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Obnucaeno Gynryii pocmy OAs YCIT IHIUIAALYHUL 000POMHUL GETMOMAMIE 3 080MG CMAHAMY HAO
binaprum aadasimom. K Hacaidox NOKA3AHO, WO ABMOMAM HECKIMYEHH020 NOPAJKY 3 Ub020 KAACY
MGE payionasvhy (anzebpaiuny) dynryito pocmy modi i auwe modi, KOAU MHOHCUHG (020 CMAHIG
NOPooAHCYE 2pYnY OAUMAIOYUT AGMNOYOK, AKG € SIHUESUM JOGYMKOM UUKAIUHOL 2pyny nopadky 2 ma
2PYNU ULAUT YUCEN.

Kmowoei caosa: iniytasvhut asmomam, Gynxyis pocmy.

Automata were introduced in the middle of the 20th century to investigate the properties of different
computational schemes. They appeared as a part of applied mathematics but now automata are widely
used in such abstract areas as group theory and dynamical systems. In particular, automata were used
to solve the Milnor problem on group growth.

An initial automaton is a model which allows us to realize certain transformations of a set of words
over some finite alphabet. The growth function of such an automaton counts the minimal number of
states in the automata that implement different powers of corresponding action on the given set of
words. In this article we consider the initial invertible automata with two states that act on the set
of binary words. We compute the growth function for each automaton from this automata class. As a
corollary we prove that the only infinite order automata in this class with rational (algebraic) growth
function are the lamplighter automata.

Keywords: initial automaton, growth function.
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minimal number of states that could be used to
implement the corresponding iteration of function
given by the automaton.

1 Introduction

Modern computers translate any type of
information to the binary sequences to store and
process it. Operations on such a binary presentati-
on of data are implemented by different types of
abstract automata. If a given function over the
data can be realized by an automaton then this
realization is not unique. It is natural to find the
automaton with the minimal number of states
which realizes a given function.

The set of all initial invertible automata over
a fixed alphabet forms a group with respect to
the automata composition called the group of fi-
nite automata. Every finite invertible automaton
A generate a finitely generated subgroup of this
group: one can take an initial automaton Ay for
each state s of A and generate a subgroup. There
were many investigations during the last three
decades in order to understand which groups can
be generated by finite automata. The full list of
groups generated by two-state automata over a
two-letter alphabet is given in [6]. In particular,
it was proved that the lamplighter group Z21Z
is generated by such an automaton. Also groups
generated by three-state automata over a two-
letter alphabet were deeply investigated in [3].

One of the simplest type of automata are initi-
al Mealy automata that implement certain functi-
ons on the space X™* of words over an alphabet X.
The composition of such functions is realized by
the consecutive connection of the corresponding
Mealy automata. Moreover, if we define the n-th
iteration of an automaton as a composition with
itself n times then we may introduce the growth
function ~y(n) which counts the number of states

in n-th iteration. In other words, it calculates the The growth function of non-initial automaton
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has the same type as the growth function of
generated group. This connection allows one to
construct examples of groups and automata with
intermediate growth functions between polynomi-
al and exponential. The first such an example
was constructed by Grigorchuk in [5] and provi-
ded an answer to the question of Milnor on group
growth. Interesting growth functions of non-initial
automata were computed Bartholdi and Reznikov
in [I] and [2]. The growth function of the generali-
zed adding machine is computed in [7].

In this paper we compute the growth functi-
ons of initial invertible Mealy automata with two
states over a binary alphabet. Note that we call
a function f : N — R rational (algebraic) if the
corresponding generating function of the sequence
{f(n)}52, is rational (algebraic). Our main result
can be formulated as follows.

Theorem 1. Let Ay 5) be the set of invertible ini-
tial two-state automata over a two-letter alphabet
and vs(n) be the growth function of an automaton
s. Then:

1) If an automaton s € A(z9) has finite order
then it has rational growth function. In this
case ys(n) =1 or vs(n) =1+ (n mod 2).

2) The only initial automata from A ) that
have both infinite order and rational growth
function are the lamplighter automata, which
have growth function ~vs(n) = 2".

3) Any other automaton s € A(2,2) has non-
algebraic growth function. More precisely,
the following inequalities hold:

2[logyn] —p—1 < 7s5(n) < 2[logyn] —p+2,
where n = 2Pm with odd m.

The precise values of the growth functions
vs(n) for every s € Az ) are given in the proof.

The growth function in item 3) is non-
algebraic, because it is bounded by two logari-
thmic functions logy () — 2 and logy(z) + 3, whi-
le the coefficients of an algebraic function cannot
have logarithmic behavior (see Theorem 8.2 in [4]).

2 Automata and their growth functions

Let X be a finite set of elements {1, x2,...,z,},
n > 2. We call this set the alphabet. Also let us
denote by X* the set of words over X including
the empty word.
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Definition 2.1. An automaton A is a triple
(X, S, A), where S is the set of states, and

A:SxX =X xS

is the output-transition map.

Definition 2.2. An automaton A is called finite if
its set of states is finite.

Definition 2.3. An automaton A = (X,S,\) is
inwvertible if for every its state s € S the restricted
map As = A(s, -)|x acts on X as some permutation
s € Sym(X).

In this article we consider only finite inverti-
ble automata. Note that every state s of such
an automaton can be defined using the following
wreath recursion notation:

S = (81,82, .y Sn)Ts,

where s; = Az, s)|s.

Definition 2.4. An initial automaton A; is an
automaton A = (X, S, \) with a fixed initial state
s € 5. We will use notation s for initial automaton
A, for better readability.

Each initial automaton s acts on the set
of words over X. This action is constructed as
follows. We pass the first letter y; of an input word
to the initial automaton s. As the output we get
a pair A(s,y1) = (v},s") where y] is the output
letter and s’ is the next state. On the next step,
we pass the second letter yo to the state s’ and so
on. Repeating of this procedure gives us an output
word y1vh . ...

Since different automata can produce the
same action on X, we must consider the notion
of minimal automata.

Definition 2.5. An initial automaton s is called
mangmal if it has a minimal number of states
among the automata that act on X* as s.

Now let we have two initial invertible
automata s1 and ss over the same alphabet X. We
can consider their composition si - so as the mini-
mal automaton which acts on each word w € X*

by the rule s - s2(w) = s1(s2(w)).

Definition 2.6. The growth function of an initial
automaton s is the function

vs(n) = #States(s").
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Definition 2.7. An initial automaton s has finite
order if s acts trivially on X* for some n € N.

Definition 2.8. Let A be an invertible non-
initial automaton. The group generated by the
transformations A, for all states s of A is called
the automaton group of A or group generated by
the automaton A.

Definition 2.9. The automata given by recursions
b= (a,b), a = (bya)o and b = (a,b), a = (a,b)o
are called the lamplighter automata.

These automata get their name because they
generate the lamplighter group Zs ! Z (see [6]).

3 Proof of Theorem 1

Every automaton with two states a and b over
the binary alphabet X = {0,1} can be written
in terms of wreath recursions as

a = (qi1,q12)7e and b = (qa1, g22) ™,

where g;; € {a,b} and 7,4, ™, € Sym(X) = {(),0 =
(01} If mq = m, = (), then y4(n) = v(n) = 1. If
Ta = Tp = 0, then v,(n) = vp(n) = 1+ (n mod 2).
Further, without loss of generality, we suppose
that 7, = o and m, = ().

Proof of Item 1. We list the automata such that
a and b have finite order:

e b= (b,b), a = (a,a)o (generates Cs);

e b=(b,b), a= (bb)o (generates Cs);

e b= (a,a), a= (a,a)o (generates Cy x Cs);
o b= (a,a),a=(b,b)o (generates Cy x Cs);
e b= (a,b), a=(a,a)o (generates Dw);

e b= (a,b), a = (b,b)o (generates D).

For these cases we can directly get that vs5(n) =1
or vs(n) =1+ (n mod 2). O

Remark 1. The two states of every automaton
representation of the dihedral group Do, listed
above have order two and they have rational growth
function. However, the product of these two states
has infinite order and its growth function is of
logarithmic type thus it is not algebraic.

Now let us consider the lamplighter automata.
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Proof of Item 2. There are two automata in our
family that generate the group Zs 1 Z:

e b= (a,b),a=(ba)o,
e b=(a,b),a=(a,b)o.

The states of the second automaton are
inverse to the states of the first automaton. That
is why the corresponding growth functions are
equal. So we can consider only the automaton
b= (a,b), a = (b,a)o. We claim that each of the
automata a” and b" consists of 2" states which
correspond to all words of length n over {a,b}.
This follows from two well known facts about the
action of a and b (see [3]). First, the semigroup
generated by a and b is free; therefore, all words
of length n over {a,b} represent different initial
automata. Second, the so-called dual automaton
is isomorphic to the lamplighter automaton and
acts transitively on all words of length n over
{a, b}. Therefore, the automata a™ and b" contain
a state for every word of length n over {a,b}.
Hence v4(n) = vp(n) = 2™ O

Proof of Item 3. The other automata, according
to the classification from [6], generate the group Z.
There are two such automata. The first one is the
so-called adding machine b = (b,b), a = (b,a)o.
Its growth function was computed in [7]:

Y(n) =1 for all n € N and

2m —p+ 2,
2m—p+1,

ifep1=1o0rp=m;
Ya(n) = { otherwise.
where n = gg+2¢e1+...42™M¢,, is the expansion of
n in base 2, m = [log, n| and p is the first non-zero
position.

The second automaton is defined by recursi-
ons b= (a,a), a = (a,b)o. It is easy to check that
Ya(1) = (1) = 2 and for any n > 2 we have
Ww(n) = v4(n) + 1. That is why it is enough to
consider only the growth function of a.

Let us notice that ab = ba and a?b = 1. Tt
means that b = a2 and a = (a,a7?)o. As a
has infinite order we have that any two different
powers of a define different actions on X*.

It is easy to check the following formula for
the state a™:

_n

o { (a 2.a77), n =0 mod 2;
- (a*[%]ﬂ’ a*[%}*%a, otherwise,
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which implies 74(2"n) = k + v,(n) for n > 1 and
Ya(2¥) = k + 1. Therefore, it is enough to consider
only odd values of n. Let t; = —[5] — 2. Then

a” = ("3, a0,

To construct the set A of all states of the given
finite state automaton we can consider the followi-
ng procedure. First of all we add this automaton to
the set A. Using the corresponding wreath recursi-
on we add all coordinates to the set A. On the next
step we consider only new elements that appeared
in A during the previous step. We add to A all
their coordinates. We can repeat this procedure
again and again. As the given automaton is fini-
te state then on some step there will be no new
elements in A from the previous step. This means
that A is constructed.

Let us use the procedure from above to find
all the states of an automaton a”, where n is a big
enough odd number. First of all we add the state
a” and on the first step we also add states a!**3
and a’' with

On the first step both states are new because
of proposition that n is big enough number. It is
easy to check that for any parity of £; we will get on
the next step exactly 2 new elements a2 and a2*3
for some integer number t2. Note, that every next
step gives us only 2 new states a’* and a’**3 for
some tg. Moreover, the following inequality holds:

[ti] > |ta] > -+ > |tkl,

until we get the first value of |tx| or [tx + 3]
that is less then 20.

So the idea is to calculate how many steps we
made until we get a value ¢; such that |¢;] < 20. In
addition we must calculate all other states of a”
that can be obtained from the states a’ and a%*3.
Based on this we get that the growth function sati-
sfies the following equality

Ya(n) =20+ 1+ 6(t;)

where 0(¢;) counts the number of powers in the
union of states a®, a3 except themselves.

The table [1] gives us the full list of all possi-
ble disjoint cases that cover all the odd values of
n > 20. In other words, we describe such a set
of pairs x,x + 3 (x is an integer number) that for
any such a number n there is exactly one step of
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the algorithm which gives us a pair from this set.
Notice that we must take into account that sign of
ti is changed from step to step. Nevertheless, it is
enough to consider only absolute values of tj.

Using the algorithm for each a™ we will reach
only one of the listed pairs ¢;, {;+3. So it is enough
to define what numbers can give us a pair ¢ and
t + 3 on some. To describe such numbers we may
consider only absolute value of t. We can construct
the inverse transformations of powers from the
wreath recursion :

T — 2x,

r—2x+3,x— 2x— 3.

Moreover, as we consider only odd numbers n then
it is enough to use only maps x — 2z + 3 and
x +— 2x — 3. So on the first level we can construct
only one such a number n = 2t + 3 and then we
can use both maps. As a result all numbers can be
represented as follows:

n=2(2(2(...2(2t +3) £ 3)--- £3) £ 3)
=25t +3(2° 1 £2572 ... £ 1).

3=

This can be rewritten as n = 2% + 3z, where
x € {1,3,5,...,2° — 1}, s > 1. Also using this
formula we can compute the number of steps

n
t+3
Now we can introduce a boolean function (n,t)
which equals to 1 if and only if there exist two
numbers s and =z € {1,3,5,...,2% — 1} such that
n = 2%t + 3x. Then the growth function is

S ) fnt), (1)
8<t<1T,1#£16
where f(n,t) = 2[{logyn} —log, (t + 3)]+4(t)+ 3.
Further we simplify this expression. We need
the following simple observation.

Ya(n) = 2[logy n] +

Lemma 1. Let a € (1,2) and n € N. Then
{logy n} > logy v if and only if Sogs ] € [a;2).

Proof. {logyn} = logya if and only if the di-
fference logy n — [logy 1] is equal to log, a.
Based on this we have

logy n = logy o + [logyn] = n = 2°%2 atllogyn]
n

9llogy n]

This means that logon > logy v if and only if

Sogs T € [@52). 0

= glog2 o —
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t; | t; +3 | Powers Powers for —t; — 3, —t; | d(t;)
8 |11 (—4,-7,2,5, -1} {4,7,-2,—5,1} 5
9 |12 {—3,-6,3,0} (3,6,-3,0} 4
10| 13 {—5,-8,1,4,—2} {5,8,—1,—4,2} 5
11| 14 (—4,-7,2,5,—1} {4,7,—2,—5,1} 5
1215 {—6,-9,3,6,—3,0} {6,9,—3,-6,3,0} 6
13 | 16 (=5, -8,1,4, -2} (5,8,—1, 4,2} 5
1417 | {=7,-10,2,5,—1,—4} | {7,10,—2,—5,1,4} 6
15 | 18 {-6,-9,3,6,-3,0} {6,9,—-3,-6,3,0} 6
17 [ 20 | {=7,-10,2,5,—1,—4} | {7,10,—2,—5,1,4} 6

Table 1: Some values of the function §(¢)

Since only one summand in is nonzero, we
consider each possibility for ¢ separately to hold
the condition ¢ (n,t) = 1.

1) If t =9 then

f(n,t) = 2[{logyn}

On the other hand n = 9-2° + 3z = 2573 4254 3z,
z € {1,3,...,25 =1}, s > 1. From Lemma [I] for
a = 1.5 we get that {logyn} < logy 1.5. Therefore

—logy 1.5] + 1.

Ya(n) = 2[logyn] — 1.

2) For ¢t € {12,14,15,17} we have §(t) =
Therefore

F(n.t) = 2([{logz n} -
= 2{logy )+ logy =] + 1

a) For ¢t € {14,15,17} we have log, t%
and therefore

logs (t+3)] +4) +1 =

<0

t+3
16
log,

J+1=

t+3
16 7

va(n) = 2[logy n] + 2[{logy n}
_ { 2[logy n] + 1,

— 10g2

{logyn} >

2[logyn] — 1, otherwise.

b) For t = 12 we have

16
Ya(n) = 2[logy n] + 2[{logy n} + logsy 1—5] + 1.
By construction we have
n=12-2543z =2 4 252 4 35

land z € {1,3,...,2°—1}. Therefore
logy n] = s+ 3 and we get

25+3 + 28+2 + 3z

for some s >

n . n o .

ollogon] ~ 92s+3 T 9s+3 -
3z 3-2% 15
_15+2+3<15+28+3 =

Then {logyn} < logy 12 < by Lemma I and we get
that v4(n) = 2[logy n] + 1.

3) For t € {8,10,11, 13} we have the following
equality:

fn,t) = 2([{logy n}
= 2[{logy n} + log,

a) If ¢ = 13 then log, t%}
Ya(n) = 2llogy 1.

b) If t € {8,10,11} then we can repeat the
same steps that was used for ¢ = 12. As a result
for these cases {logyn} < logy &2 and ~,(n) =

2[logy n].

The final result for any odd number n > 20 is

defined by the formula v4(n) = 2[logy n] + d(n),

1, if(n,12) =1,
—1, if¢(n,9) =1,
1, if¢(n,t) =1, ¢t€ {14,15,17}

and {logyn} > log, t;%s, ,

—logy (t+3)] +4) =
° )

t+3
= 0 and we get that

-1, if(n,t)=1,t¢€ {14,15,17}
and {logy n} < log, 52,

0, otherwise.

where 1(n,t) is a boolean function which equals
to 1 if and only if there are exist numbers s and
x €{1,3,5,...,2° — 1} such that n = 25 4 3z.

It is easy to see that the statement of Item 3
holds for both a and b. Moreover, this proof gives
us a possibility to construct any iteration of the
automata directly without calculation of automata
composition.

O

Remark 2. We can use the similar procedure as
was used in the proof to calculate the growth functi-
on of any automaton a which is defined by the
following wreath recursion

a=(a*,a'"%)o,s € Z.

Note, that in this case the adding machine
corresponds to s = 0.
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