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LIGHT PRESSURE
ON NANOPARTICLES IN THE FIELD
OF COUNTER-PROPAGATING BICHROMATIC
WAVES WITH AN ADDITIONAL RELAXATION
CHANNEL FOR THE EXCITED-STATE POPULATION

Light pressure on nanoparticles containing impurity atoms or color centers interacting reso-
nantly with the field has been considered. In the general case, the available crystalline envi-
ronment of atoms prohibits the formation of a two-level interaction scheme of the atom or
the color center with the field by eliminating the prohibition on some transitions with sponta-
neous radiation emission. As a result, some atoms remain temporarily in the states that do
not interact with the laser radiation field, but relax in time to the ground state. A theory which
enables the calculation of the light-pressure force on atoms or color centers (and, accordingly,
on the nanoparticle, where they are located) and its dependence on the atom–field interaction
parameters, as well as the relaxation parameters of the excited and intermediate states, has
been developed. To analyze the influence of various factors on the light-pressure force, calcu-
lations are made for a model set of parameters and for the parameters corresponding to the
interaction between triply charged erbium ions in erbium-doped Y2SiO5 crystals and color cen-
ters that emerge owing to the occupation of defects in diamond crystals by silicon atoms. It
turned out that the color centers make it possible to reinforce the light pressure on small, much
smaller than the light wavelength, nanoparticles by several orders of magnitude.
K e yw o r d s: atoms, nanoparticles, laser radiation, light pressure.

1. Introduction
The control over the motion of atoms and small par-
ticles with the help of laser radiation forms a basis
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for the novel technologies aimed at manipulating bi-
ological objects [1, 2], as well as for new frequency
standards [3, 4] and atomic gravimeters [5]. The ma-
nipulation of nanoobjects by means of laser radiation
is performed via the light-pressure force.

In the simplest case of interaction between an atom
and a monochromatic traveling wave, the radiation
force can reach the value [6, 7]

𝐹rad =
1

2
~𝑘𝛾, (1)

where 𝛾 is the rate of spontaneous emission by
the atom in the excited state, 𝑘 = 2𝜋/𝜆, and 𝜆
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Fig. 1. Schematic diagram of the interaction between light
and atoms that are resonant to laser radiation

is the laser radiation wavelength. This fundamental
limit for the maximum light pressure on atoms lo-
cated in the traveling-wave field can be exceeded,
if the atom is subjected to the action of counter-
propagating waves. In particular, this can be a se-
quence of counter-propagating light 𝜋-pulses [8], or
counter-propagating bichromatic [9–14], frequency-
modulated [15], or stochastic [16] waves, or coun-
ter-propagating waves of other types [14]. Besides
the formation of the light-pressure force, counter-
propagating waves can be used to hold atoms in a
certain spatially confined region (in the atomic trap)
[17–20].

The basis of the light-pressure action on atoms con-
sists in the possibility of a cyclic interaction between
the atoms and the field, when the spontaneous ra-
diation emission by an atom in an excited state is
accompanied by the transition of this atom into the
ground state. This event becomes possible, because
the selection rules prohibit transitions to other, non-
working states. In the case where an atom is located
in a crystalline environment, a lot of transitions that
are forbidden for a free atom become allowed owing
to the influence of the crystal-lattice field. As a re-
sult, the two-level scheme of the atom–field interac-
tion becomes impossible. The transitions of the atom
to states different from the ground and excited ones
are followed in time by its return to the ground state.

Color centers in crystals interact with laser radia-
tion in a similar way. They arise as a result of the elec-
tron capture by defects in the crystal lattice. In what
follows, when considering the interaction of impurity
atoms in crystals with the laser radiation field, we
also mean the interaction of color centers with laser
radiation. Below, both impurity atoms and color cen-

ters will be called “active atoms” due to the resonant
character of their interaction with laser radiation.

The interaction of an active atom with the field
in the presence of an additional relaxation channel
can be approximately described by the three-level
schematic diagram shown in Fig. 1. In the figure, |𝑒⟩ is
an excited state of the active atom, |𝑔⟩ is its ground
state, |𝑟⟩ is a set of states into which the atom can
transit from the excited state after the spontaneous
radiation emission, 𝛼 is the probability of a transi-
tion into the |𝑔⟩ state after spontaneously emitting
one photon, 𝛾opt is the rate of spontaneous emission
from the excited state, 𝛾𝑔 and 𝛾𝑟 are constants de-
scribing the population relaxation in the states |𝑔⟩
and |𝑟⟩, and Ω0 is the Rabi frequency, which is pro-
portional to the intensity of the electric field created
by laser radiation (it is responsible for the interac-
tion of radiation with the atom). The atom is also
characterized by one more parameter, which is not
indicated in the figure: the coherence relaxation rate
𝛾coh (the non-diagonal element in the density matrix,
which couples the states |𝑒⟩ and |𝑔⟩).

The transition frequencies of active atoms have
to differ slightly from one another in order that all
those atoms, if possible, interact resonantly with
the field. Lanthanides, because of their possibility to
transit between the states related to inner electronic
shells whose energies are less dependent on the crystal
environment, are obvious probable candidates for the
study of the induced light pressure on solids with in-
clusions of active atoms. Another candidate for impu-
rities in solids, which allow the light-pressure force to
be significantly increased, is color centers. The influ-
ence of the crystalline environment in solids on their
transition frequency is small because of the symme-
try of their interaction with the crystalline environ-
ment. Examples of both variants – lanthanides and
color centers – will be considered below.

The structure of the paper is as follows. The next
Section contains basic equations. In Section 3, it is
shown how the solution to the equations for the den-
sity matrix is constructed and how the light-pressure
force on an atom (or a solid body containing this
atom) in a monochromatic wave field is calculated
in the framework of the three-level atom model. A
theory of light pressure on a three-level atom in the
field of counter-propagating bichromatic waves is de-
veloped in Section 4. In Section 5, the results of nu-
merical calculations of the dependence of the light-
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pressure force on some parameters describing the
atom and its interaction with the field are presented,
as well as the results of calculations of the force exert-
ing by the light field of counter-propagating bichro-
matic waves on a Y2SiO5 crystal doped with erbium
ions; here, erbium ions are “active atoms”. In addi-
tion, the light-pressure force on diamond nanopar-
ticles with silicon impurities is also considered. The
latter favor the formation of color centers with spec-
troscopic characteristics that provide a rather strong
light-pressure force on the nanoparticles. The main
conclusions of the work are given in Section 6.

2. Basic Equations

2.1. Electric field

Let the electric field strength created by two counter-
propagating waves with the same carrier frequency 𝜔
at the point, where an atom is located in the nanopar-
ticle, be described by the formula
𝐸 = 𝐸1(𝑡) cos

[︀
𝜔𝑡− 𝑘𝑧 + 𝜑1

]︀
+

+𝐸2(𝑡) cos
[︀
𝜔𝑡+ 𝑘𝑧 + 𝜑2

]︀
. (2)

Here, 𝐸1 and 𝐸2 are the time-dependent (in the gen-
eral case) amplitudes of the field strengths of the
counter-propagating waves, and 𝜑1 and 𝜑2 are the
phases of those waves. The relation between the elec-
tric field at the atomic location point and the field
beyond the nanoparticle depends on the nanoparticle
shape. For example, the field strength 𝐸 in a spher-
ical nanoparticle whose size is small in comparison
with the wavelength is coupled with the field 𝐸inc in
the medium via the formula [21]

𝐸 =
3𝑛2

𝑛1 + 2𝑛2
𝐸inc, (3)

where 𝑛1 is the refractive index of the nanoparti-
cle material, and 𝑛2 is the refractive index of the
medium.

If there is only one monochromatic traveling wave,
then 𝐸2(𝑡) = 0, 𝐸1(𝑡) = 𝐸0, and 𝜑1 = 0 in Eq. (2)
so that
𝐸 = 𝐸0 cos(𝜔𝑡− 𝑘𝑧). (4)

In the case of counter-propagating bichromatic
waves, we have 𝜑1 = 𝜑2 = 0,

𝐸1 = 𝐸0 cos

(︂
𝛿𝑡+

1

2
𝜙

)︂
,

𝐸2 = 𝐸0 cos

(︂
𝛿𝑡− 1

2
𝜙

)︂
.

(5)

The frequencies of the monochromatic components of
bichromatic waves are equal to 𝜔 + 𝛿 and 𝜔 − 𝛿. The
phase difference between the counter-propagating
amplitude-modulated waves equals 𝜙. The field act-
ing on the atom looks like

𝐸 = 𝐸0 cos(𝜔 𝑡− 𝑘𝑧) cos

(︂
𝛿 𝑡+

1

2
𝜙

)︂
+

+𝐸0 cos(𝜔 𝑡+ 𝑘𝑧) cos

(︂
𝛿 𝑡− 1

2
𝜙

)︂
. (6)

2.2. Equation for the density matrix

The equation for the density matrix, which describes
doped atoms or color centers in nanoparticles, reads

𝑖~
𝜕

𝜕𝑡
𝜚 = [𝐻, 𝜚] +𝑅, (7)

where 𝐻 is the Hamiltonian of the atom in the laser
radiation field, and the term 𝑅 describes the relax-
ation. In turn, the Hamiltonian has the form

𝐻 = ~𝜔𝑎|𝑒⟩⟨𝑒|+ ~𝜔𝑟|𝑟⟩⟨𝑟| − 𝑑𝐸, (8)

where 𝜔𝑎 is the frequency of atomic transition (the
energy difference between the |𝑒⟩ and |𝑔⟩ states in
Fig. 1), ~𝜔𝑟 is the energy of the state |𝑟⟩, and 𝑑 is
the dipole moment operator. In Eq. (8), the energy of
the state |𝑔⟩ is assumed to equal zero, and the kinetic
energy of the nanoparticle is not taken into account
because of the large mass of the nanoparticle which
the atom is connected with.

Let us introduce the detuning

Δ = 𝜔𝑎 − 𝜔 (9)

of the carrier frequencies of the counter-propagating
waves from the frequency of the resonance transition
in the atom and change from the basis of “bare” states
|𝑔⟩, |𝑒⟩, |𝑟⟩ to the rotating basis

|𝜓𝑔⟩ = |𝑔⟩, |𝜓𝑒⟩ = 𝑒𝑖(𝜔𝑎−Δ)𝑡|𝑒⟩,

|𝜓𝑟⟩ = 𝑒𝑖(𝜔𝑟−Δ)𝑡|𝑟⟩.
(10)

The density matrix in the basis of “bare” atomic
states, 𝜚, is expressed through the density matrix in
the rotating basis, 𝜌, as follows:
𝜚𝑔𝑔 = 𝜌𝑔𝑔,

𝜚𝑒𝑒 = 𝜌𝑒𝑒,

𝜚𝑔𝑒 = 𝜌𝑔𝑒𝑒
𝑖(𝜔𝑎−Δ)𝑡,

𝜚𝑒𝑔 = 𝜌𝑒𝑔𝑒
−𝑖(𝜔𝑎−Δ)𝑡,

𝜚𝑟𝑟 = 𝜌𝑟𝑟.

(11)
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The transformations of the off-diagonal elements that
include the state |𝑟⟩ are not given here, because they
are not essential to our problem. Then, substituting
Eqs. (8) and (11) into Eq. (7), we obtain

𝜕𝜌𝑔𝑔
𝜕𝑡

=
1

2
𝑖𝜌𝑔𝑒

(︁̃︀Ω*
1 + ̃︀Ω*

2

)︁
− 1

2
𝑖𝜌𝑒𝑔

(︁̃︀Ω1 + ̃︀Ω2

)︁
+

+ 𝛾opt𝛼𝜌𝑒𝑒 + 𝛾𝑟𝜌𝑟𝑟 − 𝛾𝑔𝜌𝑔𝑔,

𝜕𝜌𝑔𝑒
𝜕𝑡

=
1

2
𝑖
(︁̃︀Ω1 + ̃︀Ω2

)︁
(𝜌𝑔𝑔 − 𝜌𝑒𝑒)+

+ (𝑖Δ− 𝛾coh) 𝜌𝑔𝑒, (12)
𝜕𝜌𝑟𝑟
𝜕𝑡

= −𝛾𝑟𝜌𝑟𝑟 + 𝛾𝑔𝜌𝑔𝑔 + 𝛾opt(1− 𝛼)𝜌𝑒𝑒,

𝜌𝑒𝑔 = 𝜌*𝑔𝑒, 𝜌𝑒𝑒 = 1− 𝜌𝑔𝑔 − 𝜌𝑟𝑟.

Here, the complex Rabi frequencies were introduced:̃︀Ω1 = Ω1𝑒
𝑖𝜑1−𝑖𝑘𝑣𝑡−𝑖𝑘𝑧, ̃︀Ω2 = Ω1𝑒

𝑖𝜑2+𝑖𝑘𝑣𝑡+𝑖𝑘𝑧, (13)

where 𝑧 is the atom’s coordinate at the time 𝑡 = 0 in
the laboratory reference frame, and 𝑣 is the projection
of the atom’s velocity onto the 𝑧-axis. The atomic mo-
tion leads to the Doppler shift of the frequencies of the
counter-propagating waves “seen” by the atom. The
Rabi frequencies Ω1 and Ω2 are defined as follows:

Ω1 = −1

~
𝑑𝑔𝑒𝐸1, Ω2 = −1

~
𝑑𝑔𝑒𝐸2. (14)

In the absence of a laser field, Eqs. (12) give the equi-
librium values for the populations of the states |𝑒⟩,
|𝑔⟩, and |𝑟⟩:

𝜌𝑔𝑔 =
𝛾𝑟

𝛾𝑟 + 𝛾𝑔
, 𝜌𝑟𝑟 =

𝛾𝑔
𝛾𝑟 + 𝛾𝑔

, 𝜌𝑒𝑒 = 0. (15)

Note that the sum of the constants 𝛾𝑟 and 𝛾𝑔 gives the
relaxation rate of the populations in the states |𝑒⟩ and
|𝑔⟩ to equilibrium values (15), and their ratio is equal
to the ratio between the equilibrium populations.

The constant 𝛾coh in Eqs. (12) is the relaxation
rate of coherence 𝜌𝑔𝑒. It is related to the constants
𝛾opt and 𝛾𝑔 via the relation

𝛾coh =
1

2
𝛾opt +

1

2
𝛾𝑔 + 𝛾fl, (16)

where the term 𝛾fl is associated with the influence
of the environment on the growth of the coherence
relaxation rate. The minimum coherence relaxation
rate is obviously equal to 1

2𝛾opt +
1
2𝛾𝑔.

When obtaining Eqs. (12), the rotating-wave ap-
proximation was used.

2.3. Light-pressure force
acting on nanoparticles

The force of light pressure acting on a nanoparticle
is obviously equal to the sum of the light-pressure
forces acting on all active atoms in that nanopar-
ticle. The force acting on an atom that is located in
the nanoparticle and resonates with laser radiation is
determined by the expression

𝐹 = −⟨∇𝑉 ⟩, (17)

where 𝑉 is the Hamiltonian component responsible
for the interaction of the atom with the field; in the
dipole approximation, 𝑉 = −𝑑𝐸. The angular brack-
ets ⟨...⟩ denote the averaging over the atomic ensem-
ble. It can also be said that expression (17) describes
the force of light pressure acting on a mass that is
equal to the mass per one atom in the nanoparticle
that interacts in a resonance manner with the laser
radiation field (the active atom).

Since only the off-diagonal elements of 𝑉 differ
from zero, the 𝑧-projection of the light-pressure force
equals

𝐹𝑧 = −2Re 𝜚𝑒𝑔
𝜕𝑉𝑔𝑒
𝜕𝑧

. (18)

Expression (18) depends on both the coordinate and
the time.

We consider the interaction of an active atom with
the field in the reference frame coupled with the
nanoparticle. For field (2), the expression for 𝑉𝑔𝑒
takes the form

𝑉𝑔𝑒 = ~Ω1(𝑡) cos[𝜔𝑡− 𝑘𝑧 − 𝑘𝑣𝑡+ 𝜑1(𝑡)] +

+ ~Ω2(𝑡) cos[𝜔𝑡+ 𝑘𝑧 + 𝑘𝑣𝑡+ 𝜑2(𝑡)], (19)

where Ω1 and Ω2 are determined by formulas (14).
After the atoms began to interact with the field,

and some time 𝜏qs elapsed, a quasi-stationary solu-
tion to Eqs. (12) for the the density matrix is es-
tablished. Then, the time-averaged value of the light-
pressure force acting on one atom is equal to

̃︀𝐹 (𝑧) = 1

𝑇

𝑇+𝜏qs∫︁
𝜏qs

𝐹𝑧(𝑧, 𝑡)𝑑𝑡, (20)

where the time interval 𝑇 is large as compared to
2𝜋/𝛿. In so doing, we neglect the variation of the
nanoparticle velocity during the time interval 𝑇 .
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After substituting Eq. (19) into Eq. (18) and taking
Eq. (11) into account, in the rotating wave approxi-
mation, we have

𝐹𝑧(𝑧, 𝑡) = −~𝑘 Im
(︁
𝜌𝑒𝑔̃︀Ω1 − 𝜌𝑒𝑔̃︀Ω2

)︁
. (21)

Here, the complex Rabi frequencies are determined
by equalities (13). Then, expression (21 for the inter-
action of the atom with the field of a monochromatic
wave (4 takes the form

𝐹𝑧(𝑧, 𝑡) = −~𝑘 Im
(︀
𝜌𝑒𝑔Ω0𝑒

−𝑖𝑘𝑣𝑡−𝑖𝑘𝑧
)︀
, (22)

where Ω0 = − 1
~𝑑𝑔𝑒𝐸0.

In the case where the atom interacts with counter-
propagating bichromatic waves (6), expression (21)
for 𝐹 (𝑧, 𝑡) looks like

𝐹𝑧(𝑧, 𝑡) = −~𝑘 Im
[︂
𝜌𝑒𝑔Ω0𝑒

−𝑖𝑘𝑣𝑡−𝑖𝑘𝑧 cos

(︂
𝛿𝑡+

1

2
𝜙

)︂
−

− 𝜌𝑒𝑔Ω0𝑒
𝑖𝑘𝑣𝑡+𝑖𝑘𝑧 cos

(︂
𝛿𝑡− 1

2
𝜙

)︂]︂
. (23)

The light-pressure force averaged over the ensem-
ble of atoms that are resonant to laser radiation is
obtained by averaging Eq. (20) over the initial atomic
coordinate in the laboratory reference frame,

𝐹 =
𝑘

2𝜋

2𝜋/𝑘∫︁
0

̃︀𝐹𝑧(𝑧)𝑑𝑧, (24)

3. Light-Pressure Force Acting
on a Nanoparticle in the Field
of Monochromatic Traveling Wave

For a monochromatic traveling wave, an ana-
lytic expression for the light-pressure force can be
found. From Eqs. (12) and taking the definition of
complex Rabi frequencies into account [see Eqs. (13)],
we obtain the following equations for the quasi-
stationary elements of the density matrix:

0 =
1

2
𝑖𝜌𝑔𝑒Ω0𝑒

𝑖𝑘𝑣𝑡+𝑖𝑘𝑧 − 1

2
𝑖𝜌𝑒𝑔Ω0𝑒

−𝑖𝑘𝑣𝑡−𝑖𝑘𝑧 +

+ 𝛾opt𝛼𝜌𝑒𝑒 + 𝛾𝑟𝜌𝑟𝑟 − 𝛾𝑔𝜌𝑔𝑔,

0 =
1

2
𝑖Ω0𝑒

−𝑖𝑘𝑣𝑡−𝑖𝑘𝑧 (𝜌𝑔𝑔 − 𝜌𝑒𝑒)+

+
(︀
𝑖Δ+ 𝑖𝑘𝑣 − 𝛾coh

)︀
𝜌𝑔𝑒, (25)

0 = −𝛾𝑟𝜌𝑟𝑟 + 𝛾𝑔𝜌𝑔𝑔 + 𝛾opt(1− 𝛼)𝜌𝑒𝑒,

𝜌𝑒𝑔 = 𝜌*𝑔𝑒, 𝜌𝑒𝑒 = 1− 𝜌𝑔𝑔 − 𝜌𝑟𝑟.

The substitution of the solution to those equations
into expression (22) for the force of light pressure in
the field of a monochromatic traveling wave gives

𝐹 (𝑧, 𝑡) = ~𝑘Ω2
0𝛾coh𝛾𝑟𝛾opt ×

×
[︁
2(Δ + 𝑘𝑣)2(𝛾𝑟 + 𝛾𝑔)𝛾opt +

+Ω2
0𝛾coh

(︀
2𝛾𝑟 + 𝛾𝑔 + (1− 𝛼)𝛾opt

)︀
+

+2𝛾2coh(𝛾𝑔 + 𝛾𝑟)𝛾opt

]︁−1

. (26)

As one can see, the force of light pressure in the field
of a monochromatic traveling wave does not depend
on the time and the coordinate.

The populations of the excited, 𝑛𝑒 = 𝜌𝑒𝑒, and
ground, 𝑛𝑔 = 𝜌𝑔𝑔, states equal

𝑛𝑒 = Ω2
0𝛾coh𝛾𝑟

[︁
2(Δ + 𝑘𝑣)2(𝛾𝑟 + 𝛾𝑔)𝛾opt +

+Ω2
0𝛾coh

(︀
2𝛾𝑟 + 𝛾𝑔 + (1− 𝛼)𝛾opt

)︀
+

+2𝛾2coh(𝛾𝑔 + 𝛾𝑟)𝛾opt

]︁−1

, (27)

𝑛𝑔 = 𝛾𝑟

[︁
2𝛾2coh𝛾opt + 𝛾cohΩ

2
0 +

+2𝛾opt
(︀
Δ2 + (𝑘𝑣)2

)︀]︁
×

×
[︁
2(Δ + 𝑘𝑣)2(𝛾𝑟 + 𝛾𝑔)𝛾opt +

+Ω2
0𝛾coh

(︀
2𝛾𝑟 + 𝛾𝑔 + (1− 𝛼)𝛾opt

)︀
+

+2𝛾2coh(𝛾𝑔 + 𝛾𝑟)𝛾opt

]︁−1

.

By comparing Eqs. (26) and (27), we see that

𝐹 (𝑧, 𝑡) = ~𝑘𝛾opt𝑛𝑒, (28)

which is in total agreement with the elementary the-
ory of light pressure [6].

If we put 𝛼 = 1 and 𝛾𝑔 = 0 (there are no |𝑟⟩ states)
in Eq. (26), we obtain an expression for the light-
pressure force in the two-level scheme of atom–field
interaction [6]:

𝐹 (𝑧, 𝑡) =
1

2
~𝑘Ω2

0𝛾coh𝛾opt

[︁
(Δ + 𝑘𝑣)2𝛾opt +

+Ω2
0𝛾coh + 𝛾2coh𝛾opt

]︁−1

. (29)
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As the field intensity grows, the expressions ob-
tained for the light-pressure force in the field of a
monochromatic traveling wave reach the correspond-
ing maximum values:

𝐹max =
~𝑘𝛾opt𝛾𝑟[︀

𝛾opt(1− 𝛼) + 2𝛾𝑟 + 𝛾𝑔
]︀ (30)

for the three-level scheme of atom–field interaction
and
𝐹2max =

~𝑘𝛾opt

2
(31)

for the two-level one. It is easy to see that 𝐹2max ≥
≥ 𝐹max for all time. The equality sign corresponds
to the case 𝛼 = 1 and 𝛾g = 0, when the three-level
system becomes a two-level one.

4. Light-Pressure Force
Acting on a Nanoparticle in the Field
of Counter-Propagating Bichromatic Waves

If the Doppler frequency shift is small, the solution
to the equations for the density matrix (12) can be
found in the form of a Fourier series. Bearing in mind
that the “active” atoms comprise only a small frac-
tion in the composition of the nanoparticle material,
one may expect that the acceleration of nanoparti-
cles – and, hence, the velocity that they be acquired,
when interacting with the field – is low. An obvi-
ous criterion that the velocity is low is a small value
of the Doppler shift in comparison with the sponta-
neous emission rate for the atom from the excited
state, 𝑘𝑣 < 𝛾opt. For example, for 𝜆 = 0.6 nm and
𝛾opt/(2𝜋) = 10 MHz, we have 𝑣 < 6 m/s. Under opti-
mal conditions for the atom–field interaction [12], the
much weaker requirement 𝑘𝑣 < 𝛿 can be the criterion,
since, in this case, the width of the maximum in the
dependence of the light-pressure force on the atomic
velocity for a two-level atom is somewhat smaller than
𝛿/(2𝑘).

The solution to Eqs. (12) for the density matrix in
the case of low nanoparticle velocity can be presented
in the form of the Fourier series,

𝜌𝑝𝑞 =

∞∑︁
𝑛=−∞

𝑟𝑝𝑞,𝑛𝑒
𝑖𝑛𝛿𝑡, (32)

where the subscripts 𝑝 and 𝑞 enumerate the atomic
states. We should substitute Eq. (32) into the equa-
tions for the density matrix [Eq. (12)] and for the field

[Eq. (5)], and equate the terms on the right- and left-
hand sides of the equations with the same multipliers
𝑒𝑖𝑛𝛿𝑡. As a result, we get

𝑖𝑛𝛿𝑟𝑔𝑔,𝑛 =
1

4
𝑖𝑟𝑔𝑒,𝑛−1Ω0

(︁
𝑒𝑖𝑘𝑧+

1
2 𝑖𝜙 + 𝑒−𝑖𝑘𝑧− 1

2 𝑖𝜙
)︁
+

+
1

4
𝑖𝑟𝑔𝑒,𝑛+1Ω0

(︁
𝑒𝑖𝑘𝑧−

1
2 𝑖𝜙 + 𝑒−𝑖𝑘𝑧+ 1

2 𝑖𝜙
)︁
−

− 1

4
𝑖𝑟𝑒𝑔,𝑛−1Ω0

(︁
𝑒−𝑖𝑘𝑧+ 1

2 𝑖𝜙 + 𝑒𝑖𝑘𝑧−
1
2 𝑖𝜙

)︁
−

− 1

4
𝑖𝑟𝑒𝑔,𝑛+1Ω0

(︁
𝑒−𝑖𝑘𝑧− 1

2 𝑖𝜙 + 𝑒𝑖𝑘𝑧+
1
2 𝑖𝜙

)︁
+

+ 𝛾opt𝛼𝑟𝑒𝑒,𝑛 + 𝛾𝑟𝑟𝑟𝑟,𝑛 − 𝛾𝑔𝑟𝑔𝑔,𝑛,

𝑖𝑛𝛿𝑟𝑔𝑒,𝑛 = −1

4
𝑖Ω0

(︁
𝑒−𝑖𝑘𝑧+ 1

2 𝑖𝜙 + 𝑒𝑖𝑘𝑧−
1
2 𝑖𝜙

)︁
𝑤𝑛−1 −

− 1

4
𝑖Ω0

(︁
𝑒−𝑖𝑘𝑧− 1

2 𝑖𝜙 + 𝑒𝑖𝑘𝑧+
1
2 𝑖𝜙

)︁
𝑤𝑛+1 +

+(𝑖Δ− 𝛾coh) 𝑟𝑔𝑒,𝑛, (33)

𝑖𝑛𝛿𝑟𝑟𝑟,𝑛 = −𝛾𝑟𝑟𝑟𝑟,𝑛 + 𝛾𝑔𝑟𝑔𝑔,𝑛 + 𝛾opt(1− 𝛼)𝑟𝑒𝑒,𝑛.

𝑟𝑒𝑔,𝑛 = 𝑟*𝑔𝑒,−𝑛, 𝑟𝑒𝑒,𝑛 + 𝑟𝑔𝑔,𝑛 + 𝑟𝑟𝑟,𝑛 = 𝜉𝑛,

𝑤𝑛 = 𝑟𝑒𝑒,𝑛 − 𝑟𝑔𝑔,𝑛,

Here, 𝑤𝑛 is the Fourier component of the population
inversion 𝜌𝑒𝑒 − 𝜌𝑔𝑔 = 𝑤𝑛𝑒

𝑖𝑛𝛿𝑡, and

𝜉𝑛 =

{︃
1 𝑛 = 0

0 𝑛 ̸= 0.
(34)

The time-averaged value of the light-pressure
force (23) acting on an atom with the coordinate 𝑧
in the nanoparticle is given by the expression

𝐹𝑧(𝑧) = ~𝑘Ω0 Im
[︁
−𝑟𝑒𝑔,−1𝑒

−𝑖𝑘𝑧+𝑖𝜙/2 −

− 𝑟𝑒𝑔,1𝑒
−𝑖𝑘𝑧−𝑖𝜙/2 +

+ 𝑟𝑒𝑔,−1𝑒
𝑖𝑘𝑧−𝑖𝜙/2 + 𝑟𝑒𝑔,1𝑒

𝑖𝑘𝑧+𝑖𝜙/2
]︁
. (35)

To find the light-pressure force per one atom in the
nanoparticle, we must solve Eq. (33), substitute the
solution into Eq. (35), and further average the result
over 𝑧. For this purpose, using Eq. (33), we determine
𝑟𝑟𝑟,𝑛, 𝑟𝑒𝑒,𝑛, and 𝑟𝑟𝑟,𝑛 as functions of 𝑤𝑛:

𝑟𝑔𝑔,𝑛 =
−(𝛾opt(1− 𝛼) + 𝑖𝛿𝑛+ 𝛾𝑟)𝑤𝑛

2𝑖𝛿𝑛+ 2𝛾𝑟 + 𝛾opt(1− 𝛼) + 𝛾𝑔
+

+
(𝛾𝑟 + 𝑖𝛿𝑛)𝜉𝑛

2𝑖𝛿𝑛+ 2𝛾𝑟 + 𝛾opt(1− 𝛼) + 𝛾𝑔
,

𝑟𝑒𝑒,𝑛 =
(𝑖𝛿𝑛+ 𝛾𝑔 + 𝛾𝑟)𝑤𝑛 + 𝜉𝑛(𝛾𝑟 + 𝑖𝛿𝑛)

2𝑖𝛿𝑛+ 2𝛾𝑟 + 𝛾opt(1− 𝛼) + 𝛾𝑔
,

𝑟𝑟𝑟,𝑛 = 𝜉𝑛 − 𝑟𝑔𝑔,𝑛 − 𝑟𝑒𝑒,𝑛

(36)
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Then we substitute the expressions found for 𝑟𝑔𝑔,𝑛,
𝑟𝑒𝑒,𝑛, and 𝑟𝑟𝑟,𝑛 into Eqs. (33). As a result, these equa-
tions take the form

0 =
1

2
𝑖𝑎𝑟𝑔𝑒,𝑛−1Ω0 +

1

2
𝑖𝑏𝑟𝑔𝑒,𝑛+1Ω0 −

− 1

2
𝑖𝑏𝑟𝑒𝑔,𝑛−1Ω0 −

1

2
𝑖𝑎𝑟𝑒𝑔,𝑛+1Ω0 +

+Γ1,𝑛𝑤𝑛 + 𝜉𝑛Γ0,𝑛,

𝑖𝑛𝛿𝑟𝑔𝑒,𝑛 = −1

2
𝑖Ω0𝑏𝑤𝑛−1 −

1

2
𝑖Ω0𝑎𝑤𝑛+1 +

+
(︁
𝑖Δ− 𝛾coh

)︁
𝑟𝑔𝑒,𝑛, 𝑟𝑒𝑔,𝑛 = 𝑟*𝑔𝑒,−𝑛.

(37)

Here, we introduced

𝑎 = cos

(︂
𝑘𝑧 +

1

2
𝜙

)︂
, 𝑏 = cos

(︂
𝑘𝑧 − 1

2
𝜙

)︂
(38)

and

Γ0,𝑛 =
(𝑖𝛼𝛾opt − 𝑖𝛾𝑔 − 𝑖𝛾𝑟 + 𝛿𝑛)𝛿𝑛+ 𝛾𝑟𝛾opt

2𝑖𝛿𝑛+ 2𝛾𝑟 + 𝛾opt(1− 𝛼) + 𝛾𝑔
,

Γ1,𝑛0 =
(𝛾𝑔 + 𝛾𝑟 + 𝑖𝛿𝑛)(𝛾opt + 𝑖𝛿𝑛)

2𝑖𝛿𝑛+ 2𝛾𝑟 + 𝛾opt(1− 𝛼) + 𝛾𝑔
.

(39)

The case with 𝛼 = 1 and 𝛾𝑔 = 0 corresponds to the
two-level scheme of atom–field interaction.

To calculate the light-pressure force from Eqs. (37),
we have to find 𝑟𝑒𝑔,−1 and 𝑟𝑒𝑔,+1, and substitute the
obtained values into Eq. (35) with the subsequent av-
eraging over 𝑧. We have

𝑟𝑔𝑒,𝑛 = −1

2

Ω0(𝑏𝑤𝑛−1 + 𝑎𝑤𝑛+1)

−𝑖𝛾coh −Δ+ 𝑛𝛿
, (40)

which gives

𝑟𝑒𝑔,𝑛 =
1

2

Ω0(𝑎𝑤𝑛−1 + 𝑏𝑤𝑛+1)

−𝑖𝛾coh +Δ+ 𝑛𝛿
. (41)

Here, we account for that 𝑤*
−𝑛 = 𝑤𝑛, because the

population inversion is a real-valued quantity. Sub-
stituting expressions (40) and (41) into the first of
Eqs. (37), we obtain

𝐴𝑛+2𝑤𝑛+2 +𝐵𝑛𝑤𝑛 +𝐴𝑛𝑤𝑛−2 = 𝐷𝜉𝑛, (42)

where

𝐴𝑛 = − 𝑖𝑎𝑏Ω2
0

2𝑢𝑛−1𝑣𝑛−1
[(𝑛− 1)𝛿 − 𝑖𝛾coh],

𝐵𝑛 = − 𝑖Ω
2
0

4

(︂
𝑎2

𝑢𝑛−1
+

𝑏2

𝑢𝑛+1
+

𝑎2

𝑣𝑛+1
+

𝑏2

𝑣𝑛−1

)︂
+

+
(𝑛𝛿 − 𝑖𝛾𝑟 − 𝑖𝛾𝑔)(−𝑛𝛿 + 𝑖𝛾opt)

2𝑖𝛿𝑛+ 2𝛾𝑟 + 𝛾opt(1− 𝛼) + 𝛾𝑔
, (43)

𝐷 = − 𝛾𝑟𝛾opt
𝛾𝑔 + 2𝛾𝑟 + (1− 𝛼)𝛾opt

.

Here,

𝑢𝑛 = −Δ− 𝑖𝛾coh + 𝑛𝛿, 𝑣𝑛 = Δ− 𝑖𝛾coh + 𝑛𝛿. (44)

By its form, the recurrence relation (42) for the
Fourier components 𝑤𝑛 of the population inversion
coincides with a similar relation for the case of in-
teraction between a two-level atom and counter-pro-
pagating bichromatic waves [9]. Let us solve it by
reducing the three-term relation to a two-term one.
Note that if 𝑛 > 0, the right-hand side of Eq. (42)
equals zero. All 𝑤𝑛 with odd 𝑛 also vanish. Let us in-
troduce a set of ratios Π𝑛 = 𝑤𝑛+2/𝑤𝑛. As a result,
Eq. (42), yields

𝑤𝑛

(︂
𝐴𝑛+2Π𝑛 +𝐵𝑛 +

𝐴𝑛

Π𝑛−2

)︂
= 0. (45)

This equation is valid for 𝑛 ≥ 2. From whence, we
have the following binomial recurrence relation for
Π𝑛:

Π𝑛−2 = − 𝐴𝑛

𝐴𝑛+2Π𝑛 +𝐵𝑛
. (46)

Putting Π𝑛 = 0 for a sufficiently large 𝑛 and using
formula (46), we iteratively determine all Π𝑛 down to
Π0. Then, knowing at least one of the Fourier com-
ponents of the population inversion and using the al-
ready known sequence of Π𝑛, we can find values for
all required 𝑤𝑛.

Equation (42) for 𝑛 = 0 looks like

𝐴2𝑤2 +𝐵0𝑤0 +𝐴0𝑤−2 = 𝐷 (47)

and makes it possible to determine 𝑤0. Let us express
𝑤−2 and 𝑤2 in terms of 𝑤0 and Π0:

𝑤2 = Π0𝑤0, 𝑤−2 = 𝑤*
2 = Π*

0𝑤
*
0 = Π*

0𝑤0. (48)

Substituting Eq. (48) into Eq. (47), we obtain

𝑤0 =
𝐷

𝐴*
0Π0 +𝐵0 +𝐴0Π*

0

. (49)

Here, we took into account that 𝐴2 = 𝐴*
0.
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The time-averaged populations of the ground, 𝑟𝑔𝑔,0,
and excited, 𝑟𝑒𝑒,0, states depend on the coordinate
and are equal to

𝑛𝑔 =
𝛾𝑟 − 𝑤0 [(1− 𝛼)𝛾opt + 𝛾𝑟]

(1− 𝛼)𝛾opt + 2𝛾𝑟 + 𝛾𝑔
,

𝑛𝑒 =
(𝛾𝑟 + 𝛾𝑔)𝑤0 + 𝛾𝑟

(1− 𝛼)𝛾opt + 2𝛾𝑟 + 𝛾𝑔
.

(50)

To find the light-pressure force acting on an atom
from Eq. (35), it is necessary to express the off-
diagonal elements of the density matrix that are con-
tained in this equation in terms of 𝑤0 and Π0 accord-
ing to formula (41):

𝑟𝑒𝑔,−1 =
1

2
𝑤0

Ω0 (𝑏+ 𝑎Π*
0)

−𝑖𝛾coh +Δ− 𝛿
,

𝑟𝑒𝑔,1 =
1

2
𝑤0

Ω0 (𝑏Π0 + 𝑎)

−𝑖𝛾coh +Δ+ 𝛿
.

(51)

To obtain the averaged force of light pressure act-
ing on slow nanoparticles, we should average expres-
sion (35) for the light-pressure force:

𝐹 =
1

𝜆

𝜆∫︁
0

𝐹 (𝑧) 𝑑𝑧. (52)

Similarly, by averaging Eq. (50) over the coordinate,
it is possible to find the populations in the ground
and excited states, and, using the normalization con-
dition, the population of the |𝑟⟩ state.

5. Results and Discussion

The light-pressure force has been studied in the
framework of the two-level model of interaction be-
tween the atom and bichromatic waves for more than
three decades [9–14], and the interest in it still re-
mains high [22–24]. The aim of our research is to find
how the model parameters associated with the pres-
ence of an additional level affect the light-pressure
force. Another parameter that will be considered here
and whose variation has not been analyzed earlier
is the coherence relaxation rate 𝛾coh. As was shown
above (see Section 2.2), its minimum value equals
1
2 (𝛾opt + 𝛾𝑔).

In what follows, from the whole set of parameters
of the problem, the attention will be focused on those
that provide optimal conditions for the interaction of
atoms with the field. It is known that a strong light-
pressure force and, simultaneously, a large width of

the maximum in the light-pressure force dependence
on the atomic velocity can be achieved at some com-
bination of mutually related Ω0-, 𝛿-, and 𝜙-values. In
work [12], the force of bichromatic light pressure was
analyzed in the basis of “dressed” states in the frame-
work of the Floquet approach. It was shown that this
force emerges as a result of the Landau–Zener transi-
tions between “dressed” states (the eigenstates of the
Floquet Hamiltonian). Under the condition 𝜑 = 𝜋/4
and, at the optimal Rabi frequency

Ω0 = 𝛿
√
6, (53)

the force acting on an atom dwelling in one of the
“dressed” states reaches a maximum value and equals

𝐹bichro =
2~𝑘𝛿
𝜋

. (54)

In order to determine the average force acting on an
atom, it is necessary to know the populations in the
“dressed” Floquet states. It is important that those
states are divided into two classes in which the atoms
are subjected to the action of forces which have iden-
tical magnitudes, but opposite directions. As a result,
the resulting force is less than the maximum force (54)
and can be found only using numerical methods. In
calculations [11–13], the obtained maximum values
were half the value given by Eq. (54). This fact
testifies that the populations of “dressed” states in
the cited calculations were 3

4 and 1
4 . These popula-

tions depend on the relaxation constants. Since it was
taken that 𝛾coh = 𝛾opt/2 in the cited works, the rele-
vant calculations almost always gave a pressure force
value close to 1

2𝐹bichro.
Below, the light-pressure force is calculated as-

suming condition (53). We compare the light-pressure
force acting on nanoparticles in the field of counter-
propagating bichromatic waves [Eq. (24)] with the
maximum force of light pressure acting on nanopar-
ticles in the field of a monochromatic traveling wave
[Eq. (30)], as well as with 𝐹bichro.

5.1. Examples of calculations
for a parameter set

First of all, let us consider how the light-pressure force
depends on the parameter 𝛼, which describes the ra-
tio between the numbers of spontaneous transitions
onto the lower working level |𝑔⟩ and the remaining
levels |𝑟⟩, where the atoms do not directly interact
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with the laser radiation field. The results of calcula-
tions obtained for various coherence relaxation rates
are plotted in Fig. 2. As one can see, for the selected
parameters of the atom–field interaction, the light-
pressure force acting on a nanoparticle in the field
of counter-propagating bichromatic waves can exceed
the light-pressure force acting on a nanoparticle in
the field of a monochromatic traveling wave by more
than an order of magnitude. As 𝛼 increases, the ratio
𝐹/𝐹max decreases. It should be noted that the light-
pressure force magnitude (rather than the 𝐹/𝐹max

ratio) increases a little with the growth of 𝛼. Figure 2
demonstrates the expected decrease of 𝐹/𝐹max with
the increase of 𝛾coh, in total agreement with the fact
that the induced light-pressure force observed in the
field of counter-propagating light waves is a coherent
phenomenon.

In Fig. 3, the 𝛼-dependences of the light-pressure
forces acting on a nanoparticle at various values of
the sum 𝛾𝑔 + 𝛾𝑟 of the relaxation rates in the |𝑔⟩
and |𝑟⟩ states are compared. The general behavior of
the dependencies shown in Fig. 3 is similar to that of
the curves plotted in Fig. 2. Curve 10 in Fig. 3 and
curve 9 in Fig. 2 are identical, because they corre-
spond to the same parameter values. As one can see,
the light-pressure force decreases with the growth of
𝛾𝑔+𝛾𝑟 because the coherence relaxation rate 𝛾coh also
increases in this case.

Figures 2 and 3 demonstrate the values of the light-
pressure force acting on a nanoparticle in the field of
counter-propagating bichromatic waves normalized to
𝐹max, the light-pressure force maximum in the field
of a monochromatic traveling wave [Eq. (30)]. Since
𝐹max depends on three relaxation constants and 𝛼,
it is difficult to assess, from those figures, a change
in the “bichromatic” force magnitude itself, when the
parameters of the atom–field interaction vary. To il-
lustrate this dependence, it is desirable to compare
the light-pressure force acting on a nanoparticle in the
field of counter-propagating bichromatic waves with
either the light-pressure force maximum in the two-
level model of an atom in the field of a monochromatic
traveling wave, 𝐹2max, or the maximum possible
light-pressure force in the field of counter-propagating
bichromatic waves, 𝐹bichro.

In Fig. 4, the 𝛼-dependences of the light-pressure
force 𝐹 acting on a nanoparticle are plotted for vari-
ous values of the relaxation rate 𝛾𝑔 + 𝛾𝑟 between the
states |𝑔⟩ and |𝑟⟩, and the same values of other pa-

Fig. 2. Dependences of the light-pressure force (in 𝐹max units)
acting on a nanoparticle on the parameter 𝛼 for various coher-
ence relaxation rates 𝛾coh = 1

2
(𝛾𝑔 + 𝛾opt) + 𝛾ph (indicated in

MHz near the curves) and 𝛾opt/2𝜋 = 10 MHz, 𝛾𝑟/2𝜋 = 2 MHz,
𝛾𝑔/2𝜋 = 8 MHz, Δ = 0, 𝛿/2𝜋 = 500 MHz, Ω0/2𝜋 = 1225 MHz,
and 𝜙 = 𝜋/4

Fig. 3. Dependences of the light-pressure force (in 𝐹max units)
acting on a nanoparticle on the parameter 𝛼 for various re-
laxation rates 𝛾𝑔 + 𝛾𝑟 of the states |𝑔⟩ and |𝑟⟩ (the values
indicated in MHz near the curves correspond to 𝛾𝑔 = 4𝛾𝑟)
and 𝛾opt/2𝜋 = 10 MHz, 𝛾ph = 0, Δ = 0, 𝛿/2𝜋 = 500 MHz,
Ω0/2𝜋 = 1225 MHz, and 𝜙 = 𝜋/4

rameters of the interaction between the active atom
and the field as in Fig. 3. However, this time 𝐹 is reck-
oned in the 𝐹bichro units. The attention is attracted
by a completely different mutual arrangement of the
curves with different 𝛾𝑔 + 𝛾𝑟 values in comparison
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Fig. 4. Dependences of the light-pressure force (in 𝐹bichro
units) acting on a nanoparticle on the parameter 𝛼 for various
relaxation rates 𝛾𝑔 + 𝛾𝑟 of the states |𝑔⟩ and |𝑟⟩ (the values
indicated in MHz near the curves correspond to 𝛾𝑔 = 4𝛾𝑟)
and 𝛾opt/2𝜋 = 10 MHz, 𝛾ph = 0, Δ = 0, 𝛿/2𝜋 = 500 MHz,
Ω0/2𝜋 = 1225 MHz, and 𝜙 = 𝜋/4

Fig. 5. Dependences of the light-pressure force (in 𝐹bichro
units) acting on a nanoparticle on the parameter (𝛾𝑔+𝛾𝑟)/(2𝜋)

for various values of the parameter 𝛼 (indicated near the
curves) and 𝛾opt/2𝜋 = 10 MHz, Δ = 0, 𝛿/2𝜋 = 500 MHz,
Ω0/2𝜋 = 1225 MHz, 𝜙 = 𝜋/4, and 𝛾𝑔 = 4𝛾𝑟 (solid curves) or
𝛾𝑔 = 0 (dashed curves)

with that in Fig. 3. According for the latter, the ratio
between the pressure force acting on a nanoparticle
in the field of counter-propagating bichromatic waves
and the maximum pressure force in the traveling-wave
field decreases with the growth of 𝛾𝑔 + 𝛾𝑟, and the

pressure force magnitude itself (Fig. 4 demonstrates
that its ratio to 𝐹bichro) is small at both very low and
very high 𝛾𝑔 + 𝛾𝑟 values.

The small values of the light-pressure force at low
population relaxation rates in the |𝑔⟩ and |𝑟⟩ states
may be associated with the accumulation of atoms
in the state |𝑟⟩, where they do not interact with the
field. A small value of the light-pressure force in the
opposite case and at the ratio between the relaxation
constants 𝛾𝑔 and 𝛾𝑟 that is indicated in Fig. 4 is
explained by the growth of the coherent relaxation
rate 𝛾coh = 1

2 (𝛾𝑔 + 𝛾opt) + 𝛾ph. Hence, there must
be an optimal value for 𝛾𝑔 + 𝛾𝑟 that maximizes the
light-pressure force. This is possible, if 𝛾𝑔 differs from
zero. If 𝛾𝑔 = 0, the light-pressure force should mono-
tonically increase with the increase of 𝛾𝑔 + 𝛾𝑟 = 𝛾𝑟
and go toward the maximum value obtained in the
two-level atomic model.

Indeed, one can see in Fig. 5 that if some non-zero
value of 𝛼 is fixed, and if the sum 𝛾𝑔 + 𝛾𝑟 grows, the
light-pressure force first increases to a certain maxi-
mum value and then tends to zero (the light-pressure
force is not shown at very large values of 𝛾𝑔+𝛾𝑟). But,
if 𝛾𝑔 = 0, the light-pressure force first grows to
the maximum value (for 𝛼 = 0.2, this is 0.5539 at
𝛾𝑟/2𝜋 = 220 MHz) and afterward approaches the val-
ues corresponding to the two-level atom (i.e., to the
case 𝛼 = 1).

It would appear that the interaction between a
three-level atom and the field could be interpreted
as a reduction of the role of the third level to a
simple population depot and the formation of light-
pressure force following the same laws as for the
two-level system. In this case, the light-pressure force
would be equal to that in the two-level system mul-
tiplied by (𝑛𝑔 + 𝑛𝑒), and the dependences shown in
Figs. 4 and 5 would be similar to the corresponding
(𝑛𝑔 + 𝑛𝑒)-dependences. However, the dependences in
Fig. 6 plotted for the same parameters as in Fig. 5
testify that this is not so. It is obvious that the plots
in Fig. 5 cannot be obtained from the corresponding
plots in Fig. 6 by simply multiplying the ordinates of
all curves in Fig. 6 by the same factor.

5.2. Y2SiO5 crystal doped with erbium ions

Obvious candidates for “active” atoms in nanoparti-
cles are atoms of rare-earth elements [25], whose ions
are used in some crystals to observe electromagneti-
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cally induced transparency. If the radiation-induced
transitions occur between the states inside the 4𝑓
shell, those states are weakly perturbed by the field,
and all ions interact resonantly with it.

We will consider the light-pressure force acting
on nanoparticles using the interaction between coun-
ter-propagating light waves and Y2SiO5 crystalline
nanoparticles with the 167Er3+ impurity as an exam-
ple. Let us briefly consider the spectroscopic charac-
teristics of this crystal, which are given in work [26].

The authors of paper [26] used a Y2SiO5 crys-
tal with the added 167Er isotope to observe the
electromagnetically induced transparency. At least
two Λ-configurations of energy levels suitable for
its observation were found. The corresponding tran-
sitions approximately correspond to a wavelength
of 1.5 𝜇m. The erbium content in Y2SiO5 was
0.005 at.%. The electronic structure of Er3+ ions is
described by the formula [Xe]4𝑓11. The total mo-
ment 𝐽 = 𝐿 + 𝑆 equals 𝐽 = 15/2 in the ground
state (the state 4𝐼15/2), and 𝐽 = 13/2 in the first
excited state (the state 4𝐼13/2). Due to the electric
field of neighbor atoms, the degeneracy of the 4𝐼15/2
state is partially removed, and it becomes split into
eight Kramers doublets. The first excited state is
split into seven Kramers doublets. The Kramers dou-
blet can be described by the effective electronic spin
𝑆eff = 1/2. Two positions of erbium ions in the crys-
tal are possible: an erbium ion has six neighbors in
position 1, and seven neighbors in position 2.

The wavelengths of the transitions from the lower
Kramers doublet of the ground state 4𝐼15/2 into the
lower Kramers doublet of the excited state 4𝐼13/2
equal 𝜆 = 1536 nm for erbium ions in position 1, and
𝜆 = 1538 nm for erbium ions in position 2. Since the
electrons in the 4𝑓 shell are screened by the filled 5𝑠2

and 5𝑝6 shells, the frequencies of transitions inside the
4𝑓 shell are weakly perturbed by the crystalline field.

The spin of the 167Er isotope nucleus is 𝐼 =
= 7/2. Owing to hyperfine and quadrupole interac-
tions, the Kramers doublets are split into at most
(2𝑆eff + 1)(2𝐼 + 1) = 16 hyperfine components due
to the low symmetry of the crystal even in the ab-
sence of the magnetic field. A large number of hyper-
fine sublevels in the ground and excited states allow
the realization of many Λ-schemes of the interaction
between an erbium ion and the field. All transitions
are allowed, because hyperfine sublevels correspond
not to pure quantum states, but to the mixtures of

Fig. 6. Dependences of the total population of states |𝑔⟩ and
|𝑒⟩ on the parameter (𝛾𝑔 + 𝛾𝑟)/(2𝜋) at 𝛾𝑔 = 4𝛾𝑟 for vari-
ous values of the parameter 𝛼 (indicated near the curves) and
Δ = 0, 𝛿/2𝜋 = 500 MHz, Ω0/2𝜋 = 1225 MHz, 𝜙 = 𝜋/4, and
𝛾opt/2𝜋 = 10 MHz

the states |𝐼 = 7/2,𝑀𝐼⟩, where 𝑀𝐼 = ±7/2, ±5/2,
±3/2, ±1/2 is the projection of the nuclear spin onto
the selected axis. An inhomogeneous broadening due
to the crystal field non-uniformity has an order of
several megahertz. The distance between the ultra-
fine components of spectral lines amounts to hundreds
of MHz. The authors of work [26] managed to deter-
mine two relaxation constants: 𝑇 opt

1 = 10 ms and
𝑇 hyp
1 = 97 ms. The former determines the lifetime of

the ion in the excited state, and the latter the time
of the population relaxation between the sublevels of
the ground state.

The presented scenario of the atomic interaction
with the electromagnetic field makes it possible to
formulate a simple model for the interaction between
nanoparticles with erbium impurities and the laser
radiation field. If the Rabi frequency of laser radi-
ation and the frequency of its amplitude modula-
tion are substantially lower than the frequency dif-
ference between the ultrafine structure components,
the ion in the crystal environment can be approx-
imately described using the three-level scheme: we
have (i) a light-induced transition between two ionic
levels (the ground and excited ones); (ii) a transition
from the excited state with the relaxation time 𝑇 opt

1

into the ground state and intermediate states that
correspond to various components of the hyperfine
structure; and (iii) a transition from the intermediate
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Fig. 7. Dependence of the acceleration of an Y2SiO5 nanopar-
ticle doped with 167Er3+ ions on the coherence relaxation rate
𝛾coh = 1

2
(𝛾opt + 𝛾𝑔) + 𝛾ph for 𝛾opt/2𝜋 = 16 Hz, 𝛾ph = 0,

(𝛾𝑔 + 𝛾𝑟)/𝛾𝑟 = 100, Δ = 0, 𝛿/2𝜋 = 204 MHz, Ω0/2𝜋 =

= 500 MHz, and 𝜙 = 𝜋/4

state into the ground state owing to the relaxation
(the characteristic time 𝑇 hyp

1 ).

5.3. Selection of laser radiation parameters
and calculation of light-pressure force acting
on a nanoparticle in 167Er3+-doped Y2SiO5

The characteristic energy difference between the hy-
perfine state levels of an erbium-167 ion in the Y2SiO5

crystal corresponds to hundreds of megahertz. In par-
ticular, for the lowest two levels, it is equal to
740 MHz [26]. The Rabi frequency of the light waves
acting on the nanoparticle must be considerably lower
than this value, e.g., 500 MHz. Let us estimate the
intensity of laser radiation corresponding to this fre-
quency.

We assume that the lifetime of the ion in the excited
state is 𝑇 opt

1 = 10 ms, which gives 𝛾opt = 102 s−1

(≈ 16 Hz). For a monochromatic traveling wave with
the intensity 𝐸0 and the dipole electric transition in
an atom with the projection of the matrix element
of the dipole moment 𝑑𝑔𝑒 between the states |𝑔⟩ and
|𝑒⟩ of the ion onto the polarization vector 𝜖, the Rabi
frequency Ω equals [27]

⃒⃒
Ω[rad/nsec]

⃒⃒
= 0.22068

|𝑑21 𝜖|
𝑒𝑎0

√︂
𝐼
[︁
W/cm2

]︁
. (55)

Here, 𝐼 is the intensity of laser radiation.

The dipole moment is related to the Einstein coeffi-
cient 𝐴12 (in our case, this is 𝛾opt) via the relation [27]
(in SGSE units)

|𝑑12|2 =
3

4

~
𝑘3
𝜛1𝐴12, (56)

where 𝜛1 is the statistical weight of the state |𝑔⟩,
which, in our case, is of an order of 102 (this is the to-
tal number of the levels of fine and ultrafine structure
𝛼−1, onto which transitions from the excited state are
possible). From Eq. (56, we get the estimate

|𝑑12|
𝑒𝑎0

=

√
3

2𝑒𝑎0𝑘2

√︀
~𝑘𝜛1𝐴12, (57)

which gives |𝑑12|/(𝑒𝑎0) = 0.129 for 𝐴 = 100 s−1

and 𝜆 = 1.5 𝜇m. At an intensity of an or-
der of 100 W/cm2, Eq. (55) yields Ω/2𝜋 =
= 45.3 MHz. The Rabi frequency of 500 MHz cor-
responds to the laser radiation intensity of about
12 kW/cm2.

5.4. Acceleration of an 167Er3+-doped
Y2SiO5 nanoparticle under the action
of light-pressure force

In order to calculate the light-pressure force, besides
the selected parameters, it is also necessary to know
the coherence relaxation rate. According to the re-
sults of work [28], the characteristic coherence life-
time 𝑇coh ranges from 1 𝜇s to 20 ms depending on
the temperature, the applied magnetic field, and the
concentration of erbium ions in the crystal. This co-
herence time interval corresponds to the interval of
coherence relaxation rates 𝛾coh/(2𝜋) from 8 Hz (it
corresponds to 1

2𝛾opt) to 160 kHz.
Let us calculate the acceleration of a nanoparticle,

if the mass concentration of erbium equals 1%. From
the dependence of the nanoparticle acceleration on
the coherence relaxation rate shown in Fig. 7, one
can see that, for the selected calculation parame-
ters, the maximum expected acceleration is 42 m/s2
at 𝛾coh/2𝜋 = 24 Hz. The value of 𝛾𝑟 required for
the calculation was chosen from the total number
of about 100 populated levels of hyperfine structure
(seven Kramers doublets, with each of them being
split into 16 components). Assuming all of them to
be characterized by approximately the same parame-
ters of the interaction with the field, one of them to be
working, and the others to be described by the state
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|𝑟⟩, we come to the conclusion that 𝛼 = 0.01 and
𝛾𝑔 = 100𝛾𝑟. The last estimate follows from the ex-
pressions for the equilibrium populations of the states
|𝑔⟩ and |𝑟⟩ [Eq. (15)]. Those requirements are satis-
fied by 𝛾𝑔/2𝜋 = 16 Hz and 𝛾𝑟/2𝜋 = 0.16 Hz. We also
assume that there is no additional increase of the re-
laxation rate due to fluctuations (𝛾ph = 0). The fact
that there is no acceleration of the nanoparticle at
𝛾coh/2𝜋 = 8 Hz is not surprising, because this value
corresponds to 𝛾𝑔 = 𝛾𝑟 = 0, which brings about the
zero populations of the states |𝑔⟩ and |𝑒⟩ due to the
optical pumping into the |𝑟⟩ state.

From the plotted dependence of the nanoparticle
acceleration on the coherence relaxation rate, we can
see that the expected acceleration of nanoparticles is
rather low as compared to the acceleration of atoms
in the field of bichromatic waves. It is quite possible
that nanoparticles with an admixture of other “active”
atoms for which the value of 𝛼 is higher may move
with a much higher acceleration.

5.5. Negatively charged silicon
color centers at vacancies in diamond

Another candidate for “active” atoms can be the SiV
and GeV color centers that arise owing to the localiza-
tion of silicon or germanium atoms at the vacancies
of the diamond crystal [29, 30]. The spectral charac-
teristics of color centers are determined by the energy
levels of an electron captured at defects in the crys-
talline lattice. The required optical properties (a nar-
row inhomogeneous width and a rather narrow spec-
tral line) arise due to the inversion symmetry [31],
which results in the disappearance of permanent elec-
tric dipole moments in the orbital Si states and dras-
tically reduces their response to charge fluctuations
in the local medium.

Let us estimate the light-pressure force acting on
diamond nanoparticles containing SiV color centers.
Owing to the spin-orbit interaction, each of the
ground and excited states of SiV is split into two ones.
As a result, the transition of an excited atom into
two states becomes possible, which forms a three-level
scheme of the silicon interaction with laser radiation.
The radiation wavelength is 𝜆 = 737 nm, and the
spontaneous radiation rate is 𝛾opt/2𝜋 = 94 MHz
[29]. The non-uniform linewidth is approximately
three times as large as 𝛾opt/2𝜋. To estimate the co-
herence relaxation rate, we use the expression 𝛾coh =

Fig. 8. Dependences of the nanoparticle acceleration on the
parameter (𝛾𝑔 + 𝛾𝑟)/(2𝜋) for 𝛾𝑔 = 𝛾𝑟 (solid curve) and 𝛾𝑔 =

= 0 (dashed curve), and Δ = 0, 𝛿/2𝜋 = 500 MHz, Ω0/2𝜋 =

= 1225 MHz, 𝜙 = 𝜋/4, 𝛾ph = 0 MHz, and 𝛼 = 0.5. The mass
fraction of silicon is 0.01%

= 1
2 (𝛾opt+𝛾𝑔)+𝛾 ph, but neglect the fluctuation term

𝛾ph in it. The Rabi frequency has to be much higher
than 𝛾opt = 94 MHz. Let Ω0/2𝜋 = 1225 MHz and
𝛿/2𝜋 = 500 MHz. Using Eqs. (55) and (57), we find
that such a value for the Rabi frequency is reached
at a radiation intensity of 5.2 W/cm2 due to a rather
wide radiation line and, accordingly, a large value of
the transition dipole moment (𝑑12 = 15.3𝑒𝑎0).

Let us assume that, after the spontaneous emission,
silicon atoms can turn out with the same probability
(𝛼 = 0.5) on either of the lower levels. Concerning
the relaxation constants 𝛾𝑔 and 𝛾𝑟, let us consider
two cases: (i) when, in the field absence, due to the
relaxation between the states |𝑔⟩ and |𝑟⟩, their pop-
ulations get equalized, i.e., 𝛾𝑔 = 𝛾𝑟, and (ii) when
𝛾𝑔 = 0 so that, in the field absence, all silicon atoms
are in the state |𝑔⟩. Owing to the lack of data on
the relaxation rate, let us calculate the dependence
of the light-pressure force acting on a nanoparticle on
the quantity 𝛾𝑔+𝛾𝑟. The results of calculations of the
dependence of the nanoparticle acceleration obtained
for the indicated parameters are shown in Fig. 8. If
relaxation is slow as is expected, the nanoparticle ac-
celeration is low, because a substantial fraction of the
atoms are in the |𝑟⟩ state in this case and do not in-
teract with the laser radiation.

If the silicon content in diamond equals 0.01 wt.%,
the diamond mass per silicon atom amounts to
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4.65 × 10−23 g, which corresponds to a volume of
133 nm3. For the expected acceleration of 5000 m/s2,
the light-pressure force arising due to the interaction
of a silicon atom with the laser radiation field equals
2.3 fN. The diameter of a spherical nanoparticle con-
taining 1000 silicon atoms with the indicated mass
concentration equals 63 nm.

According to work [32], the light-pressure force ex-
erted by a monochromatic wave of intensity 𝐼 on a
dielectric sphere of radius 𝑎≪ 𝜆 equals

𝐹 =
8

3
𝜋
𝑛2
𝑐

(𝑘𝑎)4𝑎2
(︂
𝑛21 − 𝑛22
𝑛21 + 2𝑛22

)︂
𝐼, (58)

where 𝑛1 and 𝑛2 are the refractive indices of the
nanoparticle and the medium, respectively. For dia-
mond, 𝑛1 = 2.4. Let nanoparticles with the diameter
2𝑎 = 63 nm be in air (𝑛2 = 1) in the radiation field
with an intensity of 5.2 W/cm2. In this case, from
Eq. (58), we have 𝐹 = 4.6× 10−6 fN, which is six or-
ders of magnitude less than the given above estimate
of the light-pressure force arising due to the interac-
tion of SiV color centers with the laser field radia-
tion. Such a large difference between the forces of
light pressure on nanoparticles partially results from
the small nanoparticle radius. Really, it follows from
Eq. (58) that the acceleration of a small nanopar-
ticle associated with its dielectric properties is pro-
portional to the cube of nanoparticle radius, whereas
the acceleration acquired due to the resonant light
pressure on “active” atoms does not depend on the
nanoparticle size, at least as far as the nanoparticle
contains considerably more than one atom.

6. Conclusions

The method for calculating the light-pressure force
acting on atoms and nanoparticles containing an ad-
mixture of “active” atoms in the field of counter-
propagating bichromatic light waves has been de-
scribed and developed for the case where the inter-
action of atoms with the field can be described in the
framework of the three-level scheme. The calculations
are based on the solution to three-term recurrence re-
lations, which were used earlier by the authors while
analyzing the interaction of two-level atoms with the
laser radiation field.

The presence of a third level, which the atoms can
get to in the course of the relaxation followed by the
relaxation to the ground state, decreases the light-
pressure force. It is shown that this decrease is not

directly related to a change in the populations of two
working levels, because the dependences of the light-
pressure force and the total population of the working
levels on the problem parameters are different.

The force of light pressure on Y2SiO5 nanoparti-
cles doped with 167Er3+ ions is calculated. The ac-
celeration value of about 40 m/s2, which is found for
nanoparticles, is sufficient to register the light-pres-
sure force arising in the field of counter-propagating
bichromatic waves, although it is several orders of
magnitude less than the acceleration of a two-level
atom under the same conditions.

According to the results of our calculations, color
centers are more promising than lanthanides for their
application as “active” atoms in diamond. It is found
that the nanoparticle acceleration can reach a value
of about 5000 m/s2 for a silicon mass concentration in
diamond at a level of 0.01%. This value is two orders
of magnitude higher than the expected acceleration of
nanoparticles from Y2SiO5 doped with 167Er3+ ions
to an order of magnitude higher concentration of rare
earth ions.

The concept of using “active” atoms to enhance
the light pressure on nanoparticles allows the light-
pressure force acting on small, much smaller than the
radiation wavelength, nanoparticles to be increased
by several orders of magnitude.

Besides performing the calculations of light-pres-
sure forces acting on nanoparticles with “active”
atoms, a force calculation method is developed and
can also be used in the case where the interaction of
a free atom with the field cannot be reduced to the
two-level scheme.

The work was carried out in the framework of
the Target Program of Basic Research of the Na-
tional Academy of Sciences of Ukraine “Promising
fundamental research and innovative developments of
nanomaterials and nanotechnologies for the needs of
industry, health care, and agriculture”.
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J.R. Maze, M. Atatüre et al.. Electronic structure of the
silicon vacancy color center in diamond. Phys. Rev. Lett.
112, 036405 (2014).

32. Y. Harada, T. Asakura. Radiation forces on a dielectric
sphere in the Rayleigh scattering regime. Optics Commu-
nications 124, 529 (1996). Received 10.12.22.

Translated from Ukrainian by O.I. Voitenko

В.I. Романенко, Н.В.Корнiловська, Л.П.Яценко

СВIТЛОВИЙ ТИСК НА НАНОЧАСТИНКИ
У ПОЛI ЗУСТРIЧНИХ БIХРОМАТИЧНИХ ХВИЛЬ
З ДОДАТКОВИМ КАНАЛОМ РЕЛАКСАЦIЇ
НАСЕЛЕНОСТI ЗБУДЖЕНОГО СТАНУ

Розглянуто силу свiтлового тиску на наночастинки, що мi-
стять домiшки атомiв або центри забарвлення, якi резонан-
сно взаємодiють з полем. Наявне кристалiчне оточення у за-
гальному випадку унеможливлює формування дворiвневої
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схеми взаємодiї атома або центра забарвлення з полем зав-
дяки зняттю заборони на частину переходiв зi спонтанним
випромiнюванням. У результатi частина атомiв перебуває
у станах, якi не взаємодiють з полем лазерного випромi-
нювання, але якi з часом релаксують до основного стану.
Побудовано теорiю, яка дозволяє розрахувати силу свiтло-
вого тиску на атоми чи центр забарвлення (i, вiдповiдно,
на наночастинку, в якiй вони перебувають) у залежностi
вiд параметрiв їхньої взаємодiї з полем та параметрiв рела-
ксацiї збудженого стану i промiжних станiв. Для вивчення
впливу рiзних факторiв на силу свiтлового тиску розрахун-

ки проведенi для модельної сукупностi параметрiв, а також
для параметрiв, якi визначають взаємодiю тризарядних iо-
нiв ербiю у допованих ним кристалах Y2SiO5 та центрiв
забарвлення, що виникають завдяки розташуванню атомiв
кремнiю в дефектах кристала алмазу. Як виявилося, завдя-
ки центрам забарвлення можна на кiлька порядкiв пiдняти
силу тиску свiтла на малi, значно меншi за довжину хвилi,
наночастинки.

Ключ о в i с л о в а: атоми, наночастинки, лазерне випромi-
нювання, свiтловий тиск.
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