ISSN 2078–5097. Вісн. Львів. ун-ту. Сер. прикл. матем. та інф. 2017. Вип. 25. С. 9–17 Visnyk of the Lviv University. Series Appl. Math. and Informatics. Issue 25. P. 9–17

УДК 519.6

ПРО МЕТОД ТЕПЛОВИХ ПОТЕНЦІАЛІВ ДЛЯ НАБЛИЖЕНОГО РОЗВ'ЯЗУВАННЯ ПАРАБОЛІЧНОЇ ЗАДАЧІ КОШІ

Н. Лебеденко, Р. Хапко

Львівський національний університет імені Івана Франка, вул. Університетська, 1, Львів, 79000, e-mail: chapko@lnu.edu.ua

Розглянуто наближене розв'язування параболічної задачі Коші у двовимірній двозв'язній області, яка виникає при розгляді різноманітних обернених задач. За допомогою теорії потенціалу задачу редуковано до системи некоректних гранично-часових інтегральних рівнянь. Чисельне розв'язування виконано методом квадратур з використанням регуляризації Тіхонова. Дієвість методу підтверджено наведеними результатами чисельних експериментів.

Ключові слова: двозв'язна область, параболічна задача Коші, теплові потенціали, інтегральні рівняння, метод квадратур, регуляризація Тіхонова.

1. ВСТУП

Ми припускаємо, що деяке двовимірне тіло моделюється двозв'язною областю D в R^2 з досить гладкою границею, що складається з внутрішньої кривої Γ_1 і зовнішньої кривої Γ_2 (див. рис. 1).

Рис. 1. Геометрія області

У прикладних застосуваннях вважається, що зовнішня границя Γ_2 доступна для вимірів, а внутрішня Γ_1 – недоступна. Припускаючи, що на Γ_2 можна виміряти температуру і тепловий потік, ми хочемо реконструювати температуру на Γ_1 . Вважаючи, що поширення тепла моделюється лінійним рівнянням теплопровідності, температурне поле є розв'язком задачі Коші

$$\frac{\partial u}{\partial t} = \Delta u \quad \epsilon \quad Q_T, \tag{1}$$

[©] Лебеденко Н., Хапко Р., 2017

$$u(x,0) = 0, \ x \in D,$$
 (2)

$$u = f \ ha \ \Sigma_T^2, \tag{3}$$

$$\frac{\partial u}{\partial \theta} = g \quad ha \quad \Sigma_T^2. \tag{4}$$

Тут f і g – задані достатньо гладкі функції і ми ввели позначення $Q_T = D \times (0,T]$, $\Sigma_T^i = \Gamma_i \times (0,T]$, i = 1, 2, T > 0 і \mathcal{G} – одиничний вектор зовнішньої нормалі. Єдиність розв'язку сформульованої задачі з'ясована [7]. Будемо вважати, що за заданих даних розв'язок існує. Однак цей розв'язок не залежить неперервно від цих даних, тобто задача є некоректною і треба застосовувати регуляризуючі методи для отримання стійкого наближеного розв'язку.

У працях [4-6, 8] для наближеного розв'язування задачі (1) – (4) використано ітераційну процедуру Ландвебера у поєднанні з методом інтегральних рівнянь для отримуваних коректних початково-крайових задач. Ми поширюємо ідею зведення задачі Коші до системи некоректних інтегральних рівнянь, розвинуту в [6] для рівняння Лапласа. Доведемо, що застосування теорії теплових потенціалів до параболічної задачі Коші дає змогу звести її до гранично-часових інтегральних рівнянь. За допомогою методу квадратур [5] ці рівняння редукуються до послідовності систем лінійних рівнянь, стійкий розв'язок яких отримуємо методом регуляризації Тіхонова. Перевагою цього підходу у порівнянні з ітераційними методами є висока швидкодія. Зауважимо, що у [9] також використано подібний підхід із застосуванням регуляризації через мінімізацію відповідної штрафної функції багатьох змінних.

2. МЕТОД ГРАНИЧНО-ЧАСОВИХ ІНТЕГРАЛЬНИХ РІВНЯНЬ

Подамо розв'язок задачі (1) – (4) у вигляді суми теплових потенціалів простого шару

$$u(x,t) = \sum_{i=1}^{2} \int_{0}^{t} \int_{\Gamma_{i}} G(x,t;y,\tau) \varphi_{i}(y,\tau) ds(y) d\tau, \quad (x,t) \in Q_{T},$$
(5)

де $\varphi_i \in C(\Sigma_T^i)$, i = 1, 2 – невідомі густини і G – фундаментальний розв'язок параболічного рівняння

$$G(x,t; y, \tau) = \frac{1}{4\pi(t-\tau)} e^{-\frac{|x-y|^2}{4(t-\tau)}}.$$

Зважаючи на властивості теплових потенціалів [7], для знаходження невідомих густин отримуємо систему гранично-часових інтегральних рівнянь

$$\begin{cases} \sum_{i=1}^{2} \int_{0}^{t} \int_{\Gamma_{i}} G(x,t;y,\tau) \varphi_{i}(y,\tau) ds(y) d\tau = f(x,t), \quad (x,t) \in \Sigma_{T}^{2}, \\ \frac{1}{2} \varphi_{2}(x,t) + \sum_{i=1}^{2} \int_{0}^{t} \int_{\Gamma_{i}} \frac{\partial G(x,t;y,\tau)}{\partial \vartheta(x)} \varphi_{i}(y,\tau) ds(y) d\tau = g(x,t), \quad (x,t) \in \Sigma_{T}^{2}. \end{cases}$$

$$(6)$$

Припускаючи параметричне задання кривих

$$\Gamma_{i} = x_{i}(s) = \{ (x_{i1}(s), x_{i2}(s)) : 0 \le s \le 2\pi \}, i = 1, 2,$$

запишемо систему (6) у вигляді

$$\begin{cases} \sum_{i=1}^{2} \frac{1}{2\pi} \int_{0}^{t} \int_{0}^{2\pi} H_{2i}(s,\sigma;t,\tau) \mu_{i}(\sigma,\tau) d\sigma d\tau = 2f(s,t), \quad (s,t) \in [0;2\pi] \times (0;T), \\ \mu_{2}(s,t) + \sum_{i=1}^{2} \frac{1}{2\pi} \int_{0}^{t} \int_{0}^{2\pi} L_{2i}(s,\sigma;t,\tau) \mu_{i}(\sigma,\tau) d\sigma d\tau = 2g(s,t), \quad (s,t) \in [0;2\pi] \times (0;T). \end{cases}$$
(7)

Тут ми використали позначення

$$H_{ij}(s,\sigma;t,\tau) = 4\pi G(x_i(s), x_j(\sigma);t,\tau), L_{ij}(s,\sigma;t,\tau) = = 4\pi |x_2(s)| grad_{x_i} (G(x_i(s), x_j(\sigma);t,\tau)) \cdot \vartheta(x_i(s)), f(s,t) = f(x_2(s),t), g(s,t) = g(x_2(s),t), \mu_i(s,t) = \varphi_i(x_i(s),t) |x_i(s)|, i, j = 1, 2.$$

Очевидно система (7) є некоректною задачею, що треба врахувати при її чисельному розв'язуванні.

3. ЧИСЕЛЬНЕ РОЗВ'ЯЗУВАНЯ ІНТЕГРАЛЬНИХ РІВНЯНЬ

Використаємо метод колокації за часовою змінною t з кусково-постійними базисними функціями для часткової дискретизації системи (7). Для цього введемо такі позначення h = T/N, $t_i = ih$, i = 0, ..., N і розглянемо систему фінітних на [0,T] функцій

$$\psi_i(t) = \begin{cases} 1, & t \in [t_{i-1}, t_i], \\ 0, & t \notin [t_{i-1}, t_i]. \end{cases}$$

Подамо

$$\mu_l(s,t) \approx \sum_{i=1}^N \mu_{li}(s) \psi_i(t), \quad \mu_{li}(s) \approx \mu_l(s,t_i), \quad l = 1, 2.$$

Після застосування методу колокації і точного обчислення інтегралів за часом система (7) редукується до рекурентної послідовності систем 2π -періодичних апроксимаційних інтегральних рівнянь Фредгольма

$$\begin{cases} \frac{1}{2\pi} \sum_{i=1}^{2} \int_{0}^{2\pi} H_{2i}^{mn}(s,\sigma) \mu_{in}(\sigma) d\sigma = 2f(s,t_n) - \frac{1}{2\pi} \sum_{i=1}^{2} \sum_{m=1}^{n-1} \int_{0}^{2\pi} H_{2i}^{mn}(s,\sigma) \mu_{im}(\sigma) d\sigma, \\ \frac{1}{2\pi} \sum_{i=1}^{2} \int_{0}^{2\pi} L_{2i}^{mn}(s,\sigma) \mu_{in}(\sigma) d\sigma + \mu_{2n}(s,t_n) = 2g(s,t_n) - \frac{1}{2\pi} \sum_{i=1}^{2} \sum_{m=1}^{n-1} \int_{0}^{2\pi} L_{2i}^{mm}(s,\sigma) \mu_{im}(\sigma) d\sigma, \end{cases}$$
(8)

де n = 1, ..., N і ядра набувають вигляду

$$H_{ij}^{nm}(s,\sigma) = E_1 \left(\frac{\left| x_i(s) - x_j(\sigma) \right|^2}{4h(n-m+1)} \right) - E_1 \left(\frac{\left| x_i(s) - x_j(\sigma) \right|^2}{4h(n-m)} \right),$$
$$H_{ij}^{nm}(s,\sigma) = E_1 \left(\frac{\left| x_i(s) - x_j(\sigma) \right|^2}{4h} \right),$$

$$L_{ij}^{nm}(s,\sigma) = h_{ij}(s,\sigma) \left[e^{-\frac{|x_i(s) - x_j(\sigma)|^2}{4h(n-m+1)}} - e^{-\frac{|x_i(s) - x_j(\sigma)|^2}{4h(n-m)}} \right],$$

$$h_{ij}(s,\sigma) = -2 \frac{\left(x_{i1}(s) - x_{j1}(\sigma) \right) x_{i2}'(s) - \left(x_{i2}(s) - x_{j2}(\sigma) \right) x_{i1}'(s)}{|x_i'(s)| |x_i(s) - x_j(\sigma)|^2} |x_2'(s)|.$$

Зважаючи на розвинення в ряд інтегральної експоненціальної функції [1]

$$E_{1}(z) = -\gamma - \ln(z) - \sum_{n=1}^{\infty} \frac{(-1)^{n} z^{n}}{nn!},$$

де $\gamma = 0,57721...$ – константа Ейлера, бачимо, що ядра H_{ii}^{nn} містять логарифмічну особливість при $\sigma \rightarrow s$.

Подамо його у вигляді

$$H_{ii}^{nn}\left(s,\sigma\right) = H_{(1)ii}^{nn}\left(s,\sigma\right) \ln\left(\frac{4}{e}\sin^{2}\frac{s-\sigma}{2}\right) + H_{(2)ii}^{nn}\left(s,\sigma\right)$$

3

$$H_{(2)ii}^{nn}\left(s,\sigma\right) = H_{ii}^{nn}\left(s,\sigma\right) - H_{(1)ii}^{nn}\left(s,\sigma\right) \ln\left(\frac{4}{e}\sin^{2}\frac{s-\sigma}{2}\right).$$

За правилом Лопіталя знаходимо

$$H_{(2)ii}^{nn}(s,s) = -\gamma - 1 - \ln \frac{\left|x_{i}(s)\right|^{2}}{4h}$$

i

$$L_{ii}^{nn}(s,s) = \left|x_{2}(s)\right| \frac{x_{i1}(s)x_{i2}(s) - x_{i2}(s)x_{i1}(s)}{\left|x_{i}(s)\right|^{3}} e^{-\frac{\left|x_{i}(s)-x_{i}(\sigma)\right|^{2}}{4h}}.$$

Отримана на попередньому етапі рекурентна послідовність (8) не є повністю дискретною. Для повної дискретизації використаємо метод квадратур.

Для цього виберемо вузли $s_j = \frac{\pi j}{M}, j = 0, ..., 2M - 1$. У [7] отримано та доведено збіжність таких квадратур:

$$\frac{1}{2\pi} \int_{0}^{2\pi} g\left(\sigma\right) \ln\left(\frac{4}{e} \sin^{2}\left(\frac{s_{j}-\sigma}{2}\right) d\sigma \approx \sum_{k=0}^{2M-1} R_{|j-k|} g\left(s_{k}\right),$$

$$R_{j} = -\frac{1}{2M} \left(1 + 2\sum_{m=1}^{M-1} \frac{1}{m} \cos ms_{j} + \frac{\left(-1\right)^{j}}{M}\right),$$

$$\frac{1}{2\pi} \int_{0}^{2\pi} g\left(\sigma\right) d\sigma \approx \frac{1}{2M} \sum_{k=0}^{2M-1} g\left(s_{k}\right).$$

Застосовуючи їх до інтегральних рівнянь в (8) і колокуючи отримані апроксимаційні рівняння у вузлах s_j , отримуємо послідовність систем лінійних рівнянь

$$\begin{cases} \sum_{k=0}^{2M-1} \left\{ \frac{1}{2M} H_{21}^{nn}\left(s_{j},s_{k}\right) \tilde{\mu}_{1n}\left(s_{k}\right) + \left(-R_{|j-k|} + \frac{1}{2M} H_{(2)22}^{nn}\left(s_{j},s_{k}\right) \right) \tilde{\mu}_{2n}\left(s_{k}\right) \right\} = 2f\left(s_{j},t_{n}\right) - \\ -\frac{1}{2M} \sum_{k=0}^{2M-1} \sum_{m=1}^{n-1} \left\{ H_{21}^{nm}\left(s_{j},s_{k}\right) \tilde{\mu}_{1m}\left(s_{k}\right) + H_{22}^{nm}\left(s_{j},s_{k}\right) \tilde{\mu}_{2m}\left(s_{k}\right) \right\}, \\ \left\{ \frac{1}{2M} \sum_{k=0}^{2M-1} \left\{ L_{21}^{nn}\left(s_{j},s_{k}\right) \tilde{\mu}_{1n}\left(s_{k}\right) + L_{22}^{nn}\left(s_{j},s_{k}\right) \tilde{\mu}_{2n}\left(s_{k}\right) \right\} + \frac{\tilde{\mu}_{2n}\left(s_{j}\right)}{\left|x_{2}^{'}\left(s_{j}\right)\right|} = 2g\left(s_{j},t_{n}\right) - \\ -\frac{1}{2M} \sum_{k=0}^{2M-1} \sum_{m=1}^{n-1} \left\{ L_{21}^{nm}\left(s_{j},s_{k}\right) \tilde{\mu}_{1m}\left(s_{k}\right) + L_{22}^{nn}\left(s_{j},s_{k}\right) \tilde{\mu}_{2n}\left(s_{k}\right) \right\}, \\ j = 0, \dots, 2M - 1, \quad n = 1, \dots, N. \end{cases}$$

$$(9)$$

Зауважимо, що матриця в лівій частині є спільною для всіх систем послідовності, що дає підстави обчислювати її лише один раз. Це випливає безпосередньо з подання ядер H_{ii}^{nn} .

Розв'язавши послідовність систем (9), отримуємо набори наближених значень густин $\tilde{\mu}_{im}(s_k) \approx \varphi_i(s_k, t_m)$, i = 1, 2. Оскільки задача є некоректною, то на кожному часовому шарі потрібно проводити регуляризацію Тіхонова. У нашому випадку як регуляризований розв'язок рівняння Ax = b, де A – матриця $4M \times 4M$ і $b \in R^{4M}$, обираємо величину

$$x_{\lambda} = \arg \min \left\| A x_{\lambda} - b \right\|_{2}^{2} + \lambda \left\| x_{\lambda} \right\|_{2}^{2},$$

яка задовольняє систему

$$(A^T A + \lambda I) x_{\lambda} = A^T b,$$

де A^T – транспонована матриця до A.

Використовуючи отримані наближення, можна обчислити дані Коші на внутрішній межі Γ_1

$$\begin{split} u\Big(x_{1}\big(s_{j}\big),t_{n}\Big) &\approx \frac{1}{2}\sum_{k=0}^{2M-1} \bigg\{ \frac{1}{2M} H_{11}^{nn}\big(s_{j},s_{k}\big) \tilde{\mu}_{ln}\big(s_{k}\big) + \bigg(-R_{|j-k|} + \frac{1}{2M} H_{(2)12}^{mn}\big(s_{j},s_{k}\big) \bigg) \tilde{\mu}_{2n}\big(s_{k}\big) \bigg\} + \\ &+ \frac{1}{4M}\sum_{k=0}^{2M-1}\sum_{m=1}^{n-1} \bigg\{ H_{11}^{nm}\big(s_{j},s_{k}\big) \tilde{\mu}_{lm}\big(s_{k}\big) + H_{12}^{nm}\big(s_{j},s_{k}\big) \tilde{\mu}_{2m}\big(s_{k}\big) \bigg\}, \\ &\frac{\partial u}{\partial g} \Big(x_{1}\big(s_{j}\big),t_{n}\big) \approx \frac{1}{4M}\sum_{m=1}^{n}\sum_{k=0}^{2M-1} \bigg\{ L_{11}^{nm}\big(s_{j},s_{k}\big) \tilde{\mu}_{ln}\big(s_{k}\big) + L_{12}^{nm}\big(s_{j},s_{k}\big) \tilde{\mu}_{2n}\big(s_{k}\big) \bigg\} - \frac{\tilde{\mu}_{ln}\big(s_{j}\big)}{\bigg|x_{1}\big(s_{j}\big)\bigg|}, \\ &j = 0, \dots, 2M-1, \quad n = 1, \dots, N. \end{split}$$

4. ЧИСЕЛЬНІ ЕКСПЕРИМЕНТИ

Нехай криві Γ_1 і Γ_2 мають такі параметричні подання (див. рис. 2):

$$\Gamma_{1} = \left\{ 0.5(\cos(s);\sin(s)) : s \in [0;2\pi] \right\},$$

$$\Gamma_{2} = \left\{ \left[\cos^{100}(s) + \sin^{100}(s) \right]^{-0,01} (\cos(s);\sin(s)) : s \in [0;2\pi] \right\}.$$

Рис. 2. Геометрія області та точне значення температури $u|_{T_1 imes [0;T]}$ для прикладу 1

Для обчислення даних Коші розв'яжемо початково-крайову задачу [2]-[3]. Крайову умову на зовнішній і внутрішній границі області приймемо у вигляді

$$f_1(x,t) = f_2(x,t) = \sin(\pi t)$$

Розв'язавши пряму задачу, знаходимо нормальну похідну на зовнішній границі області для оберненої задачі.

У цьому випадку для обчислень використано дані про тепловий потік на [0;2*π*].

Параметр регуляризації λ приймемо таким, що дорівнює 1E-15.

Щоб протестувати, внесемо шум з рівнем δ . Виконаємо це так:

$$f_2^{\delta} = f_2 + \delta (2\omega - 1) \| f_2 \|,$$

де ω – псевдо випадкова змінна на проміжку [0, 1] з рівномірним розподілом.

Реконструкція температури на внутрішній границі з точними вхідними даними зображена на рис. 3. Реконструкція температури на внутрішній границі з вхідними даними з 5% шумом зображена на рис. 4.

Рис. 3. Реконструкція з точними даними

Рис. 4. Температура за наявності 5% шуму

Н. Лебеденко, Р. Хапко	
ISSN 2078–5097. Вісн. Львів. ун-ту. Сер. прикл. матем. та інф. 2017. Вип. 25	

			Таблиця 1
Т	М	<i>N</i> = 10	N = 20
0.1	16	9,03133E-4	9,01960E-4
	32	9,02897E-4	9,01090E-4
0.2	16	9,23214E-4	9,14054E-4
	32	9,26243E-4	9,19009E-4
0.3	16	1,20091E-3	1,17728E-3
	32	1,21485E-3	1,16339E-3
0.4	16	1,58045E-3	1,28081E-3
	32	1,58617E-3	1,29210E-3
0.5	16	3,74162E-3	3,67096E-3
	32	3,77815E-3	3,51914E-3
0.6	16	5,09211E-3	5,09014E-3
	32	5,09929E-3	5,09159E-3
0.7	16	1,19121E-2	1,16191E-2
	32	1,19476E-2	1,15198E-2
0.8	16	4,86186E-2	4,83953E-2
	32	4,87917E-2	4,82984E-2
0.9	16	2,99905E-2	2,91937E-2
	32	2,93063E-2	2,91241E-2
1.0	16	4,07573E-3	4,03922E-3
	32	4,07927E-3	4,02958E-3

Таблиця 2

Т	М	N = 10	N = 20
0.1	16	3.01022F-3	3.00714F-3
0.1	32	3,01022E 3	3,00714E 3
0.2	16	3 80245E-3	3 52196E-3
0.2	32	3.83039E-3	3.55230E-3
0.3	16	3.80320E-2	3.45226E-2
	32	3,88430E-2	3,43816E-2
0.4	16	4,12587E-2	4,05170E-2
	32	4,11431E-2	4,07729E-2
0.5	16	4,61258E-2	4,56113E-2
	32	4,64828E-2	4,50593E-2
0.6	16	6,34589E-2	6,25878E-2
	32	6,37672E-2	6,29999E-2
0.7	16	2,05209E-1	2,04326E-1
	32	2,05614E-1	2,06814E-1
0.8	16	2,59908E-1	2,53191E-1
	32	2,60689E-1	2,60007E-1
0.9	16	1,28988E-1	1,35513E-1
	32	1,38638E-1	1,36062E-1
1.0	16	1,20093E-2	1,20140E-2
	32	1,17886E-2	1,16093E-2

Дані про максимальні похибки між точним значенням функції u та наближеним значенням u_n на Γ_1 , отриманим з використанням методу, що описаний у цій праці, на певних часових шарах подано в табл. 1.

Дані про максимальні похибки між точним і наближеним значенням теплового потоку, отриманим з використанням методу, що описаний в цій праці, на певних часових шарах наведені в табл. 2.

5. ВИСНОВКИ

Розглянули метод теплових потенціалів для розв'язування параболічної задачі Коші. У двозв'язній області, зважаючи на некоректність задачі, чисельне розв'язування виконали з використанням методу квадратур і класичної регуляризації Тіхонова. Достовірність запропонованого методу підтверджена наведеними результатами чисельних експериментів.

Список використаної літератури

- 1. Абрамовиц М. Справочник по специальным функциям / М. Абрамовиц, И. Стиган. – Москва: Наука, 1979. – 830 с.
- 2. Владимиров В. С. Уравнения математической физики / В. С. Владимиров. Москва: Наука, 1988. – 512 с.
- Тихонов А. Н. Уравнения математической физики / А. Н. Тихонов, А. А. Самарский. – Москва: Наука, 1972. – 736 с.
- Daveau C. Inverse conduction problem for a parabolic equation using a boundary integral method / C. Daveau, A. Khelifi, M. Nour Shamma // Mathematical Physics. – 2008. – Vol. 1. – P. 1–10.
- Chapko R. On the numerical solution of an inverse boundaru value problem for the heat equation / R. Chapko, R. Kress, J.-R. Yoon // Inverse problems. – 1998. – № 14. – P. 853–867.
- Chapko R. On the use of an integral equation approach for the numerical solution of a Cauchy problem for Laplace equation in a doubly connected planar domain / R. Chapko, B. T. Johansson, Y. Savka // Inverse problems in Science and Engineering. – 2013. – Vol. 22. – P. 130–149.
- Kress R. Linear Integral Equations / R. Kress. Heidelberg: Springer–Velag, 1999. 368 c.
- Chapko R. Recovering boundary data in planar heat conduction using a boundary integral equation method / R. Chapko, B. T. Johansson, V. Vavrychuk // Electronic Journal of Boundary Elements. – 2011. – № 1. – P. 1–15.
- Garshasbi M. Boundary temperature reconstruction in an inverse heat condition problem using boundary integral equation method / M.Garshasbi, F. Hassani // The Bulletin of Iranian Mathematical Society. – 2016. – Vol. 42. – № 5. – P. 1039–1056.

Стаття: надійшла до редколегії 25.01.2017 доопрацьована 17.05.2017

прийнята до друку 14.06.2017

ON THE HEAT POTENTIAL APPROACH FOR THE NUMERICAL SOLUTION OF A PARABOLIC CAUCHY PROBLEM

N. Lebedenko, R. Chapko

Ivan Franko National University of Lviv, Universytetska Str., 1, Lviv, 79000, e-mail: <u>chapko@lnu.edu.ua</u>

We consider the numerical solution of a parabolic Cauchy problem in a double connected domain, which is actual for various inverse problems. By potential theory the problem is reduced to the ill-posed system of time-boundary integral equations. Numerical solution is realized by the Nystroem method with the use of the Tikhonov regularization. The usability of proposed approach is validated by various numerical examples.

Key words: double connected domain; parabolic Cauchy problem; heat potentials; integral equations; quadrature method; Tikhonov regularization.