ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2017. Випуск 58. Ч. 2. С. 507–514 Visnyk of the Lviv University. Series Chemistry. 2017. Issue 58. Pt. 2. P. 507–514

УДК 538.971

НАНОГЕОМЕТРІЯ ПОВЕРХНІ АМОРФНИХ СПЛАВІВ КОМПОЗИЦІЙНОГО СКЛАДУ Fe₂Nb₂B₁₄REM₂ (REM = Y, GD, TB, DY)

Л. Бойчишин, М.-О. Даниляк, М. Партика

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: lboichyshyn@yahoo.com

Методом атомно-силової мікроскопії (atomic force microscopy (AFM)) досліджено характеристики поверхні аморфних металевих сплавів (AMC) композиційного складу $Fe_{82}Nb_2B_{14}REM_2$ (REM = Y, Gd, Tb, Dy). Оцінено вплив легуючого рідкісноземельного металу (REM) та термічної обробки на параметри поверхні AMC $Fe_{82}Nb_2B_{14}REM_2$. Показано, що часткова заміна атомів Fe на REM лише 2 ат. % у $Fe_{84}Nb_2B_{14}$ збільшує параметри шорсткості поверхні. Ізотермічний відпал досліджених $Fe_{82}Nb_2B_{14}REM_2$ за температури 798 К тривалістю 1 год в атмосфері повітря додатково підвищує параметри шорсткості поверхні внаслідок високотемпературного окиснення поверхні.

Ключові слова: аморфні металеві сплави, рідкісноземельні метали, атомно-силова мікроскопія, шорсткість.

Аморфні металеві сплави (AMC) володіють покращеними фізичними та хімічними властивостями, порівняно зі звичайними кристалічними матеріалами [1– 3]. Ці властивості формуються передусім унаслідок того, що в AMC відсутній дальній порядок у розміщенні атомів, а їхній термодинамічний стан є метастабільний і може зберігатися протягом великого проміжку часу за кімнатної температури [4].

Відомо, що властивості АМС залежать не тільки від їхнього хімічного складу, а й від умов їх приготування та подальшої обробки чи модифікації [5]. Варто зазначити, що однією з найважливіших характеристик матеріалів, яка визначає їх експлуатаційні властивості, зокрема, зносостійкість, контактну жорсткість, корозійну тривкість та інші функціональні характеристики поверхні, є наногеометрія поверхні або шорсткість [6]. Відомо [7], що вихідна шорсткість є наслідком технологічного процесу одержання аморфних сплавів. Шорсткість АМС формується поверхневими нерівностями, які виникають під час інжектування розплаву на охолоджену підкладку, з характерними розмірами нанометрового порядку по висоті до 100 нм і по площині – до 1000 нм. Наногеометрію поверхні визначають внутрішньою структурою твердого тіла, її дефектами, а також процесами взаємодій поверхні твердого тіла з навколишнім середовищем (окиснення, адсорбція тощо) [7]. Унаслідок відпалу параметри вихідної шорсткості, зазвичай, змінюються завдяки утворенню поверхневих шарів.

Мета нашої праці – дослідити зміни геометрії поверхні AMC $Fe_{82}Nb_2B_{14}REM_2$, де REM = Y, Gd, Tb, Dy після ізотермічного відпалу при T = 798 К методом атомносилової мікроскопії.

[©] Бойчишин Л., Даниляк М.-О., Партика М., 2017

Стрічки аморфних сплавів $Fe_{84}Nb_2B_{14}$, $Fe_{82}Nb_2B_{14}Y_2$, $Fe_{82}Nb_2B_{14}Gd_2$, $Fe_{82}Nb_2B_{14}Tb_2$ та $Fe_{82}Nb_2B_{14}Dy_2$ з товщиною і шириною (20-25)·10⁻⁶ м і 3·10⁻³ м, відповідно, отримано методом спінінгування розплаву в атмосфері гелію на мідному барабані зі швидкістю обертання близько 30 м/с. АМС виготовлено в Інституті металофізики ім. Г. В. Курдюмова НАН України [8].

Досліджено морфологічні характеристики поверхні вихідних та відпалених протягом 1 год в атмосфері повітря АМС за температур І-го фазового переходу. Для визначення температур фазових переходів використано метод диференціальної скануючої калориметрії (ДСК) (рис. 1). Методом ДСК з'ясовано, що для сплаву $Fe_{84}Nb_2B_{14}$ перший температурний максимум (T_{x1}) з'являється при 697 К, а для легованих сплавів його немає. Однак часткове заміщення атомів Fe на REM ($Fe_{82}Nb_2B_{14}Y_2$, $Fe_{82}Nb_2B_{14}Gd_2$, $Fe_{82}Nb_2B_{14}Tb_2$ та $Fe_{82}Nb_2B_{14}Dy_2$) зумовлює виникнення другого температурного максимуму (T_{x2}) як й для нелегованого АМС, а також викликає появу третього максимуму (T_{x3}) в інтервалі температур 995...1008 К. Температури другого максимуму для усіх досліджених сплавів перебувають в інтервалі 798–811 К.

Рис. 1. ДСК-криві для сплавів Fe–Nb–B–REM з різними рідкісноземельними легуючими добавками: 1 - Fe₈₄Nb₂B₁₄; 2 – Fe₈₂Nb₂B₁₄Y₂; 3 – Fe₈₂Nb₂B₁₄Gd₂; 4 – Fe₈₂Nb₂B₁₄Tb₂; 5 – Fe₈₂Nb₂B₁₄Dy₂ (швидкість нагріву 10 K/хв)

508

Методом рентгенівської дифракції визначено, що під час нанокристалізації сплавів $Fe_{82}Nb_2B_{14}Y_2$, $Fe_{82}Nb_2B_{14}Gd_2$, $Fe_{82}Nb_2B_{14}Tb_2$ та $Fe_{82}Nb_2B_{14}Dy_2$ утворюються наноструктури α -Fe і Fe₂₃B₆ з середнім розміром кристалів 15–19 нм [9].

Морфологію поверхні вихідних та відпалених АМС Fe₈₂Nb₂B₁₄REM₂ (REM = Y, Gd, Tb, Dy) зразків досліджували методом атомно-силової мікроскопії (atomic force microscopy (AFM)) за допомогою скануючого зондового мікроскопа Solver P47-PRO. Сканування поверхні проводили в контактному і напівконтактному режимах роботи атомно-силового мікроскопа. Отримані АСМ-зображення опрацьовано за допомогою програмного модуля Nova [10].

На рис. 2 наведено топологію поверхонь вихідного та відпаленого Fe₈₂Nb₂B₁₄Y₂. Отже, поверхня вихідного сплаву має розвинутий рельєф, який характеризується утвореннями різної форми та висоти. Відпал АМС протягом 1 год в атмосфері повітря веде до ущільнення та диспергування поверхневих шарів [11].

ис. 2. 5D зоораження поверхні вихідного (a) та відпаленого т при $T_{x1} = 798 \text{ K}$ (δ) AMC Fe₈₂Nb₂B₁₄Y₂

На рис. З наведено вертикальний переріз при 100 нм для усіх досліджуваних сплавів уздовж лінії, яку зображено на рис. 2. Як бачимо з рис. 3, відпал практично не впливає на морфологію поверхні нелегованого сплаву. Відпал АМС легованого 2 ат. % У спричиняє доокиснення та ущільнення поверхневих шарів, що приводить до їх спікання (рис. 3, *a*, *б*, крива 2). Мікрорельєф АМС легованого Гадолінієм внаслідок відпалу характеризується нерівностями з найпомітнішими перепадами висот від 10 до 25 нм (рис. 3, *a*, *б*, крива 3). Найбільший вплив чинить одногодинний відпал на АМС, легований 2 ат. % Тb (рис. 3, *a*, *б* крива 4). Висота перерізу АМС різко зменшується від 40 нм до 10 нм.

Рис. 3. Профіль вертикального перерізу (по лінії рис. 2) вихідних (*a*) та відпалених (б) АМС: *I* – Fe₈₄Nb₂B₁₄; 2 – Fe₈₂Nb₂B₁₄Y₂; 3 – Fe₈₂Nb₂B₁₄Gd₂; 4 – Fe₈₂Nb₂B₁₄Tb₂; 5 – Fe₈₂Nb₂B₁₄Dy₂

З аналізу АСМ-зображень для усіх досліджуваних сплавів отримано основні характеристики топології поверхні: середня шорсткість (R_a) та середньоквадратичне значення шорсткості (R_q), а також параметр асиметрії (R_{sk}). В табл. 1 наведено значення цих параметрів для вихідних та відпалених АМС Fe₈₂Nb₂B₁₄REM₂ (REM = Y, Gd, Tb, Dy). Легування базового АМС Fe₈₄Nb₂B₁₄ лише 2 ат. % REM збільшує значення параметрів шорсткості поверхні.

Параметр асиметрії (R_{sk}) описує форму функції розподілу висот і заглиблень відносно середнього значення та характеризує ступінь фрактальності поверхні. Профіль з додатним коефіцієнтом асиметрії характеризується чіткими високими піками, тоді як профіль з від'ємним коефіцієнтом асиметрії характеризується глибокими впадинами на фоні гладкого плато [4]. Унаслідок температурного відпалу AMC Fe₈₂Nb₂B₁₄REM₂, легованих рідкісноземельними металами, параметр асиметрії є від'ємним, тобто більша частина питомої площі перебуває нижче уявної нульової лінії. Як бачимо з табл. 1, найменше змінюються значення R_a та R_q сплаву легованого 2 ат. % Тb. Однак значення R_{sk} , який характеризує фрактальність, є найбільшим за значенням. Тобто фрактальність поверхні AMC Fe₈₂Nb₂B₁₄Tb₂ є найвищою серед усіх як вихідних, так і відпалених сплавів. Це можна пояснити диспергуванням та ущільненням структурних елементів оксидних шарів на поверхні.

На рис. 4, *а* наведено 2D-зображення вихідного AMC $Fe_{82}Nb_2B_{14}Y_2$. Як бачимо, поверхня вихідного AMC $Fe_{82}Nb_2B_{14}Y_2$ (рис. 4, *а*) досить неоднорідна, на ній можна виділити зерна розмірами ~ 20–23 нм.

Використовуючи профіль поверхні АСМ-зображення (рис. 4, б), можна розрахувати можливість дифузії та адсорбції молекул, іонів, радикалів тощо у міжзерновий простір.

На рис. 5 наведено розподіл структурних одиниць на поверхні за розмірами для вихідних та відпалених АМС $Fe_{82}Nb_2B_{14}REM_2$. 3 рисунка бачимо, що внаслідок термічної обробки розміри та кількість зерен на поверхні змінюються. Наприклад, на поверхні вихідного сплаву $Fe_{82}Nb_2B_{14}Dy_2$ максимальна кількість зерен має розмір ~ 8–12 нм, тоді як на поверхні відпаленого зразка розмір максимальної кількості наноутворень перебуває в інтервалі 21–24 нм.

Таблиця 1

511

		Шорсткість поверхні					
Склад АМС	Тип поверхні зразка	R _a , нм	ΔR _a ,	R _q , нм	ΔR_q ,	R _{sk}	ΔR_{sk}
			HM		HM		
$Fe_{84}Nb_2B_{14}$	1	1,67	2,44	2,12	3,82	-0,71	0,09
	2	4,11		5,94		-0,62	
$Fe_{82}Nb_2B_{14}Y_2$	1	2,61	1,15	3,43	1,60	-0,46	0,11
	2	3,76		5,03		-0,57	
$Fe_{82}Nb_2B_{14}Gd_2$	1	5,11	1,73	7,36	1,62	-0,42	0,09
	2	6,84		8,98		-0,33	
Fe ₈₂ Nb ₂ B ₁₄ Tb ₂	1	2,58	0,57	4,03	0,02	-1,74	0,93
	2	3,15		4,05		-0,81	
$Fe_{82}Nb_2B_{14}Dy_2$	1	1,98	1,11	2,42	2,24	-0,36	0,24
	2	3,09		4,66		-0,60	

Рис. 4. a - 2D-зображення поверхні вихідного АМС Fe₈₂Nb₂B₁₄Y₂; δ – вертикальний переріз (на рис. a профіль виділено відрізком)

Рис. 5. Розподіл кількості зерен за розмірами на поверхні вихідних (*a*) та відпалених (б) АМС: *I* – Fe₈₄Nb₂B₁₄; 2 – Fe₈₂Nb₂B₁₄Y₂; 3 – Fe₈₂Nb₂B₁₄Gd₂; 4 – Fe₈₂Nb₂B₁₄Tb₂; 5 – Fe₈₂Nb₂B₁₄Dy₂

Інтегруючи криві, наведені на рис. 5, отримаємо кількість зерен на досліджуваній площі поверхні АМС (200×200 нм). Кількість зерен для усіх досліджуваних аморфних та нанокристалізованих сплавів становить ~ 3665 одиниць, однак розподіл за розмірами різний. Унаслідок відпалу відбувається поверхневе злиття зерен, їх кількість зменшується, а розмір росте. Варто зазначити, дані про морфологічний стан поверхні є важливими за прогнозування фізико-хімічних властивостей поверхні, зокрема каталітичних.

Отже, на основі досліджень методом атомно-силової мікроскопії та комп'ютерного опрацювання зображень визначено морфологію поверхні AMC $Fe_{82}Nb_2B_{14}REM_2$ (REM = Y, Gd, Tb, Dy). З'ясовано, що легування рідкісноземельним металом базового сплаву $Fe_{84}Nb_2B_{14}$ збільшує параметри шорсткості. За термічної обробки AMC параметри вихідної шорсткості збільшуються, оскільки відбувається кристалізація та високотемпературне доокиснення поверхні. Значення параметрів асиметрії для досліджених AMC $Fe_{82}Nb_2B_{14}REM_2$ за термічної обробки свідчать про те, що у відпалених зразках відбувається перебудова оксидних поверхневих шарів, що відображається на кількості та розподілу за розмірами зерен.

Роботу виконано в межах науково-дослідної теми ОБ-16П (№ державної реєстрації 0115u003263), яку фінансувало Міністерство освіти та науки України.

^{1.} *Botta W. J., Berger J. E., Kiminami C. S.* et al. Corrosion resistance of Fe-based amorphous alloys // J. Alloys Compd. 2013. Vol. 586. P. S105–S110.

^{2.} Герцик О., Ковбуз М., Бойчишин Л., Переверзєва Т. Вплив Ітрію на корозійну стійкість аморфного металевого сплаву Al-Gd-Ni // Вісн. Львів. ун-ту. Сер. хім. 2011. Вип. 52. С. 311–316.

Bukowska A., Pietrusiewicz P., Zdrodowska K., Szota M. The surface structural and mechanical properties of the amorphous Co₂₂Y₅₄Al₂₄ ribbon // Advances in Science and Technology. 2013. Vol. 7. N 19. P. 1–4.

Л. Бойчишин, М.-О. Даниляк, М. Партика ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2017. Випуск 58. Ч. 2

- 4. *Мудрий С. І., Никируй Ю. С.* Кристалізація аморфного сплаву Fe_{73,7}Nb_{2,4}Cu_{1,0}Si1_{5,5}B_{7,4} під дією лазерного опромінення поверхні // Фізика і хімія твердого тіла. 2010. Т. 11. № 2. С. 395–400.
- 5. Поперенко Л. В., Манько Д. Ю. Прояв локалізованих електронних станів в оптичних властивостях аморфних і наноструктурованих металевих сплавів // Реєстрація, зберігання і обробка даних. 2010. Т. 12. № 2. С. 34–42.
- Назаров Ю. Ф, Шкилько А. М., Тихоненко В. В., Компанеец И. В. Методы исследования и контроля шероховатости поверхности металлов и сплавов // Физическая инженерия поверхности. 2007. Т. 5. № 3, 4. С. 207–216.
- 7. Касияненко В. Х., Карбовский В. Л., Артемюк и др. Субшероховатость и морфологические особенности поверхности аморфного сплава Fe₈₂Si₄B₁₄ при термической обработке // Наносистеми, наноматеріали, нанотехнології. 2015. Т. 13. № 2. С. 337–347.
- 8. *Носенко В. К.* Аморфні та нанокристалічні сплави для приладобудування і енергоефективних технологій // Вісн. НАН України. 2015. № 4. С. 68–79.
- Chrobak A., Nosenko V., Haneczok G. et al. Influence of rare earth elements on crystallization of Fe₈₂Nb₂B₁₄RE₂ (RE = Y, Gd, Tb and Dy) amorphous alloys // J. Non-Cryst. Solids. 2011. Vol. 357. P. 4–9.
- Модуль обработки изображений. Справочное руководство. М.: ЗАО "Нанотехнология-МДТ", 2006.
- 11. Boichyshyn L. M., Danyliak M.-O. M., Kotur B. Ya. Surface structure and catalytic activity of amorphous and nanocrystalline metallic alloys Fe-Nb-B and Fe-Nb-B-Dy in alkaline solution // Proceeding of XV Ukrainian-Polish Symposium on Theoretical and Experimental Studies of Interfacial Phenomena and their Technological Applications, simultaneously with 2nd NANOBIOMAT conference Nanostructed Biocompatible/Bioactive Materials. Lviv, Ukraine, 12–15 September 2016. P. 12.

NANOGEOMETRY OF SURFACE OF THE Fe₈₂Nb₂B₁₄REM₂ (REM = Y, Gd, Tb, Dy) AMORPHOUS ALLOYS

L. Boichyshyn, M.-O. Danyliak, M. Partyka

Ivan Franko National University of Lviv, Kyryla and Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: lboichyshyn@yahoo.com

By atomic force microscopy (AFM) method have been investigated characteristics of surface of the $Fe_{82}Nb_2B_{14}REM_2$ (REM = Y, Gd, Tb, Dy) amorphous metallic alloys (AMA). The influence of the alloying rare earth element (REM) and heat treatment on parameters of the surface $Fe_{82}Nb_2B_{14}REM_2$ AMA was evaluated.

The main characteristics of surface amorphous alloys: average roughness (R_a) and root mean square roughness (R_a), and parameter of the asymmetry (R_{sk}) were obtained.

The replacing of 2 at. % of Fe atoms by REM basic AMA $Fe_{84}Nb_2B_{14}$ increase parameters of the roughness was established. Due nucleation and growth of nanocrystals during crystallization and oxidation surface, isothermal treatment (lasting 1 hour in air) of the examined $Fe_{82}Nb_2B_{14}REM_2$ AMA increase initial characteristics of the roughness too. The values parameters of the asymmetry of the investigated $Fe_{82}Nb_2B_{14}REM_2$ AMA after isothermal treatment indicate that the annealed samples are no restructuring.

Key words: amorphous metallic alloys, rare earth metals, atomic force microscopy, roughness.

Стаття надійшла до редколегії 31.10.2016 Прийнята до друку 04.01.2017