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This paper proposes an approach to arranging curvi-
linear sections of the railroad track, which involves the 
replacement of two transitional ones and a circular curve 
with one curvilinear section. Modeling this section implies 
the construction of a curve in the plan and profile, the joint 
consideration of which forms the spatial appearance of 
the curve, which ensures a smooth transition between the 
rectilinear rails. The need for such transitions is due to 
the terrain, the need to bypass settlements, and the pre
sence of geological, geographical, and other obstacles that 
occur when laying railroads. A curvilinear section is mod-
eled in the plan using a curve that is represented in natural 
parameterization under the law of curvature distribution 
in the form of a fifth-power polynomial. At the same time, 
at the start and end points of the section, the curvature and 
its derivative accept zero values. The outer rail elevation 
retraction (modeling in the profile) is performed using the 
curve built, whose sections are also represented in natural 
parameterization with the dependences of the curvature 
distribution on the arc length in the form of fourth-power 
polynomials. At the docking point of the sections, the third 
order of smoothness is ensured, which implies the equali-
ty of values of the functions, their derivatives, the curva-
ture, and a derivative of the curvature from the length of 
its natural arc. Measures have been proposed to ensure the 
predefined track gauge retraction. The application of the 
proposed approach to model a railroad track along the cur-
vilinear section with a variable-radius curve could make 
it possible to achieve a favorable curvature distribution,  
a smooth elevation retraction of the outer rail and the track 
gauge. That would consequently improve the safety of roll-
ing stock running along the curvilinear section of the track, 
reduce the lateral and vertical efforts that predetermine the 
wear of rails and wheelsets
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1. Introduction

Rail transport is an integral part of the material production 
of any country. It provides passenger, freight, and mixed cargo 
and passenger transportation. One of the most important issues 
related to the operation of railroad transport is the introduction 
of measures to improve traffic safety. Special requirements are 
put forward to the geometry of a railroad track along curvili
near sections, which are used to change the direction of a train.

Arranging a rail track along the railroad path on curvili
near sections has a series of features that are associated with 
the specificity in the interaction between the track and roll-
ing stock. The existence of curvilinear sections along a rail-
road track is determined by the terrain, the need to bypass 
settlements, various geological and geographical obstacles.

At first glance, it seems that the issue of geometric mo
deling of the railroad track on curvilinear sections has been 
mainly resolved. However, there are a series of factors that 
require devising new approaches to the geometric modeling 
of a railroad track along curvilinear sections. One of such key 

factors is a significant increase in the speed of trains and an 
increase in their mass, which causes an increase in the force 
interaction between the rails and the rolling stock of loco-
motives and cars. This leads to increased wear of rails and 
wheelsets, which can be the cause of emergencies and even 
environmental and man-made disasters.

A significant increase in the speed of trains puts forward 
stricter requirements for the design of curvilinear sections 
of the track, which should ensure the smoothness of change 
in the curvature at those points where sections of the track  
connect with rails of different curvatures, primarily recti-
linear ones. This is achieved by the equality of the angles of 
inclination of the tangent, curvature, its derivative at the 
docking points of the rectilinear and curvilinear sections, as 
well as the equality to zero of the derivative from the curva-
ture at the start and end points of a curvilinear section.

The above thus predetermines the relevance of research into 
devising new approaches to the geometric modeling of curvili
near sections of a railroad track. The results from addressing this 
issue are important for the transport industry of any country.
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2. Literature review and problem statement

The issue of improving curvilinear sections along a rail-
road track has challenged railroad specialists, perhaps, from 
the first years of the railroad’s existence. According to [1], 
back in 1854, problems were identified in Austria when the 
train switched from a circular section to a straight line. That 
led to the need to place between these sections of the track of 
the so-called transition curve. The purpose of those activities 
was to reduce the effects of abrupt curvature change. How-
ever, at that time, relatively low speeds of trains and their 
small mass made it possible to put up with certain difficulties, 
which were caused by a jump-like change in the curvature 
at places of transition from rectilinear rails to circular ones. 
Gradually, with the increase in the speed of trains, the ar-
rangement of transition curves was paid more attention.

One of the first equations used in the description of tran-
sition curves was the cubic parabola, which was explained 
by the simplicity of the mathematical notation. Later, as 
indicated in work [1], to describe the curvilinear sections of  
a railroad track, spirals, clothoids (Cornu spirals), bisinusoids, 
sinusoidal spirals, radioids, the lemniscates of Bernoulli, as 
well as other curves, were applied.

The issue of the arrangement of curvilinear sections of  
a railroad track is still relevant for railroad engineers. It was 
addressed in numerous papers, monographs, theses, confe
rence materials, etc. The efforts of scientists from different 
countries were aimed at improving the properties of transi-
tion curves. Thus, in work [2], a transition curve is proposed, 
which is part of the curvilinear section of a railroad track, 
whose mathematical base is the spirals. The spiral section is 
arranged between two straight rails providing, alas, only for 
the second order of smoothness. In [3], it is noted that the 
spiral curves are not characterized by mathematical features 
and extremes of curvature. They are used to smooth paths 
in places of abrupt change in curvature where the speed of 
a moving object increases. The use of spiral curves is more 
effective when ensuring a smooth transition between the 
straight line and the circle, or between two circles.

The authors of [4] evaluated all available types of transi-
tion curves of railroad tracks and proposed a variant of a tran-
sition curve based on the properties of the clothoid and the 
simplicity of the description of the cubic parabola. It should 
be added that the clothoid is still the most common curve 
used in the modeling of transitional curves of railroad tracks. 
However, clothoids obey only the linear law of curvature dis-
tribution. As regards the cubic parabola, it can be noted that 
the analytical expressions used in the modeling of transition 
curves are based on the expansion of the original expressions 
into a Taylor series, containing, as a rule, two terms and re-
jecting the terms of higher powers. That does not contribute 
to the high accuracy of results obtained. Cubic parabola was 
also used in [5] to simulate transition curves, although these 
curves are advisable to use on short sections of the track.

Work [6] notes the drawback of a transition curve in  
the form of a clothoid, due to the linear law of curvature dis-
tribution. That leads to bends on the curvature sections that 
occur in the initial and final regions of the curvilinear section 
of the track. Therefore, the authors of the cited work propose 
using sinusoidal curves to solve the problem.

Paper [7] proposes transition curves that are described by 
polynomials of the 9th and 11th powers. It is shown that the 
conventional modeling of transition curves by parabolas of the 
third power does not make it possible, from the point of view 

of the dynamics of the movement of bogies, to obtain optimal 
conditions for the passage of trains. Solving the optimization 
problem determines the polynomials that simulate transition 
curves, which provide comfortable conditions for passengers. 
Polynomial curves are also used in [8] to construct a curvi-
linear section applying two transition curves and one circular 
curve. The same curves are used to construct vertical arches of 
transition curves [9]. Paper [10] shows that polynomial curves 
can be used to model S-shaped transition curves. S-similarity 
is achieved by applying polynomial curves with the powers 
of 5 and 7. However, on the plots of the distribution of cur-
vature, zones with a sharp increase in curvature are marked.

Paper [11] proposes modeling of transitional curves bet
ween the rectilinear and circular sections of the track using 
curves that obey the nonlinear law of curvature distribution. 
It should be noted that the author of the cited work adheres 
to the traditional approach to form a curvilinear section of the 
track. To simulate transition curves, work [12] employs the 
smoothing B-splines, which have certain advantages, in terms 
of smoothness, at the final points of the curvilinear sections 
of the track over the clothoid curves. However, in the cited 
work, B-splines are adapted to a smooth transition between 
two circular curves of an actual section of the railroad track.

Rational Bezier curves of the second order made it pos-
sible, by using only one such curve, to construct a transition 
curve with acceptable characteristics [13]. However, given all 
the attractiveness of Bezier curves, their use is characterized 
by certain issues associated with the location of the vertices of 
the characteristic Bezier broken line. When applying rational 
Bezier curves, the problem is the so-called weights, which sig-
nificantly affect the nature of the passage of simulated curves.

An example of the use of sinusoidal hyperbolic functions 
in the construction of transition curves is given in [14]. It is 
noted that the sinusoidal hyperbolic functions lead to short-
ened transition curves, which, in some cases, is undesirable, 
especially at high speeds of trains.

Our review of the scientific literature reveals that the issue 
of the movement of trains along the curvilinear sections of  
a railroad track is challenging for railroad engineers and requires 
devising new approaches to their geometric representation.

3. The aim and objectives of the study

The purpose of this work is to devise an approach to the 
geometric modeling of the curvilinear sections of a railroad 
track, which are arranged between rectilinear rails located 
at some angle. This would improve the conditions of train 
movement, in particular, reduce the impact of a jump-like 
change in curvature on the movement of locomotives and 
cars, decrease the wear of rails and wheelsets, as well as im-
prove comfortable conditions for passengers.

To accomplish the aim, the following tasks have been set:
– to build an outer rail of the curvilinear section of 

a track in the plan;
– to build an outer rail elevation retraction;
– to build an inner rail of the track while ensuring the 

predefined track gauge at outer rail elevation retraction.

4. The study materials and methods

We have devised a method for the geometric modeling 
of a curvilinear section of the railroad track using a curve  
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represented in natural parameterization and obeying the 
predefined law of curvature distribution. Conventionally,  
a curvilinear section of the track contains two transition 
curves and one circular curve. It is proposed, instead of the 
traditional three curves to describe the curvilinear section of 
the track in the plan, that is, in the horizontal plane of projec-
tions, to apply one curve. Fig. 1 shows the proposed curvilinear 
section of track 1, arranged between two straight rails 2 and 3,  
whose boundary points 4 and 5 are highlighted by dashes.

 

 

1 

2 

3 

4 

5 

 
Fig. 1. The proposed structure of the curvilinear 	

section of a railroad track: 1 – curvilinear section; 	
2, 3 – rectilinear rails; 4, 5 – boundary points

Curve 1 is represented in natural parameterization with 
the distribution of curvature from the length of its natural 
arc in the form of a fifth-power polynomial:

k s as bs cs ds es f( ) = + + + + +5 4 3 2 , 	 (1)

and under the following boundary conditions:

k s
s S
=
=

=0 0;  
dk
ds s

s S
=
=

=
0

0, 	 (2)

where s is a parameter in the form of the natural curve length; 
S is the length of the arc of the modeled curve.

The derivative from the curvature is determined by the 
following dependence:

′ =
( )

= + + + +k
dk s

ds
as bs cs ds e5 4 34 3 2 .	 (3)

The angle of inclination of the tangent to the modeled 
curve is derived from the expression:

j j1 0

6 5 4 3 2

6 5 4 3 2
= + + + + + +

aS bS cS dS eS
fS, 	 (4)

where j0 and j1 are the angles of inclination of the tangents 
to the modeled line at the start and end points of the curvi-
linear section, respectively. 

The boundary conditions (2), applied to the law of cur-
vature distribution (1) and derivative (3), predetermine the 
zero values for coefficients f and e.

Knowing the angles j0 and j1, we use expression (4) to 
find dependences for the coefficients b, c, and d:

b
S

aS=
−( )

−30 2 55

j j1 0 ;.

c aS bS= − −3 22 ;

d aS bS= +2 3 2.

The coefficient a and the length of the arc S are deter-
mined in the process of solving the optimization problem 
associated with the coordination of the intermediately ob-

tained endpoint of the transition curve at the specified end-
point of the curvilinear section.

The objective function accepted in the optimization 
problem is the following expression:

δ = −( ) + −( )x x y y
2 2

,

where x , y  are the coordinates of the intermediately ob-
tained point with the current values for the desired unknown 
parameters, and x, y are the coordinates of the specified end-
point of the simulated curve. 

To solve the optimization problem, a highly effective al-
gorithm proposed in [15] is employed.

The coordinates of the curvilinear section of a railroad 
track, which is described by the curve represented in natural 
parameterization, are determined from the following equations:

x x s s
S

= + ( )∫0 cos dj
0

;

y y s s
S

= + ( )∫0 sin dj
0

.

Since the coordinates of the endpoint of the transition 
curve are known, these equations are sufficient to determine 
the two unknowns necessary to model the desired curve.

When rolling stock runs along the curvilinear sections of 
a railroad track, there are centrifugal forces that seek to move 
the bogie outside the curve. This can only happen in excep-
tional cases. Centrifugal forces lead to the redistribution of 
pressure on the rails of both threads and the overload of the 
outer thread, which contributes to increased lateral wear of 
the rails and ridges of the wheels. To avoid these phenomena, 
an outer rail is elevated over the inner one. This ensures the 
same wheel pressure on the outer and inner rail threads, and, 
therefore, the same vertical wear of both rails.

The outer rail elevation retraction is arranged in curvili
near sections where the radius of the curvature takes a value of 
4,000 m or less. The size of an outer rail elevation retraction is 
defined by the regulatory documents of the countries where the 
railroad is laid. Once at the high speed of the train the estima
ted value of an outer rail elevation retraction exceeds the nor-
mative value, the rated value is still accepted while the speed 
of the train is limited along a given curvilinear section. Usually, 
an outer rail elevation retraction is arranged by raising it by in-
creasing the thickness of the ballast under the outer rail thread.

The outer rail elevation retraction shall be simulated in 
the xoz vertical plane using a curve composed of two sections. 
The curvature of each section is subject to the dependence 
on the length of its natural arc in the form of a fourth-power 
polynomial. At the docking point of the sections, the third- 
order smoothness would be ensured, which implies the equa
lity of values of the functions, their derivatives, the curvature, 
and derivatives from the curvature along the length of the arc.

The starting, middle, and end points of the outer rail 
elevation retraction curve are denoted by numbers 0, 1, 2, 
respectively. 

To describe the curvature of the left-hand half of the 
section of the outer rail of a railroad track, a fourth-power 
polynomial is used:

k s a s b s c s d s e( ) = + + + +1
4

1
3

1
2

1 1,	 (5)

where a1, b1, c1, d1 and e1 are the unknown coefficients to be 
determined in the process of modeling a curve.
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The curvature distribution (5) matches the following 
dependences of the derivative and the angle of inclination of 
the tangent to the curve on the length of the arc of the circle:

′ = + + +k a s b s c s d1 1
3

1
2

1 14 3 2 ;	 (6)

ψ ψs
a s b s c s d s

e s( ) = + + + + +0
1

5
1

4
1

3
1

2

15 4 3 2
, 	 (7)

where ψ0 is the angle of inclination of the tangent to the 
curve at the starting point.

Taking into consideration the boundary conditions (2), 
at s = 0, we obtain d1 = 0, е1 = 0. 

At the starting point of this curve, the angle of ψ is zero. 
It accepts the same value at the middle point of the curve 
since it is the point of the maximum elevation of an outer rail.

To construct a section of the outer rail elevation retrac-
tion curve, it is necessary to determine the coefficients а1 and 
b1 and the length of the arc of the curved section S1.

Dependence (7) is used to find an expression for the coef-
ficient а1, which takes the form:

a
b
S

c
S1 1

1

1

1

1
2

5
4

5
3

= − −F , 	 (8)

where

F1
1 0

1
5

5
=

−( )ψ ψ
S

.

In the considered case, F1 = 0, since the angles ψ at the 
starting and middle points are zero. However, due to certain 
geographical features of the track, the angles ψ at the start 
and end points can take different values.

An expression for the coefficient а1 can be found in ano
ther way, taking advantage of the fact that, at s = S1, the de-
rivative from the curve curvature is zero. Then:

a
b
S

c
S1

1

1

1

1
2

3
4 2

= − − . 	 (9)

Equating (8) and (9), we find the expression for coef
ficient b1:

b S
c
S1 1 1

1

1

2
7
3

= −F .

Thus, as a result of the transformations performed, the 
number of unknowns is reduced to two. These are the coeffi-
cient с1 and the arc length S1. 

The parametric equations written for point 1 of the outer 
rail elevation retraction arc, taking into consideration the 
law of curvature distribution (5), take the form:

x x
a s b s c s

s
S

1 0 0
1

5
1

4
1

3

0 5 4 3
= + + + +









∫ cos d ;

1

ψ

z z
a s b s c s

s
S

1 0 0
1

4
1

3 3

0 4 3 3
= + + + +









∫ sin d ,1ψ

where x0, z0 are the coordinates of the starting point of the 
outer rail elevation retraction arc.

The available data are sufficient to organize the com-
putational process of bringing the intermediately obtained 

point to point 1. At the values of с1 and S1, selected by the 
algorithm proposed in [15], we calculate the coefficient b1, 
and then the coefficient а1.

Upon completion of the simulation of the left-hand 
part of the curvilinear section of the track, the values of the 
curvature and the derivative from it are calculated at s = S1, 
which are hereafter denoted as K and ′K .  These differential 
characteristics of the curve are necessary to ensure the third 
order of smoothness when docking the left and right sections 
of the constructed curves under consideration. 

The right-hand sections of the curves are also mode
led using the law of curvature distribution in the form of  
a fourth-power polynomial:

k s a s b s c s d s e( ) = + + + +2
4

2
3

2
2

2 2,

where a2, b2, c2, d2, and e2 are the unknown coefficients to be 
determined in the process of modeling a curve. 

The dependences of the derivative and the angle of in-
clination of the tangent on the length of the arc are similar 
to expressions (6) and (7) with the corresponding change  
in the indices at unknown coefficients, and, instead of the 
angle ψ0, ψ1 is used.

When modeling the right section of the curve, it is as-
sumed that at the docking point there is a new countdown 
of the length of the curve arc. Under these circumstances, we 
obtain e2 = K, d K2 = ′. Thus, the problem of constructing the 
right section is reduced to finding the three coefficients a2, 
b2, c2, and the length of the arc S2. The coefficient c2 and the 
length of the arc S2 are derived by minimizing the deviation 
of the intermediately obtained endpoint of the curve from the 
specified point 2. In this case, the coefficients b2 and a2 are 
calculated from the following expressions:

b S
c
S

K
S

K
S2 2 2

2

2 2
2

2
32

7
3

4 5 10= − − ′ −F , ;

a
b
S

c
S

K
S

K
S2

2

2

2

2
2

2
3

2
4= − − − ′ − ,

where

F2
2 1

2
5

5
=

−( )ψ ψ
S

.

The railroad track gauge is determined by fitting the bo-
gies of rolling stock into the curves of the predefined radius. 
Preventing a bogie’s jammed fitting causes the minimum 
permissible track gauge. 

The maximum track gauge is determined subject to reliable 
prevention of failure of rolling stock wheels inside the track.

The rated size of the track gauge between the inner edges 
of the rail heads is established by the relevant regulatory 
documents of the country of construction of a railroad track.

It was determined which track gauge can be obtained if 
the inner rail is modeled by the initial values of the angles of 
inclination of the tangents at the start and end points of the 
curvilinear section of the track used in the modeling of the 
outer rail. Due to the fact that within the curves the radius of 
the inner rail thread is slightly smaller than the radius of the 
outer rail thread, the length of the inner thread is less than 
the length of the outer rail thread. Taking into consideration 
the values of the track gauge along the rectilinear section 
of the track, the coordinates for the starting and end points 
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of the curvilinear section of the inner rail were determined. 
Thus, the initial data are sufficient to simulate the inner 
rail under the law of curvature distribution in the form of  
a fifth-power polynomial as it was done when simulating the 
outer rail of the track in the plan.

Next, the distance between the outer and inner rails was 
found, which was measured along the perpendicular drawn 
to the outer rail at the point under consideration, and the 
intersection point of this perpendicular with the inner rail. To 
construct the perpendicular equation at the considered point, 
the orthogonal coordinates x and y at this point and the cur-
vilinear coordinate s were used. Expression (4) is used to find 
the angle of inclination of the tangent. The coordinates of the 
intersection point of the perpendicular with the inner rail are 
determined by the numerical method, by solving a nonlinear 
equation with one variable, which is the length s of the arc of 
the inner rail. Knowing the length s of the arc, we calculated 
the orthogonal coordinates for the intersection point of the 
perpendicular with the inner rail, and then the length of the 
perpendicular located between the outer and inner rails.

Once the designer of a railroad track is not happy with 
the results obtained, then the adjustment of the track gauge 
can be performed by modeling the inner rail with a curve 
consisting of two sections. That is, to apply the proposed 
approach to describe the outer rail elevation retraction.

To do this, one needs to additionally determine the co-
ordinates of the point at which the docking of the sections 
of the curve is carried out. This approach to modeling the 
inner rail of the railroad track should be considered more 
promising since it provides for a possibility to ensure the 
predetermined railroad track gauge.

5. Results of studying the geometric modeling  
of the curvilinear sections of a railroad track

5. 1. Modeling the outer rail of the curvilinear section 
of a track in the plan

Test examples of the curvilinear sections of a track in 
the plan are shown in Fig. 2. The curves were modeled with 
the same values of the angles of inclination of tangents at 
the starting points of curvilinear sections; at the endpoints, 
the angles of inclination of the tangents accepted the same, 
but negative, values. For curve 1, the angle of inclination of 
the tangent at the starting point was 30°, for curve 2 – 25°, 
and, finally, for curve 3 – 20°. The angles of the inclination 
of tangents at the starting and end points may take diffe
rent values by modulo. The digit-based designation of the 
curves in the figures below is meant to further harmonize  
them with the plots of the distribution of the curvature and 
its derivatives.

 

1 
2 

3 

0 0.2 0.4 0.6 0.8 x 

0.1 

y 

Fig. 2. Railroad track curvilinear sections: 	
1 – j0 = 30°; 2 – j0 = 25°; 3 – j0 = 20°

Fig. 3 shows the plots of the distribution of the curvature 
of the curve and its derivative from the relative length of the 
natural arc.
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Fig. 3. Distribution plots of the curvature k 	
and its derivative k ′: 1 – j0 = 30°; 2 – j0 = 25°; 3 – j0 = 20°

The curvature and derivative at the start and end points 
of the curvilinear section accept zero values corresponding  
to the boundary conditions (2) of its modeling.

5. 2. Modeling the outer rail elevation retraction
Fig. 4 shows the plots of the outer rail elevation retrac-

tion curves. These data are illustrative in nature since they 
are constructed with a significant excess of the values of 
lifting curves at the middle point. The aim was to separate 
the built lines from each other since, at the real height of the 
outer rail elevation, the graphic dependences would be barely 
higher than the x axis.
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Fig. 4. Railroad track’s outer rail elevation curves: 	
1 – j0 = 30°; 2 – j0 = 25°; 3 – j0 = 20°

The distribution plots of the curvature and its derivative 
depending on the arc length for the test curves shown above 
are demonstrated in Fig. 5, 6, respectively.
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Fig. 5. Outer rails’ elevation curvature distribution curves: 
1 – j0 = 30°; 2 – j0 = 25°; 3 – j0 = 20°
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Fig. 6. Distribution curves of the derivative 	
depending on the outer rails’ elevation curvature: 	

1 – j0 = 30°; 2 – j0 = 25°; 3 – j0 = 20°

All the curves shown in Fig. 4–6 demonstrate a smooth 
character; at the starting and end points of the curvilinear  
section – zero values for both the curvature and derivative  
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corresponding to the boundary conditions imposed on  
them (2). In addition, curvature derivative plots cross the 
abscissa axis at points where the curvature has extremes.

5. 3. Modeling the inner rail of the track while ensur­
ing the predefined track gauge at an outer rail elevation 
retraction

Fig. 7 shows at a significantly increased scale the graphic 
dependences that correspond to the relative increase in the 
railroad track gauge. At the start and end points of the curvi-
linear section, the deviations δ of the track gauge accept zero 
values. When approaching the middle of the section, the rela-
tive distance between the outer and inner rails increases. The 
numbering of curves in Fig. 7 coincides with the designations 
of the curves shown in Fig. 2.
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Fig. 7. Plots of a relative increase in the width 	
of a railroad track: 1 – j0 = 30°; 2 – j0 = 25°; 3 – j0 = 20°

The results of calculating an increase in the track gauge 
by representing the inner rail of the track using the con-
structed curve are shown in Fig. 8.
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Fig. 8. Plots of the relative increase in the railroad track 

gauge when representing the inner rail by the constructed 
curve: 1 – δ = 0.05; 2 – δ = 0.10; 3 – δ = 0.15

When simulating the inner rail, the following relative va
lues of increasing the track gauge were used: 0.05; 0.10; 0.15.  
These values, of course, exceed the actual values of increasing 
the track gauge. The increase in the track gauge is predeter-
mined by the desire to separate the curves from each other 
and distance them from the x axis.

6. Discussion of results of studying the geometric 
modeling of the curvilinear sections of railroad tracks

Our positive results from the geometric modeling of the 
curvilinear sections of a railroad track are due to the validity 
of mathematical statements, which are based on the posi-
tions of analytical and differential geometry and numerical 
methods. Algorithmizing the methods that correspond to the 
tasks of our study has made it possible to develop a workable 
computer code. All research tasks have been practically im-
plemented, which is confirmed by the above graphic results.

The advantage of the proposed approach to model the 
curvilinear sections of a railroad track is that the law of the 
distribution of its curvature was accepted as the basis for 
constructing the curve. Based on this law, the coordinates 
of the points of the simulated curve are calculated. This is 
the difference between the proposed approach and those ap-
proaches reported in [1–14] that consider the construction 
of a railroad track’s curvilinear sections. In those papers,  
a curve is constructed, and then the distribution of the curva-
ture and its derivative are determined. With an unfavorable 
distribution of these differential characteristics of the applied 

curve, the track designer is deprived of the degrees of free-
dom of influence. Namely, the distribution of the curvature 
and its derivative is the most important indicator of the qual-
ity of the curvilinear section of a railroad track.

Examples of the simulated railroad tracks in the plan and 
profile are shown in Fig. 2, 4. The curves shown in Fig. 2 were 
modeled using the law of curvature distribution in the form of 
a fifth-power polynomial (1). The curves shown in Fig. 4 were 
represented by the constructed curve, each section of which 
was represented under the law of curvature distribution in 
the form of a fourth-power polynomial (5). The sections were 
connected while ensuring the third order of smoothness. 
The curves obtained in the calculations were accompanied 
by plots of the distribution of the curvature and the first 
derivative (Fig. 2, 4). They are smooth in nature and confirm 
compliance with the applied boundary conditions (2).

The increase in the track gauge along the curvilinear 
section of a track is clearly confirmed by the corresponding 
plots shown in Fig. 7, 8. 

Thus, it would suffice for a designer of the curvilinear 
section of a railroad track to set the initial data and obtain 
the coordinates for the track rail lines. 

The current study could be advanced by solving the 
problem in which the boundary conditions (2) are supple-
mented with equality to zero of the second derivative from 
the curvature depending on the length of the natural arc at 
the initial and end points of the curvilinear section. That is, 
the following conditions must be met:

d k
ds s

s S

2

2
0

0
=
=

= .

Although, at the same time, it will be necessary to in-
crease the power of the polynomial, which should describe 
the dependence of the curvature on the length of the arc 
when simulating the outer rail in the plan.

When using numerical methods, including optimiza-
tion, it is very important to set the initial values, optimized 
parameters. In all the variants considered in this work, 
two parameters are optimized, one of which is an unknown 
coefficient and the second is the length of the curve. The 
initial value of the length of the arc can be more or less 
accurately determined. For the first approximation, one can 
take the distance between the starting and end points of the 
modeled line. The initial value of an unknown coefficient 
is somewhat more difficult to define. However, after two 
or three trial calculations, it can be determined, albeit ap-
proximately, I mean the value of this coefficient. Everything 
else will be made by the optimization algorithm proposed 
in [15]. For greater confidence in determining the unknown 
coefficient, calculations were carried out from two or three 
initial points. As evidenced by the experience of calculating 
the values of optimized parameters, they differed by such  
a small value, which is unattainable with the practical bend-
ing of the rails.

Based on the proposed measures for the geometric mo
deling of the curvilinear sections of railroad tracks, computer 
code was developed in the Fortran PowerStation program-
ming environment. When accessing this code, calculations 
are performed related to determining the coordinates of 
the points of the simulated lines in the plan and profile, as  
well as the track gauge. The code uses subroutines for deter-
mining the curvature of curves and derivatives, a subroutine 
for solving transcendental equations and minimizing the  
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objective function. The developed code, in addition to nu-
merical results, which are the coordinates of the points of the 
simulated lines, makes it possible to visualize the lines on the 
computer monitor screen. Graphic data are a clear confirma-
tion of the feasibility of the proposed approach to the geo-
metric modeling of the curvilinear sections of a railroad track.

7. Conclusions

1. We have proposed a method for the geometric mo
deling of the outer rail of a curvilinear section of the railroad 
track in the plan (horizontal plane), which is based on the 
natural representation of curves and the law of curvature 
distribution in the form of a polynomial of the fifth power. 
To find five unknown coefficients of this polynomial and 
the length of the arc of the curve, zero boundary conditions 
are used that reduce the number of unknown coefficients. 
Joint consideration of the dependences of the curvature, its 
derivative, and the angle of inclination of the tangent defines 
expressions for the three unknown polynomial coefficients. 
The fifth coefficient and the length of the arc are determined 
by minimizing the deviation of the intermediately obtained 

endpoint from the curvilinear section of the railroad track 
specified with the initial data.

2. Our practical calculations have proven that the de-
vised method for the geometric modeling of the railroad 
track outer rail elevation retraction can be represented by 
a curve composed of two sections. Each section is described 
by a curve in natural parameterization using the law of cur-
vature distribution in the form of a polynomial of the fourth 
power. At the docking point of the sections, the third order 
of smoothness is ensured. Using boundary conditions, depen-
dences of the angles of inclination of tangents, and the con-
ditions that provide, at the docking point, for the third order 
of smoothness, the number of unknowns for each section is 
reduced to two – one coefficient and the length of the arc of  
the section. The presence of coordinates of the endpoints  
of the sections makes it possible to solve the problem.

3. It has been shown that the minimum permissible track 
gauge, predetermined by the increase in the outer rail, is 
advisable to provide for by modeling the inner rail with two 
sections of the parametric curve under the laws of curvature 
distribution, which are described by the polynomials of the 
fourth power. Under these conditions, it is possible to direct-
ly indicate the desired track gauge.
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