ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2018. Випуск 59. Ч. 1. С. 157–163 Visnyk of the Lviv University. Series Chemistry. 2018. Issue 59. Pt. 1. P. 157–163

УДК 548.736: 547.539.16

СИНТЕЗ ТА КРИСТАЛІЧНАСТРУКТУРА *π*-КОМПЛЕКСУ КУПРУМ(І) СУЛЬФАМАТУ 32-(*N*-АЛІЛ)-АМІНО-5-МЕТИЛ-1,3,4-ТІАДІАЗОЛОМ СКЛАДУ [Си₂(C₆H₁₀N₃S₂)₂(NH₂SO₃)₂]

М. Лук'янов*, Ю. Сливка, Б. Ардан, М. Миськів

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: mykhailo.lukyanov@lnu.edu.ua

Кристали π -комплексу складу [Cu₂(Mepeta)₂(NH₂SO₃)₂] (1), (де Mepeta–2-(N-аліл)аміно-5-метил-1,3,4-тіадіазол), одержані методом змінно струмного електрохімічного синтезу й рентгеноструктурно досліджено методом монокристала. Сполука кристалізується у триклінній сингонії: просторова група P-1, a = 7,799(2), b = 8,054(3), c = 10,165(2) Å, a = 96,003(7), $\beta = 109,17$ (3), $\gamma = 112,95(3)^\circ$, V = 535,2 (3) $A^3, Z = 1$, $D_x = 1,954(3)$ г/см³, R(F) = 0,056для 2052 незалежних відбить з $F \ge 4\sigma(F_0)$. Органічний ліганд Мереtay сполуці 1 виконує містковохелатну функцію, координуючись до іона металу кратним зв'язком алільної групи та двома атомами нітрогену гетероциклу, формуючи центросиметричний димер [Cu₂(Mepeta)₂(NH₂SO₃)₂]. Координаційний поліедр купруму (І) доповнюється атомом N сульфамат-аніона.

Ключові слова: купрум (І), сульфамат-аніон, *π*-комплекс, 1,3,4-тіадіазол, кристалічна структура.

DOI: https://doi.org/10.30970/vch.5901.157

Інтерес фахівців із різних галузей до похідних 1,3,4-тіадіазолів викликаний можливістю їх застосування у багатьох сферах: медицині, хімічній промисловості, органічному синтезі та сільському господарстві [1–4]. Сьогодні також ретельно вивчаються комплекси перехідних металів, до складу яких входять молекули 1,3,4тіадіазолів, що обумовлено низкою цінних їх властивостей [5–6]. З погляду кристалічної інженерії цей гетероцикл вирізняється ще й тим, що у його кільці присутні одразу кілька гетероатомів, а прищепленням до нього різних за природою замісників можна впливати на комплексоутворення з солями металів.

Для доповнення вже існуючої групи сполук [7–8] та глибшого розуміння координаційної поведінки алільних похідних 1,3,4-тіадіазолів у реакціях комплексоутворення з солями купруму (І) ми отримали та рентгеноструктурно дослідили новий π -комплекс складу [Cu₂(*Mepeta*)₂(NH₂SO₃)₂] (1), (де *Mepeta*-2-(*N*-аліл)-аміно-5-метил-1,3,4-тіадіазол).

Ліганд *Mepeta*, добутий за відомою реакцією Пульвермахера при взаємодії алілтіосемікарбазиду з ацетилхлоридом, детально описаний у [7].

[©] Лук'янов М., Сливка Ю., Ардан Б. та ін., 2018

Сполуку [Cu₂(Mepeta)₂(NH₂SO₃)₂] одержано методом змінно-струмного електрохімічного синтезу [9, 10] із суміші, приготовленої змішуванням пропанольного розчину Mepeta та водного розчину Cu(NH₂SO₃)₂·xH₂O. Впродовж трьох діб на електродах реактора утворились прозорі безбарвні кристали сполуки у формі блоків.

За допомогою фотометоду проведено попереднє визначення параметрів гратки і дифракційний клас кристалів одержаної сполуки. Дифракційний масив для комплексу отримано на монокристальному дифрактометрі Rigaku AFC7, обладнаному детектором Mercury CCD при 200 К: графітовий монохроматор, МоКа-випромінювання, ω -сканування, низькотемпературна приставка. Дифракційні дані опрацьовано за допомогою програми Rigaku Crystal Clear[11]. Структуру розв'язано й уточнено за допомогою програми Rigaku Crystal Clear[11]. Структуру розв'язано й уточнено за допомогою програми WinGX[12–15]. Позиції більшості негідрогенових атомів знайдено прямими методами, а решти – з різницевих синтезів Фур'є. Координати та параметри теплових зміщень негідрогенових атомів уточнено повноматричним анізотропним методом на основі масиву $F^2(hkl)$. Позиції атомів гідрогену в **1** знайдено з геометричних міркувань й уточнені в моделі "вершника". Поправку на поглинання введено аналітичним методом [16].

Кристалографічні параметри сполуки та умови дифракційного експерименту подано в табл. 1, координати та ізотропні параметри зміщення атомів – у табл. 2, основні довжини зв'язків та валентні кути – у табл. 3.

Таблиця 1

Кристалографічні параметри та умови рентгенівського експерименту для сполуки [Cu₂(Mepeta)₂(NH₂SO₃)₂]

Table 1

Параметр	Значення	
Емпірична формула	$C_{12}H_{22}Cu_2N_8O_6S_4$	
М, г/моль	629,76	
Розмір кристала	0,10 imes 0,10 imes 0,09	
Т, К	200	
Колір, форма	Безбарвні блоки	
Дифрактометр	Rigaku AFC7	
Довжина хвилі	0,71069,	
випромінювання, Å	MoK_{lpha}	
Просторова група	<i>P</i> -1	
Параметри елементарної комірки:		
<i>a</i> , Å	7,7994(18)	
b, Å	8,054(3)	
<i>c</i> , Å	10,165(2)	
α, °	96,003(7)	
β, °	109,168(4)	
γ, °	112,949(5)	
$V, Å^3$	535,2(3)	
Ζ	1	
D_x	1,954(3)	
μ , MM^{-1}	2,43	
F(000)	320	
hkl	-10 <h<10; -11<k<10;="" -12<l<12<="" td=""></h<10;>	
Усього відбить	5263	
Відбить з $F \ge 4\sigma(F_0)^*$	2052	

Crystallographic data and experimental details for structure of [Cu₂(*Mepeta*)₂(NH₂SO₃)₂]

М. Лук'янов, Ю. Сливка, Б. Ардан та ін.

ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2018. Випуск 59. Ч. 1 159

	Закінчення табл. 1
Кількість уточнюваних параметрів	145
$2\theta_{\text{make}}, \circ$	58,4
Вагова схема	$w = 1/[\sigma^2(F_o^2) + (0,0966P)^2 + 0,9444P]^{**}$
$R(F) (F_0^2 > 2\sigma(F_0^2)); R_w(F)$	0,056; 0,162
GooF	1,12
Макс. і мін. залишкова ел. густина, е·Å ⁻³	1,21 i -0,85
*Уведено поправку на фактори Лоренца і по	оляризації.

 $^{**}P = (F_0^2 + 2F_c^2)/3.$

Таблиця 2

Координати атомів та їхні параметри теплових зміщень у структурі сполуки1 *Table 2*

Coordinates and thermal	lignlagements	noromotors of	atoma in th	ha atruatura of	the compound 1
Coordinates and thermal	inspiracements	parameters or a	atoms m u	le suucluie or	the compound I

Атом	x/y	y/b	z/c	$U_{e\kappa\epsilon}/U_{i30}$, Å*
Cu1	0,12336(7)	0,07023(6)	0,69000(5)	0,0316(2)
S1	0,2685(2)	0,5546(2)	0,4956(3)	0,0382(3)
C2	0,1961(6)	0,4338(5)	0,6152(5)	0,0309(8)
N3	0,0936(5)	0,2506(5)	0,5600(4)	0,0280(7)
N4	0,0641(5)	0,1987(5)	0,4151(4)	0,0290(7)
S2	0,5728(2)	0,0587(2)	0,7479(2)	0,0338(3)
01	0,6962(7)	0,0364(9)	0,6763(5)	0,0833(2)
O2	0,4699(7)	-0,1050(6)	0,7863(6)	0,0872(2)
03	0,6748(5)	0,2242(5)	0,8626(4)	0,0548(1)
N7	0,2420(6)	0,5222(5)	0,7508(4)	0,0400(8)
H1N7	0,3094	0,6422	0,7796	0,048*
N1	0,3804(5)	0,0805(6)	0,6279(4)	0,0383(8)
H1N1	0,3262	-0,0109	0,5461	0,046*
H2N1	0,4335	0,1901	0,6068	0,046*
C5	0,1475(6)	0,3415(6)	0,3680(5)	0,0343(9)
C6	0,1803(7)	0,4196(6)	0,8498(5)	0,0382(9)
H61	0,0331	0,3504	0,8095	0,046*
H62	0,223	0,5076	0,9406	0,046*
C7	0,2714(6)	0,2846(6)	0,8783(4)	0,0359(9)
H71	0,3972	0,3149	0,8744	0,043*
C8	0,1779(8)	0,1221(7)	0,9091(5)	0,0423(1)
H81	0,0519	0,0889	0,9135	0,051*
H82	0,2396	0,0437	0,9258	0,051*
C9	0,1431(8)	0,3295(7)	0,2199(5)	0,0455(1)
H91	0,2169	0,2631	0,2047	0,068*
H92	0,205	0,4533	0,2092	0,068*
H93	0,0047	0,2643	0,1501	0,068*

Параметри теплових зміщень для негідрогенових атомів $U_{eq} = \prod_{j_3 \sum_i \sum_j U_{ij} a_i^ a_j^* (\tilde{a}_i \tilde{a}_j)}$, для атомів H – U_{iso} .

 π -Комплекс [Cu₂(Mepeta)₂(NH₂SO₃)₂] кристалізується у триклінній сингонії: просторова група *P*-1. Кристалічна структура сполуки **1** утворена з димерних фрагментів, у межах яких можна виокремити два шестичленні цикли {CuN₂C₂m} (беручи до уваги *m* як середину подвійного зв'язку) та один шестичленний цикл {Cu₂N₄}. Координаційний поліедр іона металу (а саме тригональна піраміда) сформований з атомів нітрогену (N3 і N4 двох молекул ліганду та ще одним атомом N1 сульфамат-аніона) і кратного зв'язку алільної групи (рис. 1).

Про помірну ефективність π-взаємодії вказують незначне видовження подвійного зв'язку 1,355(7) Å (порівнянно з некоординованим зв'язком C=C в етилені з довжиною 1,338(1) Å [17]) (табл. 3) та вихід іона Cu(I) з площини екваторіальних лігандів на 0,31 Å. В основі тригональної піраміди іона Cu(I) розташовані майже на однаковій відстані атоми N3 і N4 та подвійний зв'язок алільного радикала, і лише аксіальний атом N1 неорганічного аніона віддалений на відстань 2,267(4) Å (табл. 3). Подібний хелатно-містковий характер ліганду Mepeta, який сприяє утворенню центросиметричних димерних катіонів [Cu₂(*Mepeta*)₂]²⁺ (рис. 1), уже простежувався у раніше вивчених комплексахалільних похідних 1,3,4-тіадіазолу з іншими неорганічними аніонами [18-19].

Рис. 1. Центросиметричний фрагмент у кристалічній структурі 1. Код симетрії: i = 1-x, 1-y, 1-zFig. 1.Centrosymmetric fragment of crystal structure **1**. Symmetry code: i = 1-x, 1-y, 1-z

Віддалення аніонів NH_2SO_3 від центрального атома, з одного боку, пов'язане з підвищенням енергії dz^2 -орбіталі атома купруму внаслідок π -координації, з іншого, суттєвим перерозподілом електронної густини на атомі нітрогену внаслідок появи ефективних водневих зв'язків N-H...О [20-21] між аніонами сусідніх димерів (рис. 2). Утворені водневі зв'язки за участю аміногрупи сульфамат-аніона разом із аміногрупою органічного ліганду формують воднево зв'язані стрічки.

Таблиця 3

Table 3

Selected bond distances (Å) and angles (°) in the structure 1				
Зв'язок	<i>d</i> , Å	Кут	ω, град.	
Cu1–N3	2,092(3)	N4 ⁱ –Cu1–N3	112,8(3)	
$Cu1-N4^{i*}$	1,998(4)	N4 ⁱ –Cu1–N1	95,5(4)	
Cu1–N1	2,267(4)	$N4^{i}$ –Cu1– m^{**}	130,5(2)	
Cu1–m	1,965(4)	N3-Cu1-N1	86,5(3)	
C8=C7	1,355(7)	N3–Cu1– <i>m</i>	109,6(3)	
* Кодсиметрії: i =1	-x, 1-y, 1-z.	*Symmetry op	eration: <i>i</i> =1-x, 1-y, 1-z.	

** m – середина подвійного зв'язку C7=C8.

160

Symmetry operation: *i* =1-x, 1-y, 1-z. ** m – a mid-point of C7=C8 double bond.

Рис. 2. Фрагмент кристалічної структури сполуки [Cu₂(*Mepeta*)₂(NH₂SO₃)₂] та основні водневі зв'язки у **1** Fig. 2. Fragment of crystal structure of [Cu₂(*Mepeta*)₂(NH₂SO₃)₂ and hydrogen bonding in structure **1**.

Підсумовуючи вище сказане, бачимо, що головну структуроформуючу роль у π -комплексі [Cu₂(*Mepeta*)₂(NH₂SO₃)₂] відіграє хелатно-містковий π , σ -ліганд *Mepeta*, а утворений центросиметричний димерний фрагмент [Cu₂(*Mepeta*)₂]²⁺ ϵ головним будівельним блоком не тільки у побудові розглянутої структури **1**, а й у кристалічній інженерії інших π -комплексів купруму (І) з алільними похідними 1,3,4-тіадіазолів [7].

 Jain A.K., Sharma S., Vaidya A.etal. 1,3,4-Thiadiazole and its derivatives: a review on recent progress in biological activities // Chemical Biology & Drug Design. 2013. Vol. 81. Is. 5. P. 557–576. DOI: https://doi.org/10.1111/cbdd.12125

- Flefel E. M., El-Sayed W.A., Mohamed A.M. et al. Synthesis and anticancer activity of new 1-thia-4-azaspiro[4.5]decane, their derived thiazolopyrimidine and 1,3,4thiadiazole thioglycosides // Molecules 2017. Vol. 22. P. 170–183. DOI: https://doi.org/10.3390/molecules22010170
- Shawali A. S. 1,3,4-Thiadiazoles of pharmacological interest: Recent trends in their synthesis via tandem 1,3-dipolar cycloaddition: Review //J. Adv. Res. 2014. Vol. 5. Is. 1. P. 1–17. DOI: https://doi.org/10.1016/j.jare.2013.01.004
- 4. *Hu Y., Li C.-Y., Wang X.-M.*et al.1,3,4-Thiadiazole: synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry // Chem. Rev. 2014. Vol. 114. P. 5572–5610. DOI: https://doi.org/10.1021/cr400131u

 Mashhadizadeh M.H., Karami Z. Solid phase extraction of trace amounts of Ag, Cd, Cu, and Zn in environmental samples using magnetic nanoparticles coated by 3-(trimethoxysilyl)-1-propantiol and modified with 2-amino-5-mercapto-1,3,4thiadiazole and their determination by ICP-OES // J. Haz. Mat. 2011. Vol. 190. Is. 1–3. P. 1023–1029. DOI: https://doi.org/10.1016/j.jhazmat.2011.04.051

162

- Laachira A., Guesmia S., Saadi M.etal.Copper(II) coordination chain complex with the 2,5-bis(2-pyridyl)-1,3,4-thiadiazole ligand and an asymmetric μ2-1,1-azido double-bridged: Synthesis, crystal structure and magnetic properties // J. Mol. Str. Vol. 1123. P. 400–406.
- 7. *ArdanB.*, *SlyvkaYu.*, *GoreshnikE.* etal. First N-allyl-thiadiazole copper(I) π -complexes: synthesis and structural peculiarities of [Cu(L)CF₃SO₃] and [Cu₂(L)₂(H₂O)₂](SiF₆)·2.5H₂O compounds (L = 2-(allyl)-amino-5-methyl-1,3,4-thiadiazole) // Acta. Chim. Slov. 2013. Vol. 60. No. 3. P. 484–490.
- 8. *Goreshnik E.A., Veryasov G., Morozov D.*et al.Solvated copper(I) hexafluorosilicate π -complexes based on $[Cu_2(amtd)_2]^{2+}$ (amtd = 2-allylamino-5-methyl-1,3,4-thiadiazole) dimer // J. Organomet. Chem. 2016. Vol. 810. P. 1–11. DOI: https://doi.org/10.1016/j.jorganchem.2016.03.001
- 9. B. M. Mykhalichko, M.G. Mys'kiv. UkrainePatent UA 25450A, Bull. No. 6, 1998.
- 10. Yu. I. Slyvka, O. V. Pavlyuk, M. Yu. Luk'yanov, M.G. Mys'kiv. UkrainePatent UA 118819U, Bull. No. 16. 2017.
- 11. Rigaku Corporation. The Woodlands. Texas, USA. (1999) CrystalClear.
- Altomare A., Cascarano G., Giacovazzo C. et al. SIR92 a program for automatic solution of crystal structures by direct methods // J. Appl. Cryst. 1994. Vol. 27. P. 435–436. DOI: https://doi.org/10.1107/S0021889894000221
- 13. *Sheldrick G. M.* SHELXT Integrated space-group and crystal-structure determination // ActaCryst. 2015. Vol. A71. P. 3–8. DOI: https://doi.org/10.1107/S2053273314026370
- Sheldrick G. M. Crystal structure refinement with SHELXL // ActaCryst. 2015. Vol. C71. P. 3–8. DOI: https://doi.org/10.1107/S2053229614024218
- Farrugia L. J. WinGX Program Features. // J. Appl. Cryst. 1999. Vol. 32. P. 837–838. DOI: https://doi.org/10.1107/S0021889899006020
- Clark R. C., Reid J. S. The analytical calculation of absorption in multifaceted crystals // ActaCryst. A. 1995. Vol. 51. No. 6. P. 887–897. DOI: https://doi.org/10.1107/S0108767395007367
- DuncanJ.L.The ground-state average and equilibrium structures of formaldehyde and ethylene // Mol. Phys. 1974. Vol. 28. P. 1177–1191. DOI: https://doi.org/10.1080/00268977400102501
- Ardan B., Kinzhybalo V., Slyvka Yu. et al. Ligand for ceddimerization of copper(I)olefin complexes bearing 1,3,4-thiadiazolecore // Acta. Cryst. Sect. C. 2017. Vol. C73. P. 36–46. DOI: https://doi.org/10.1107/S2053229616018751
- Ardan B. The influence of non-covalent interactions instructural building of Cu₂SiF₆ π-complexes with allyl derivatives of 1,3,4-thiadiazole // Visnyk Lviv. Univ. Ser. Chem. 2016. Vol. 57. Pt. 1. P. 138–147 (in Ukrainian).
- Steiner T. The Hydrogen Bond in the Solid State. // Angew. Chem. Int. Ed. 2002. Vol. 41. No. 1. P. 48–76. DOI: https://doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
- Desiraju G. R. Hydrogen bridges in crystal engineering: interactions without borders // Acc. Chem. Res. 2002. Vol. 35. No. 7. P. 565–573. DOI: https://doi.org/10.1021/ar010054t

$\label{eq:synthesis} \begin{array}{l} \text{Synthesis} \text{ And } \text{CRYSTAL STRUCTURE OF COPPER(I) } \text{Sulfamate} \\ \pi\text{-COMPLEX WITH 5-METHYL-N-(Allyl)$-1,3,4-THIADIAZOL-$2-AMINE OF} \\ & \left[\text{Cu}_2(\text{C}_6\text{H}_{10}\text{N}_3\text{S}_2)_2(\text{NH}_2\text{SO}_3)_2 \right] \text{COMPOSITION} \end{array}$

M. Luk'yanov*, Yu. Slyvka, B. Ardan, M. Mys'kiv

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005, Lviv, Ukraine e-mail: mykhailo.lukyanov@lnu.edu.ua

 $[Cu_2(Mepeta)_2(NH_2SO_3)_2]$ compound has been obtained by means of alternating current electrochemical technique starting from the mixture of propanolic solution of 5-methyl-*N*-(allyl)-1,3,4-thiadiazol-2-amine (*Mepeta*) and water solution of Cu(NH_2SO_3)_2 xH_2Oand later X-ray structurally characterized by single crystal method. High-quality crystals of the compound appeared in three days. The compound crystallizes in the triclinic system: Sp. gr. – *P*-1, *a* = 7.799(2), *b* = 8.054(3), *c* = 10.165(2) Å, *a* = 96.003(7), β = 109.17 (3), γ = 112.95(3)°, *V* = 535.2 (3) Å³,*Z* = 1, *D_x* = 1.954(3) g/sm³, *R*(*F*) = 0.056 for 2052 independent reflections with *F* ≥ 4 σ (*F*).

In the structure **1**, organic molecule *Mepeta* acts as chelate-bridging tridentate ligand being connected to copper (I) by two N atoms of thiadiazo leringand (C=C)-bond fromallyl-group, resulting in a formation of stable cationic dimers $[Cu_2(Mepeta)_2]^{2^+}$. In the structure **1**, N atom from sulfamateanion occupies an apical position of the metal coordination polyhedron. The efficiency of Cu(I)-(C=C) interaction is confirmed by the fact that allylic C=C bond is slightly elongated to 1.355(7) Å. Selected bond length (in Å) and angle (in deg) values: Cu1–N3 2.092(3), Cu1–N4ⁱ1.998(4), Cu1–N1 2.267(4), Cu–m 1.965(4) (m –middle point of C7=C8 bond), C8–C9 1.355(7), N4ⁱ–Cu1–N3 112.8(3), N4ⁱ–Cu1–N1 95.5(4), N4ⁱ–Cu1–m 130.5(2), N3–Cu1–N1 86.5(3), N3–Cu1–m 109.6(3). Despite the presence of sulfamate anion NH₂SO₃¬N-atom, thiadiazole ligand participates in the formation of stable tectone $[Cu_2(L)_2]^{2^+}$ previously found in the structures of other Cu(I) π -complexes with allyl derivatives of 1,3,4-thiadiazole.

Hydrogen bonds N-H \cdots O play an additional stabilizing role in the formation of hydrogen-bonded chains.

Keywords: copper (I), sulfamate anion, π -complex, 1,3,4-thiadiazole, crystal structure.

Стаття надійшла до редколегії 1.11.2017 Прийнята до друку 11.04.2018