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A GATING ALGORITHM WITH REDUCED COMPUTATIONAL COMPLEXITY FOR
LINEAR KALMAN FILTERS IN EMBEDDED SYSTEMS

Purpose. Kalman-based filters are the most commonly used algorithms of processing noisy signals from real sensors in
different application areas. However, they have no intrinsic means of fighting off outliers, which can deteriorate filter accura-
cy drastically. Existing outlier rejection and accommodation techniques are computationally expensive for embedded sys-
tems. Our goal is to develop a multiple-step gating procedure suitable for implementation in firmware.

Research methods. Primarily the work is based upon statistical and probabilistic methods. For deduction, representa-
tion and corroboration of principal ideas it utilizes also linear algebra and analytic geometry. Verification of the developed
algorithm has been performed using simulation techniques including the Monte-Carlo method.

Scientific novelty. A new gating algorithm has been developed, verified and presented in detail. In contrast to the well-
known combination of the rectangular and elliptic gates, the proposed algorithm assumes an additional step which allows
rejection of points not lying between the tangents of tilted confidence ellipses parallel to their major axes. The step helps
avoid computing inverse covariance matrices required by the Mahalanobis distance due to the fact that it recognizes most
outliers that are able to pass the rectangular gate, which makes invocation of the elliptic gate redundant.

Practical value. The proposed algorithm has been implemented and verified both theoretically and practically upon a
variety of the multivariate linear Kalman filters and normally distributed random numbers for simulating outliers. Implemen-
tation has been done using the stm32f407vg microcontroller by STMicroelectronics. Simulation results have corroborated
that the proposed interim step between application of the rectangular and elliptic gates reduces computational complexity of
the whole gating procedure without any losses in accuracy.

Results. The developed algorithm is integrated into a complex hardware-software tool intended for verification, estima-
tion and investigation into micro-electromechanical inertial sensors.
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Problem and its connection with scientific and practical tasks. The Kalman filter is an algo-
rithm that has been a great success since its first appearance in 1960. It is widely used in a range of
applications including navigation. The linear Kalman filter is said to be optimal in the least squares
sense if a problem being solved is linear or its non-linearity is insignificant and can be adequately de-
scribed by process noise, provided that process and measurement uncertainty is modeled as Gaussian
[1, 2]. The first Kalman-based filter able to deal with non-linear problems was the extended Kalman
filter (EKF) whose main idea is to linearize the problem in discrete points and apply the linear Kalman
filter to solve the linearized problem. The EKF assumes forming Jacobian matrices, thus its main dif-
ficulty consists in the fact that the closed-form solution to the problem may be non-existent or highly
difficult and non-trivial to compute. In this case numerical methods should be used which may be
intractable for the available computational resources, especially if the filter is supposed to be executed
in an embedded system. Less complex Kalman-based filters include the unscented Kalman filter
(UKF) and numerous particle filters. The UKF is based on the linear Kalman filter [3].

The cornerstone of the linear Kalman filter is summation and multiplication of Gaussians. l.e., the
uncertainty in the process model and measurements are expected to be Gaussian. If the condition is not
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fulfilled, the filter quickly diverges. The filter can only provide trustworthy results if it has been fed an
adequate process model and measurement noise. If the process noise covariance matrix is large in
comparison with the measurement noise covariance matrix, the filter will closely follow measure-
ments. It may be that outliers occasionally happen amongst generally accurate measurements. The
Kalman filter has no intrinsic means of distinguishing between inliers and outliers. An outlier is a
measurement that disobeys the general pattern and does not follow the statistical distribution of the
bulk of the data. Outliers result from some disorder or unexpected conditions in the system, such as
gross measurement, sampling, computing or recording errors, transient malfunctioning, noise, missing
data, human errors, etc [4]. Another popular definition — an outlier is a measurement that markedly
deviates from its expected value. A procedure that enables exclusion of unlikely measurements and/or
combination of measurements is called gating.

There exist different gating techniques. Some of them are simple, easy-to-compute but occasion-
ally mistake outliers for normal measurements. Others, on the contrary, are accurate but computation-
ally expensive. Two-step gating is usually taken in order to reject the majority of bad measurements
coarsely and then refine the results by a more computationally demanding but accurate filter. The
work is aimed at development a gating procedure with reduced resource consumption, primarily for
use in embedded systems.

Related work. Two main approaches to dealing with outliers are used concurrently — rejection
and accommodation. Rejection assumes that if a measurement is considered suspicious, it should be
discarded. In this case a prediction step is not followed by a corresponding update step. Instead, a new
prediction should be made. There still remains some probability that several outliers will occur in a
row. However, it is supposed that even several measurement innovation steps skipped sequentially
would not impede the filter performance noticeably. Accommodation means that any measurement
will be taken into account, even if it seems erroneous. However, less trustworthy measurements are
assigned smaller weights. Hence, they do not impact the filter in the same way as measurements that
seem accurate do. Both approaches have pros and cons. The main idea that backs up rejection is that
all measurements fall into two groups: “normal” (fitting the measurement model) and “abnormal”
(generated by a completely different model) [5]. However, the measurement model may not be accu-
rate enough, which would lead to rejection of normal measurements. Moreover, [5] provides research
results showing that there is a small but dangerous possibility that normal measurements are discarded
when spurious ones are accepted due to overlapping outlier and measurement-noise distributions and
inaccurate modeling. Outlier identification methods suffer from masking and swamping effects. Mask-
ing refers to mistaking an actual outlier for a normal measurement. Swamping is mistaking a legiti-
mate measurement for an outlier. The effects are complimentary, so a trade-off should be found.

One of the ways to enhance the linear Kalman filter immunity to outliers is to model measurement
noise by distributions other than Gaussian, and a good deal of research efforts are concentrated in this
field. To name a few, heavy-tailed Gaussian mixture and t-distributed noise models are used to modify
the Kalman filter for better robustness [6]. In [7], outliers are considered results of measurement noise
with variable covariances. Under assumption that the noise covariances obey an inverse Gamma dis-
tribution, the authors propose to add a procedure of adaptive identification of the key parameters in-
volved in the inverse Gamma distribution to the Kalman filter. Within the accommodation approach
one should mention [8-10] and [11]. Some researchers consider outliers as inputs added to normal
measurements and estimate them together with the state [12, 13].

Under assumption of nearly Gaussian distributions, the 3o rule is widely applied for outlier identi-
fication. The probability of observing a measurement that is more than three standard deviations away
from its expected value is only about 0.3%. However, in practice, one needs to consider 5c or 66 to
make for the fact that the actual distribution differs from Gaussian, as it is stated in [14]. The presence
of outliers in the dataset biases the calculated mean and standard deviation and thus impairs the outlier
identification procedure. Since particle filters, which are gaining popularity recently, are not restricted
to Gaussian distributions, many researchers [14] do not use the 3 rule.

Outlier rejection is often performed using a prior or a median window. Median windows consider
a set of measurements and discard those far from the median. Gating with a prior assumes that there is
a predicted measurement value, which is compared with a measurement. If the two are not in good
agreement, the measurement is considered an outlier. The simplest way of comparing the predicted
state with the measured one is to consider each state variable separately. Thus, one may choose to
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check whether the difference between the predicted and measured variables exceeds 5o or not. This
approach is called rectangular gating. It is easy to implement, however it is rather coarse because it
does not take into account the covariance of the state variables. Fig. 1 illustrates this drawback of rec-
tangular gating for the case if the state vector contains two variables (these can be the distance and
velocity, for instance). Correlated variables in 2D are represented by ellipses. For highly correlated
variables the rectangular gate is remarkably coarse. According to [14] in 5 dimensions it is twice as
likely to accept a bad measurement as the hyper-ellipsoid.

In order to take the covariance into account, the predicted and actual measurements are often
compared using the Mahalanobis distance. Essentially, the Mahalanobis distance calculates the scalar
standard deviation distance from a point to a distribution. If the covariance matrix is the identity ma-
trix, the Mahalanobis distance comes down to the commonly used Euclidean distance.

Accuracy in outlier detection comes at cost of computational load, since one should calculate the
inverse covariance matrix for each measurement innovation. Obviously, the more variables are being
tracked in the state vector, the more computationally expensive the problem will be. The problem gets
intractable for embedded systems with their limited computation resources and poor floating-point
logic. There have been research works aimed at reduction of computational complexity of elliptic
gates without impairing masking and swamping. An intuitive approach is to filter twice. The first time
a new measurement should be tested coarsely with the rectangular filter. If it managed to pass through
the gate, the more precise elliptic gate is applied. Thus, the inverse covariance matrix will be comput-
ed not for all measurements but only for those that have not been rejected by the rectangular filter,
which saves the computational resources drastically.

In [15] sorting algorithms were used to accelerate the gating procedure and to lower computation-
al complexity primarily for multi-hypothesis tracking problems. Besides rectangular and elliptic gates,
other shapes are also used, depending on the nature of an object being tracked. For example, a fighter
jet would have a maneuver gate whose shape resembles a cone projecting in front of the current travel
direction [14]. The literature overview shows that there still exist ways of further improving gating.

Problem statement. The work is aimed at development and verification of a new gating proce-
dure suitable for implementation in embedded systems.

Main statements and results. The underlying idea of the work is best illustrated for a 2D track-
ing problem, which means that the state vector is comprised of two variables and the gate can be rep-
resented by an ellipse. We select a point (x, y) lying on the ellipse and find its tangent in this point,
given by its linear equation ax + by = d. The tangent divides the plane into two semi-planes. Due to the
fact than an ellipse is a convex figure, one semi-plane contains all the points belonging to the ellipse
while another incorporates none of the ellipse points. Thus, it is sufficient to take any of the points
belonging to the ellipse except (x, y), substitute its coordinates into ax + by — d and check the sign. The
same sign holds for any point of the same ellipse (except (x, y)).

By this check all the points confined between the rectangle and the tangent (Fig. 1) can be exclud-
ed during gating. It is most expedient to select the center of the ellipse as a reference point, because its
coordinates have been already calculated.

It is convenient to analyze multivariate Gaussian distributions in a pair-wise manner, i.e., to repre-
sent the iso-contour for any two variables as an ellipse (called error ellipse, or confidence ellipse). If
the covariance matrix has non-zero off-diagonal elements, the error ellipse is tilted, i.e., its axes are
not parallel to the coordinate axes. The stronger the covariance, the more tilted the error ellipse. The
sum of squared Gaussian data points follows Chi-Square distribution. One can use probability tables to
find out which scale s of the error ellipse corresponds to 99% confidence.

The axes of the error ellipse have the lengths 2,/sk; and 2,/sk, , where %, and 2, are the ei-

genvalues of the covariance matrix or, more precisely, the sub-matrix that corresponds to the two vari-
ables being currently analyzed. The tilt angle 6 can be found as © =arctan(v, (y)/v,(x)), where v, is

the eigenvector corresponding to the largest eigenvalue (Fig. 1).
As one can see, both tangents going through points A and B are parallel to the major axis of the el-

lipse. The major axis goes through the center of the ellipse ux,uy) and forms angle 6 with the hori-
zontal coordinate axis. Thus the line equation can be uniquely defined as
y=X-100—pu,tgb+p, .
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Both tangents can be found as
y=X-190-p,tg0+p, +b,

y=X-190 —puytg0+p, —b, (1)

b where b is |/SA, /C0S6.

, As shown in Fig. 1, an ellipse can be con-
x  fined by a hexagon formed by two tangents (a
and b) and the sides of the rectangle (c, d, e, f).
Thus, we can perform three-step gating, first
rejecting all the points outside the rectangle,
then points not lying between the two tangents
and finally applying an elliptic gate. On the one
Fig. 1. Error ellipse and illustration of the gating hand, computation of the eigenvalues and ei-
complexity reduction idea genvectors, constructing the equations of the
two tangent lines and an additional check puts
extra computational load on the gating procedure. Moreover, the stated steps should be repeated for
different pairs of state variables. On the other hand, chances are that a measurement will be rejected
after performing hexagon gating over only a few pairs of state variables, without the necessity of go-
ing through them all. On the contrary, the Mahalanobis distance calculation assumes that the whole
inverse covariance matrix should be computed prior to making any conclusions. Our hypothesis is that
for multivariate cases, the proposed three-step gating procedure will be more efficient than the classic
two-step rectangular-elliptic one.
The ideas represented in the previous section in their geometrical sense are to be applied to the
linear Kalman filter problem. The complete algorithm is as follows.
Step 1. Calculate the predicted state for the problem being solved as

R = AX, ; +Bu_ +W, (2)

where X is the predicted state at step k, A is the state transition matrix, x,_, is the estimated state at
step (k — 1), u is the control input to the state, B is a matrix that links the control input to the state, and

w is the process noise. The minus in the superscript of X, reflects the fact that X, is a prior, i.e., it is
to be updated by a real measurement in order to obtain the posterior estimate. The exact value of w is
unknown, however we can find the prior mean as
X = Ax_q +Buy_y,

since w is supposed to be zero-mean white noise.

Step 2. Represent the predicted state in the measurement space using

2, =HX +v,

where 2, is the predicted measurement, H is the measurement function, v is the measurement noise.

Step 3. Get the real measurement z, (the vector is composed of the current readings of different

sensors) that corresponds to the prior X, .
Step 4. Calculate the difference (Zk - zk), which is called the innovation, or the residual. Any
normal measurement z, should be scattered around the mean (Z, ) no farther than three standard

deviations away. As was stated earlier, in practice one should not be restricted to 36 because pretty
normal measurements can be met, for instance, 46 away from the mean. Thus we use a more general
notation No instead of 3c. For 2D problems Z, is the center of an ellipse, represented by covariance

matrix P. For higher dimensions it is the center of a (hyper)ellipsoid, correspondingly. An outlier lies
outside an No ellipse or a (hyper)ellipsoid.
Step 5. Compute the prior’s covariance as
Pc =AP_, AT +Q,
where P,_; is the prior’s covariance matrix at the previous step and Q is the process noise covariance
noise. Initialization of Q is not a trivial task, since not all state variables may be observed directly. One
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should remember to initialize the prior’s covariance matrix with non-zero values. Otherwise one ob-
tains a “smug” filter which assumes the process model to be impeccable and ignores measurements
completely. Here A is the same state transition matrix that has been already mentioned in (2).

Step 6. Apply the rectangular gate. If z, does not pass the gate, it is rejected and the update for

the current prediction is skipped. Otherwise Step 7 is taken.
Step 7. Chose the largest off-diagonal item & in matrix B,". Should there be several such items,

opt for lesser indices. Obviously, cjj =cj; forany i# j.

Step 8. For the sub-matrix
2
G i
! g ! (3)
Gij Gj

calculate the eigenvalues and eigenvectors and find the equations (1) for the two tangents parallel to
the major axis of the error ellipse represented by sub-matrix (3) and selected confidence level.

Step 9. Substitute 2,; and 2kj into equations (1) found at Step 8 and check the signs of the calcu-

lated expressions. Do the same with z,; and Zj;. The signs should coincide. If they do not, it means
that the whole vector z, failed to pass the gate. Thus it is rejected and the update for the current pre-

diction is skipped. Otherwise, choose the next largest off-diagonal item in matrix B, and repeat steps

8 — 9. The question is when to stop considering the error ellipse for the next pair of state variables.
Obviously, there is no sense in running through all the possible pairs because each new pair increases
the risk that one finally will have to apply the elliptic gate after having made all the redundant checks.
It is clear that if the measurement had not been rejected when considering highly correlated state vari-
ables, it is unlikely to be rejected when checking loosely correlated ones. There are several ways of
proceeding. We suggest that one should stop repeating steps 8 — 9 under either of the following condi-

tions: 1) % of the upper off-diagonal items have been already considered; 2) Gjj prey/ Gij curr 22,

where subindices _prev and _curr denote the previous and current steps, correspondingly. If one of
these conditions holds true and the measurement still has not been rejected, Step 10 should be taken.
Step 10. The gate using the Mahalanobis distance assumes computation of

A T(o-Y1/s
d=(2 -2z) (Pk ) (2 —2i)-
If d exceeds some threshold, z, is rejected, otherwise it is considered a legitimate measurement.

Verification of the algorithm has been done using theoretical reasoning and simulation. Inversion
of an nxn matrix, when performed by optimized CW-like algorithms, can be reduced to O(n**"*) and
no more. The proposed algorithm assumes several matrix operations — finding the minimal item in an
nxn matrix and solving several pairs of linear equations. It involves probabilities since there is no tell-
ing at which step the gate will be successful. Nevertheless, one can reasonably assume that for high-
dimensional problems pair-wise operations are less computationally complex than inverse matrix cal-
culation. In order to deal with probabilities, we performed the following steps. At the first step, we
designed four linear Kalman filters with 2, 8, 12 and 16 state variables. An array of measurements,

Z, , were simulated by adding Gaussian noise to the state vectors X, obtained at the prediction steps

(500 predict-update steps were taken for each linear Kalman problem). Matrix R was filled with the
numbers, corresponding to the variance and covariance of the artificially added noise terms.
At the second step, we generated a number of outliers as random numbers scattered more than 4c

away from each X, value. The number changed from 1 to 10 % of measurements for each Kalman
filter (we took a discrete range of 1%, 2%, 4%, 8% and 10%). In this way a new array, Zy qyier, Was

constructed for each case (in total, 20 specimens of array Zk_out"er were obtained).

At the third step, we benchmarked our gating algorithm against the classic rectangular-elliptic
one. During this step we evaluated the execution time taken by the two concurrent procedures and the
amount of times the elliptic gate has been applied. Additionally, we checked the performance of the
Kalman filter for each text case. Since we dealt with simulated data and no real measurements, for
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evaluation of the Kalman filter performance it is allowed to use the normalized estimated error
squared (NEES), which is defined as:
e=X'P7X,whereX=x—-X.

The filter stores its own estimate of its error in the covariance matrix. However, the latter cannot
serve as an indicator of the filter performance. One can quite often observe a diverging filter whose
covariance matrix is getting smaller at each step. As the covariance matrix gets smaller, the NEES gets
larger for the same error [14]. Since the whole system is simulated, it is trivial to calculate X . Obvi-
ously, this approach is not applicable for real-data systems. Both gating procedures refer to the elliptic
gate, which is considered to be very accurate, each time when a measurement manages to pass the
previous gate(s). That is why it is expected that both procedures have the same accuracy. The NEES
was used only for an additional control and in practice it has proved the same accuracy for the two
procedures, as expected. On the contrary, the execution time of the two gating procedures was com-
pletely different. The proposed algorithm proved to be inefficient for 2D problems. However, for
higher dimensions it showed good results, as one might expect from theoretical reasoning. Despite the
fact that the results were obtained by generating limited amounts of random numbers, they are suffi-
cient to illustrate (but not strictly prove) that our hypothesis about an additional gates was true.

Conclusions and future work. A modified gating algorithm has been presented. Its main differ-
ence with the known solutions consists in an interim step, which is taken after applying the rectangular
gate and before the elliptic one. The algorithm considers highly correlated variables in a pair-wise
fashion, computes the axes and tilt angles for the corresponding confidence ellipses and the tangents
parallel to their major axes. Thus it allows rejection of points outside the confidence ellipses that the
rectangular gate has failed to detect. Numerical experiments and theoretical considerations have
shown that on average the proposed gating algorithm has less computational complexity than the rec-
tangular-elliptic one due to avoidance of calculating the inverted covariance matrix. Several improve-
ments to the algorithm are possible. Firstly, the criterion of selecting pairs of variables can be revised.
The ratios between the variances and covariances can be taken into account. Secondly, the condition
for stopping selection of new variable pairs can be chosen more thoroughly. Finally, the exact depend-
encies between the algorithm efficacy and the problem dimensionality and the probability of outlier
occurrence are to be discovered yet. These issues comprise the scope of our future work.
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M. B. XBOPOCT", o-p TexH. HayK, mpod., P. B. BOPOHOB, acucrent
XapKiBCbKHIA HAI[lOHATHHUN YHIBEPCUTET MICHKOTO rocriogapcTa imeni O.M. bekeroBa

CIIOCTEPIT'AY CTAHY TAT'OBOI EJTEKTPOMEXAHIYHOI CUCTEMM 3 IBOMA
ACHUHXPOHHHUMMU JIBUI'YHAMM, 10 KUBJIATHCSA BIJL OAHOI'O IHBEPTOPA

Meta pob6oTu. BukoHaTH aHami3 TATOBOI €IEKTPOMEXAaHIYHOI CHCTEMH, Y SIKii KHUBJICHHS NEKITbKOX aCHHXPOHHHUX
JIBUTYHIB 3/1HCHIOETHCS BiJl OTHOTO iHBEPTOpA, TPH OINHII 3MIHHHX CTaHy KO’KHOTO JIBUTYHA 3a JIOMIOMOTOI0 aJalTHBHOTO
criocrepiraya.

MeTtonu mociizkenHsi. AHaji3 piBHSHb CTaHy aCHHXPOHHOTO IBHTYHA 3[IMCHIOBABCS 3 BUKOPHCTaHHIM MaTeMaTH4-
HHUX METOIIB JU(epeHNiHOro YHCIeHHs, aHali3 MPOLECiB y TATOBIM eJIeKTPOMEXaHIUHIii cHCcTeMi 3/iHCHIOBABCS ILIIXOM
MaTEeMaTUYHOTO MOJENIOBAaHHA, poOOTa HAIMiBIIPOBIAHUKOBOTO MEpEeTBOPIOBaya (iHBEpTOpa) MOJEIIOBaacs 3 BUKOPHCTAaH-
HSIM METOAY MEPEMHUKAIOYHNX (PYHKITIH.

HayxoBa HoBH3HA. Y po0OTi 3aIIpONOHOBAHO CTPYKTYPY Ta MOPSAIOK PO3PAXyHKY KOS]ili€HTIB aganTHBHOTO CIIOCTE-
piraga ctaHy aCHHXpOHHOTO JIBUTYHA Y CKJIaJl €JIEKTPOMEXaHIYHOI CHCTEMH 3 KHUBJICHHSAM JEKIIBKOX IBUTYHIB BiJl OJHOTO
iHBepTOpa.

IIpakTHyna 3HAYMMICTB HOJSITaE y po3poOIli MPaKTHYHUX PIlIeHb, SKi MOXKYTh CTaTH OCHOBOIO CHHTE3Yy ajrOPHTMIB
KepyBaHHS TATOBHMH €JIEKTPOMEXaHIYHUMH CHUCTEMH, Y SKHX 3[IHCHIOETHCS KepyBaHHS JEKiJIbKOMa ABUTYHAMHU 3MiHHOTO
CTPYMy BiZl oJfHOTO iHBepTOpa. Taka CHUTyaIlisl € TUITOBOIO JUIS 3aTi3HUYHOTO TPAHCIOPTY, @ TOMY BHKOPHCTaHHS po3poliie-
HUX IIIXOJiB MOKE CIYT'YBaTH AJIsI MOJATBIIOTO HOKPALIEHHs MOKa3HUKIB €HEProe()eKTUBHOCTI Ta TOYHOCTI KEpyBaHHI.

PesyabTaTtn. Y po0OoTi pO3IIITHYTO PiBHSHHS CTaHY aCHHXPOHHOTO JBHTYHA Ta Ha iX OCHOBI PO3pPOOJICHO alalTHBHHUM
CTIOCTEpirad CTaHy Ta 3alpoNOHOBAHO MiJIXiJ] 0 pO3paxyHKy Koe]ilieHTiB crocTepirada 3amis 3abe3nedeHHs Horo cTiifkoc-
Ti. OCKUTBKH BaXXJIMBOIO YMOBOIO (DYHKITIOHYBAaHHSI CUCTEMH BEKTOPHOTO KEPyBaHHs € KOPEKTHA OpI€HTAIisl CHCTEMH KOOp-
JIUHAT, 10 00EePTAETHCA, TO Y BUMAJKY JKHBICHHS JEKiIbKOX IBUTYHIB BiJl OJHOTO IHBEPTOpA OpIi€HTAIlS] JaHOI CHCTEMHU
KOOpPAMHAT TOBMHHA 3JiIICHIOBATHCS 3a yCepeJHEHHM IOTOKO3YEIUICHHSM pOTopa IBHUIYHIB. IIpencraBieHO aHaTiTH4HI
3aJIe)KHOCTI, 1[0 ONUCYIOTh 3MiHY YCEpeJHEHUX BEJIMYHH IPH HAsIBHOCTI BiXMICHb Y MapaMeTpax JIBHUIYHIB, 10 BiANOBila€
peansHUM yMoBaM (YHKIIOHYBaHHs. PO3IJISTHYTO MeTO PO3paxyHKy CHUTHAJIB 3aBJaHHS KOHTYpPIB KepYBaHHS CTPyMy 3
ypaxyBaHHSIM HasBHOCTI BiIXWJIEHb y TapaMeTpax IBUTYHIB, II0 JO3BOJISIE MiJABUIIATH TOYHICTh KEpyBaHHS Ta 1HIII MOKa3-
HMKH SIKOCTI. PO3p00JIeHy cHCTEMy TOCIIDKEHO NUIIXOM MaTeMaTHYHOTO MOJICIIIOBAHHSI, pe3yJIbTaTH SIKOTO CBi[4aTh mpo Te,
[I0 BUKOPUCTAHHS aJalTUBHOTO CIOCTEpirada CTaHy HO3BOJIsiE€ 3a0e3MeunTH (YHKIIOHYBaHHS 0araTOIBUTYHHOI CHCTEMH
0e3 BUKOPUCTaHHS JaTYUKIB MarHITHOTO TIOTOKY Ta KyTOBOI IIBUAKOCTI.

KorouoBi ciioBa: acHHXpOHHMI JIBUT'YH, IHBEPTOp, BEKTOpHE KEPYyBaHHS, IMOTOKO3UYEIUIEHHS POTOpA, KYTOBA ILIBHJI-
KiCTh, CIIOCTEpiray CTaHy
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IIpobisiema Ta ii 3B’5130K 3 HAYKOBUMHU i NPAKTUYHUMM 3aa4yaMu. 3a OCTaHHI JECSATUIITTS 3a-
BISIKM OYPXJIMBOMY PO3BHUTKY MiKpOIIPOLIECOPHOI TEXHIKH Ta CHIIOBOI EIEKTPOHIKH OyJI0 po3po0iIeHo
YMMAaJ0 CHCTEM PEryJIbOBAHOTO €IEKTPONPUBOJY 3MIHHOTO cTpyMy. [IpoTe, y OinbIocTi Takux cuc-
TeM BHUPOOHWKH HE Tepea0avyaroTh MOXIIMBICTh 3IMCHEHHS KEpyBaHHS JICKUIbKOMA TBUTYHAMH Bif
OJTHOTO iHBEpTOpa, 0OMEXKYIOUH MOXKIIUBICTD (DYHKIIOHYBaHHS TaKOi CUCTEMH JIMIIIE Y PEXKHUMI CKaJIs-
PHOTO KEepyBaHHS, 1[0 CYTTEBO 3HW)KYE TIOKa3HUKHU SIKOCTI KepyBaHHS Ta eHeproedekTuBHicTh. B ma-
HUH Yac 10 HAHOIIbII MONMY/ISIPHUAX BUIAMKIB, 1€ 3A1MCHIOETHCS KUBJICHHS IEKIJIbKOX JBUT'YHIB 3MiH-
HOTO CTPYMY BiJl OJTHOTO IHBEPTOpA BIIIHOCSTHCS TATOBI €IEKTPOMEXaHiIuHI CHCTEMH 3aTi3HUYHOTO
TPAaHCHOPTY Ta eNEKTPONPHUBOAN POJIBIAHTIB Y MeTaypriiiHoMy BupoOHHLTBI. [IpoTe, HasBHICTE ede-
KTUBHHX MiJXOJIB JIO MIOOYIOBH CHCTEM KEPYBaHHS TaKUMHU 0araToJBUTYHHHMH CUCTEMU JI03BOJIUIIO
0 posmmpuTu chepy iX 3acTOCYBaHHS, OCKUTBKM 3MEHIIEHHS KiTbKOCTI 1HBEPTOPIB, 10 BHKOPHCTO-
BYIOTBCS, IO3BOJIMIIO O AOCSTTH MEHILOI BAPTOCTI Ta 3MEHLICHHS rabapuTHUX PO3MIpiB.

AHaJi3 nociimkennb i myosikaniii. J{ocmipKeHHs TArOBUX €JIEKTPOMEXaHIYHUX CUCTEM 3MIHHOTO
ctpymy [1-5] € akTyamsHOIO 3a1a4€r0, OCKIILKH BiOyBa€ThCs MOCTYIIOBE BUTICHEHHS IBUTYHIB ITOC-
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