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Îá÷èñëåíî ôóíêöi¨ ðîñòó äëÿ óñiõ iíiöiàëüíèõ îáîðîòíèõ àâòîìàòiâ ç äâîìà ñòàíàìè íàä

áiíàðíèì àëôàâiòîì. ßê íàñëiäîê ïîêàçàíî, ùî àâòîìàò íåñêií÷åííîãî ïîðÿäêó ç öüîãî êëàñó

ìà¹ ðàöiîíàëüíó (àëãåáðà¨÷íó) ôóíêöiþ ðîñòó òîäi i ëèøå òîäi, êîëè ìíîæèíà éîãî ñòàíiâ

ïîðîäæó¹ ãðóïó áëèìàþ÷èõ ëàìïî÷îê, ÿêà ¹ âiíöåâèì äîáóòêîì öèêëi÷íî¨ ãðóïè ïîðÿäêó 2 òà

ãðóïè öiëèõ ÷èñåë.

Êëþ÷îâi ñëîâà: iíiöiàëüíèé àâòîìàò, ôóíêöiÿ ðîñòó.

Automata were introduced in the middle of the 20th century to investigate the properties of di�erent

computational schemes. They appeared as a part of applied mathematics but now automata are widely

used in such abstract areas as group theory and dynamical systems. In particular, automata were used

to solve the Milnor problem on group growth.

An initial automaton is a model which allows us to realize certain transformations of a set of words

over some �nite alphabet. The growth function of such an automaton counts the minimal number of

states in the automata that implement di�erent powers of corresponding action on the given set of

words. In this article we consider the initial invertible automata with two states that act on the set

of binary words. We compute the growth function for each automaton from this automata class. As a

corollary we prove that the only in�nite order automata in this class with rational (algebraic) growth

function are the lamplighter automata.

Keywords: initial automaton, growth function.

Communicated by Prof. Kirichenko V. V.

1 Introduction

Modern computers translate any type of
information to the binary sequences to store and
process it. Operations on such a binary presentati-
on of data are implemented by di�erent types of
abstract automata. If a given function over the
data can be realized by an automaton then this
realization is not unique. It is natural to �nd the
automaton with the minimal number of states
which realizes a given function.

One of the simplest type of automata are initi-
al Mealy automata that implement certain functi-
ons on the space X∗ of words over an alphabet X.
The composition of such functions is realized by
the consecutive connection of the corresponding
Mealy automata. Moreover, if we de�ne the n-th
iteration of an automaton as a composition with
itself n times then we may introduce the growth
function γ(n) which counts the number of states
in n-th iteration. In other words, it calculates the

minimal number of states that could be used to
implement the corresponding iteration of function
given by the automaton.

The set of all initial invertible automata over
a �xed alphabet forms a group with respect to
the automata composition called the group of �-
nite automata. Every �nite invertible automaton
A generate a �nitely generated subgroup of this
group: one can take an initial automaton As for
each state s of A and generate a subgroup. There
were many investigations during the last three
decades in order to understand which groups can
be generated by �nite automata. The full list of
groups generated by two-state automata over a
two-letter alphabet is given in [6]. In particular,
it was proved that the lamplighter group Z2 o Z
is generated by such an automaton. Also groups
generated by three-state automata over a two-
letter alphabet were deeply investigated in [3].

The growth function of non-initial automaton
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has the same type as the growth function of
generated group. This connection allows one to
construct examples of groups and automata with
intermediate growth functions between polynomi-
al and exponential. The �rst such an example
was constructed by Grigorchuk in [5] and provi-
ded an answer to the question of Milnor on group
growth. Interesting growth functions of non-initial
automata were computed Bartholdi and Reznikov
in [1] and [2]. The growth function of the generali-
zed adding machine is computed in [7].

In this paper we compute the growth functi-
ons of initial invertible Mealy automata with two
states over a binary alphabet. Note that we call
a function f : N → R rational (algebraic) if the
corresponding generating function of the sequence
{f(n)}∞n=0 is rational (algebraic). Our main result
can be formulated as follows.

Theorem 1. Let A(2,2) be the set of invertible ini-

tial two-state automata over a two-letter alphabet

and γs(n) be the growth function of an automaton

s. Then:

1) If an automaton s ∈ A(2,2) has �nite order

then it has rational growth function. In this

case γs(n) = 1 or γs(n) = 1 + (n mod 2).

2) The only initial automata from A(2,2) that

have both in�nite order and rational growth

function are the lamplighter automata, which

have growth function γs(n) = 2n.

3) Any other automaton s ∈ A(2,2) has non-

algebraic growth function. More precisely,

the following inequalities hold:

2[log2 n]− p− 1 6 γs(n) 6 2[log2 n]− p+ 2,

where n = 2pm with odd m.

The precise values of the growth functions
γs(n) for every s ∈ A(2,2) are given in the proof.

The growth function in item 3) is non-
algebraic, because it is bounded by two logari-
thmic functions log2(x)− 2 and log2(x) + 3, whi-
le the coe�cients of an algebraic function cannot
have logarithmic behavior (see Theorem 8.2 in [4]).

2 Automata and their growth functions

Let X be a �nite set of elements {x1, x2, ..., xn},
n > 2. We call this set the alphabet. Also let us
denote by X∗ the set of words over X including
the empty word.

De�nition 2.1. An automaton A is a triple
(X,S, λ), where S is the set of states, and

λ : S ×X → X × S

is the output-transition map.

De�nition 2.2. An automaton A is called �nite if
its set of states is �nite.

De�nition 2.3. An automaton A = (X,S, λ) is
invertible if for every its state s ∈ S the restricted
map λs = λ(s, ·)|X acts onX as some permutation
πs ∈ Sym(X).

In this article we consider only �nite inverti-
ble automata. Note that every state s of such
an automaton can be de�ned using the following
wreath recursion notation:

s = (s1, s2, ..., sn)πs,

where si = λ(xi, s)|S .

De�nition 2.4. An initial automaton As is an
automaton A = (X,S, λ) with a �xed initial state
s ∈ S. We will use notation s for initial automaton
As for better readability.

Each initial automaton s acts on the set
of words over X. This action is constructed as
follows. We pass the �rst letter y1 of an input word
to the initial automaton s. As the output we get
a pair λ(s, y1) = (y′1, s

′) where y′1 is the output
letter and s′ is the next state. On the next step,
we pass the second letter y2 to the state s

′ and so
on. Repeating of this procedure gives us an output
word y′1y

′
2 . . . .

Since di�erent automata can produce the
same action on X∗, we must consider the notion
of minimal automata.

De�nition 2.5. An initial automaton s is called
minimal if it has a minimal number of states
among the automata that act on X∗ as s.

Now let we have two initial invertible
automata s1 and s2 over the same alphabet X. We
can consider their composition s1 · s2 as the mini-
mal automaton which acts on each word ω ∈ X∗
by the rule s1 · s2(ω) = s1(s2(ω)).

De�nition 2.6. The growth function of an initial
automaton s is the function

γs(n) = #States(sn).

10
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De�nition 2.7. An initial automaton s has �nite
order if sn acts trivially on X∗ for some n ∈ N.

De�nition 2.8. Let A be an invertible non-
initial automaton. The group generated by the
transformations As for all states s of A is called
the automaton group of A or group generated by

the automaton A.

De�nition 2.9. The automata given by recursions
b = (a, b), a = (b, a)σ and b = (a, b), a = (a, b)σ
are called the lamplighter automata.

These automata get their name because they
generate the lamplighter group Z2 o Z (see [6]).

3 Proof of Theorem 1

Every automaton with two states a and b over
the binary alphabet X = {0, 1} can be written
in terms of wreath recursions as

a = (q11, q12)πa and b = (q21, q22)πb,

where qij ∈ {a, b} and πa, πb ∈ Sym(X) = {(), σ =
(0 1)}. If πa = πb = (), then γa(n) = γb(n) = 1. If
πa = πb = σ, then γa(n) = γb(n) = 1+(n mod 2).
Further, without loss of generality, we suppose
that πa = σ and πb = ().

Proof of Item 1. We list the automata such that
a and b have �nite order:

• b = (b, b), a = (a, a)σ (generates C2);

• b = (b, b), a = (b, b)σ (generates C2);

• b = (a, a), a = (a, a)σ (generates C2 × C2);

• b = (a, a), a = (b, b)σ (generates C2 × C2);

• b = (a, b), a = (a, a)σ (generates D∞);

• b = (a, b), a = (b, b)σ (generates D∞).

For these cases we can directly get that γs(n) = 1
or γs(n) = 1 + (n mod 2).

Remark 1. The two states of every automaton

representation of the dihedral group D∞ listed

above have order two and they have rational growth

function. However, the product of these two states

has in�nite order and its growth function is of

logarithmic type thus it is not algebraic.

Now let us consider the lamplighter automata.

Proof of Item 2. There are two automata in our
family that generate the group Z2 o Z:

• b = (a, b), a = (b, a)σ;

• b = (a, b), a = (a, b)σ.

The states of the second automaton are
inverse to the states of the �rst automaton. That
is why the corresponding growth functions are
equal. So we can consider only the automaton
b = (a, b), a = (b, a)σ. We claim that each of the
automata an and bn consists of 2n states which
correspond to all words of length n over {a, b}.
This follows from two well known facts about the
action of a and b (see [3]). First, the semigroup
generated by a and b is free; therefore, all words
of length n over {a, b} represent di�erent initial
automata. Second, the so-called dual automaton
is isomorphic to the lamplighter automaton and
acts transitively on all words of length n over
{a, b}. Therefore, the automata an and bn contain
a state for every word of length n over {a, b}.
Hence γa(n) = γb(n) = 2n.

Proof of Item 3. The other automata, according
to the classi�cation from [6], generate the group Z.
There are two such automata. The �rst one is the
so-called adding machine b = (b, b), a = (b, a)σ.
Its growth function was computed in [7]:

γb(n) = 1 for all n ∈ N and

γa(n) =

{
2m− p+ 2, if εm−1 = 1 or p = m;
2m− p+ 1, otherwise.

where n = ε0+2ε1+. . .+2mεm is the expansion of
n in base 2, m = [log2 n] and p is the �rst non-zero
position.

The second automaton is de�ned by recursi-
ons b = (a, a), a = (a, b)σ. It is easy to check that
γa(1) = γb(1) = 2 and for any n > 2 we have
γb(n) = γa(n) + 1. That is why it is enough to
consider only the growth function of a.

Let us notice that ab = ba and a2b = 1. It
means that b = a−2 and a = (a, a−2)σ. As a
has in�nite order we have that any two di�erent
powers of a de�ne di�erent actions on X∗.

It is easy to check the following formula for
the state an:

an =

{
(a−

n
2 , a−

n
2 ), n = 0 mod 2;

(a−[
n
2
]+1, a−[

n
2
]−2)σ, otherwise,

11
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which implies γa(2
kn) = k + γa(n) for n > 1 and

γa(2
k) = k+1. Therefore, it is enough to consider

only odd values of n. Let t1 = −[n2 ]− 2. Then

an = (at1+3, at1)σ.

To construct the set A of all states of the given
�nite state automaton we can consider the followi-
ng procedure. First of all we add this automaton to
the set A. Using the corresponding wreath recursi-
on we add all coordinates to the set A. On the next
step we consider only new elements that appeared
in A during the previous step. We add to A all
their coordinates. We can repeat this procedure
again and again. As the given automaton is �ni-
te state then on some step there will be no new
elements in A from the previous step. This means
that A is constructed.

Let us use the procedure from above to �nd
all the states of an automaton an, where n is a big
enough odd number. First of all we add the state
an and on the �rst step we also add states at1+3

and at1 with

t1 = −[
n

2
]− 2.

On the �rst step both states are new because
of proposition that n is big enough number. It is
easy to check that for any parity of t1 we will get on
the next step exactly 2 new elements at2 and at2+3

for some integer number t2. Note, that every next
step gives us only 2 new states atk and atk+3 for
some tk. Moreover, the following inequality holds:

|t1| > |t2| > · · · > |tk|,

until we get the �rst value of |tk| or |tk + 3|
that is less then 20.

So the idea is to calculate how many steps we
made until we get a value tl such that |tl| 6 20. In
addition we must calculate all other states of an

that can be obtained from the states atl and atl+3.
Based on this we get that the growth function sati-
s�es the following equality

γa(n) = 2l + 1 + δ(tl)

where δ(tl) counts the number of powers in the
union of states atl , atl+3 except themselves.

The table 1 gives us the full list of all possi-
ble disjoint cases that cover all the odd values of
n > 20. In other words, we describe such a set
of pairs x, x+ 3 (x is an integer number) that for
any such a number n there is exactly one step of

the algorithm which gives us a pair from this set.
Notice that we must take into account that sign of
tk is changed from step to step. Nevertheless, it is
enough to consider only absolute values of tk.

Using the algorithm for each an we will reach
only one of the listed pairs tl, tl+3. So it is enough
to de�ne what numbers can give us a pair t and
t + 3 on some. To describe such numbers we may
consider only absolute value of t. We can construct
the inverse transformations of powers from the
wreath recursion :

x 7→ 2x,

x 7→ 2x+ 3, x 7→ 2x− 3.

Moreover, as we consider only odd numbers n then
it is enough to use only maps x 7→ 2x + 3 and
x 7→ 2x− 3. So on the �rst level we can construct
only one such a number n = 2t + 3 and then we
can use both maps. As a result all numbers can be
represented as follows:

n = 2(2(2(. . . 2(2t+ 3)± 3) · · · ± 3)± 3)± 3 =

= 2st+ 3(2s−1 ± 2s−2 ± · · · ± 1).

This can be rewritten as n = 2st + 3x, where
x ∈ {1, 3, 5, . . . , 2s − 1}, s > 1. Also using this
formula we can compute the number of steps

l = [log2
n

t+ 3
] + 1.

Now we can introduce a boolean function ψ(n, t)
which equals to 1 if and only if there exist two
numbers s and x ∈ {1, 3, 5, . . . , 2s − 1} such that
n = 2st+ 3x. Then the growth function is

γa(n) = 2[log2 n] +
∑

86t617,t 6=16

ψ(n, t)f(n, t), (1)

where f(n, t) = 2[{log2 n}− log2 (t+ 3)]+δ(t)+3.
Further we simplify this expression. We need

the following simple observation.

Lemma 1. Let α ∈ (1, 2) and n ∈ N. Then

{log2 n} > log2 α if and only if n
2[log2 n] ∈ [α; 2).

Proof. {log2 n} = log2 α if and only if the di-
�erence log2 n− [log2 n] is equal to log2 α.

Based on this we have

log2 n = log2 α+ [log2 n] =⇒ n = 2log2 α+[log2 n],

n

2[log2 n]
= 2log2 α = α.

This means that log2 n > log2 α if and only if
n

2[log2 n] ∈ [α; 2).

12
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tl tl + 3 Powers Powers for −tl − 3, −tl δ(tl)

8 11 {−4,−7, 2, 5,−1} {4, 7,−2,−5, 1} 5

9 12 {−3,−6, 3, 0} {3, 6,−3, 0} 4

10 13 {−5,−8, 1, 4,−2} {5, 8,−1,−4, 2} 5

11 14 {−4,−7, 2, 5,−1} {4, 7,−2,−5, 1} 5

12 15 {−6,−9, 3, 6,−3, 0} {6, 9,−3,−6, 3, 0} 6

13 16 {−5,−8, 1, 4,−2} {5, 8,−1,−4, 2} 5

14 17 {−7,−10, 2, 5,−1,−4} {7, 10,−2,−5, 1, 4} 6

15 18 {−6,−9, 3, 6,−3, 0} {6, 9,−3,−6, 3, 0} 6

17 20 {−7,−10, 2, 5,−1,−4} {7, 10,−2,−5, 1, 4} 6

Table 1: Some values of the function δ(t)

Since only one summand in (1) is nonzero, we
consider each possibility for t separately to hold
the condition ψ(n, t) = 1.

1) If t = 9 then

f(n, t) = 2[{log2 n} − log2 1.5] + 1.

On the other hand n = 9 ·2s+3x = 2s+3+2s+3x,
x ∈ {1, 3, . . . , 2s − 1}, s > 1. From Lemma 1 for
α = 1.5 we get that {log2 n} < log2 1.5. Therefore

γa(n) = 2[log2 n]− 1.

2) For t ∈ {12, 14, 15, 17} we have δ(t) = 6.
Therefore

f(n, t) = 2([{log2 n} − log2 (t+ 3)] + 4) + 1 =

= 2[{log2 n}+ log2
16

t+ 3
] + 1.

a) For t ∈ {14, 15, 17} we have log2
16
t+3 < 0

and therefore

γa(n) = 2[log2 n] + 2[{log2 n} − log2
t+ 3

16
] + 1 =

=

{
2[log2 n] + 1, {log2 n} > log2

t+3
16 ,

2[log2 n]− 1, otherwise.

b) For t = 12 we have

γa(n) = 2[log2 n] + 2[{log2 n}+ log2
16

15
] + 1.

By construction we have

n = 12 · 2s + 3x = 2s+3 + 2s+2 + 3x

for some s > 1 and x ∈ {1, 3, . . . , 2s−1}. Therefore
[log2 n] = s+ 3 and we get

n

2[log2 n]
=

n

2s+3
=

2s+3 + 2s+2 + 3x

2s+3
=

= 1.5 +
3x

2s+3
< 1.5 +

3 · 2s

2s+3
=

15

8
.

Then {log2 n} < log2
15
8 by Lemma 1 and we get

that γa(n) = 2[log2 n] + 1.

3) For t ∈ {8, 10, 11, 13} we have the following
equality:

f(n, t) = 2([{log2 n} − log2 (t+ 3)] + 4) =

= 2[{log2 n}+ log2
16

t+ 3
].

a) If t = 13 then log2
16
t+3 = 0 and we get that

γa(n) = 2[log2 n].
b) If t ∈ {8, 10, 11} then we can repeat the

same steps that was used for t = 12. As a result
for these cases {log2 n} < log2

t+3
8 and γa(n) =

2[log2 n].
The �nal result for any odd number n > 20 is

de�ned by the formula γa(n) = 2[log2 n] + δ(n),

δ(n) =



1, if ψ(n, 12) = 1,
−1, if ψ(n, 9) = 1,
1, if ψ(n, t) = 1, t ∈ {14, 15, 17}

and {log2 n} > log2
t+3
16 , ,

−1, if ψ(n, t) = 1, t ∈ {14, 15, 17}
and {log2 n} < log2

t+3
16 ,

0, otherwise.

where ψ(n, t) is a boolean function which equals
to 1 if and only if there are exist numbers s and
x ∈ {1, 3, 5, . . . , 2s − 1} such that n = 2st+ 3x.

It is easy to see that the statement of Item 3

holds for both a and b. Moreover, this proof gives
us a possibility to construct any iteration of the
automata directly without calculation of automata
composition.

Remark 2. We can use the similar procedure as

was used in the proof to calculate the growth functi-

on of any automaton a which is de�ned by the

following wreath recursion

a = (as, a1−s)σ, s ∈ Z.

Note, that in this case the adding machine

corresponds to s = 0.

13
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