the characters of irreducible rep-
resentations in work [1] (see formulas (6) and (7) in
work [1]). For the basic elements of the spatial group,
one can choose a = 0, so that this phase factor takes
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the form 𝑒−𝑖k𝛼, where the nontrivial translation vec-
tor 𝛼 corresponds to the “rotational” element 𝑟, i.e. to
the basic element ℎ = (𝛼|𝑟) of the spatial symme-
try group. The account for the phase factor 𝑒−𝑖𝑘𝛼

for the elements 𝑟’s is necessary, when constructing
a correct irreducible projective representation of the
wave-vector group in the cases where the scalar prod-
uct (𝑘,𝛼) ̸= 0. Note that in the case of point 𝐴 con-
sidered above, the nontrivial translation vector 𝛼 was
always equal to zero for the nonzero characters of “ro-
tational” elements 𝑟’s.

Since the phase factor 𝑒−𝑖k𝛼(𝑟) is inherent to the
spatial symmetry of a periodic structure, it can be in-
troduced into the definition of the atomic equivalence
representation by replacing formula (15) in work [1]
by the formula
𝜒eq(𝑅𝛼) = 𝑒−𝑖𝑘𝛼(𝑅𝛼)

∑︁
𝑗

𝛿𝑅𝛼𝑟𝑗 ,𝑟𝑗
𝑒𝑖𝐾𝑚𝑟𝑗 , (7)

denoting the previously used 𝜒eq(𝑅𝛼) without the
phase factor as (𝜒eq)0(𝑅𝛼), i.e. the new 𝐷eq will con-
tain the phase factor 𝑒−𝑖𝑘𝛼(𝑅𝛼), and also denot-
ing 𝐷eq obtained for various points in the Brillouin
zone in work [1] and not containing the phase factor
as (𝐷eq)0.

At points 𝐾 and 𝐻 of crystalline graphite 𝛾-𝐶 and
point 𝐾 of single-layer graphene 𝐶𝐿,1, the factor-

Table 8. Characters of the irreducible
projective representations of the projective classes
𝐾0 and 𝐾1 of the group 6̄𝑚2(𝐷3ℎ) corresponding
to the standard factor-systems 𝜔′

(0)
(𝑟2, 𝑟1) (the

unity-containing factor-system for ordinary vector
representations) and 𝜔′

(1)
(𝑟2, 𝑟1), respectively

Projec-
tive
class

Notation
for irreducible

projective
representation

6/𝑚𝑚𝑚(𝐷6ℎ)

𝑒 𝑐3 𝑐23 3𝑢2 𝑖𝑐2 𝑖𝑐56 𝑖𝑐6 3𝑖𝑢′
2

𝐾0 𝐾
(0)
1 𝐾1 1 1 1 1 1 1 1 1

𝐾
(0)
2 𝐾2 1 1 1 1 −1 −1 −1 −1

𝐾
(0)
3 𝐾3 1 1 1 −1 −1 −1 −1 1

𝐾
(0)
4 𝐾4 1 1 1 −1 −1 −1 −1 1

𝐾
(0)
5 𝐾5 2 –1 –1 0 2 −1 −1 0

𝐾
(0)
6 𝐾6 2 –1 –1 0 −2 1 1 0

𝐾1 𝑃
(1)
1 2 –1 –1 0 0

√
3𝑖 −

√
3𝑖 0

𝑃
(1)
2 2 –1 –1 0 0 −

√
3𝑖

√
3𝑖 0

𝑃
(1)
2 2 2 2 0 0 0 0 0

𝑢2,𝐾(𝑟) ≡ 𝑢2(𝑟) 1 –1 1 𝑖 𝑖 −𝑖 −𝑖 –1

groups of wave-vector groups are isomorphic to the
same point symmetry group 6̄𝑚2(𝐷3ℎ) with respect
to the invariant translational subgroups.

Each of the stars of the wave-vector groups at
points 𝐾 in both crystalline graphite 𝛾-𝐶 and single-
layer graphene 𝐶𝐿,1 contains two vectors. These are
the vectors (𝑘𝐾)1 = − 1

3 (2𝑏2 − 𝑏3) and (𝑘𝐾)2 =
= 1

3 (2𝑏2 − 𝑏3) for crystalline graphite, and the vec-
tors (𝑘𝐾)1 = − 1

3 (2𝑏1 − 𝑏2) and (𝑘𝐾)2 = 1
3 (2𝑏1 − 𝑏2)

for single-layer graphene. For crystalline graphite, the
nontrivial translation vector 𝛼 = 𝑎1/2 is perpen-
dicular to the wave vectors (𝑘𝐾)1 and (𝑘𝐾)2. The-
refore, the phase factor 𝑒−𝑖𝑘𝐾𝛼 equals 1 in all
cases. This is also true for single-layer graphene as
well, where the nontrivial translation vector equals
zero. This means that, for both structures, the
factor-systems 𝜔1,𝐾(𝑟2, 𝑟1) include the “+1”-values
only, i.e. they are completely unity-containing factor-
systems, which coincide with the standard factor-
systems of the projective class 𝐾0. At the same
time, since 𝜔2,𝐾(𝑟2, 𝑟1) = 𝜔1,𝐾(𝑟2, 𝑟1)𝜔2(𝑟2, 𝑟1) =
= 𝜔′

(0)(𝑟2, 𝑟1)𝜔2(𝑟2, 𝑟1) = 𝜔2(𝑟2, 𝑟1), the factor-sys-
tems for the projective representations at points 𝐾
taking the spin into account, i.e. 𝜔2,𝐾(𝑟2, 𝑟1), coin-
cide with the factor-system 𝜔2(𝑟2, 𝑟1) belonging to
the projective class 𝐾1.

The characters of the irreducible projective repre-
sentations of the projective classes 𝐾0 (where they
coincide with the ordinary or vector representations)
and 𝐾1 of the group 6̄𝑚2(𝐷3ℎ), which correspond
to the standard factor-systems 𝜔′

(0)(𝑟2, 𝑟1) (a unity-
containing factor-system, whose coefficients equal
only to +1) and 𝜔′

(1)(𝑟2, 𝑟1), respectively, are pre-
sented in Table 8. The characters of two-dimensional
irreducible projective representations corresponding
to the standard factor-system 𝜔′

(1)(𝑟2, 𝑟1) are marked
with the symbol 𝑃 . The coefficients 𝑢2,𝐾(𝑟) ≡ 𝑢2(𝑟)
are given in the bottom part of Table 8.

In Table 9, the characters of the two-valued
(spinor) irreducible projective representations of
points 𝐾 in the Brillouin zones of crystalline graphite
and single-layer graphene are given. They are identi-
cal for those two structures.

It should be noted that, for the two-valued (spinor)
irreducible projective representations of points 𝐾
in the Brillouin zones of crystalline graphite and
graphene, the following equations are satisfied:

(𝐾 ′)
(1)
𝑖 = 𝑢2(𝑟)𝑃

(1)
𝑖 . (8)
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In addition, for various points in the Brillouin zones –
e.g., for points 𝐾 – we can also determine how the
characters of the representations of the direct prod-
ucts 𝐾𝑖 ⊗ 𝐷+

1/2, where 𝐾𝑖 is the character of the 𝑖-
th projective irreducible representation making no al-
lowance for the electron spin, can be expanded in two-
valued (spinor) irreducible projective representations
with regard for the electron spin. In other words, we
can determine which orbitals or the sum of orbitals
found making allowance for the spin will correspond
to an orbital obtained without regard for the spin, if
the latter is taken into account.

Let us determine this correspondence proceeding
from the distributions of the electron 𝜋-band rep-
resentations at points 𝐾 in crystalline graphite and
single-layer graphene without taking the electron spin
into account (see Table 12 in work [1]). In particu-
lar, for the products 𝐾

(0)
2 ⊗ 𝐷+

1/2, 𝐾
(0)
4 ⊗ 𝐷+

1/2, and

𝐾
(0)
6 ⊗ 𝐷+

1/2, whose characters are presented in the
bottom part of Table 9, it is easy to find the con-
sistency conditions for the irreducible projective rep-
resentations, which arise, when the electron spin is
taken into account for the orbitals 𝐾𝑖 determined
without regard for the spin. In particular, the orbital
(𝐾 ′)

(1)
1 , which makes allowance for the electron spin,

corresponds to the orbital 𝐾(0)
2 , if the spin is taken

into account; the orbital (𝐾 ′)
(1)
1 also corresponds to

the orbital 𝐾(0)
4 ; the sum of orbitals (𝐾 ′)

(1)
2 +(𝐾 ′)

(1)
3

corresponds to the orbital 𝐾
(0)
6 , i.e. if the electron

spin is taken into account, the orbital 𝐾(0)
6 , which is

doubly degenerate, if the electron spin is not taken
into account, becomes split into two doubly degener-
ate spin orbitals (𝐾 ′)

(1)
2 and (𝐾 ′)

(1)
3 .

The characters of projective representations for
points 𝐾, namely, the equivalence representations
𝐾eq, the representations of the spatial symmetry of
𝜋-orbitals 𝐾𝑧, the representations of the symmetry
of electron 𝜋-bands without regard for the electron
spin 𝐾𝜋, two-valued representations 𝐷+

1/2, 𝐾 ′
𝑧, and

representations of the symmetry of electron 𝜋′-bands
with regard for the electron spin 𝐾 ′

𝜋, are presented
in Table 2. The distributions of electron excitations
for 𝜋-bands (without taking and taking the electron
spin into account) over the two-valued (spinor) irre-
ducible projective representations of points 𝐾 in the
Brillouin zones of crystalline graphite 𝛾-𝐶 and single-
layer graphene 𝐶𝐿,1 are presented in Table 3.

An important consequence of the account for the
electron spin for electron excitations at points 𝐾 is
the splitting of the doubly degenerate spinless orbitals
𝐾

(0)
6 in the structures of both crystalline graphite

and single-layer graphene. This splitting is predicted
by the theoretical-group analysis and occurs as a re-
sult of the consideration of the spin-orbit interac-
tion. But it is extremely weak for carbon structures
(about 1.0÷1.5 meV [2]) and will not be noticeable
against the state energies measured in electronvolts
and even tens of electronvolts. From the viewpoint of
a theoretical group description, this splitting of the
spinless orbitals 𝐾

(0)
6 into the spin orbitals (𝐾 ′)

(1)
2

and (𝐾 ′)
(1)
3 , if the spin is taken into account, has a

principal character for noncarbon structures with the
spatial symmetry group 𝑃63/𝑚𝑚𝑐(𝐷4

6ℎ) as well. For
instance, it can be significant for dichalcogenides of
transition metals.

3.2.2. Point 𝐻

As was mentioned above, the wave-vector factor-
group at point 𝐻 in the Brillouin zone of crystalline
graphite 𝛾-𝐶 with respect to the infinite invariant
translation subgroup is isomorphic to the point group
6̄𝑚2(𝐷3ℎ). The star of the wave-vector group con-
tains two vectors, (𝑘𝐻)1 = − 1

2𝑏1 −
1
3 (2𝑏2 − 𝑏3) and

(𝑘𝐻)2 = − 1
2𝑏1 +

1
3 (2𝑏2 − 𝑏3).

Table 9. Characters of the two-valued (spinor)
irreducible projective representations of the group
6̄𝑚2(𝐷3ℎ) (the projective class 𝐾1) of the spinor
representation 𝐷

+
1/2

(𝑟) and the projective

representation products 𝐾
(0)
2 ⊗ 𝐷

+
1/2

,

𝐾
(0)
4 ⊗ 𝐷

+
1/2

, and 𝐾
(0)
6 ⊗ 𝐷

+
1/2

Projec-
tive
class

Notation
for irreducible

projective
representation

6̄𝑚2(𝐷3ℎ)

𝑒 𝑐3 𝑐23 3𝑢2 𝑖𝑐2 𝑖𝑐56 𝑖𝑐6 3𝑖𝑢′
2

𝐾1 (𝐾′)
(1)
1 2 1 –1 0 0

√
3 −

√
3 0

(𝐾′)
(1)
2 2 1 –1 0 0 −

√
3

√
3 0

(𝐾′)
(1)
3 2 –2 2 0 0 0 0 0

𝐷+
1/2

(𝑟) 2 1 –1 0 0 −
√
3

√
3 0

𝐾1 𝐾
(0)
2 ⊗𝐷+

1/2
2 1 –1 0 0

√
3 −

√
3 0

𝐾
(0)
4 ⊗𝐷+

1/2
2 1 –1 0 0

√
3 −

√
3 0

𝐾
(0)
6 ⊗𝐷+

1/2
4 –1 1 0 0 −

√
3

√
3 0

ISSN 2071-0186. Ukr. J. Phys. 2020. Vol. 65, No. 4 355



V.O. Gubanov, A.P. Naumenko, M.M. Bilyi et al.

Table 10. Characters of (𝑎) the one-valued irreducible projective representations of the projective
class 𝐾1 of the group 6̄𝑚2(𝐷3ℎ) corresponding to its standard factor-system and (𝑏) the one-valued 𝑝-equivalent
representations describing the symmetry of vibrational and electron excitations without taking the spin
into account at point 𝐻 in the Brillouin zone of crystalline graphite for the spatial symmetry group (the
wave-vector group of point 𝐻) that is a subgroup of the spatial symmetry group 𝑃63/𝑚𝑚𝑐 (𝐷4

6ℎ)

Projec-
tive
class

Notation
for irreducible

projective
representation

6̄𝑚2(𝐷3ℎ)

𝑒 𝑐3 𝑐23 3𝑢2 𝑖𝑐2 𝑖𝑐56 𝑖𝑐6 3𝑖𝑢′
2

𝐾1 𝑎 𝑃
(1)
1 2 –1 –1 0 0

√
3𝑖 −

√
3𝑖 0

𝑃
(1)
2 2 –1 –1 0 0 −

√
3𝑖

√
3𝑖 0

𝑃
(1)
3 2 2 2 0 0 0 0 0

𝑢1,𝐻(𝑟) 1 1 1 1 𝑖 𝑖 𝑖 𝑖

𝑒𝑖𝑘𝐻𝑎(𝑟) 1 1 1 1 𝑖 𝑖 𝑖 𝑖

𝑒𝑖𝑘𝐻𝑎(𝑟)𝑢1,𝐻(𝑟) 1 1 1 1 –1 –1 –1 –1

𝐾1 b 𝐻
(1)
1 2 –1 –1 0 0 −

√
3𝑖

√
3𝑖 0

𝐻
(1)
2 2 –1 –1 0 0

√
3𝑖 −

√
3𝑖 0

𝐻
(1)
3 2 2 2 0 0 0 0 0

In work [1], it was shown that both the factor-
system of the spatial symmetry group of crystalline
graphite at point 𝐻 of its Brillouin zone, 𝜔1,𝐻(𝑟2, 𝑟1),
with the coefficients 𝑢1,𝐻(𝑟) of reduction to the
standard form and the factor-system of the spin
variable transformations, 𝜔2(𝑟2, 𝑟1), with the coeffi-
cients 𝑢2(𝑟) of reduction to the standard form be-
long to the same projective class 𝐾1. This means
that the two-valued (spinor) irreducible projective
representations for point 𝐻 in the Brillouin zone
of crystalline graphite 𝛾-𝐶 belong to the projec-
tive class 𝐾0 (𝐾1 · 𝐾1 = 𝐾0), and the reduction
coefficients of the transformation factor-system to
the standard form taking the electron spin into ac-
count, 𝜔2,𝐻(𝑟2, 𝑟1) = 𝜔1,𝐻(𝑟2, 𝑟1)𝜔2(𝑟2, 𝑟1), are de-
termined at this point by the equality 𝑢2,𝐻(𝑟) =
= 𝑢1,𝐻(𝑟)𝑢2(𝑟). When constructing the characters
of the two-valued (spinor) irreducible projective rep-
resentations of point 𝐻, it is also necessary to
consider the phase factor 𝑒−𝑖𝑘𝐻𝛼(𝑟), i.e. to deter-
mine the resulting factors 𝑒−𝑖𝑘𝐻𝛼(𝑟)𝑢1,𝐻(𝑟)𝑢2(𝑟),
by which the characters of the irreducible projec-
tive representations of the projective class 𝐾0 (these
are the characters of the vector representations for
the point symmetry group 6̄𝑚2(𝐷3ℎ)) have to be
multiplied.

The characters of the single-valued irreducible pro-
jective representations of the projective class 𝐾1 of

the point group 6̄𝑚2(𝐷3ℎ), which correspond to the
standard factor-system of this class, and the charac-
ters of the single-valued irreducible projective repre-
sentations characterizing the spatial symmetry of vi-
brational and electron – in the latter case, not taking
the electron spin into account – excitations at point
𝐻 in the Brillouin zone of crystalline graphite are
given in Tables 10, 𝑎 and 10, 𝑏, respectively 2. The
bottom part of Table 10, 𝑎 contains the values of the
coefficients 𝑢1,𝐻(𝑟) that transform the factor-system
of the projective class 𝐾1, which corresponds to the
spatial symmetry of point 𝐻, to the standard form,
as well as the values of the phase factors 𝑒−𝑖k𝐻𝛼(𝑟)
and the coefficient products 𝑒−𝑖k𝐻𝛼(𝑟)𝑢1,𝐻(𝑟).

The characters of the two-valued (spinor) irre-
ducible projective representations belonging to the
projective class 𝐾0 and characterizing the symme-
try of electron excitations taking the electron spin

2 It is of interest to note that the characters of the single-
valued irreducible projective representations for point 𝐻 in
the Brillouin zone of crystalline graphite (the spatial sym-
metry group of crystalline graphite is 𝑃63/𝑚𝑚𝑐(𝐷4

6ℎ), and
the factor-group of the wave-vector group for point 𝐻 is iso-
morphic to the point group 6̄𝑚2(𝐷3ℎ) with respect to the
invariant translation subgroup), which belong to the projec-
tive class 𝐾1, exactly coincide with the characters of the first
three irreducible representations presented in Table C.28 of
work [8].
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Table 11. Characters of (𝑎) the two-valued (spinor) irreducible projective representations
at point 𝐻 in the Brillouin zone of crystalline graphite 𝛾-𝐶 (the spatial symmetry group 𝑃63/𝑚𝑚𝑐 (𝐷4

6ℎ),
the projective class 𝐾0) and (𝑏) the projective representation products 𝐻

(1)
1 ⊗ 𝐷

+
1/2

and 𝐻
(1)
3 ⊗ 𝐷

+
1/2

Projec-
tive
class

Notation
for irreducible

projective
representation

6/𝑚𝑚𝑚(𝐷6ℎ)

𝑒 𝑐3 𝑐23 3𝑢2 𝑖𝑐2 𝑖𝑐56 𝑖𝑐6 3𝑖𝑢′
2

𝐾0 𝑎 (𝐻′)
(0)
1 1 –1 1 𝑖 −𝑖 𝑖 𝑖 1

(𝐻′)
(0)
2 1 –1 1 𝑖 𝑖 −𝑖 −𝑖 –1

(𝐻′)
(0)
3 1 –1 1 −𝑖 −𝑖 𝑖 𝑖 –1

(𝐻′)
(0)
4 1 –1 1 −𝑖 𝑖 −𝑖 −𝑖 1

(𝐻′)
(0)
5 2 1 –1 0 −2𝑖 −𝑖 −𝑖 0

(𝐻′)
(0)
6 2 1 –1 0 2𝑖 𝑖 𝑖 0

𝑢1,𝐻(𝑟) 1 1 1 1 𝑖 𝑖 𝑖 𝑖

𝑢2(𝑟) 1 –1 1 𝑖 𝑖 −𝑖 −𝑖 –1
𝑒𝑖𝑘𝐻𝑎(𝑟) 1 1 1 1 𝑖 𝑖 𝑖 𝑖

𝑒𝑖𝑘𝐻𝑎(𝑟)𝑢1,𝐻(𝑟)𝑢2(𝑟) 1 –1 1 𝑖 −𝑖 𝑖 𝑖 1

𝐷+
1/2

(𝑟) 2 1 –1 0 0 −
√
3

√
3 0

𝐾0 b 𝐻
(1)
1 ⊗𝐷+

1/2
4 –1 1 0 0 3𝑖 3𝑖 0

𝐻
(1)
3 ⊗𝐷+

1/2
4 2 –2 0 0 0 0 0

𝐻′
𝜋 8 1 –1 0 0 3𝑖 3𝑖 0

into account are given in Table 11, 𝑎. The bot-
tom part of Table 11, 𝑎 contains the values of
the coefficients 𝑢1,𝐻(𝑟) and 𝑢2(𝑟), which transform
the factor-system 𝜔1,𝐻(𝑟2, 𝑟1) and 𝜔2(𝑟2, 𝑟1), respec-
tively, to the standard form, as well as the values
of the phase factors 𝑒−𝑖k𝐻𝛼(𝑟), the coefficient prod-
ucts 𝑒−𝑖k𝐻𝛼(𝑟)𝑢1,𝐻(𝑟)𝑢2(𝑟), and the characters of
the double-digit spinor representation 𝐷+

1/2(𝑟) of the
point symmetry group 6̄𝑚2(𝐷3ℎ). In Table 11, 𝑏, the
characters of the products of the projectivev repre-
sentations 𝐻

(1)
1 ⊗ 𝐷+

1/2 and 𝐻
(1)
3 ⊗ 𝐷+

1/2 are shown,
which make it is easy to find the consistency con-
ditions for the irreducible projective representations
for the spinless orbitals of point 𝐻, the orbitals 𝐻

(1)
𝑖

of the projective class 𝐾1 with irreducible projective
representations of spin orbitals (𝐻 ′)

(0)
𝑖 of the projec-

tive class 𝐾0, which arise, when the electron spin
is taken into account. For instance, if the electron
spin is taken into consideration, the sum of spin or-
bitals ((𝐻 ′)

(0)
1 +(𝐻 ′)

(0)
3 )+(𝐻 ′)

(0)
6 corresponds to the

spinless orbital 𝐻
(1)
1 , and the sum of spin orbitals

(𝐻 ′)
(0)
5 + (𝐻 ′)

(0)
6 to the spinless orbital 𝐻(1)

3 .

The characters of the projective representation of
all electron 𝜋-bands taking the electron spin into ac-
count (𝜋′-bands) for point 𝐻 in the Brillouin zone of
crystalline graphite 𝛾-𝐶, i.e. the representation 𝐻 ′

𝜋,
are equal to the sums of the corresponding character
values of all spin orbitals (𝐻 ′)

(0)
𝑖 . They are given in

the bottom part of Table 11, 𝑏. The indicated values
for the characters of the projective representation 𝐻 ′

𝜋

can be easily obtained using formula (4) (for point 𝐻,
it looks like 𝐻 ′

𝜋 = 𝐻eq⊗𝐻 ′
𝑧, where 𝐻 ′

𝑧 is a representa-
tion that characterizes the symmetry of a 𝜋-electron
with its spin at point 𝐻 in the Brillouin zone of crys-
talline graphite).

Table 2 demonstrates the characters of the equiva-
lence representation for point 𝐻 in the Brillouin zone
of crystalline graphite, the representations 𝐻eq; the
representations 𝐻𝑧 ≡ Γ𝑧 and 𝐻𝜋 = 𝐻𝑒𝑞⊗𝐻𝑧 describ-
ing the spatial symmetry of 𝜋-electron and electron
𝜋-bands, respectively, without taking the spin into
account; the two-valued (spinor) representation 𝐷+

1/2,
and the two-valued representations 𝐻 ′

𝑧 = 𝐻𝑧 ⊗𝐷+
1/2

and 𝐻 ′
𝜋 = 𝐻eq ⊗ 𝐻 ′

𝑧 describing the symmetry of 𝜋-
electron and electron 𝜋-bands making allowance for
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the spin. Table 3 contains the distribution of electron
𝜋′-bands with regard for the spin at point 𝐻 over the
two-valued (spinor) irreducible projective representa-
tions of the projective class 𝐾0.

Our calculation of the Herring criterion for point 𝐻
with the use of the symmetry elements satisfying the
equality 𝑔′𝑘 = −𝑘 – namely, these are the elements
𝑔′7 = (𝑎1

2 |𝑐2) , 𝑔′8 = (𝑎1

2

⃒⃒
𝑐56) , 𝑔′9 = (𝑎1

2 |𝑐6) , 𝑔′10 =
= (𝑎1

2 |(𝑢′
2)1) , 𝑔′11 = (𝑎1

2 |(𝑢′
2)2) , 𝑔′12 = (𝑎1

2 |(𝑢′
2)3) ,

Table 12. (𝑎) Characters of the one-valued irreducible
projective representations of the projective class 𝐾0

of the group 3𝑚 (𝐶3𝑣), which describe the symmetry
of vibrational and electron excitations without taking
the spin into account for the spatial symmetry group at
point 𝑃 (the wave-vector group of point 𝑃 ) in the Bril-
louin zone of crystalline graphite and are 𝑝-equivalent
to the characters of the one-valued irreducible pro-
jective representations corresponding to the standard
unity-containing factor-system of this projective class.
(b) Characters of the two-valued (spinor) irreducible
projective representations of point 𝑃 in the Brillouin
zone of crystalline graphite 𝛾-𝐶 (the spatial symme-
try group 𝑃63/𝑚𝑚𝑐 (𝐷4

6ℎ), the projective class 𝐾0),
the two-valued spinor irreducible projective represen-
tation 𝐷

+
1/2

, the projective representation products

𝑃
(0)
1 ⊗𝐷

+
1/2

, 𝑃 (0)
2 ⊗𝐷

+
1/2

, and 𝑃
(0)
3 ⊗𝐷

+
1/2

, and the two-
valued projective representation of electron 𝜋′-bands
taking the electron spin into account – representation
𝑃 ′

𝜋(𝛿)

Projec-
tive
class

Notation for
irreducible
projective

representation

3𝑚(𝐶3𝜐)

𝑒 𝑐3 𝑐23 3𝑖𝑢′
2

𝐾0 𝑎 𝑃
(0)
1 1 1 1 𝜂𝑘𝑧

𝑃
(0)
2 1 1 1 −𝜂𝑘𝑧

𝑃
(0)
3 2 –1 –1 0

𝑢2(𝑟) 1 –1 1 𝑖

𝐾0 b (𝑃 ′)
(0)
1 1 –1 1 𝑖𝜂𝑘𝑧

(𝑃 ′)
(0)
2 1 –1 1 −𝑖𝜂𝑘𝑧

(𝑃 ′)
(0)
3 2 1 –1 0

𝐷+
1/2

2 1 –1 0

𝑃
(0)
1 ⊗𝐷+

1/2
2 1 –1 0

𝑃
(0)
2 ⊗𝐷+

1/2
2 1 –1 0

𝑃
(0)
3 ⊗𝐷+

1/2
4 –1 1 0

𝑃 ′
𝜋 8 1 –1 0

* 𝜂𝑘𝑧 = 𝑒−𝑖𝑘𝑃𝑎1/2 = 𝑒−𝑖𝑘𝑧𝑎1/2

𝑔′13 = (0 |𝑖) , 𝑔′14 = (0 |𝑖𝑐3) , 𝑔′15 = (0
⃒⃒
𝑖𝑐23) , 𝑔′16 =

= (0 |𝑖(𝑢2)1) , 𝑔′17 = (0 |𝑖(𝑢2)2) , 𝑔′18 = (0 |𝑖(𝑢2)3) , and
their squares equal (𝑔′7)2 = (𝑎1 |𝑞) , (𝑔′8)2 = (𝑎1

⃒⃒
𝑞𝑐23) ,

(𝑔′9)
2 = (𝑎1 |𝑐3) , (𝑔′10)

2 = (0 |𝑞) , (𝑔′11)
2 = (0 |𝑞) ,

(𝑔′12)
2 = (0 |𝑞) , (𝑔′13)

2 = (0 |𝑒) , (𝑔′14)
2 = (0

⃒⃒
𝑐23) ,

(𝑔′15)
2 = (0 |𝑞𝑐3) , (𝑔′16)

2 = (0 |𝑞) , (𝑔′17)
2 = (0 |𝑞)

and (𝑔′18)
2 = (0 |𝑞) – testifies that the two-valued

one-dimensional spinor irreducible projective repre-
sentations (𝐻 ′)

(0)
1 and (𝐻 ′)

(0)
3 at point 𝐻 in the

Brillouin zone of crystalline graphite belong to the
case 𝑏2 [9] and, owing to their time-reversal in-
variance, they must unite, although our case corre-
sponds to the union of nonequivalent complex repre-
sentations, rather than complex-conjugate ones. At
the same time, the two-valued two-dimensional
complex-conjugate irreducible projective representa-
tions (𝐻 ′)

(0)
5 and (𝐻 ′)

(0)
6 belong to the case 𝑎2 [9] and

do not unite, if the time-reversal symmetry is taken
into account.

3.2.3. Point 𝑃

The group of equivalent directions of the wave-vector
group at point 𝑃 in the Brillouin zone of crys-
talline graphite 𝛾-𝐶 is the group 3𝑚 (𝐶3𝑣). The group
3𝑚 (𝐶3𝑣) has only one class of projective represen-
tations. This is the class 𝐾0. Therefore, all projec-
tive representations of this group are 𝑝-equivalent
to vector ones. The wave-vector star at this point
contains four rays: (𝑘𝑃 )1 = −𝑘𝑧 − 1

3 (2𝑏2 − 𝑏3),
(𝑘𝑃 )2 = −𝑘𝑧+

1
3 (2𝑏2−𝑏3), (𝑘𝑃 )3 = 𝑘𝑧− 1

3 (2𝑏2−𝑏3),
and (𝑘𝑃 )4 = 𝑘𝑧 +

1
3 (2𝑏2 − 𝑏3).

Table 12 presents (𝑎) the one-valued irreducible
projective representations of the projective class 𝐾0

of the group 3𝑚 (𝐶3𝑣) at point 𝑃 in the Brillouin zone
of crystalline graphite and (b) the two-valued (spinor)
irreducible projective representations, also belonging
to the projective class 𝐾0 of this group, of equiva-
lent directions; the characters of the spinor represen-
tation 𝐷+

1/2; the products of projective representa-

tions 𝑃
(0)
1 ⊗ 𝐷+

1/2, 𝑃
(0)
2 ⊗ 𝐷+

1/2, and 𝑃
(0)
3 ⊗ 𝐷+

1/2;
and the characters of the projective representation of
electron 𝜋′-bands making allowance for the electron
spin, 𝑃 ′

𝜋. The bottom part of Table 12, 𝑎 contains the
coefficients 𝑢2(𝑟) that transform the factor-system
of transformations of the spin variable 𝜔2(𝑟2, 𝑟1) to
the standard form 𝜔′

2(𝑟2, 𝑟1) ≡ 𝜔′
(0)(𝑟2, 𝑟1. The bot-

tom part of the whole Table 12 shows the phase fac-
tor value.
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The characters of the one-valued projective equiv-
alence representations 𝑃eq, the one-valued projective
representations 𝑃𝑧 and 𝑃𝜋, the double-valued projec-
tive representations 𝐷+

1/2 and 𝑃 ′
𝑧, and the two-valued

(spinor) projective representation 𝑃 ′
𝜋 of electron 𝜋′-

bands making allowance for the electron spin for point
𝑃 in the Brillouin zone of crystalline graphite are
given in Table 2. The distributions of projective rep-
resentations of electron 𝜋-bands without taking the
electron spin into account, 𝑃𝜋, and taking it into ac-
count, 𝑃 ′

𝜋, over the irreducible one- and two-valued,
respectively, projective representations are presented
in Table 3.

The calculation of the Herring criterion for point 𝑃
in the Brillouin zone of crystalline graphite with the
use of the symmetry elements satisfying the require-
ment 𝑔′𝑘 = −𝑘–namely, these are the elements 𝑔′10 =
= (𝑎1

2 |(𝑢′
2)1) , 𝑔′11 = (𝑎1

2 |(𝑢′
2)2) , 𝑔′12 = (𝑎1

2 |(𝑢′
2)3) ,

𝑔′13 = (0 |𝑖) , 𝑔′14 = (0 |𝑖𝑐3) and 𝑔′15 = (0
⃒⃒
𝑖𝑐23) , and

their squares equal (𝑔′10)
2 = (0 |𝑞) , (𝑔′11)

2 = (0 |𝑞) ,
(𝑔′12)

2 = (0 |𝑞) , (𝑔′13)
2 = (0 |𝑒) , (𝑔′14)

2 = (0
⃒⃒
𝑐23) ,

(𝑔′15)
2 = (0 |𝑞𝑐3) – shows that the two-valued one-

dimensional spinor irreducible projective representa-
tions at this point, (𝑃 ′)

(0)
1 and (𝑃 ′)

(0)
2 , belong to the

case 𝑏2 [9] and, owing to the time-reversal invari-
ance, they unite into the two-dimensional projective
representation ((𝑃 ′)

(0)
1 + (𝑃 ′)

(0)
2 ). At the same time,

the one-valued irreducible projective representations
𝑃

(0)
1 , 𝑃 (0)

2 , 𝑃 (0)
3 , and the two-value (spinor) projective

representation (𝑃 ′)
(0)
3 belong to the case 𝑎2 [9] and do

not unite, if the time-reversal symmetry is taken into
consideration.

At point 𝐻, which is limiting for points 𝑃 in the
Brillouin zone of crystalline graphite, if the elec-
tron spin is neglected, i.e. when the phase factor
𝑒−𝑖𝑘𝑧𝑎1/2 = 𝑖 at 𝑘𝑧 = −𝑏1/2, the sums of the char-
acters of one-valued irreducible projective represen-
tations 𝑃

(0)
1 and 𝑃

(0)
2 , as the complex-conjugate rep-

resentations, should transform into the characters of
the two-dimensional one-valued irreducible projective
representation 𝐻

(1)
3 belonging to the projective class

𝐾1 of a higher symmetry group than the symmetry
group of points 𝑃 . It is also easy to see from Ta-
ble 12, 𝑏 that, if the electron spin is taken into ac-
count, the spin orbital (𝑃 ′)

(0)
3 corresponds to the spin-

less orbitals 𝑃 (0)
1 and 𝑃

(0)
2 , and the sum of the united

spin orbitals ((𝑃 ′)
(0)
1 + (𝑃 ′)

(0)
2 ) and the spin orbital

(𝑃 ′)
(0)
3 corresponds to the spinless orbital 𝑃 (0)

3 .

3.3. Line M–U–L of crystalline
graphite and point M of single-layer graphene

At points 𝑀 and 𝐿 in the Brillouin zone of crystalline
graphite 𝛾-𝐶 and at point 𝑀 in the Brillouin zone of
single-layer graphene 𝐶𝐿,1, the factor-groups of wave-
vector groups with respect to the invariant translation
subgroups are isomorphic to the same point symme-
try group 𝑚𝑚𝑚 (𝐷2ℎ), which is the point symmetry
group of equivalent directions for points 𝑀 in those
structures.

3.3.1. Points 𝑀

Each of the stars of the wave-vector groups at points
𝑀 in the Brillouin zones of the structures con-
cerned contains three rays: these are (𝑘𝑀 )1 = − 1

2𝑏3,
(𝑘𝑀 )2 = 1

2𝑏2, and (𝑘𝑀 )3 = − 1
2 (𝑏2 − 𝑏3) for crys-

talline graphite 𝛾-𝐶; and (𝑘𝑀 )1 = − 1
2𝑏2, (𝑘𝑀 )2 =

= 1
2𝑏1, and (𝑘𝑀 )3 = − 1

2 (𝑏1 − 𝑏2) for single-layer
graphene 𝐶𝐿,1.

First of all, as was done in work [1] for the point
group 6/𝑚𝑚𝑚 (𝐷6ℎ), let us construct a factor system
𝜔2(𝑟2, 𝑟1) describing the transformations of spinors
under the action of symmetry operations for the
point group 𝑚𝑚𝑚 (𝐷2ℎ) and determine the coeffi-
cients 𝑢2(𝑟) that transform it to the standard form
𝜔′
2(𝑟2, 𝑟1).
Of three rays of the wave-vector stars at point 𝑀

in the Brillouin zones of both crystalline graphite and
single-layer graphene, let us consider the rays (𝑘𝑀 )1
(points 𝑀1), for which the elements of symmetry that
transform these rays into the equivalent ones and
form the point symmetry group 𝑚𝑚𝑚 are the ele-
ments 𝑒, (𝑢2)1, 𝑐2, (𝑢′

2)1, 𝑖, 𝑖(𝑢2)1, ic2, and 𝑖(𝑢′
2)1. As

the 𝑚𝑚𝑚 group generators, let us choose the ele-
ments 𝑎 = (𝑢2)1, 𝑏 = 𝑐2, and 𝑐 = 𝑖. This choice makes
allowance for the composition principle. According to
the latter, the group 𝑚𝑚𝑚 can be represented as
the direct group product 222 ⊗ 1̄ (𝑚𝑚𝑚 = 222 ⊗ 1̄
or 𝐷2ℎ = 𝐷2 ⊗ 𝐶𝑖), and the group 222 as the direct
group product 2′ ⊗ 2 (222 = 2′ ⊗ 2 or 𝐷2 = 𝐶 ′

2 ⊗𝐶2).
By applying the defining relations, let us calculate

all values of 𝜔2(𝑟2, 𝑟1). It is clear that this is the defin-
ing relations for the double group (𝑚𝑚𝑚)

′ that have
to be taken for this purpose:
𝑎4 = 𝑒, 𝑏4 = 𝑒, 𝑐2 = 𝑒,
𝑎𝑏 = 𝑞𝑏𝑎, 𝑎𝑐 = 𝑐𝑎, 𝑏𝑐 = 𝑐𝑏.

The factor-system 𝜔2(𝑟2, 𝑟1) calculated for the 𝑚𝑚𝑚
group following this way and using the method of
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Table 13. Factor-system 𝜔2(𝑟2, 𝑟1) for the group 𝑚𝑚𝑚 (𝐷2ℎ) (a) and the corresponding
standard factor-system 𝜔′

2(𝑟2, 𝑟1) (𝑏). The bottom part of Table 13, 𝑎 contains the values of the function
𝑢2(𝑟) that transforms the factor-system 𝜔2(𝑟2, 𝑟1) to the standard form 𝜔′

2(𝑟2, 𝑟1) ≡ 𝜔′
(1)

(𝑟2, 𝑟1)

a b

work [1] is shown in Table 13, 𝑎. This factor sys-
tem belongs to the projective class 𝐾1, because 𝛼 =
= −1, 𝛽 = 1, and 𝛾 = 1 for it [1]. In Table 13, 𝑎,
the subscripts near the coefficients of the factor-
system 𝜔2(𝑟2, 𝑟1), which contain parenthesized num-
bers, compose a multiplication table for the elements
of the 𝑚𝑚𝑚 group (the numbers in parentheses indi-
cate the numerical designations of the elements cor-
responding to the products 𝑟2𝑟1).

With the help of the coefficients 𝑢2(𝑟) given in
the bottom part of Table 13, 𝑎, the factor system
𝜔2(𝑟2, 𝑟1) is transformed into a 𝑝-equivalent block-
symmetric form, which corresponds to the defini-
tion of a standard factor system, i.e. the factor-
system 𝜔′

2(𝑟2, 𝑟1). In so doing, the values of the
coefficients 𝑢2(𝑟) can be calculated using formulas
(13.3), (14.18), and (14.19) of work [9]. Alternati-
vely, they can be found, when constructing an ex-
tended group, the representation group [9], where
they are determined by its one-valued irreducible rep-
resentations, being additional to ordinary vector rep-
resentations.

The values of the coefficients 𝑢2(𝑟), which char-
acterize the transformation of spin functions for
identical elements 𝑟 belonging to different point
groups – in our case, to point groups 𝑚𝑚𝑚 and
6/𝑚𝑚𝑚, where the group 𝑚𝑚𝑚 is also a subgroup
of the group 6/𝑚𝑚𝑚 – expectedly turned out iden-
tical. This means that the factor-system presented in
Table 13, 𝑏 is really a standard factor-system for the
projective class 𝐾1 of the point group 𝑚𝑚𝑚, i.e. the
factor-system 𝜔′

2(𝑟2, 𝑟1) ≡ 𝜔′
(1)(𝑟2, 𝑟1). Solid lines in

Table 13, 𝑏 distinguish the contours of blocks, in
which the coefficients have a value of −1.

Table 14 displays the characters of the irreducible
representations of the double group (𝑚𝑚𝑚)′ (𝐷′

2ℎ),
the additional one-valued irreducible representations
of which (additional to the ordinary vector one-valued
irreducible representations of the group 𝑚𝑚𝑚, which
can be obtained from the representations of the group
(𝑚𝑚𝑚)′ by simply excluding the element 𝑞 from all
relations) are either two-valued projective or spinor
representations of the 𝑚𝑚𝑚 group. The spinor rep-
resentations are denoted by the symbols (𝐸′)+ and
(𝐸′)− in the Mulliken notation or the symbols Γ+

5

and Γ−
5 in the Koster notation, where the letter Γ

denotes not only their membership in a certain point
group (in the given case, this is the group 𝑚𝑚𝑚),
but also in the coinciding group of equivalent direc-
tions of the wave-vector group of point Γ in crys-
tals or periodic nanostructures. The symbols K0 and
K1 denote the corresponding projective classes, and
the notations ((Γ′)(1))+ and ((Γ′)(1))− were proposed
by us (here, the prime means the two-valued spinor
representation, the superscript (the number in the
parentheses) indicates the projective class, and the
superscripts “+” and “−” mean the representation
parity).

The characters of the irreducible representations of
the point group 𝑚𝑚𝑚 (𝐷2ℎ) of the projective classes
𝐾0 (ordinary one-valued or vector) and 𝐾1 (two-
valued projective or spinor) for the standard factor-
systems 𝜔′

(0)(𝑟2, 𝑟1) and 𝜔′
(1)(𝑟2, 𝑟1) of the point group

𝑚𝑚𝑚 are presented in Table 15. The irreducible pro-
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Table 14. Characters of the irreducible representations of the double group (𝑚𝑚𝑚)′ (𝐷′
2ℎ)

(𝑚𝑚𝑚)′(𝐷′
2ℎ) 𝑒 𝑞

(𝑢2)1,
𝑞(𝑢2)1

𝑐2,
𝑞𝑐2

(𝑢′
2)1,

𝑞(𝑢′
2)1

𝑖 𝑞𝑖
𝑖(𝑢2)1,
𝑞𝑖(𝑢2)1

𝑖𝑐2,
𝑞𝑖𝑐2

𝑖(𝑢′
2)1

𝑞𝑖(𝑢′)1

𝐾0 Γ+
1 𝐴+

1 1 1 1 1 1 1 1 1 1 1
Γ−
1 𝐴−

1 1 1 1 1 1 –1 –1 –1 –1 –1
Γ+
2 𝐴+

2 1 1 1 –1 –1 1 1 1 –1 –1
Γ−
2 𝐴−

2 1 1 1 –1 –1 –1 –1 –1 1 1

Γ+
3 𝐵+

1 1 1 –1 1 –1 1 1 –1 1 –1
Γ−
3 𝐵−

1 1 1 –1 1 –1 –1 –1 1 –1 1
Γ+
4 𝐵+

2 1 1 –1 –1 1 1 1 –1 –1 1
Γ−
4 𝐵−

2 1 1 –1 –1 1 –1 –1 1 1 –1

𝐾1 ((Γ′)(1))+ Γ+
5 (𝐸′)+ 2 –2 0 0 0 2 –2 0 0 0

((Γ′)(1))− Γ−
5 (𝐸′)− 2 –2 0 0 0 –2 2 0 0 0

Table 15. Characters of the one-valued
(vector) and two-valued (spinor) irreducible
projective representations of the group 𝑚𝑚𝑚 (𝐷2ℎ)

corresponding to the standard factor systems
𝜔′

(0)
(𝑟2, 𝑟1) (the projective class 𝐾0) and 𝜔′

(1)
(𝑟2, 𝑟1)

(the projective class 𝐾1), respectively

𝑚𝑚𝑚 (𝐷2ℎ) 𝑒 (𝑢2)1 𝑐2 (𝑢′
2)1 𝑖 𝑖(𝑢2)1 𝑖𝑐2 𝑖(𝑢′

2)1

𝐾0 𝐴+
1 1 1 1 1 1 1 1 1

𝐴−
1 1 1 1 1 –1 –1 –1 –1

𝐴+
2 1 1 –1 –1 1 1 –1 –1

𝐴−
2 1 1 –1 –1 –1 –1 1 1

𝐵+
1 1 –1 1 –1 1 –1 1 –1

𝐵−
1 1 –1 1 –1 –1 1 –1 1

𝐵+
2 1 –1 –1 1 1 –1 –1 1

𝐵−
2 1 –1 –1 1 –1 1 1 –1

𝐾1 (𝑃 (1))+ 2 0 0 0 2 0 0 0
(𝑃 (1))− 2 0 0 0 –2 0 0 0

jective representations for 𝑀 points in the Brillouin
zones of crystalline graphite and single-layer graphene
are identical to them and are shown in Table 16. In
the group 𝑚𝑚𝑚 (𝐷2ℎ), the second-order axis (𝑢2)1
is a senior axis in the structurally distinguished se-
nior subgroup [the axis 𝑐2 is involved into the ex-
tension of the group consisting of the elements 𝑒 and
(𝑢2)1 (the group 𝐶 ′

2) to the group 𝐷2]. In other words,
in the formation of the direct product of the groups
𝐶 ′

2 [(𝑈2)1] and 𝐶2, the axis (𝑢2)1 plays the role of the
principal axis, according to which the symbols (num-
bers) of irreducible representations are determined. It
is easy to see that the characters of the irreducible
projective representations of the class 𝐾1 of the group
𝑚𝑚𝑚 for the standard factor-system of this class,

Table 16. Characters of the one-valued (vector)
(the projective class 𝐾0) and two-valued (spinor)
(the projective class 𝐾1) irreducible projective
representations of points 𝑀 in the Brillouin zones
of crystalline graphite and single-layer graphene

𝑚𝑚𝑚 (𝐷2ℎ) 𝑒 (𝑢2)1 𝑐2 (𝑢′
2)1 𝑖 𝑖(𝑢2)1 𝑖𝑐2 𝑖(𝑢′

2)1

𝐾0 𝑀+
1 1 1 1 1 1 1 1 1

𝑀−
1 1 1 1 1 –1 –1 –1 –1

𝑀+
2 1 1 –1 –1 1 1 –1 –1

𝑀−
2 1 1 –1 –1 –1 –1 1 1

𝑀+
3 1 –1 1 –1 1 –1 1 –1

𝑀−
3 1 –1 1 –1 –1 1 –1 1

𝑀+
4 1 –1 –1 1 1 –1 –1 1

𝑀−
4 1 –1 –1 1 –1 1 1 –1

𝐾1 ((𝑀 ′)(1))+ 𝑀+
5 2 0 0 0 2 0 0 0

((𝑀 ′)(1))− 𝑀−
5 2 0 0 0 –2 0 0 0

where they are denoted as (𝑃 (1))+ and (𝑃 (1))−, on
the one hand, and the characters of the irreducible
projective representations of the class 𝐾1 of the group
𝑚𝑚𝑚 for points 𝑀 , which are denoted by the sym-
bols 𝑀+

5 and 𝑀−
5 [or ((𝑀 ′)(1))+ and ((𝑀 ′)(1))−],

on the other hand, coincide with the character of
the spinor irreducible representations of the double
group (𝑚𝑚𝑚)

′.
Table 2 exhibits the characters of the projective

equivalence representation at point 𝑀 (the repre-
sentation 𝑀eq), the characters of the representation
𝑀𝑧 ≡ Γ𝑧, which determines the spatial symmetry of
the 𝑝𝑧 orbital, the characters of the representation
of the electron 𝜋-bands without taking the spin into
account (the representation 𝑀𝜋), and the characters
of the two-valued representations 𝐷+

1/2, 𝑀 ′
𝑧 ≡ Γ′

𝑧,
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Table 17. Characters of the irreducible projective representations
of the projective class 𝐾4 of the group 𝑚𝑚𝑚 (𝐷2ℎ) corresponding to the standard
factor-system of this class, 𝜔′

(4)
(𝑟2, 𝑟1) (𝑎), and the characters of two-valued (spinor)

irreducible projective representations of point 𝐿 in the Brillouin zone of crystalline graphite 𝛾-𝐶 (𝑏)

Projective
class

Notation for irreducible
projective representation

𝑚𝑚𝑚 (𝐷2ℎ)

𝑒 (𝑢2)1 𝑐2 (𝑢′
2)1 𝑖 𝑖(𝑢2)1 𝑖𝑐2 𝑖(𝑢′

2)1

𝐾4 a 𝑃
(4)
1 2 2 0 0 0 0 0 0

𝑃
(4)
2 2 −2 0 0 0 0 0 0

𝑢1,𝐿(𝑟) 1 1 1 1 1 1 −1 −1

𝑢2(𝑟) 1 𝑖 𝑖 −1 1 𝑖 𝑖 −1

𝑒−𝑖𝑘𝐿𝑎(𝑟) 1 1 𝑖 𝑖 1 1 𝑖 𝑖

𝑒𝑖𝑘𝐿𝑎(𝑟)𝑢1,𝐿(𝑟)𝑢2(𝑟) 1 𝑖 −1 −𝑖 1 𝑖 1 𝑖

𝐷+
1/2

2 0 0 0 2 0 0 0

𝐾4 𝐿
(4)
1 2 2𝑖 0 0 0 0 0 0

b ((𝐿′)
(4)
1 + (𝐿′)

(4)
2 )<

𝐿
(4)
2 2 −2𝑖 0 0 0 0 0 0

𝐿′
𝜋 8 0 0 0 0 0 0 0

and 𝑀 ′
𝜋. The distributions of electron excitations at

points 𝑀 in the Brillouin zones of crystalline graphite
𝛾-𝐶 and single-layer graphene 𝐶𝐿,1 for 𝜋-bands with-
out taking and taking the electron spin into account
over the one- and two-valued (spinor), respectively, ir-
reducible projective representations of points 𝑀 are
given in Table 3.

3.3.2. Point 𝐿

As was already mentioned above, the factor-group of
the wave-vector group with respect to the invariant
translation subgroup at points 𝐿 in the Brillouin zone
of crystalline graphite is also isomorphic to the point
group 𝑚𝑚𝑚 (𝐷2ℎ). The wave-vector star of point 𝐿
for the graphite 𝛾-𝐶 structure also contains three
vectors: these are (𝑘𝐿)1 = − 1

2 (𝑏1 + 𝑏3), (𝑘𝐿)2 =
= − 1

2 (𝑏1 − 𝑏2), and (𝑘𝐿)3 = − 1
2 (𝑏1 + 𝑏2 − 𝑏3).

Similarly to what was done earlier for point 𝑀 , of
three rays of the wave-vector stars at point 𝐿 in the
Brillouin zone of crystalline graphite, let us consider
the ray (𝑘𝐿)1, for which the symmetry elementsthat
transform the rays of the wave-vector star at point 𝐿
into the equivalent ones and form the point symme-
try group 𝑚𝑚𝑚 (𝐷2ℎ) are the elements 𝑒, (𝑢2)1, 𝑐2,
(𝑢′

2)1, 𝑖, 𝑖(𝑢2)1, ic2, and 𝑖(𝑢′
2)1. Again, as was done

for the group of point 𝑀 , let us choose the elements
𝑎 = (𝑢2)1, 𝑏 = 𝑐2, and 𝑐 = 𝑖 to be the 𝑚𝑚𝑚 group
generators.

In work [1], it was demonstrated that the factor-
system 𝜔1,𝐿(𝑟2, 𝑟1) belongs to the projective class 𝐾5

of the group 𝑚𝑚𝑚 (𝐷2ℎ) and can be reduced to the
standard form 𝜔′

1,𝐿(𝑟2, 𝑟1) ≡ 𝜔′
(5)(𝑟2, 𝑟1) with the

help of the coefficients 𝑢1,𝐿(𝑟) given in the bottom
part of Table 17, 𝑎 in work [1]. It was also shown
that the factor-system 𝜔2(𝑟2, 𝑟1) of spinor transfor-
mations at the symmetry operations of the group
𝑚𝑚𝑚 (𝐷2ℎ), as it occurs for point 𝑀 , belongs to the
projective class 𝐾1 and is reduced to the standard
form 𝜔′

2(𝑟2, 𝑟1) ≡ 𝜔′
(1)(𝑟2, 𝑟1) with the help of the co-

efficients 𝑢2(𝑟) given in the bottom part of Table 13, 𝑎
of this work. This means that the factor-system at
point 𝐿 making allowance for the spin, 𝜔2,𝐿(𝑟2, 𝑟1),
is the product of the factor-system 𝜔1,𝐿(𝑟2, 𝑟1) (the
projective class 𝐾5), which is determined by the
structure of the spatial group of crystalline graphite
at point 𝐿 making no allowance for the spin, and
the factor-system 𝜔2(𝑟2, 𝑟1) (the projective class 𝐾1),
which describes the transformations of spinors at
point 𝐿 (in the point symmetry group 𝑚𝑚𝑚 (𝐷2ℎ)),
i.e. 𝜔2,𝐿(𝑟2, 𝑟1) = 𝜔1,𝐿(𝑟2, 𝑟1)𝜔2(𝑟2, 𝑟1).

The standard factor-system taking the spin into
account for point 𝐿, 𝜔′

2,𝐿(𝑟2, 𝑟1) = 𝜔′
(5)(𝑟2, 𝑟1)×

×𝜔′
2(𝑟2, 𝑟1) = 𝜔′

(5)(𝑟2, 𝑟1)𝜔
′
(1)(𝑟2, 𝑟1), belongs to the

projective class 𝐾4 of the group 𝑚𝑚𝑚 (𝐷2ℎ) (be-
cause K5 · K1 = K4) and coincides with the stan-
dard factor-system of the projective class 𝐾4 of the
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Fig. 4. Dispersion of the electron energy 𝜋′-bands calculated taking the electron spin into
account

group 𝑚𝑚𝑚 (𝐷2ℎ); i.e., 𝜔′
2,𝐿(𝑟2, 𝑟1) ≡ 𝜔′

(4)(𝑟2, 𝑟1)
with the coefficients of transformation to the stan-
dard form, 𝑢2,𝐿(𝑟), being equal to the product of the
coefficients of transformation of the factor-systems
𝜔1,𝐿(𝑟2, 𝑟1) and 𝜔2(𝑟2, 𝑟1) to the standard form,
𝑢1,𝐿(𝑟) and 𝑢2(𝑟).

The characters of the irreducible projective rep-
resentations of the point group 𝑚𝑚𝑚 (𝐷2ℎ) of the
projective class 𝐾4 for the standard factor-system
𝜔′
(4)(𝑟2, 𝑟1) of the point group 𝑚𝑚𝑚 are presented

in Table 17, 𝑎. In the bottom part of this table,
the values of the coefficients 𝑢1,𝐿(𝑟), 𝑢2(𝑟), the
phase factors 𝑒−𝑖𝑘𝐿𝛼(𝑟), the products of coefficients
𝑒−𝑖𝑘𝐿𝛼(𝑟)𝑢1,𝐿(𝑟)𝑢2(𝑟) ≡ 𝑒−𝑖𝑘𝐿𝛼(𝑟)𝑢2,𝐿(𝑟), and the
characters of the irreducible spinor projective repre-
sentation 𝐷+

1/2 are given. The characters of the two-
valued (spinor) irreducible projective representations
at point 𝐿 in the Brillouin zone of crystalline graphite,
which were calculated using the formula

(𝐿′)
(4)
𝑖 = 𝑒−𝑖𝑘𝐿𝛼(𝑟)(𝑟)𝑢1,𝐿(𝑟)𝑢2(𝑟)𝑃

(4)
𝑖 =

= 𝑒−𝑖𝑘𝐿𝛼(𝑟)𝑢2,𝐿(𝑟)𝑃
(4)
𝑖 , (9)

are shown in Table 17, 𝑏. The bottom part of this
table contains the characters of the two-valued spinor

projective representation of electron 𝜋′-bands making
allowance for the electron spin.

The characters of the projective equivalence rep-
resentation at point 𝐿 (the representation 𝐿eq), the
representation 𝐿𝑧 ≡ Γ𝑧 determining the spatial sym-
metry of the 𝑝𝑧 orbital, the representation 𝐿𝜋 of the
electron 𝜋-bands making no allowance for the spin,
and the two-valued representations 𝐷+

1/2, 𝐿′
𝑧 ≡ Γ′

𝑧,
and 𝐿′

𝜋 are given in Table 2. The distributions of elec-
tron excitations at point 𝐿 in the Brillouin zone of
crystalline graphite for 𝜋-bands without and with tak-
ing the electron spin into account over the one-valued
and, accordingly, two-valued (spinor) irreducible pro-
jective representations of point 𝐿 are presented in
Table 3.

Our calculation of the Herring criterion using the
symmetry elements for point 𝐿 in the Brillouin zone
of crystalline graphite, which satisfy the equality
𝑔′𝑘 = −𝑘 – in particular, these are the elements
𝑔′1 = (0 |𝑒 ), 𝑔′4 = (0 |(𝑢2)1 ), 𝑔′7 = (𝑎1

2 |𝑐2 ), 𝑔′10 =
= (𝑎1

2 |(𝑢′
2) 1), 𝑔

′
13 = (0 |𝑖 ), 𝑔′16 = (0 |𝑖(𝑢2)1 ), 𝑔′19 =

= (𝑎1

2 |𝑖𝑐2 ) and 𝑔′22 = (𝑎1

2 |𝑖(𝑢′
2) 1), whose squares

equal (𝑔′1)2 = (0 |𝑒 ), (𝑔′4)2 = (0 |𝑞 ), (𝑔′7)2 = (𝑎1 |𝑞 ),
(𝑔′10)

2 = (0 |𝑞 ), (𝑔′13)
2 = (0 |𝑒 ), (𝑔′16)

2 = (0 |𝑞 ),
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Fig. 5. Dispersion of the electron energy (𝑎) 𝜋-bands (not taking the electron spin into account) and (𝑏) 𝜋′-bands (taking the
electron spin into account) in the K − P −H direction of the Brillouin zone in graphite 𝛾-𝐶 crystals. The spin-dependent fine
structure of 𝜋′-bands in panel 𝑏 is shown schematically, with the energy scale for the splitting of electron 𝜋′-bands being enlarged
by a factor of about 103

(𝑔′19)
2 = (0 |𝑞 ) and (𝑔′22)

2 = (𝑎1 |𝑞 ), – testifies
that the two-valued (spinor) irreducible projective
representations of point 𝐿 in the Brillouin zone of
crystalline graphite that belong to the projective
class 𝐾4 – these are the representations (𝐿′)

(4)
1 and

(𝐿′)
(4)
2 – belong to the case 𝑏2 [9]. Being the rep-

resentations with complex-conjugate characters, if
their time-reversal invariance is taken into considera-
tion, they unite into four-dimensional representations
((𝐿′)

(4)
1 +(𝐿′)

(4)
2 )1 and ((𝐿′)

(4)
1 +(𝐿′)

(4)
2 )2, so that the

degree of degeneration for each of the electron states
increases to four. In Table 17, 𝑏, just this union of
representations with complex-conjugate characters is
indicated.

In Fig. 4, the dispersion of the electron energy 𝜋-
bands making allowance for the electron spin (𝜋′-
bands) in graphite crystals is shown schematically.
The letters are used to mark points in the Brillouin
zone, and the letters with indices to mark the two-
valued spinor irreducible projective representations
of the corresponding projective classes (the latter
are indicated by the parenthesized superscripts). The
dispersion of electron 𝜋-bands is schematically illus-
trated for all high-symmetry points in the Brillouin
zone of crystalline graphite. The curves agree well
at the qualitative level with the results of numer-
ical calculations carried out in works [11, 12] tak-

ing no electron spin into account, i.e. in the case of
weak spin-orbit interaction. Nevertheless, the curves
demonstrate the qualitative behavior of the disper-
sion of the electron 𝜋-bands along the line Γ–Δ–𝐴.

Figure 5, 𝑎 exhibits the dispersion of the electron
𝜋-bands along the line 𝐾–𝑃–𝐻 in the Brillouin zone
of crystalline graphite calculated making no allowance
for the electron spin. Figure 5, 𝑏 qualitatively demon-
strates the spin-dependent fine structure of the energy
𝜋-bands for the splitting of electron states shown in
Fig. 5, 𝑏 (the energy scale of the spin-dependent fine
structure is enlarged by a factor of about 103). This
fine structure is obtained, if the methods of theo-
retical symmetry-group analysis are consistently ap-
plied to determine the dispersion of electron 𝜋-bands
in crystalline graphite taking the electron spin into
account. The spin-dependent splitting can be sub-
stantial, e.g., for dichalcogenides of transition met-
als with the same spatial symmetry group. However,
it is small for crystalline graphite and single-layer
graphene, because it is caused by a low spin-orbit
interaction energy for carbon atoms and, as a conse-
quence, carbon structures.

4. Conclusions

1. For the first time, a theoretical symmetry-group
description of the dispersion of electron 𝜋-bands
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in crystalline graphite (the space symmetry group
𝑃63/𝑚𝑚𝑐 (𝐷4

6ℎ)) and single-layer graphene (the
diperiodic space group 𝑃6/𝑚𝑚𝑚 (𝐷𝐺80)) is made.
The consistency conditions for the irreducible pro-
jective representations making allowance for the elec-
tron spin and the changes of the projective classes are
determined for various high-symmetry points in the
Brillouin zones of those materials.

2. A correlation between the electron excitations
in crystalline graphite making allowance for the elec-
tron spin and the spinor excitations in single-layer
graphene is shown.

3. With the help of theoretical symmetry-group
methods, the existence of a fine structure for elec-
tron 𝜋-bands has been predicted for the first time. It
arises, when the electron spin is taken into account,
even in the case of weak spin-orbit interaction. The
corresponding results include the appearance of a
small (about 1.0–1.5 meV according to the estima-
tions of work [2]) band gap between the valence and
conduction bands at the Dirac points and in their
very small vicinities in crystalline graphite and single-
layer graphene. A new interpretation is also given to
a small splitting (the spin-dependent fine structure)
of electron 𝜋-bands, if the electron spin is taken into
account, at point 𝐻 of crystalline graphite on the ba-
sis of the established change in the projective classes
of irreducible projective representations of the wave-
vector groups, which excludes the intersection of the
dispersion curves of electron bands near point 𝐻.

APPENDIX:
Calculation of the Herring criterion

Table 18 illustrates the stages and the results of cal-
culations of the characters 𝜒k,𝐷𝜇

[(𝑔′)2], 𝜒k,𝐷′
𝜇
[(𝑔′)2],

and the corresponding values of the Herring criterion
for irreducible representations at points Γ and 𝐴.
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ЕНЕРГЕТИЧНI СПЕКТРИ ЕЛЕКТРОННИХ
ЗБУДЖЕНЬ ТА ЇХНЯ ДИСПЕРСIЯ В ГРАФIТI
I ГРАФЕНI: ВРАХУВАННЯ ЕЛЕКТРОННОГО
СПIНУ ТА СИМЕТРIЇ ДО IНВЕРСIЇ ЧАСУ

Р е з ю м е

Дослiджено дисперсiйнi залежностi електронних збуджень
кристалiчного графiту i одношарового графену iз врахува-
нням спiну електрона. Визначено кореляцiї енергетичних
спектрiв електронних збуджень i, вперше, умови сумiсно-
стi двозначних незвiдних проективних представлень, що
характеризують симетрiю спiнорних збуджень в зазначе-
них вище структурах, та розподiли спiнорних квантових
станiв за проективними класами та незвiдними проектив-
ними представленнями для всiх точок високої симетрiї у
вiдповiдних зонах Брiллюена. За допомогою симетрiйних
теоретико-групових методiв для просторових груп симетрiї
кристалiчного графiту i одношарового графену встановле-
но iснування спiн-залежних розщеплень енергетичних еле-
ктронних спектрiв, зокрема, розщеплень 𝜋-зон в точках Дi-
рака, величина яких може бути значною, наприклад, для
дихалькогенiдiв перехiдних металiв такої самої просторової
групи симетрiї, але є невеликою для кристалiчного графiту
i одношарового графену, оскiльки вона зумовлена малою
енергiєю спiн-орбiтальної взаємодiї для атомiв вуглецю i,
як наслiдок, для вуглецевих структур.
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