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1. Introduction

Many of the tasks related to information processing 
(identification, management, forecasting, classification, fil-
tering, etc.) [1‒15] are reduced to constructing and analyz-
ing a model in the following form

( ) ( ) ( ),Ty k x k k∗= θ + ξ 	 (1)

where y(k) is the observed output signal;

( ) ( ) ( ) ( )( )1 2, ,..
T

Nx k x k x k x k=

is the vector of input signals N×1; ( )1 2, ,..
T

N
∗ ∗ ∗ ∗θ = θ θ θ  is the 

vector of the desired parameters N×1; ξ(k) is an interference.
For example, identification and filtering tasks are to 

determine (estimate) the vector of parameters θ* included in 
equation (1). To this end, one uses some functionality, cho-
sen in advance, whose minimization produces the required 
solution. The functionality type depends on the interference 
distribution. The application of the most widely-used qua-
dratic functionality for this purpose ensures obtaining the as-
ymptotically optimal estimate of the vector θ* with minimal 
variance in the class of unbiased estimates at normal interfer-
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This paper considers the task of constructing 
a linear model of the object studied using a robust 
criterion. The functionality applied, in this case, is 
correntropy. That makes it possible to obtain esti-
mates that have robust properties. The evaluation 
algorithm is a multi-step procedure that employs a 
limited number of information measurements, that 
is, it has limited memory. The feature of the algo-
rithm is that the matrices and observation vectors 
involved in estimate construction are formed in the 
following way: they include information about the 
newly arrived measurements and exclude informa-
tion about the oldest ones. Depending on the way 
these matrices and vectors are built (new informa-
tion is added first, and then outdated is excluded, 
or the outdated is first excluded, and then a new one 
is added), two estimate forms are possible. The sec-
ond Lyapunov method is used to study the conver-
gence of the algorithm. The conditions of conver-
gence for a multi-step algorithm have been defined. 
The analysis of the established regime has revealed 
that the algorithm ensures that unbiased estimates 
are obtained.

It should be noted that all the estimates reported 
in this work depend on the choice of the width of the 
nucleus, the information weighting factor, and the 
algorithm memory, the task of determining which 
remains open. Therefore, these parameters’ esti-
mates should be applied for the practical use of such 
multi-step algorithms. 

The estimates obtained in this paper allow the 
researcher to pre-evaluate the possibilities of iden-
tification using a multi-step algorithm, as well as the 
effectiveness of its application when solving practi-
cal tasks
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ence distributions, that is ( ) ( )20, .k N ξξ ∼ σ  If the interference 
distribution is different from normal, the estimate from a 
least-square method (LSM) is unstable. The instability of the 
LSM-estimate in the presence of non-Gaussian interference 
was the basis for the development of an alternative, robust 
estimation in statistics, the purpose of which was to eliminate 
the influence of interference.

It should be noted that having information about inter-
ference ξ belonging to a certain class of distributions makes 
the task much easier. In this case, a maximum likelihood 
estimate (M-estimate) can be derived by minimizing the 
criterion that represents the reverse logarithm of the inter-
ference distribution function [1]. If such information is not 
available, a non-quadratic criterion must be applied to assess 
the vector of parameters θ*. This ensures that the estimate 
is robust. One of these criteria is the criterion of maximum 
correntropy [2, 3].

Existing algorithms that maximize this criterion are dif-
ferent modifications of gradient procedures, characterized 
by low convergence rate, which is why they are ineffective 
in evaluating non-stationary parameters. Therefore, it is a 
relevant task to develop algorithms that would provide for 
quality estimation and robustness of non-stationary param-
eters and could demonstrate a greater convergence speed.

2. Literature review and problem statement

Estimation based on the maximization of the criterion of 
maximum correntropy was the development of the ideas of 
robust evaluation through the use of non-quadratic criteria. 
One such criterion, in particular, is modular. The application 
of this criterion leads to symbolic algorithms. It is shown 
in [2‒6] that they are quite effective when there is pulsed 
interference. Thus, [2, 3] studied the efficacy of the affinity 
projection symbolic algorithm. The affinity projection sym-
bolic algorithm with a variable gain factor was used in [4].

It should be noted, however, that the symbolic algo-
rithms, while providing for the robustness of the resulting 
estimate, demonstrate a low convergence rate. Attempts 
to speed up the operation of such algorithms, undertaken 
in [5, 6], require quite a lot of additional information and 
lead to an increase in their computational complexity.

The classic robust criteria, proposed by Huber [7] and 
Hempel [8], are a combination of quadratic and modular 
functionality. As shown in the cited works, this combination 
provides for the optimal estimates for the Gauss distribution, 
as well as robustness to distributions with heavy tails (emis-
sions). It should be noted, however, that the effectiveness of 
the robust estimates obtained depends significantly on the 
many parameters used in these criteria. Although there are 
some recommendations for choosing these parameters, in 
most cases they are chosen based on the experience of the 
researcher [9]. Some practical recommendations have been 
developed in [10‒12] for the choice of functional parameters 
for robust neural network training. The more common prob-
lem of robust estimation in the presence of interference with 
asymmetrical distributions was investigated in [13]. Howev-
er, the issue of choosing the parameters of the functionality 
remains open.

A simpler approach to building combined functional-
ities, consisting of both quadratic and modular, and with no 
specified disadvantage, was developed in [14‒18]. A given 

criterion, proposed in [14], was used in the cited works to 
solve the problem of identification in the presence of pulse 
interference. The issues of the stability of the normalized 
algorithm were studied in [15]; the issues of convergence of 
the algorithm were discussed in [17] ‒ the task of choosing 
the optimal values for algorithm parameters was solved.

The minimum fourth-power criterion was proposed 
in [18]. The task of increasing the convergence rate of the 
algorithm to minimize a given criterion by using the opti-
mal setting step parameter was studied in [19, 20]. In order 
to ensure the robustness and stability of the algorithm, it 
was proposed in [21] to use a variable step parameter that 
takes into consideration the energy of the error (in terms 
of the least-squares). In [22], it was proposed to modify the 
algorithm of the method of the least fourth power based 
on the quasi-Newtonian procedure. And, finally, work [23] 
considered the implementation of a given algorithm using 
quantum computing

A combined estimation criterion to speed up the iden-
tification process, which uses the combination of the qua-
dratic criterion and the fourth-power criterion, is proposed 
in [24[. In [25], a given approach was used to speed up the 
identification process in the presence of pulse interference. 
The properties of the adaptive algorithm to minimize such a 
combined criterion were studied in [26].

A combined criterion consisting of a fourth-power and 
modular criterion was proposed in [27, 28]. These works es-
tablished the asymptotic and non-asymptomatic properties 
of the identification algorithm and investigated the effect 
of selecting the mixing parameter value on the properties of 
estimates.

The criterion of the lowest average excess has been intro-
duced in [29, 30]; a fairly simple identification algorithm has 
been obtained. As shown in the cited works, a given algorithm 
is resistant to a wide range of noises (pulse, evenly distribut-
ed, and Gaussian). In order to increase the speed of the eval-
uation process using a given criterion, the kernel-recursive 
method of the least squares is proposed in [31], and, in [32], 
the kernel algorithm of affinity projection. These algorithms 
are modifications of the LSM-type and the recurrent LSM-
type algorithms that use a kernel representation [33].

Our analysis of the above works has revealed that the 
implementation of the algorithms reported in them is as-
sociated with problems in choosing the parameters that 
are included in the minimized functionalities. In addition, 
theoretical studies of the convergence of these algorithms re-
quire the introduction of simplistic assumptions far enough 
from practice. Therefore, the effectiveness of these methods 
depends significantly on the experience of the researcher.

Another widely adopted approach is the approach based 
on signal information characteristics, particularly entropy. 
The functionality used in this case is an explicit function-
ality from the probability density function (PDF) and in-
cludes all the higher-order statistical properties defined in 
the PDF. Because entropy measures the average uncertainty 
contained in a given PDF, minimizing it reduces the error. 
The concept of information-theoretical learning, which 
uses Renyi quadratic entropy as a criterion, was introduced 
in [34, 35], for which a non-parametric estimate based on 
Parzen’s windows with Gauss nuclei is defined directly from 
the data samples. In the cited works, it was shown that when 
using Renyi entropy the result of training minimizes the 
Renyi distance between the conditional probability of the 
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density function of the desired and actual output signals for 
the specified input signals.

Numerous studies [36‒44] have shown that with 
non-Gaussian noise in measurements an informational ap-
proach is very effective. At the same time, the criterion used 
should take into consideration the statistics of the error sig-
nal not only of the second but also of a higher order.

Correntropy was introduced in [36, 37] as a generalized 
measure of similarity, maximizing which underlies the pro-
duction of sufficiently effective robust algorithms. However, 
while a gradient algorithm was used in [38‒42] to maximize 
functionality, the algorithm of the recurring LSM was used 
in [43] to maximize functionality. It should be noted that 
due to the low convergence rate, both algorithms are quite 
ineffective in assessing non-stationary parameters. Two 
approaches are used to effectively assess non-stationary 
parameters. The first is based on the modification of RLSM 
by applying an information weighting parameter. Another 
approach suggests the use of some additional signal infor-
mation in algorithms at a series of previous cycles. This 
approach is implemented in the algorithms of current regres-
sion analysis (CRA). However, a given approach is designed 
to minimize quadratic functionality, which does not ensure 
the robustness of estimates. In addition, existing CRA 
algorithms are not convenient in real time as they require, 
similar to LSM, a recalculation at each cycle of evaluation of 
the inverse matrix of observations.

In this regard, it is important to derive the recurrent ra-
tios describing the CRA method to maximize the criterion of 
correntropy and to study their properties. At the same time, 
the recurrence that excludes the matrix inversion operation 
ensures their convenience for real-time implementation and 
the use of a correntropy criterion ‒ the robustness of esti-
mates.

3. The aim and objectives of the study

The aim of this study is to derive the recurrent ratios of 
multi-step algorithms to maximize the criterion of corren-
tropy. This would make it possible to obtain and adjust ro-
bust estimates while information about the studied process 
is acquired on-line.

To accomplish the aim, the following tasks have been set:
‒ to derive the recurrent ratios describing a generalized 

modified multi-step algorithm that maximizes a correntropy 
criterion; 

‒ to obtain analytical estimates of the convergence rate 
of multi-step algorithms maximizing the criterion of corren-
tropy; 

‒ to investigate the established estimation regime under 
the examined conditions; 

‒ to model the process of evaluating the parameters of a 
linear object using multi-step algorithms.

4. Using correntropy as a similarity measure

Correntropy, defined as a localized measure of similarity, 
has proven to be very effective at obtaining robust estimates 
because it is less sensitive to emissions.

For two random variables X and Y, correntropy is defined as

V(X, Y)≜M{kσ(X, Y)},

where { }M •  is a symbol of mathematical expectation; ( )kσ •  
are the invariants to the turns of Mercer’s kernel; σ is the 
kernel width. 

The most widely used in the calculation of correntropy 
are the Gaussian ones, determined from the following formula

( )
2

2

1
, exp .

22

X Y
k X Yσ

 − = − σπσ   

In the tasks of identification, filtration, etc., the function-
ality used is the correntropy between the required output 
signal di and the output signal of the model (real) yi. Using 
Gaussian kernels, the optimized functionality takes the form:

( )
2

2
1

1 1
exp ,

22

N
i

corr
i n N

e
J n

N = − +

 
= − σ πσ ∑

 
where i i ie d y= −  is the identification error (filtering). 

Using Taylor’s series expansion for the Gaussian kernel 
makes it possible to record correntropy as follows:

( ) ( ) { }2

2
0

11
, .

2 !2

n
n

n n
n

V X Y M X Y
n

∞

=

−
= −

σπσ ∑ 	

The last expression includes all the moments of the even 
order of random magnitude .i jx y−  

In work [43], in order to eliminate pulse interference, it 
was proposed to use a recurrent method of weighted least 
squares (RLSM), minimizing the following criterion

2
1

1 2exp
2

n
n

e +
+

 
ψ = − σ 

	 (2)

and taking the following form

( )1 1
1 1 1

1 1 1

;Tn n n
n n n n nT

n n n n

P x
c c y c x

x P x
+ +

+ + +
+ + +

ψ
= + −

λ + ψ
	 (3)

	

1 1 1 1
1

1 1 1

.
T

n n n n n
n n T

n n n n

P x x P
P P

x P x
− + + +

+
+ + +

 ψ
= λ − λ + ψ 

	 (4)

Here is 0 1≤ λ <  – the weighting factor. 
Thus, the following approximation was used to derive the 

calculation formula Pn+1 (4)

1 1 1 1.T
n n n n nP P x x+ + + += λ + ψ 	 (5)

One can see from (5) that a given algorithm is some mod-
ification of the weighted RLSM.

5. Building recurrent ratios for a modified multi-step 
algorithm that maximizes correntropy

Current regression analysis algorithm that takes the 
following form

( ) 1

1 1 1 1 1 ,
T T

n L n L n L n L n Lc X X X Y
−

+ + + + += 	 (6)

to maximize correntropy was studied in [44]. In (6), L= 
( )constL L N= ≥  is the memory of the algorithm.

As already noted, algorithms such as the recurrent 
current regression analysis (RCRA), the modifications of 
RLSM that use the finite number of observations, are prom-
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ising to evaluate non-stationary parameters. However, while 
the use of all observations in LSM leads to an unbiased esti-
mate, that is, the accumulation of information is a filter, then 
when using the finite number of observations, such filtration 
of interference is not possible. Therefore, in order to give the 
algorithm additional filtering properties, one can use the 
idea of exponential smoothing, using in the algorithm the 
mechanism of weighing the information.

The modified re-current algorithm CRA can be obtained 
similar to a weighted LSM, which has a mechanism to give 
large weights to new incoming information.  

Denote the number of steps used in the construction of an 
estimate as L (L≥N). Inclusion in the weight matrix estimate

1 0 0

,
0 0

0 0 1

L

LA

− λ
 
 =
 λ
  



   





	 (7)

the dimensionality L×L, where 0 1,< λ ≤  modifies (6) as 
follows: 

( ) 1

1 1 1 1 1 .T T
L Ln L n L n L n L n Lc X A X X A Y

−

+ + + + += 	 (8)

The feature of the algorithms with L=const is that the 
matrix and observation vectors used in the estimate con-
struction are formed at each estimation step as follows: they 
include information about newly received measurements 
and exclude information about the oldest ones. Depending 
on how these matrices and vectors are built (whether new 
information is added first and then the outdated is excluded, 
or whether the outdated is first excluded and then a new one 
is added), two forms of evaluation are possible.

Receiving new information (adding a new dimension) 
results in a calculation of the estimate, which, similar to (8), 
can be recorded as follows:

( ) 1

1 11 1 1 1 1 1 1 1 1 1,T T
L Ln L n L n L n L n Lc X A X X A Y

−

+ ++ + + + + + + + + += 	 (9)

where

(

(

(

1

1 1

1 1

n L n L

n L

n n L

Y y

Y

y Y

− +

+ +

+ +

   
   = − − − = − − −   
     

– vector (L+1)×1;	 (10)

(

(

(

1

1 1

1 1

T
n L n L

n L
T
n n L

X x

X

x X

− +

+ +

+ +

   
   = − − − = − − −   
     

– matrix (L+1)×N;	 (11)

1

0

0 1

0

0

L

L

L

L

A

A

A

+

λ 
 = − − − = 
 

 λ
 = − − − 
  









– matrix (L+1)×(L+1).	 (12)

Consider the modification of the current regression anal-
ysis algorithm used to maximize correntropy that takes the 
following form

( )

1

1 1 1

1

1 1 1

1 1 1 1

1

|1

1

0 ... 0

0 ... 0
.

... ... ... 0

0 .... 0 1

T T
n n nn L n L

n L L T
n L n L n L

T
n L n L n nn L

n L
L

n LL

n

X X x x
c

x x

x X x

y

Y

y

−

+ + +

+

− + − + − +

− + − + + +

− +

−

+

 λ + ψ −
= × 

−λ ψ 

× ψ ψ ×

 
  λ
  λ   × − − −  
     
  



	 (13)

Introduce the following designations:

1 1
1 1 1 11| 1 1| 1 1| 1 | ;T T

L n n nn L n L n L n LP X A X P x x− −
+ + + ++ + + + + += = λ + ψ

1 1
1 1 11| 1| 1| 1| 1 .T L T

L n L n L n Ln L n L n L n LP X A X P x x− −
− + − + − ++ + + + += = − λ ψ 	 (14)

Then

1 1
1 1 1 1 1 11| | .T L T

n n n n L n L n Ln L n LP P x x x x− −
+ + + − + − + − ++ = λ + ψ − λ ψ 	 (15)

Applying to (14), (15) a lemma about matrix inversion, 
one can obtain, as already noted, two forms of calculations: 
one uses first the accumulation of information (includes the 
newly received signal xn+1), and then resets the outdated 
information (excluded signal xn–L+1), and vice versa.

Thus, the refinement of estimates and the calculation 
of the matrix when the outdated information is reset is 
performed, respectively, according to the following for-
mulas

( )

1
1 11 1

1 1
1 1 11 1

1 1

1

;

L
n L n Ln L

n L n L L T
n L n L n Ln L

T
n L n Ln L

P x
c c

x P x

y c x

−
− + − ++ +

− −
− + − + − ++ +

− + − +

λ ψ
= − ×

− λ ψ

× − 	 (16)

1
1 1 11| 1 1| 1

| 1 | 1
1 1 11| 1

,
1

L T
n L n L n Ln L n L

n L n L L T
n L n L n Ln L

P x x P
P P

x P x

−
− + − + − ++ + + +

− −
− + − + − ++ +

λ ψ
= +

− λ ψ
	 (17)

and the ratios that describe the accumulation of information 
take the following form

( )1 1

1 11 1 1
1 1 1

;
n nn L T

n nn L n L n LT
n n nn L

P x
c c y c x

x P x
+ +

+ ++ − −
+ + +

ψ
= + −

λ + ψ
	 (18)

1 1 1| |
1| 1 |

1 1 1|

1
.

T
n n nn L n L

n L n L T
n n nn L

P x x P
P P

x P x
+ + +

+ +
+ + +

 ψ
= − 

λ λ + ψ  
	 (19)

Thus, the recurrent evaluation algorithm, obtained by 
excluding outdated information and then adding a new one, 
is described by ratios (16) to (19).

6. Algorithm convergence study

To determine conditions for the convergence of algo-
rithm (16) to (19), we shall introduce a Lyapunov function [44].

( ( ( (
1

1 1 1 1 ,T
n L n L n L n LV P −

+ + + += Θ Θ 	 (20)

where *
1 1n L n Lc c+ +Θ = −  is an estimated error in the (n+1)-

step obtained from L observations. 
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Subtracting c* from both parts of (18) considering (10) to 
(12), write down the algorithm regarding identification errors

1 1 11|
1| 1| 1

1 1 11|

,
1

L T
n L n L n Ln L

n L n LL T
n L n L n Ln L

P x x
I

x P x
− + − + − ++

+ + +
− + − + − ++

 λ ψ
Θ = + Θ − λ ψ 

	 (21)

where I is the singular function N×N.
On the other hand, taking into consideration (17), ra-

tio (21) can be rewritten as follows:

1
1 1 1 1 1 1.n L n L n L n LP P −

+ + + + + +Θ = Θ 	 (22)

Similarly, writing down (18) regarding estimate errors 
and considering (19), we obtain

1 1 1|
1| | 1

1 1 1|

1
1| 1 | | .

T
n n nn L

n L n LT
n n nn L

n L n L n L

P x x
I

x P x

P P

+ + +
+ −

+ + +

−
+ +

 ψ
Θ = − Θ = λ + ψ 

= Θ  	 (23)

Fitting (23) in (22) produces

1
1| 1| | | .n L n L n L n LP P −

+ +Θ = λ Θ 	 (24)

Then

2 1 1
1 1 ,T

n L n L n L n L n L n LV P P P− −
+ += λ Θ Θ 	 (25)

and the increment of the Lyapunov function is equal to

1| 1| |

1 2 1
| | 1| | | .

n L n L n L

T
n L n L n L n L n L

V V V

P P P I

+ +

− −
+

∆ = − =

 = Θ λ − Θ  	 (26)

Applying formulae (14), (15), we determine

To calculate the third term in the bracket, we introduce 
the following designations:

11| ;T
n nn n Le x ++ −= Θ  11| ;T

L n Ln Le x − ++= Θ
	

1 11| ;T
n nn Lx P x+ ++α =  1 11| ;T

n L n Ln Lx P x− + − ++β = 	 (28)
	

1 11| ;T
n n Ln Lx P x+ − ++γ =  1;L n L− +ψ = ψ  1.n n+ψ = ψ

After simple transformations, we shall obtain that the 
numerator and denominator of this component take the 
following form: 

‒ the numerator

( )
2( 1) 2 2 2

1 2 1
11 2 ;

1

L
L L L n L

n L n n L n L L
L

e
e e e

−
− −

−

λ ψ ψ γ
ψ − λ ψ β + λ ψ ψ γ +

− λ ψ β 	

‒ denominator

( ) ( )1 1 1 2

1

1 1
.

1

L L L
L n L n L

L
L

− − −

−

λ − λ ψ β + ψ α − λ ψ β + λ ψ ψ γ
− λ ψ β

	

Substituting these expressions in (27) and the sim-
ple transformations considering the introduced designa-
tions (28) produce

For the algorithm to converge, one needs to meet the 
following condition

that is, the expression in the right-hand part of (30) should 
be negative. Because 1,λ ≤  the first term is not positive. 

For the second term to be negative, the following 
condition must be met

2 2
1 2

2

2
1

2

0.

L n L LL
L n n

n n n L n L

L n LL
n

n L

e e
e

e e e
−

−

  λ + ψ ψ α +
λ ψ − ψ ×  +ψ β − ψ ψ γ   
  λψ β − ψ ψ γ +

× λ − λ − ψ α >  +ψ ψ αβ   
	 (31)

For the first term of inequality (31), taking 
into consideration the introduced designations, we 
obtain

( )
( )

2 2
1 2

2

2
1 11 2

1 11|

2

.

L n L LL
L n n

n n n n L

T

L n n L n L nL
L n n

n L n L nn L

e e
e

e e e

e x e x e
e

P x e x e

−

+ − +−

+ − ++

 + ψ ψ α +
λ ψ − ψ = +ψ β − ψ γ 

 + ψ − ×
= λ ψ − ψ 

 × − 

Since 0,Lψ ≥  we obtain 

( )
( )

( )

2 2 2

2
1 1

1 11|

2

0.

L L n L L n n n n L

T

L n n L n L n
L

n L n L nn L

e e e e e

e x e x e

P x e x e

+ − +

+ − ++

ψ + ψ ψ α + ψ β − ψ γ =

 + ψ − ×
= ψ ≥ 

 × − 
	 (32)
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1
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 λ ψ

ψ + × λ − λ ψ 
= −

λ ψ
− ψ −

1
|
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1
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−
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−
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−
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 
 
 
 
 
 
 
     − λ ψ  
  λ ψ
 × + − λ ψ   

	 (27)
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L
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e

e
e e e
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−

−
− −

−

− − − −

−

λ ψ
+

λ − λ ψ β

λ ψ ψ γψ − λ ψ β − λ ψ ψ γ +
− λ ψ β

+ =
 λ − λ ψ β + ψ − λ ψ β + λ ψ ψ γ 

ψ + ψ ψ α − ψ − ψ β − ψ ψ γ
= =

+ ψ α − ψ β + ψ α + ψ ψ γ

λ ψ λ + ψ α + ψ β
=

2 2

1 2

2
.n n n L n n

L
L n L n L n

e e e
−

 ψ γ − ψ 
 λ λψ β − ψ ψ γ + ψ ψ αβ − λ − ψ α 

  (29)

( )1| | |

1 2 2 2 2

1 2

1

2
0,

n L n L n L

L
L L n L n n n n L n n

L
L n L n L n

V V V

e e e e e e

+

−

−

− = λ − +

 λ ψ λ + ψ α + ψ β − ψ γ − ψ + ≤
 λ λψ β − ψ ψ γ + ψ ψ αβ − λ − ψ α 

 (30)
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Denote 

( )( )
2

1 2 2 2
.

2
n n

L
L L n L n L n

e
A

e e e e e−

ψ
=

λ ψ λ + ψ α − γ + β
	 (33)

For the second multiplier, one can write

( )
( )

1 2

1 2

1

1 .

L
n L L n

L
L n n

−

−

λ ψ ψ αβ − γ + ψ β − − ψ α =

 = λ ψ ψ αβ − γ + β − − ψ α 

It should be noted that, given that the Cauchy-Bunya-
kovsky inequality is satisfied, the following holds

2 0,αβ − γ ≥ 	

or

( (

( (

1 1 1 1

1 1 1 1.

T T
n n n L n Ln L n L

T T
n n L n n Ln L n L

x P x x P x

x P x x P x

+ + − + − +

+ − + + − +

≥
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Thus, considering 0,Lψ ≥

( )2 0.L n
 ψ ψ αβ − γ + β ≥  	 (34)

Denote

( )1 2
.n

L
L n

B
−

λ + ψ α
=

 λ ψ ψ αβ − γ + λβ 
	 (35)

It should be noted that given that (32) and (34) are met, 
0A ≥  and 0.B ≥
Considering the designations in (33) and (35), condi-

tion (31) can be written as follows:

( )( )1 1 0.A B− − > 	 (36)

One can see from (36) that, in order to ensure the con-
vergence of the algorithm, it is required that A and B should 
exceed unity.

On the other hand, consider the difference (B−A). 
Substituting expressions for A and B (33) and (35), after 

simple calculations, we obtain

( )
( )

2

1 2 2 2
.

2
L n L n n

L
L L n L n n n n L n

B A

e e e

e e e e e−

− =

λ + ψ α − ψ γ
=

  λ ψ λ + ψ α + ψ β − ψ γ ψ αβ − γ + λβ   

	

And since both the numerator and the denominator of a 
given expression are not negative, the difference 0,B A− ≥  
that is, .B A≥  Thus, to meet the conditions for the conver-
gence of the algorithm, that is, 

1 1
1| 1| 1| | | | ,T T

n L n L n L n L n L n LP P− −
+ + +Θ Θ ≤ Θ Θ 	 (37)

or inequality (36), it is necessary that 1.A ≥
Consider the properties of the P–1 matrix, which is part 

of the Lyapunov function. The positive certainty of this 
matrix is required for the algorithm to converge. Consider a 
step-by-step change in P–1 according to (15).

If, in the n-th step, the matrix (
1

n LP −  is positively de-
fined, then, in the case of the positive certainty of the matrix 

1 1 1 1 1 1
T L T

n n n n L n L n Lx x x x+ + + − + − + − +ψ − λ ψ , the matrix (
1
1n LP −

+  is also pos-

itively defined. Multiplying a given matrix, in the left-hand 
part, by ( ,T

n LΘ  and, in the right-hand part, by ( ,n LΘ  taking into 
consideration the designations in (40), consider the scalar value

1 1 1 1 1 1

2 2
1 1 1 1.

T T L T
n n n n L n L n Ln L n L

L
n n n L n L

x x x x

e e

+ + + − + − + − +

+ + − + − +

 Θ ψ − λ ψ Θ = 
= ψ − λ ψ 	 (38)

Since
2 2 2 2

1 1 1 1 1 1 1 1,L L
n n n L n L n n n L n Le e e A e+ + − + − + + + − + − +ψ − λ ψ ≥ ψ − λ ψ 	

then, by substituting the expression for A (33) in a given 
inequality, we obtain

It follows that the matrix 1
1n LP −

+  is non-negatively de-
fined if (n LP  is non-negatively defined (and, therefore, (

1
n LP −  

is a non-negatively defined matrix as well). This can be 
achieved by selecting the initial matrix 0 LP  as non-nega-
tively defined, for example, as in a normal RLSM, (0 ,LP I= α  
where α is a positive number.

Therefore, the Lyapunov function, if these conditions are 
met, will be non-negative and limited

1 1 1
1| 1| 1| | | | 0 0 0... ,T T T

n L n L n L n L n L n L L L LP P P− − −
+ + +Θ Θ ≤ Θ Θ ≤ θ θ 	 (39)

that is, it is limited by 1
0 0 0 0 .T

L L L LV P −= θ θ  
It follows from (26) that
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2
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L
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 λ ψ λ + ψ α + ψ β − ψ γ − ψ + ≤
 λ + ψ α − λ λψ β − ψ ψ γ + ψ ψ αβ 

hence, it follows, since 0,λ ≠

In turn, we obtain from (40)

1 2 2 2 2
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L
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 λ + ψ α − λ λψ β − ψ ψ γ + ψ ψ αβ 

=  (41)

that is, the identification error decreases as time increases. 
Because

1 1 1
min min min 01| | ,n L n LP P P− − −

+
     λ ≥ λ ≥ λ      	
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and, on the other hand, 
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∑  (40)
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then for the magnitude of the evaluation error 
2

1 ,n+θ  the 
following inequality holds

1
2 2max 0

1 01
min 0

.n

P

P

−

+ −

 λ  θ ≤ θ
 λ  

	 (42)

According to the above formulae, the amount of the esti-
mation error 

2

1n+θ decreases over time.

7. Exploring the established regime

At last, consider the established mode when the estimate 
is no longer adjusted, that is, 1 .n L n Lc c+ =  Then

1
1| | | .n nLn L n L n LP P −

+Θ = λ Θ 	

In other words,

( )1
1| | | 0.n L n L n LI P P −

+− λ Θ = 	

For the convergence of the algorithm, it is necessary that 
a given equality is satisfied only when ( 0,n LΘ =  and the ma-
trix 1

1| |n L n LI P P −
+− λ  is not zero.

Denote the matrix’s eigenvalues through [ ].µ •

1
1| | 0.n L n LI P P −

+
 µ − λ ≠  	 (43)

Consider the singular numbers of the matrices 1|n LP +  and 1
| .n LP −  

As it is known, for the maximum and minimum values of 
the singular numbers σmax, σmin and the eigenvalues 
μ of the square matrix A, the following ratio holds

[ ] [ ] [ ]min max .A A Aσ ≤ µ ≤ σ 	

Since the matrices 1|n LP +  and 1
|n LP −  are square, 

and their maximum singular numbers σmax are 
no less than the maximum eigenvalues μmax, we 
obtain 

1 1
max max1| | 1| | .n L n L n L n LP P P P− −

+ +
   σ λ ≥ µ λ                  (44)

It follows from the Cauchy-Bunyakovsky in-
equality that

1 1
max max max1| | 1| | .n L n L n L n LP P P P− −

+ +
     σ λ ≤ σ σ λ         (45)

Because, as shown above, the matrix 

1 1 1 1 1 1
T L T

n n n n L n L n Lx x x x+ + + − + − + − +ψ − λ ψ  

is square and non-negatively defined, it follows then 
from (14) 

1 1
max max1| | .n L n LP P− −

+
   σ ≥ σ λ    	

Consequently, inequality (45) can be recorded 
as follows:

1
max 1| |

1
min 1|1

max max1| 1| 1
max 1|
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1,
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n L n L

n L
n L n L

n L

P P

P
P P

P

−
+

−
+−

+ + −
+

 σ λ ≤ 
σ

   ≤ σ σ λ = ≤    σ

	

where (min 1n LP +
 σ    is the minimum singular number of the   

matrix (1 .n LP +  Taking this into consideration, it follows from 
(45) that

1
1| | 1,n L n LP P −

+
 µ λ <  	

that is, (43) does hold. 
Thus, under the established mode ( 0n LΘ =  or *,n Lc c=  

that is, the estimate obtained using the algorithm in ques-
tion is unbiased.

8. Simulation of the process of evaluating the parameters 
of a linear object using multi-step algorithms

They conducted 2 experiments. The first considered 
the task of building a stationary model, described by equa-
tion (1), with the following parameters

( )0.1, 0.3, 0.5, 0.7,0.1,0.2,0.3,0.4,0.7,0.9 .
T∗θ = − − − −

The sequences of normally distributed values { }0,1 .nх N∼  
were chosen as an input signal. Fig. 1 shows changes in the 
values of an estimation accuracy criterion

 ( ) ( )
10 102 2

, ,0 ,0 ,0
1 1

/i n i i i
i i

F c c c c∗ ∗ ∗ ∗

= =

= − −∑ ∑

after n=100 cycles when selecting, in (2), σ=1 for different 
values of the algorithm memory L. Fig. 1, a shows the simu-
lation results for λ=1; Fig. 1, b ‒ for λ=0.5.

Fig. 1. Changes in the values of the estimation accuracy criterion:  
a – λ=1; b – λ=0.5
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In the second experiment, it was assumed that in mod-
el (1) the 3,∗θ  5,∗θ  8,∗θ parameters changed according to the 
sinusoidal law while the rest of the parameters remained the 
same as in the first experiment. The results of a given exper-
iment are shown in Fig. 2.

The above results demonstrate that when assessing the 
stationary parameters of model (1), it is advisable to enhance 
the memory of the multi-step algorithm (approximating it 
with RLSM). If non-stationary parameters are evaluated, 
then one should choose the memory whose magnitude is 
minimally different from the dimensionality of the object (in 
our case, N=1 and Lopt=10).

9. Discussion of results of studying the convergence of a 
multi-step algorithm of correntropy maximization

The research presented in this paper is a continuation 
and development of earlier studies described in [17, 28, 44]. 
While [17, 28] considered the issues related to obtaining 
robust estimates based on the minimization of the combined 
functionalities, then [44] addressed the task of robust train-
ing of the Adaline neural network. The results reported in 
those works were applied in this paper to study the proper-
ties of a generalized multi-step algorithm that maximizes the 
criterion of correntropy.

The developed recurrent ratios, describing a generalized 
modified multi-step algorithm to maximize the criterion of 
correntropy (16) to (19), make it possible to evaluate un-
known parameters on-line as information becomes available. 

According to the above formulae, the implementation of a 
given algorithm does not cause difficulties. Note that the 
initial values for the observation matrix should be selected 
in a similar way to RLSM.

The use of Lyapunov functions has made it 
possible to define the condition of convergence for 
a multi-step algorithm, determined from expres-
sion (36). Based on the given analytical estimates of 
the convergence of the multi-step CRA algorithms, 
we derived expressions to select the optimal values 
of the algorithm parameters that ensure its maxi-
mum convergence rate. The resulting formulae in-
dicate that the value of the estimation error 

2

1 ,n+θ  
provided by the algorithm in question decreases 
over time. Expression (42) makes it possible, for 
any point in time, to estimate the magnitude 

2

1 ,n+θ
which is shown to be determined by the ratio of 
the maximum and minimum singular numbers of 
the inverse covariation observation matrix 1

1| .n LP −
+  

Therefore, it is necessary to know these numbers in 
order to estimate the magnitude 

2

1 .n+θ
Studying the established estimation regime un-

der the considered conditions showed that, given 
that condition (43) is met, the matrix 1

1| |n L n LI P P −
+− λ  

is not zero. Thus, the estimates received are unbi-
ased, that is, *.n Lc c=

It should be noted that the implementation of 
the resulting recurrent algorithm, described by 
ratios (16) to (19), does not cause difficulties; it is 
similar to the implementation of RLSM. 

Although all theoretic results have been ob-
tained for the case of stationary parameters es-
timation, the results of the simulation show the 
effectiveness of the application of the maximum 
correntropy functionality for identification and 
linear non-stationary objects (experiment 2).

Here’s what one needs to consider when apply-
ing the considered algorithm in practice. Based on 
our results, when evaluating stationary parameters 

of model (1), it is advisable to enhance the memory L of the 
CRA multi-step algorithm. That ensures that it is closer to 
the RLSM, which is optimal for a stationary case. If non-sta-
tionary parameters are evaluated, the simulation shows that, 
given L≥N, one should select the memory L whose magnitude 
is minimally different from the dimensionality of the object N.

In addition, it should be noted that the estimates re-
ceived in this work depend on the parameters σ  used in the 
algorithm (kernel width), 0<λ≤1 (information weighting 
parameter), and L=const (algorithm memory), the issue of 
selecting the values of which remains open. Therefore, when 
applying a given algorithm in practice, one should use the 
estimates of these parameters. However, the estimates de-
rived from (40) to (42) allow the researcher to pre-evaluate 
the limits of a given algorithm and the effectiveness of its 
application when solving practical tasks.

The limitation of our study is to consider only a regular 
case (no interference), although it makes it possible to de-
termine the limits of the algorithm. It would therefore seem 
appropriate to extend a given approach for the case involving 
interference to obtain appropriate statistical estimates.

In addition, the continuation of research into the dynamic 
properties of a given algorithm is of undoubted interest. That 
could make it possible to assess the effectiveness of the multi-
step algorithm to evaluate the parameters of a non-stationary 

Fig. 2. Changes in the values of the estimation accuracy criterion:  
a – λ=1; b – λ=0.5
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object (1) in the presence and absence of information about the 
type of non-stationarity.

10. Conclusions  

1. The recurrent ratios have been derived describing 
the generalized modified multi-step algorithm (CRA) that 
maximizes the criterion of correntropy. The use of given ra-
tios makes it possible to evaluate the unknown parameters 
of an examined object under on-line mode as information 
becomes available and ensure that the estimates are robust. 
According to the derived formulae, the implementation of 
a given algorithm does not cause difficulties. The initial 
values for the observation matrix should be selected in a 
similar way to RLSM.

2. The application of Lyapunov functions has made it 
possible to determine the condition from the convergence 
of the multi-step algorithm, described by the expression, 
reduced to the verification of the ratio between the matrices 
of transformations A and B. Based on the obtained analytical 
estimates of the convergence of multi-step CRA algorithms, 
we defined expressions for the selection of the optimal values 
of parameters of the algorithm, ensuring its maximum con-
vergence rate. According to the above formulae, the value of 
the estimation error 

2

1n+θ  decreases over time. The resulting 
expression for 

2

1n+θ makes it possible, for any point in time, 
to estimate the magnitude of the estimation error, which is 
shown to be determined by the ratio of the maximal and min-
imal singular numbers of the inverse covariation observation 

matrix 1
1| .n LP −

+  Therefore, to estimate the magnitude 
2

1 ,n+θ  it 
is necessary to know these numbers.

3. Our study of the established estimation regime under 
the considered conditions showed that, due to the inequal-
ity to zero of the eigen numbers of the observation matrix 

1
1| | ,n L n LI P P −

+− λ  the estimates received would be unbiased, that 
is, *.n Lc c=  

4. We have performed the simulation of the process of eval-
uating the stationary and non-stationary parameters of a linear 
object at a different selection of the depth of the algorithm’s 
memory. The simulation results form the basis for selecting the 
parameters of the algorithm when it is implemented. Based on 
the analysis of the simulation results, the following conclusions 
can be drawn. First, the application of maximum correntropy 
functionality is effective enough to identify the linear station-
ary and non-stationary objects (experiment 2). Second, the 
choice of the depth of the algorithm’s memory ( )constL L N= ≥  
is different for identifying stationary and non-stationary ob-
jects. In the first case, the memory needs to be enhanced, in 
the second case ‒ reduced to a value that is minimally different 
from the dimensionality of the object N.
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