ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2017. Випуск 58. Ч. 1. С. 52–62 Visnyk of the Lviv University. Series Chemistry. 2017. Issue 58. Pt. 1. P. 52–63

УДК 546:548.736.4

РОЗЧИННІСТЬ Ga У БІНАРНІЙ СПОЛУЦІ DySi_{1.75} ПРИ 600°С

Т. Деленко, Я. Токайчук, Р. Гладишевський

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: tarasdelenko@gmail.com

На основі бінарної сполуки DySi_{1,75} (структурний тип α -GdSi₂, символ Пірсона *oI*12, просторова група *Imma*, a = 3,95415(9), b = 4,05352(9), c = 13,3822(3) Å, $R_{\rm B} = 0,0526$ для DySi_{1,752(4)}) при 600°С існує твердий розчин заміщення–включення протяжністю до 16 ат. % Ga (a = 3,99601(15), b = 4,04901(15), c = 13,4940(5) Å, $R_{\rm B} = 0,0595$ для DyGa_{0,41(1)}Si_{1,43(1)}). Кристалічна структура твердого розчину є частково впорядкованою: атоми Ga заміщують атоми Si лише в одному кристалографічному положенні, а додаткові атоми Si втілюються в частково вакантну позицію. Твердий розчин зі структурою типу α -GdSi₂ існує при сталому значенні концентрації валентних електронів ~10 \bar{e}/ϕ ., а збільшення вмісту Ga у ньому супроводжується зменшення ромбічної деформації елементарної комірки (a/b = 0,975 для DyGi_{1,75}, a/b = 0,987 для DyGa_{0,41}Si_{1,43}).

Ключові слова: диспрозій, галій, силіцій, рентгенівський дифракційний метод порошку, твердий розчин, кристалічна структура.

Бінарні сполуки RSi_{2-x} (x = 0-0,5) існують в усіх системах R–Si (R – рідкісноземельні метали) [1–4]. Їхні кристалічні структури належать до структурних типів AlB₂ (символ Пірсона *hP*3, просторова група *P6/mmm*) [5], α -ThSi₂ (*t1*12, *I4*₁/*amd*) [6], α -GdSi₂ (GdSi_{1,4}, *oI*12, *Imma*) [7], чи до їхніх похідних впорядкування вакансій. Згідно з діаграмою стану [8], у системі Dy–Si в області 33,3–40 ат. % Dy існують дві сполуки нестехіометричного складу – DySi_{1,82} і DySi_{1,67}, кожна з яких має дві поліморфні модифікації. Кристалічна структура високотемпературної модифікації сполуки DySi_{1,82} належить до структурного типу α -ThSi₂, а низькотемпературної – до типу α -GdSi₂; кристалічна структура однієї з модифікацій сполуки DySi_{1,67} належить до структурного типу AlB₂. Узагальнена інформація про кристалографічні характеристики бінарних фаз DySi_{2-x} (x = 0-0,5) наведено у табл. 1.

Заміщення атомів Si на атоми Ga у бінарних сполуках RSi_{2-x} приводить до утворення твердих розчинів різної протяжності на їхній основі та тернарних сполук змінного складу зі структурами типів α -ThSi₂ і α -GdSi₂ [17–26]. Діаграму стану системи Dy–Ga–Si досі систематично не досліджено, однак в літературі є відомості про кристалічну структуру двох тернарних сполук, знайдених при 600°С:

[©] Деленко Т., Токайчук Я., Гладишевський Р., 2017

DyGa_{2,81}Si_{0,19} (структурний тип Mg₃In, *hR*48, *R*-3*m*, *a* = 6,16694, *c* = 27,6785 Å) [27] та DyGa_{1,40-1,22}Si_{0,60-0,78} (α-ThSi₂, *tI*12, *I*4₁/*amd*, *a* = 4,09349–4,08203, *c* = 14,3106–14,2271 Å) [28].

Таблиця 1

Склад	Структурний	Символ	Просторова	Параметри комірки, Å		эки, Å	Піт
	тип	Пірсона	група	а	b	С	JIII.
	AlB ₂	hP3	P6/mmm	3,83	-	4,12	[9]
DySi ₂	a-ThSi ₂	<i>tI</i> 12	I4 ₁ /amd	4,03	-	13,38	[10]
	α -GdSi ₂	oI12	Imma	3,95	4,04	13,34	[7]
DySi _{1,75} *	α-GdSi ₂	oI12	Imma	3,952	4,052	13,38	[11]
DySi _{1,7} * (Dy ₁₀ Si ₁₇)	Dy ₁₀ Si ₁₇	<i>oI</i> 54	Imm2	8,2562	19,144	6,6571	[12]
DySi _{1,67} *	AlB ₂	hP3	P6/mmm	3,830	-	4,116	[13]
DySi _{1.67}	α -GdSi ₂	oI12	Imma	3,915	4,044	13,338	[14]
DySi _{1,6}	AlB ₂	hP3	P6/mmm	3,827	1	4,117	[15]
	a-ThSi2	<i>tI</i> 12	$I4_1/amd$	3,98	1	13,36	[15]
	α-GdSi ₂	oI12	Imma	3,934	4,034	13,340	[15]
DySi _{1,5}	AlB ₂	hP3	P6/mmm	3,83	1	4,11	[16]

Кристалографічні характеристики бінарних сполук DySi2-х

* Сполуки, для яких визначено координати атомів.

Мета нашої праці – визначити склад та кристалічну структуру бінарної сполуки DySi_{2-x} з найбільшим вмістом Si, що існує при 600°C, а також межу розчинності Ga у цій бінарній фазі.

Сплави для дослідження синтезували сплавлянням шихти вихідних простих речовин (вміст основного компонента: Dy \geq 99,9, Ga \geq 99,99, Si \geq 99,999 мас. %) в електродуговій печі на мідному водоохолоджуваному поді з використанням вольфрамового електрода. Синтез проводили в атмосфері очищеного аргону (як гетер, використовували пористий титан). Для досягнення однорідності сплави переплавляли двічі. Для гомогенізації сплави були запаяні в кварцові ампули та відпалені при 600°С впродовж 720 год в муфельній електропечі VULKAN А-550 з подальшим гартуванням в холодній воді без розбивання ампул. Втрати маси під час синтезу сплавів не перевищували 1 %. Рентгенофазовий та рентгеноструктурний аналізи проводили за масивами порошкових дифракційних даних, отриманими за кімнатної температури на дифрактометрах ДРОН–2.0 М (проміння Fe $K\alpha$), BRUKER D8 (проміння Cu Ka₁) та STOE Stadi Р (проміння Cu Ka₁). Рентгенофазовий аналіз проводили порівнянням експериментальних дифрактограм синтезованих зразків з розрахованими дифрактограмами чистих простих речовин, бінарних і тернарних сполук за допомогою пакета програм STOE WinXPow [29]. Уточнення параметрів профілю і структури проводили методом Рітвельда за допомогою пакета програм FullProf Suite [30]. Для кожного масиву дифракційних даних уточнювали такі параметри профілю і структури: фактор шкали для кожної фази, відносного зсуву

(геометрія Брегга–Брентано) чи товщини зразка (для масивів, знятих на пропускання), параметри елементарної комірки, форми піків (функція профілю пвевдо-Войт), змішування та асиметрії піків, координати атомів, коефіцієнти заповнення кристалографічних позицій, ізотропні параметри зміщення атомів і параметр переважаючої орієнтації.

Для визначення складу та кристалічної структури бінарного дисиліциду диспрозію з найбільшим вмістом Si, що існує при 600°С, ми синтезували зразок складу Dy_{33,3}Si_{66,7}, що відповідає стехіометричному складу DySi₂. Згідно з результатами рентгенівського фазового аналізу зразок виявився двофазним і містив шукану бінарну сполуку і Si. Неоднофазність зразка свідчить про нестехіометричний склад фази DySi_{2-x}, а характер розташування та інтенсивності відбить фази – про належність її структури до структурного типу α -GdSi₂. Уточнення кристалографічних параметрів фази DySi_{2-x} провели методом Рітвельда за дифрактограмою, отриманою в інтервалі 20–97,8° 2 θ з кроком сканування 0,0072° на дифрактограмою, отриманою в інтервалі 20–97,8° с*д* з кроком сканування 0,0072° на дифрактограмою, Si. Умови експерименту та результати уточнення кристалічної структури фази DySi_{2-x} наведено в табл. 2, експериментальну, розраховану та різницеву дифрактограми зразка Dy_{33,3}Si_{66,7} зображено на рис. 1, *a*.

Отже, кристалічна структура бінарного дисиліциду диспрозію (уточнений склад DySi_{1,752(4)}) з найбільшим вмістом Si при 600°C належить до структурного типу α -GdSi₂ (*oI*12, *Imma*, *a* = 3,95415(9), *b* = 4,05352(9), *c* = 13,3822(3) Å). Координати атомів, коефіцієнти заповнення позицій та ізотропні параметри зміщення атомів у структурі сполуки DySi_{1,752(4)} наведено у табл. 3. Структура характеризується трьома чотирикратними правильними системами точок 4*e*, одна з яких зайнята атомами Dy, а дві інші – атомами Si, причому позиція Si2 занята атомами на 75,2(4) %.

З метою визначення природи, протяжності та кристалічної структури твердого розчину Ga в DySi_{1,752(4)} ми синтезували та дослідили шість трикомпонентних сплавів Dy_{33,3}Ga_xSi_{66,7-x} (x = 3, 6, 9, 12, 15, 18 ат. %). Основною фазою в усіх зразках була фаза зі структурою типу α-GdSi₂ з різними параметрами елементарної комірки, що стало утворенням протяжного твердого розчину на основі бінарної сполуки DySi_{1,75}. Зразки Dy_{33,3}Ga₃₋₁₂Si_{60,7-54,7}, крім основної фази, містили 1–5 мас. % Si, причому вміст другої фази зменшувався зі збільшенням вмісту Ga; сплав Dy_{33,3}Ga₁₅Si_{51,7} не містив домішок, а зразок Dy_{33,3}Ga₁₈Si_{48,7} виявився трифазним і, крім основної фази, містив 16,9(4) мас. % тернарної сполуки DyGa_{1,40-1,22}Si_{0,60-0,78} зі структурою типу α-ThSi₂ [26] і 7,3(6) мас. % Si. Протяжність твердого розчину на основі бінарної сполуки DySi_{1,75} визначено за зміною параметрів та об'єму елементарної комірки (табл. 4). Отже, що при 600°C на основі бінарної сполуки DySi_{1,75} утворюється твердий розчин протяжністю 16 ат. % Ga, який перебуває в рівновазі з тернарною сполукою змінного складу DyGa_{1,40-1,22}Si_{0,60-0,78} [26]. Збільшення вмісту Ga в твердому розчині

54

супроводжується збільшенням параметрів a (3,95415(9)–4,0003(3) Å) і c (13,3822(3)– 13,5276(10) Å), тоді як параметр b залишається практично незмінним (4,05352(9)– 4,0580(3) Å). Об'єм елементарної комірки збільшується (V = 214,493(8)-219,60(4) Å³).

6 2θ, ° Рис. 1. Експериментальні (кружки), розраховані (лінії) та різницеві між експериментальними та розрахованими (знизу) дифрактограми зразків складу Dy_{33,3}Si_{66,7} і Dy_{33,3}Ga₁₅Si_{51,7} (проміння Си Кα₁). Вертикальні риски вказують на положення відбить індивідуальних фаз

Таблиця 2

Склад зразка, ат. %		Dy _{33,3} Si _{66,7}	Dy33,3Ga15Si51,7	
Уточнений склад фази		DySi _{1,752(4)}	DyGa _{0,41(1)} Si _{1,43(1)}	
Структурний тип	α-GdSi ₂			
Символ Пірсона	oI12			
Просторова група		Imma		
Параметри елементарної комірки:	a, Å b, Å c, Å	3,95415(9) 4,05352(9) 13,3822(3)	3,99601(15) 4,04901(15) 13,4940(5)	
Об'єм елементарної комірки V , Å ³		214,493(8)	218,331(14)	
Кількість формульних одиниць Z		2	1	
Густина D_X , г·см ⁻³		6,556	7,042	
Параметр текстури G [напрям]		0,9147(16) / [0 0 1]	0,911(3)/[1 1 0]	
Параметри профілю:	U V W	0,105(5) -0,057(4) 0,0172(7)	0,023(3) -0,008(2) 0,0112(5)	
Параметр змішування η		0,624(10)	0,466(7)	
Параметри асиметрії <i>P</i> 1, <i>P</i> ₂		-0,065(9), 0,0182(11)	0,118(5), 0,0254(11)	
Фактори достовірності:	$\frac{R_{\rm B}}{R_F}$ $\frac{R_{\rm p}}{R_{\rm wp}}$ χ^2	0,0526 0,0513 0,0259 0,0344 1,72	0,0595 0,0922 0,0174 0,0229 1,35	

Умови експерименту та результати уточнення кристалічної структури ______ DySi_{1,75} та DyGa_{0.41}Si_{1.43}

З метою визначення природи твердого розчину на основі DySi_{1,75} і розподілу атомів у його структурі ми уточнили кристалографічні параметри методом Рітвельда за дифрактограмою однофазного зразка Dy_{33,3}Ga₁₅Si_{51,7}, отриманою на дифрактометрі STOE Stadi P (інтервал 6–120° 2 θ , крок сканування 0,015°). Умови експерименту та результати уточнення кристалічної структури наведено в табл. 2, експериментальну, розраховану та різницеву дифрактограми зразка зображено на рис. 1, δ . У вихідній моделі структури для уточнення зроблено припущення про заповнення обох позицій атомів *p*-елементів статистичними сумішами атомів Ga та Si. Однак уточнення коефіцієнтів заповнення позицій (КЗП) привело до такого результату:

заміщення атомів Si на атоми Ga відбувається лише в позиції Si1 з сумарним K3П = 1, тоді як позиція Si2 залишається зайнятою виключно атомами Si з K3П = 0,846(7).Уточнений склад фази – DyGa_{0,41(1)}Si_{1,43(1)}. Отже, на основі сполуки DySi_{1,75} утворюється твердий розчин заміщення–включення, в межах якого атоми Ga заміщують атоми Si лише в одній позиції, що свідчить про часткове впорядковання, а додаткові атоми Si втілюються в частково вакантну позицію, збільшуючи її K3П з 0,752 (для DySi_{1,75}) до 0,846 (для DyGa_{0,41}Si_{1,43}). Подібне часткове впорядкування атомів Ga та Si в одному положенні 4*e*, а також вакансії в іншому положенні 4*e*, зайнятому виключно атомами Si, повідомлено для тернарних сполук HoGa_{0,34}Si_{1,56}, ErGa_{0,41}Si_{1,43} (ErGa_{0,41-0,58}Si_{1,21-1,11}) і TmGa_{0,32}Si_{1,5} зі структурою типу α-GdSi₂ [25, 26]. Координати атомів, коефіцієнти заповнення позицій та ізотропні параметри зміщення атомів у структурі DyGa_{0,41}Si_{1,43} наведено у табл. 3.

Таблиия З

	,
TC 1	-
Коорлинати коефиценти заповнення позици та ізотропні параметри змицення а	fomir v
поординати, коефициати заповнения познции та вотронии наражетри эжищения а	Joining J
CTDVKTVDAX DVS11 75 1 DV($fa_{0,41}S1_{1,42}$ (g -($fdS1_{2,0}DL/2$ $lmma$)	

	12		2 0(11 1(12					
Атом	ПСТ	x	У	z	КЗП	$B_{\rm iso},{\rm \AA}^2$		
DySi _{1,752(4)} : $a = 3,95415(9)$, $b = 4,05352(9)$, $c = 13,3822(3)$ Å								
Dy	4 <i>e</i>	0	1/4	0,62415(12)	1	0,29(4)		
Si1	4 <i>e</i>	0	1/4	0,0482(4)	1	1,72(17)		
Si2	4 <i>e</i>	0	1/4	0,2192(6)	0,752(4)	1,72		
$DyGa_{0.41(1)}Si_{1.43(1)}$: $a = 3,99601(15), b = 4,04901(15), c = 13,4940(5)$ Å								
Dy	4 <i>e</i>	0	1/4	0,62533(11)	1	0,29(4)		
M^*	4 <i>e</i>	0	1/4	0,0507(3)	1	2,13(15)		
Si	4 <i>e</i>	0	1/4	0,2175(5)	0,846(7)	2,13		
* 14 0 412 (0) C 0 500 (0) C								

M = 0,412(8)Ga + 0,588(8)Si.

Таблиця 4

Параметри та об'єм елементарної комірки твердого розчину DyGa_{0-0,44}Si_{1,75-1,31} (α-GdSi₂, *oI*12, *Imma*)

Склад грагка	П	Об'єм комірки,		
Склад эраэка	а	b	С	Å ³
Dy _{33,3} Si _{66,7} ^a	3,95415(9)	4,05352(9)	13,3822(3)	214,493(8)
Dy _{33,3} Ga ₃ Si _{63,7}	3,9585(2)	4,0538(2)	13,3843(7)	214,78(3)
Dy33,3Ga6Si60,7	3,9650(2)	4,0533(2)	13,3936(7)	215,25(3)
Dy33,3Ga9Si57,7	3,9752(2)	4,0526(2)	13,4132(8)	216,09(3)
Dy _{33,3} Ga ₁₂ Si _{55,7}	3,9861(2)	4,0502(2)	13,4521(7)	217,18(3)
Dy _{33,3} Ga ₁₅ Si _{51,7} ⁶	3,99601(15)	4,04901(15)	13,4940(5)	218,331(14)
Dy _{33,3} Ga ₁₈ Si _{48,7} ^e	4,0003(3)	4,0580(3)	13,5276(10)	219,60(4)

Примітки: ^а уточнений склад фази DySi_{1,752(4)}; ^б уточнений склад фази DyGa_{0,41(1)}Si_{1,43(1)}; ^в трифазний сплав.

57

Елементарна комірка та координаційні многогранники атомів у структурі DyGa_{0,41}Si_{1,43} зображено на рис. 3. Міжатомні віддалі у структурах DySi_{1,75} і DyGa_{0,41}Si_{1,43} наведено у табл. 5. Атоми Dy знаходяться у центрах 20-вершинників <u>DyM</u>₆Si₆Dy₈, які можна розглядати як гексагональні призми з атомів малого розміру M_6 Si₆, усі бічні грані якої центровані атомами Dy. Координаційними многогранниками малого розміру є тригональні призми з трьома додатковими атомами навпроти бічних граней <u>M</u>SiDy₆M₂ i <u>Si</u>Dy₆MSi₂. Найкоротшими віддалями в структурах DySi_{1,75} і DyGa_{0,41}Si_{1,43} є віддалі між частково вакантними положеннями атомів Si: $\delta_{Si2-Si2} = 2,142(4)$ Å і $\delta_{Si-Si} = 2,182(4)$ Å, відповідно. Варто зазначити, що простежується тенденція до збільшення цих віддалей унаслідок збільшення КЗП відповідних позицій.

Рис. 2. Елементарна комірка та координаційні многогранники атомів у структурі DyGa_{0.41}Si_{1.43}

Ромбічна структура типу α-GdSi₂ є деформованою похідною структурного типу α-ThSi₂. В межах твердого розчину на основі сполуки DySi_{1,75} за збільшення вмісту Ga зменшується ромбічна деформація елементарної комірки, про що свідчить зменшення різниці між параметрами *a* та *b* (a/b = 0.975 для DySi_{1.75}, a/b = 0.987 для DyGa_{0.41}Si_{1.43}). Ромбічна деформація комірки є наслідком наявності вакансій в одній з позицій, зайнятих атомами малого розміру. Природу твердого розчину на основі DySi_{1.75} (заміщення-включення) можна пояснити електронним чинником - кількістю валентних електронів. Так, кількість валентних електронів для бінарної сполуки DySi_{1.752(4)} становить 10,01(2) ē/ф.о., а для складу DyGa_{0.41}Si_{1.43} - 9,95(6) ē/ф.о. Тобто, твердий розчин зі структурою типу α-GdSi₂ існує сталого значення кількості валентних електронів ~10 ē/ф.o. Часткове заміщення атомів Si з чотирма валентними електронами на атоми Ga з трьома валентними електронами компенсусться втіленням додаткових атомів Si у вакансії. Зменшення кількості вакансій приводить до зменшення ромбічної деформації структури. Подальше збільшення вмісту Ga приводить до утворення тернарної сполуки DyGa_{1,40-1,22}Si_{0,60-0,78} з тетрагональною структурою і дещо меншою кількістю валентних електронів (9,60–9,78 ē/ф.o.).

Таблиця 5

Міжатомні віддалі (δ) та коорди	наційні числа (КЧ) атомів у структурах				
DySi _{1.75}	DySi _{1.75} ta DyGa _{0.41} Si _{1.43}				
D	DyCa C:				

DySi _{1,752(4)}		$DyGa_{0,41(1)}Si_{1,43(1)}$			кч	
Атоми		δ , Å	Атоми		δ , Å	K I
Dy	– 2 Si2	2,916(6)	Dy	– 2 Si	2,932(6)	
	- 4 Si1	3,0083(19)		$-4 M^{*}$	3,0174(14)	
	– 2 Si1	3,038(4)		$-2 M^*$	3,104(3)	
	-4 Si2	3,104(3)		– 4 Si	3,104(3)	20
	- 2 Dy	3,8921(19)		- 2 Dy	3,9131(16)	20
	- 2 Dy	3,906(2)		- 2 Dy	3,9420(16)	
	- 2 Dy	3,95415(9)		- 2 Dy	3,99600(16)	
	- 2 Dy	4,05352(9)		- 2 Dy	4,04900(16)	
Si1	– 1 Si2	2,288(10)	M^*	– 1 Si	2,251(9)	
	– 2 Si1	2,402(4)		$-2 M^*$	2,444(3)	0
	- 4 Dy	3,0083(19)		- 4 Dy	3,0174(14)	9
	- 2 Dy	3,038(4)		- 2 Dy	3,104(3)	
Si2	- 2Si2	2,142(4)	Si	– 2 Si	2,182(4)	9
	- 1 Si1	2,288(10)		$-1 M^*$	2,251(9)	
	- 2 Dy	2,916(6)		- 2 Dy	2,932(6)	
	- 4 Dy	3,104(3)		- 4 Dy	3,104(3)	

M = 0,412(8)Ga + 0,588(8)Si.

Структурні типи α -GdSi₂ і α -ThSi₂ належать до структур з тригональнопризматичною координацією атомів малого розміру (клас 10 за систематикою П. І. Крип'якевича [31]) і є похідними структурного типу AlB₂ (*hP3*, *P6/mmm*), до якого належить структура бінарних силіциду DySi_{1,67} [13] і дигаліду DyGa₂ [32]. Вищезгадані структурні типи побудовані з тригональних призм з атомів великого розміру, в центрах яких розташовані атоми малого розміру і відрізняються між собою як способом сполучення призм, так і сполученням атомів малого розміру. У системі Dy-Ga-Si при 600°C існують сполуки, структури яких належать до трьох вищезгаданих структурних типів: DySi_{1,67} і DyGa₂ (AlB₂), DyGa_{1,40-1,22}Si_{0,60-0,78} (α -ThSi₂), DyGa_{0-0,44}Si_{1,75-1,31} (α -GdSi₂). Співіснування фаз зі структурами типів AlB₂ та α -ThSi₂ (а в деяких випадках і α -GdSi₂) простежується в системах *R*-Ga-Si [18–21, 23, 24], а також у спорідненій системі Dy-Ga-Ge [33].

- 1. Villars P., Cenzual K., Daams J. L. C., Hulliger F., Massalski T. B., Okamoto H., Osaki K., Prince A. (Eds). Pauling File Binaries Edition. Materials Park: ASM International (OH). Release 2002/1.
- 2. *Villars P., Cenzual K.* (Eds.). Pearson's Crystal Data Crystal Structure Database for Inorganic Compounds. Materials Park: ASM International (OH), Release 2014/15.
- 3. *Villars P., Cenzual K., Gladyshevskii R.* (Eds.). Handbook of Inorganic Substances 2016. Berlin: Walter de Gruyter, 2016. 1877 p.
- 4. *Буланова М. Б., Буянов Ю. И., Великанова Т. Я.* и др. Диаграммы состояния и термодинамика фаз в бинарных системах редкоземельных металлов с кремнием. Справочник. Київ: Наукова думка, 2013. 208 с.
- 5. *Hoffmann W., Jäniche W.* Der Strukturtyp von Aluminiumborid (AlB₂) // Naturwissenschaften. 1935. Vol. 23. P. 851.
- 6. *Brauer G., Mitius A.* Die Kristallstruktur des Thoriumsilicids ThSi₂ // Z. Anorg. Allg. Chem. 1942. Vol. 249. P. 325–339.
- Perri J. A., Binder I., Post B. Rare earth metal 'disilicides' // J. Phys. Chem. 1959. Vol. 63. P. 616–619.
- 8. *Еременко В. Н., Мелешевич К. А., Буянов Ю. И., Марценюк П. С.* Строение, состав и фазове равновесия в сплавах диспрозия с кремнием // Укр. хим. журн. 1994. Т. 60. С. 544–551.
- 9. *Mayer I., Yanir E., Shidlovsky I.* Dimorphism of rare earth disilicides // Inorg. Chem. 1967. Vol. 6. P. 842–844.
- 10. *Perri J. A., Banks E., Post B.* Polymorphism of rare earth disilicides // J. Phys. Chem. 1959. Vol. 63. P. 2073–2074.
- Pierre J., Lambert Andron B., Soubeyroux J. L. Magnetic structures of rare earth silicides RSi_{2-x} (R = Nd, Ho, Dy) // J. Magn. Magn. Mater. 1989. Vol. 81. P. 39–46.

60

- Roger J., Babizhetskii V. S., Jardin R., Guérin R. et al. Tin flux synthesis of rare-earth metal silicide compounds RESi_{1.7} (RE = Dy, Ho): a novel ordered structure derived from the AlB₂ type // Z. Kristallogr. 2006. Vol. 221. P. 502–510.
- 13. *Morozkin A. V.* Phase equilibria in the Dy–Ti–Si system at 1200 K // J. Alloys Compd. 2002. Vol. 345. P. 155–157.
- Zhuang Y., Yang Y., Zhou H., Qin W. The 520°C isothermal section of the phase diagram of the ternary Dy–Fe–Si system // J. Alloys Compd. 1998. Vol. 268. P. 137– 140.
- Auffret S., Pierre J., Lambert Andron B., Madar R., Houssay E., Schmitt D., Siaud E. Magnetic properties versus crystal structure in heavy rare-earth silicides RSi_{2-x} // Phys. B. 1991. Vol. 173. P. 265–276.
- Гладишевський С. І. Кристалічні структури багатих на Si силіцидів рідкісноземельних елементів ітрієвої підгрупи // Допов. акад. наук. Укр. РСР. 1963. С. 886–888.
- 17. Спека М. В. Фазові рівноваги в системах Y-{Al, Si, Ge}-Ga, кристалічна структура і властивості потрійних сполук: автореф. дис. ... канд. хім. наук. Київ, 2003. 25 с.
- Tokajchuk Ya. O., Fedorchuk A. A., Mokra I. R. Interaction among the components in La–Ga–Si system at 870 K // Polish. J. Chem. 2000. Vol. 74. P. 745–748.
- Токайчук Я., Федорчук А., Мокра І., Бодак О. Потрійна система Се-Ga-Si при 870 К // Вісн. Львів. ун.-ту. Сер. хім. 2002. Вип. 41. С. 40–45.
- 20. Токайчук Я. О., Федорчук А. О., Мокра І. Р. Потрійна система Pr-Ga-Si // Вісн. Львів. ун-ту. Сер. хім. 2000. Вип. 39. С. 25–29.
- 21. *Tokaychuk Ya. O., Fedorchuk A. O., Bodak O. I., Mokra I. R.* Phase relations in the Nd–Ga–Si system at 870 K // J. Alloys Compd. 2004. Vol. 367. C. 64–69.
- 22. Токайчук Я. О., Федорчук А. О., Мокра І. Р. Кристалічна структура сполуки SmGa_{1.1}Si_{0.9} // Вісн. Львів. ун-ту. Сер. хім. 1999. Вип. 38 С. 31–33.
- 23. Токайчук Я. О. Синтез, структура та властивості нових сполук галію з *p*-елементами IV групи та рідкісноземельними металами церієвої підгрупи: автореф. дис. ... канд. хім. наук. Львів, 2004. 20 с.
- 24. Головата Н. В. Характер фазових рівноваг та термодинамічні властивості сплавів потрійних систем Gd–Al–Ga, Gd–Ge–Ga i Gd–Si–Ga: автореф. дис. ... канд. хім. наук. Київ, 1999. 20 с.
- 25. Пукас С. Я., Черни Р., Маняко М. Б., Гладишевський Р. Є. Нові сполуки в системі Er-Ga-Si // Укр. хим. журн. 2007. Т. 73. № 11. С. 18–26.
- 26. *Darone G. M., Hmiel B., Zhang J., Saha Sh.* et al. Rare-earth metal gallium silicides via the gallium self-flux method. Synthesis, crystal structures, and magnetic properties of $RE(Ga_{1-x}Si_x)_2$ (RE = Y, La-Nd, Sm, Gd-Yb, Lu) // J. Solid State Chem. 2013. Vol. 201. P. 191–203.
- 27. Голдак О., Токайчук Я., Федорчук А., Мокра І. Кристалічна структура DyGa_{2,81}Si_{0,19} // Зб. наук. праць IX наук. конф. "Львівські хімічні читання – 2003". Львів, 2003. С. Н21.

- 28. Голдак О., Токайчук Я., Федорчук А., Мокра І. Кристалічна структура DyGa_{1,40-1,22}Si_{0,60-0,78} // Вісн. Львів. ун-ту. Сер. хім. 2004. Вип. 44. С. 41–43.
- 29. STOE *WinXPow* (Version 2.21). Darmstadt : Stoe & Cie, 2005.
- 30. *Rodríguez-Carvajal J.* Recent developments of the Program *FULLPROF //* Commission on Powder Diffraction (IUCr), Newsletter. 2001. Vol. 26. P. 12–19.
- 31. *Крипякевич П. И.* Структурные типы интерметаллических соединений. М.: Наука, 1977. 290 с.
- 32. *Haszko S. E.* Rare-earth gallium compounds having the aluminum-boride structure // Trans. Metall. Soc. AIME. 1961. Vol. 221. P. 201–204.
- 33. Токайчук Я., Деленко Т., Гладишевський Р. Структурні перетворення в DyGa_{2-x}Ge_x ($0 \le x \le 0,6$) // Вісн. Львів. ун-ту. Сер. хім. 2014. Вип. 55. С. 47–53.

SOLUBILITY OF Ga IN THE BINARY COMPOUND DySi_{1.75} AT 600°C

T. Delenko, Ya. Tokaychuk, R. Gladyshevskii

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: tarasdelenko@gmail.com

Based on the binary compound DySi_{1.75} (structure type α -GdSi₂, Pearson symbol *oI*12, space group *Imma*, *a* = 3.95415(9), *b* = 4.05352(9), *c* = 13.3822(3) Å, *R*_B = 0.0526 for DySi_{1.752(4)}) a solid solution of substitution-inclusion type of up to 16 at. % Ga at 600°C is formed (*a* = 3.99601(15), *b* = 4.04901(15), *c* = 13.4940(5) Å, *R*_B = 0.0595 for DyGa_{0.41(1)}Si_{1.43(1)}). Substitution of Ga atoms for Si atoms was found to take place only on the Si site that is fully occupied in DySi_{1.75}, whereas the deficient site (occ. = 75 % in DySi_{1.75}) contains additional Si atoms (occ. = 85 % in DyGa_{0.41}Si_{1.43}). The increase of the Ga content in the solid solution leads to an increase of the cell parameters *a* (3.95415(9)–4.0003(3) Å) and *c* (13.3822(3)–13.5276(10) Å), whereas the cell parameter *b* remains almost unchanged (4.05352(9)–4.0580(3) Å); this corresponds to a decrease of the orthorhombic deformation of the unit cell (*a/b* = 0.975 for DySi_{1.75}, *a/b* = 0.987 for DyGa_{0.41}Si_{1.43}). The investigated solid solution with α -GdSi₂-type structure exists at a constant valence electron concentration of ~10 ē/f.u. The compound DyGa_{0.044}Si_{1.75-1.31} (solid solution of Ga in DySi_{1.75}) is in equilibrium with the purely ternary compound DyGa_{1.40-1.22}Si_{0.60-0.78}, which crystallizes with the α -ThSi₂-type. The structure type GdSi_{1.4} derives from the tetragonal type α -ThSi₂ by orthorhombic deformation, both structure types being built from trigonal prisms formed by large atoms surrounding the smaller atoms.

Key words: dysprosium, gallium, silicon, X-ray powder diffraction, solid solution, crystal structure.

Стаття надійшла до редколегії 01.11.2016 Прийнята до друку 04.01.2017