u] =,

Po3pooaero nocaidosnuil pexypcusnuil anzopumm Qiaom-
pa Kaamana ons ¢inempauii oanux 6 oonacmi wmymie 6io-
MIHHUX 610 2aYCOBCHLK020 PO3N00inY 0 GUKOPUCMAHHS
Yy eumiprosanviii mexniui. Biominnoro pucoro pospoone-
Ho20 anzopummy Qinempa Kaamana ons ¢inempauii oa-
HUX 3 He2ayCOBCOKUMU WYMAMU € 8iOCYmMHICMb He0OXi0HO0-
cmi anpiopHoz0 6U3HAMEHHS CIMAMUCMUYHUX XAPAKMEPUC-
mux wymy.

Byaa nepegipena npauyesdammicmo pospobaenoi memo-
Ouxu Qinvmpauii Kaamana wnsaxom o0podru pisnux saxomise
po3nodiny: wymie Kowi, llapemo, nopmanvrozo i iozicmuuno-
20 posnodinie. Epexmusnicmo po3poonenoi memoouxu Qinv-
mpauii niomeepoICYeMvCsa WAAXOM 3ACMOCYB8anns Pirompa
npu 00pooUi excnepuMeHmanIbHUX OAHUX 3 PISHUMU 3AKOHAMU
po3nodiny wmymis. [poeederno anpobauiro po3podaenoi memo-
Juxu Qinompauii Kaamana ons danux, ompumanux excnepu-
MEHMANLHO 3 YPAXYBAHHAM CYNEPNO3uUii 3aKoHie po3nodiny
wymie. Anpiopna ouinka nomuaku Qiaempauii npu Kiavkocmi
imepauii 6invwe 30 npazne 00 Hyas.

Pospoonena memoouxa Qinompauii 3 euKopucmannim
dinompa Kaamana mosce dymu euxopucmana npu npoee-
denni memponoeziunoi amecmauii 3acodié GUMIPIOBANLHOL
mexnixu 6 ymosax nionpuemcmea. B uiii cumyauii moscauee
3AWYMACHHS BUMIPIOBANIbHOT THOpMAUii pi3HUMU WYMmamu,
8 MOMY HUCTT T MUMU, WO He NIOKOPAIOMBCS 3AKOHY PO3NO-
oiny Tayca. Dinvmp moxce Gymu suxopucmanui npu 06poo-
Ui 0anHux cucmem KOHMPOJI0 napamempie cmany, wo peai-
3Y10MbCA 3a NPUHUUNOM NOPO20B0OZO KOHMPOIIO GENUMUHU.

IIpuxnadnum acnexmom 6UKOPUCMAHHS OMPUMAHO20 HAY -
K06020 pe3yabmamy € MONCAUBICMb POZWUPEHHS 0Oaacmi
3acmocyeanus xaacuunozo Qinempa Kanmana 6 eumipro-
sanvhii mexuiui. Ile cmanoeumv nepedymosu 0ns po3pooxu
YHiBepCcanvHozo anzopummy Qitempauii 3 UKOPUCMAHHAM
Qinompa Kaarmana

Kntouoei cnosa: ginemp Kanmana, pexypcusnuii aneo-
pumm, Python, neeayccoecxkux wmym, 3axomn po3nooiuy
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The Kalman filter is a series recursive algorithm that uses
a dynamic system model adopted to provide an estimate. The
resulting estimation can be significantly adjusted as a result
of the analysis of each new measurement sample of sensor
over a time sequence [1].

The classic Kalman filter is an equation for the calcula-
tion of the first and second moment of a posteriori probability
density (vector of mathematical expectation and variance
matrix, including mutual) under given constraints. Since for
the normal probability density mathematical expectation
and variance matrix fully assign a probability density, we can
say that the Kalman filter calculates the a posteriori proba-
bility density of the state vector at each point in time. And
it means that it fully describes the state vector as a random
vector magnitude [2]. The estimated values for mathematical
expectations in this case are the optimal estimates for the
mean square error criterion, which actually predetermines
wide application of the Kalman filter.

The Kalman filter is widely used to solve numerous
general engineering and econometric applied problems in

the fields with a widespread distribution of Gaussian noise
(economic forecasting, electronics, measuring equipment,
radio engineering and communications) [3, 4]. Development
of statistical models for indicators of processes in technology
and economy [5], forecasting and determining the dynamics
of economic indicators [6], cleaning of signals of measuring
and radio engineering from noise and interference [7] is
solved now employing the Kalman filter.

In a classic problem statement, the filter monitors a ran-
dom signal generated by a linear recursion with additive
white noise. The observed process is a linear combination
of the signal and other white noise [9]. The impact of noise,
interference on all elements of a device causes the emergence
of random unique deviations of separate points of the sta-
tic characteristic of the device [9]. In this case, an error of
noise is a nonstationary random function of time. The most
common normal (Gaussian) distribution in which the pro-
bability density of finding an object with the magnitude of
attribute x depends on two parameters: the variance o2 and
the offset y, equal to the mathematical expectation x.

However, the opinion of the universal applicability of
the normal distribution is a very stable delusion. Statistical




models and methods based on Gaussianity (in particular the
estimates of confidence intervals for selective medium) are
often applied without a basic check, by default [10].
Therefore, the task to develop an effective procedure for
filtering using the Kalman filter in the field of noises that dif-
fer from the Gaussian distribution in order to apply it in mea-
suring instruments is a relevant scientific and applied task.

2. Literature review and problem statement

For the non-Gaussian noise, the most commonly used
approach implies the approximation of noise applying the
noise models, and the filters are then employed that exploit
algorithms developed for the Gaussian noise models [11].

There are several varieties of the Kalman filter that differ
in the approximations used to linearize dynamic models [12]:

—the extended Kalman filter (EKF) that applies to
non-linear models, it performs the linearization through de-
composition into a Taylor series;

— the unscented Kalman filter (UKF) that is used in
problems for which a simple linearization cannot be applied,
it performs «linearization» using a sigma conversion.

Paper [13] proposes for a situation when the signals are
often non-linear in dynamics and have an abnormal noise to
use the extended Kalman filter. The effectiveness of deve-
lopment is confirmed for the case when the noise variance
is not too large (that is, a linear approximation is adequate).
However, authors of the study did not consider the region
of noises, which are not characterized by parameters of the
Gaussian distribution. That is why the developed extended
Kalman filter can be applied for filtering the non-Gaus-
sian noise.

The author of [14], given the lack of filtering proce-
dure using the Kalman filter and the impossibility of its
application to the non-Gaussian noise domain, synthesized
a recurrent non-linear filter whose order is determined from
the conditions for obtaining estimates at a rate of measure-
ments acquisition. The paper describes the Gaussian and
linearized approximations to an arbitrary order filter, how-
ever, the problem on filtering the non-Gaussian noises was
never solved.

In paper [15], authors note that modifications of the
Kalman filter cannot solve the problems on the non-lin-
ear filtering, as the filter is built on only two statistical
characteristics of a process: mathematical expectation and
a covariance function. This is due to the fact that the study
addressed only the two specified statistical characteris-
tics of the filtering process. In this case, the phenomena of
superposition of distribution laws under which the given
statistical characteristics do not characterize the noise pa-
rameters before and after filtering at all, were not taken into
account in study [15]. However, there are data that suggest
the possibility of obtaining the Kalman filter with nonlinear
additional filters, which would make it possible to extend the
scope of filter application in measurement technology [16].
We did not find any data in the scientific literature about
implementing the Kalman filter that performs the filtering of
the non-Gaussian noise.

Therefore, the development of a procedure of filtering
using the Kalman filter in the field of the non-Gaussian noise
would substantially extend the scope of filter application:
signal processing when conducting metrological certifica-
tion, control over parameters.

3. The aim and objectives of the study

The aim of this study is to develop an effective procedure
of filtering using the Kalman filter in the field of noises that
are different from the Gaussian distribution in order to apply
it in measurement instruments.

To accomplish the aim, the following tasks have been set:

— to perform a comparative analysis of the laws of mea-
surement errors distribution employing the software that
makes it possible to simulate the noise effect that is governed
by the considered distributions;

— to test the effectiveness of the Kalman filtering proce-
dure by employing different laws of noise distribution;

— to verify the developed procedure of filtering for data
obtained experimentally, with respect to the superposition of
laws of noise distribution.

4. Investigating the Kalman filter in the
field of noises that differ from the Gaussian
distribution

Paper [17] reported a model of simple scalar implemen-
tation of the Kalman filter by the general-purpose program-
ming tools Python. Simulation confirmed the possibility
for applying the developed software implementation of the
adaptive Kalman filter to compensate for the effects of am-
plitude and phase distortions in a data transmission channel.
The data abode by the Gaussian distribution. No study was
conducted outside the Gaussian domain.

To fulfill the tasks set in this work, the main challenge is
the substantiated identification of laws for data measurement
error distribution for the non-Gaussian noise.

From the standpoint of probability theory, the form of
a numerical distribution law is characterized by its coun-
terexcess with a coefficient, which is determined by the
standard deviation ¢ and the fourth central moment .
According to the information theory, a distribution law is
characterized by the value of entropy coefficient x=A/c.
For all possible existing laws of distribution, the value of
a psi coefficient ranges from 0 to 1, and k£ — from 0 to 2.076,
which is why the identification of distribution laws for the
non-Gaussian noise is conveniently considered in the (psi,k)-
plane, in which each law is identified by a certain point [18].

A comparative analysis and identification of the mea-
surement error distribution laws were carried out by means
of Python. At present, Python is an ideal language in order
to rapidly write different applications running on the most
common platforms [19]. Python is a freely available software
package, which enables wide use of development results.

Result of the analysis is shown in Fig. 1. The chart dis-
plays the most common measurement error distribution laws
divided into two groups.

The plane in the lower left corner shows the Pareto, Pois-
son, Cauchy law, and the upper right corner exhibits a group
of laws, similar to the Gaussian laws by their information
indicators.

The data represented on the plane can be complemented
through the introduction of the unused distribution laws.
To investigate the effect of the Kalman filtering, we selected
four distribution laws, which are in extreme positions on
the plane. For the further analysis, we selected the Pareto,
Cauchy laws (extreme left) and the logistic and normal dis-
tribution (extreme right).
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Fig. 1. A comparative analysis of the measurement error
distribution laws: @ — uniform distribution;
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To study behavior of the Kalman filter model at different
distributions of noise, we developed software that makes it
possible to simulate noise exposure that is governed by the
examined distributions.

We shall consider work of the scalar Kalman filter algo-
rithm when changing a constant.

Because there is always a single constant, a system’s mo-
del can be represented in the form:

Xy =Xy W0, (1)

where x;, is the prediction of system state at the current point
in time; x;_1 is the prediction of system state at a preceding
point in time; @y, is the control influence.

For a given model, the transfer matrix degenerates to
unity, and the control matrix to zero. The measurement mo-
del takes the form:

Y=Y T O (2)

In model (2), v; is an error of measurement, which is
characterized by a covariance matrix R, a posteriori matrix P
for the accuracy of the estimate obtained and a variance of
random process Q.

For model (2), a measurement matrix converts into unity,
while covariance matrices P, Q, R transform into varian-
ces [20]. At the next k-th step, prior to receiving measure-
ment results, the scalar Kalman filter attempts, in line with
formula (1), to estimate the new state of the system:

A AN
X sty = Xty /-y €)

Equation (3) shows that the a priori estimate at the next
step is equal to the a posteriori estimate performed at the
preceding step.

In this case, the a priori estimate of error variance is ex-
pressed by:

Py =Py T Qe (4)

A

Base on the a priori estimate of state X0 gy 1S possible

to calculate the forecast of measurement:

Y, = X e )

Once we have the next measurement of magnitude y,
the filter calculates the error of its own prediction for the
k-th measurement from expression:

€, =Yy _y? =Yy = Xy iy (6)

The filter adjusts its estimation of the state of the system
by choosing a point located somewhere between the initial
estimate x(,, ., and the point that corresponds to the new
measurement y:

A AN
X ety = Xy e T G (7

where Gy, is the filter gain coefficient. The estimate of the
error variance is also adjusted:

Pk/(k) = (1_Gk)P(k)/(k—1)' (8)
Thus, variance ¢y, is equal to:

P,

b = B

Voyyiity T Ry 9)

The filter gain coefficient at which the minimum error
in the estimation of the system'’s state is reached, is derived
from ratio:

G,= P(k)/(k%) /Sy (10)

We shall apply the resulting algorithm to evaluate the
effectiveness of the Kalman filtering. Let us consider the
work of the Kalman filter to suppress noise with the Pareto
distribution. The Pareto distribution is a two-parameter fa-
mily of absolutely continuous distributions.

The graphical part of evaluating the effectiveness of the
Kalman filtering with the Pareto distribution is shown in
Fig. 2. The data obtained indicate that the Kalman filter
suppresses Pareto noises; a burst at the onset of filter’s work
is explained by the limited distribution density of the random
component [21].

Let us study effectiveness of the Kalman filter to suppress
noise with the Cauchy distribution. The graphical part of
evaluating the effectiveness of the Kalman filtering with the
Cauchy distribution is shown in Fig. 3.

The Kalman filter suppresses Cauchy noises, a burst at
the start is due to a random component distribution density.

Filtering efficiency was examined using the developed
scalar software implementation of the Kalman filter for two
laws of distribution from the left bottom corner in the plane
of law distribution based on indicators psi, k (Fig. 1). To
draw a final conclusion about the possibility of applying the
Kalman filtering to the non- Gaussian noise, we shall inves-
tigate the effectiveness of filter application for laws from the
upper right corner in the plane of law distribution based on
indicators psi, k (Fig. 1).

Let us consider work of the Kalman filter to suppress
noise with a normal distribution. The density of a normal
distribution is determined from ratio:

exp(—x;)
f(x)= T

The graphical part of evaluating the effectiveness of the
Kalman filtering with a normal distribution is shown in Fig. 4.



a — noise suppression errors with Pareto distribution (+ noisy measurements;
— true value); b — errors in suppressing noise with Pareto distribution

a — noise suppression errors with Cauchy distribution distribution (+ noisy measurements;
— true value); b — errors in suppressing noise with Cauchy distribution

a — noise suppression with a normal distribution distribution (+ noisy measurements;
— true value); b — errors when suppressing noise with a normal distribution

Let us consider work of the Kalman filter to suppress
noise with a logistic distribution. In this case, the density of
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Fig. 4. Graphical part of evaluating the effectiveness of the Kalman filtering with a normal distribution:

logistic distribution is derived from ratio:

J(x)=

The graphical part of evaluating the effectiveness of the
Kalman filtering with a logistic distribution is shown in

_ ()
(1= exp(-))"

— a posteriori estimate;

Fig. 5. The study on the applicability of the Kalman filter
in the field of noise with the non-Gaussian distribution sug-
gests that the Gaussian noise distributions are suppressed
by the Kalman filter with the same mistake as is the case for
noises with Pareto or Cauchy distributions that are far from
the Gaussian distribution.

We shall verify the constructed filtering procedure em-
ploying data obtained experimentally.
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Fig. 5. Graphical part of evaluating the effectiveness of the Kalman filtering with a logistical distribution:
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5. Experimental data filtering using the Kalman filter

We used in our research an array of data acquired when
controlling weight. The data array is composed of 55 weight
measurement values (kg). The measurements were carried
out using a specially prepared non-standard weight with
a certified weight of 0.175 kg. The measurements were per-
formed using a digital electronic scale with a vibro-frequency
mechanical resonator under conditions of vibration and elec-
tromagnetic interference, distributed based on an unknown
law or the superposition of laws.

y=[0.203, 0.154, 0.172, 0.192, 0.233, 0.181, 0.219, 0.153,
0.168, 0.132, 0.204, 0.165, 0.197, 0.205, 0.143, 0.201,
0.168, 0.147, 0.208, 0.195, 0.153, 0.193, 0.178, 0.162,
0.157,0.228, 0.219, 0.125, 0.101, 0.211, 0.183, 0.147,
0.145, 0.181, 0.184, 0.139, 0.198, 0.185, 0.202, 0.238,
0.167, 0.204, 0.195, 0.172, 0.196, 0.178, 0.213, 0.175,
0.194, 0.178, 0.135, 0.178, 0.118, 0.186, 0.191].

Let us define the law of distribution of measurement
errors in the specified sample; to this end, we map the re-
sults of its processing onto the plane of distribution laws in
the psi, k coordinates (Fig. 6).
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Fig. 6. A comparative analysis of the distribution
laws of experimental data error: ¢ — uniform distribution;
o — logistic distribution; ® — normal distribution;
® — Erlang distribution; @ — Pareto distribution;

@ — Cauchy distribution; © — logistic distribution-1;

@ — Poisson distribution; © — unknown distribution

— a posteriori estimate;

A comparative analysis reveals that the experimental
sample have an error that is distributed based on the law
close to the normal law. Thus, we can apply ratios for the
normal distribution to the sample. We shall use the Kalman
filter to suppress the normally distributed error of weight
measurement (Fig. 7).
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Fig. 7. Graphical part of evaluating the effectiveness of the
Kalman filtering for experimental data: @ — noise distribution
(+ noisy measurements; — a posteriori estimate;
— true value); b — errors in noise suppression
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Evaluation results confirm the effectiveness of the use
of the developed software implementation of the Kalman
filter for experimental data whose distribution is outside the
Gaussian field. The a priori estimate for a filtering error when
the number of iterations exceeds 30 tends to zero.



6. Discussion of results of studying the Kalman filter

9. Conclusions

The constructed serial recursive algorithm of the Kalman
Filter to filter the data in the field of noises that differ from
the Gaussian distribution computes the forecast for mea-
suring the magnitude with respect to the a priori estimate.
A distinctive feature of a given filtering algorithm is the
identification of a data measurement error distribution law
for the non-Gaussian noises at the first stage.

The suggested technique for the identification of a dis-
tribution law makes it possible to use the Kalman filtering
algorithm when processing noisy data in the cases when a dis-
tribution law is unknown. The identification of a distribution
law is carried out by determining the point that corresponds
to a given distribution in the (psi, k)-plane.

The classic Kalman filter employs the calculated values
for mathematical expectations, which serve the optimal esti-
mates for the mean square error criterion. In the case of data
filtering in the field of the non-Gaussian noise distribution,
the specified characteristics cannot be used, the consequence
being the inapplicability of the Kalman filter.

The devised procedure of filtering using the Kalman filter
could be used when executing the metrological attestation of
measurement instruments under industrial conditions when
there may be the noisy measuring information due to various
noises, including those that are not governed by the Gaussian
distribution law. The filter could be applied when processing
the data from control systems over state parameters, imple-
mented on the principle of a magnitude threshold control.

The effectiveness of the developed filtering procedure is
confirmed by testing the filter when processing experimental
data with different laws of noise distribution. To obtain a ge-
neric Kalman filter, it is required to undertake a study aimed
at the applicability of the filtering technique for data from
aggregate and combined measurements, and to construct
a filtering algorithm for the multi-channel Kalman filter.

1. Here we report the development of a filtering pro-
cedure using the Kalman filter for the non-Gaussian noise
distribution. A special feature of the proposed technique
is the procedure for the identification of a distribution law
for data measurement errors for the non-Gaussian noises at
the first stage.

Through the proposed technique for the identification
of a distribution law, it has become possible to use the Kal-
man filtering algorithm when processing noisy data in the
cases when a distribution law is unknown. The filtering of
such noises using the Kalman filter has not been achieved
previously.

Its applicability was confirmed for the non-Gaussian
distribution of noises, which has significantly expanded the
scope of filter application.

2. We have proven the possibility of using the Kalman
filter in measurement instruments when processing infor-
mation that is distorted by interference of different origins
and levels. It is established that the developed Kalman fil-
ter could work in the field of noise with the non-Gaussian
distributions.

The effectiveness of the devised filtering procedure was
tested by employing various laws of noise distribution.
A special feature of the developed recursive serial algo-
rithm of the Kalman Filter to filter data in the field of the
non-Gaussian noise distribution is the absence of a need to
determine a priori the statistical characteristics of noise.

3. We have verified the devised Kalman filtering proce-
dure for the experimentally obtained data with respect to the
superposition of noise distribution laws.

The developed filtering procedure has proved effective
in terms of experimental data. The a priori estimate for
a filtering error when the number of iterations exceeds
30 tends to zero.
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