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COMPARISON OF ERROR INDICATORS AND REFINEMENT
CRITERIA FOR HP-ADAPTATION ALGORITHM FOR FINITE
ELEMENT METHOD

pe6oriii P. I'., IIlunkapeuko I'. A. IlopiBHsiHHs artocTepiopHUX OIiHIOBaYiB

NOXMOKM Ta KpUTEPiiB 3rylieHHsl CiTK! OJisi hp-aJanTUBHOTO ajIrOPUTMY METOIY
cKiHYeHHUX ejieMeHTiB. B miif crarTi Mu KOpOTKO pO3risfaeMo hp-aJalTUBHUN Me-
TOJI, CKIHYEeHHUX €JIEMEHTIB JIJIsi OJJHOBUMIPHOI 3a/1a4i KOHBEKINI-audy3ii-peakiiii i mpoBogu-
MO TOPIBHSIIbHUM aHAJI3 YUCETbHUX PEe3YJIbTATIB, O/IEp>KAHUX 3a JOMOMOTO KOMOIHYyBaHHS
PO3IVISAYBAHOTO AJITOPUTMY 3 PI3HUMH OI[IHIOBAYAME MOXUOKN T KPUTEPIsIMUA TOKPAIEHHST
€JIEMEHTIB.
Kurouosi caoBa: Meron ckindennux esementis (MCE), meron lanbopkina, kpurepiii Ile-
kJie, kpurepiit CTpyxass, MeTOJ KOHJIEHCAIil BHYTPIIIHIX MapaMeTpiB, hp-aJanTHBHICTD,
anocrepiopHuii oninoosaa moxubku (AOII), KopekTHa 3amada, KpaiioBa 3amada audysii-
aJIBEKIIiT-peakilil, KOHTPOJbHUN PO3B’I30K.

Apeboruii P. I'., ITTuakapenko I'. A. CpaBHeHnE amtOCTEPUOPHBIX OIEHOK I10-
TPEIIHOCTY U KPUTEPUEB CTYIIEeHUs CEeTKHU /Jisi hp-aJanTuBHOro ajiropurmMa Me-
TOJa KOHEYHBIX 3JIEMEHTOB. B 3T0ii cTaThe MBI KOPOTKO PAacCMaTpUBaeM hp-aIalTUBHBII
MEeTO/] KOHEYHBIX 9JIEMEHTOB [IJIs1 OJHOMEDPHOM 33/1a49l KOHBEKINN-TUMDY3UN-PEaKIIny U CPAB-
HUBAeM YHCJIEHHBIE PE3YJIbTATHI, IOJIyUYEeHHbBIE C IIOMOIIBI0 KOMOMHUPOBAHUsS PACCMaTPUBAE-
MOTO aJITOPUTMa, C PA3HBIMU OIEHUBATEISIMHU TIOIPEITHOCTH M KPUTEPUSIMU YTy dIIeHUs KO-
HEYHBIX 3JIEMEHTOB.

KuaroueBble ciioBa: Meros KoHeunbix ssementos (MKD), meron lasmepkuna, xpurepnit
[Tekute, kpurepuit CrpyxaJist, METO/ KOHJICHCAIINY BHY TPEHHHX IIaPaMeTPOB, hp-a1aliTHBHOCTD,
AIlOCTEPHOPHBIIi oneHuBaTess norpemnoctu (AOITD), koppekTHas 3amada, KpaeBas 3aJada
b dy3un-a BeKIINI-PEAKIUN, KOHTPOJbHOE PEIeHNe.

Drebotiy R., Shynkarenko H. Comparison of error indicators and refinement
criteria for hp-adaptation algorithm for finite element method. In this paper we
consider hp-adaptive finite element method for 1D
convection-diffusion-advection boundary value problem and present comparative analysis of
numerical results obtained using combination of introduced algorithm with different kinds
of a posteriori error estimators, and element refinement criteria.

Key words: finite element method, Galerkin method, Peclet criteria, Strouhal criteria,
static condensation, hp-adaptivity, a posteriori error estimator, well posed problem, diffusion-
advection-reaction boundary value problem.

INTRODUCTION. Finite element method is an universal tool for solving boundary
value problems for partial differential equations (see [1]). It is applicable for prob-
lems on very complex domains in 2- and 3-dimensional spaces. During last years the
main focus is on the adaptive algorithms for FEM. The main idea is to adapt mesh
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(h-adaptivity), element polynomial order (p-adaptivity) or both mesh and order (hp-
adaptivity) to minimize computational cost needed for solving the given problem.
Such algorithms are implemented using local a posteriori error estimators. It’s nat-
urally to interpret hp-schemes as most advanced as they give us most wide approx-
imation capabilities. Theoretically it is proven that they can produce exponentially
convergent sequences of approximations to original solution of boundary value prob-
lem [2].

In this work we recall hp-adaptive algorithm for solving the diffusion-advection-
reaction boundary value problems with self-adjoint operators introduced in [11]. We
extend the step of selection of elements for refinement with other error indicator
and other selection criteria than were used in initial version of algorithm, providing
numerical results for each of them.

The paper is structured according to the following order: in section 2 we define
model problem; in section 3 we provide some specific problem transformations; in
section 4 we construct variational formulation; in section 5 we make review of general
finite element method schemes; section 6 we provide error estimators which will be
used in adaptation algorithm; in section 7 we introduce various element selection
criteria; in section 8 hp-adaptation algorithm is described. In section 9 we demonstrate
some numerical results. Final conclusions are given in the last section.

MAIN RESULTS

1. Model problem. We consider the following convection-diffusion-reaction
boundary value
problem:

given i = [L(:L'), B = B(x)a o= 5(%), f: f(.’b),
and O_[, ’_Ya g()v gL € R?
find function u = u(zx) such that

d (_du ~du - (1.1)
i (de) +5@+UU*fOHG*(OvL),

du du
i | =afu(0) — ), —fie—| =5[u(L)—al.
| =) ), <G| =) )

2. Scaling of variables. In order to show specific of the boundary value problem
(1.1) we introduce a scaled variable ¢ € [0,1], in such way that = := Lt transforming
dependent variables

{u =jllilZe B=B18l%c o =0lolle f=FIflxe
a=aLlilL e v=7LlalGe: 90 = LIAlL g0, 91:= LllAlL guc,
and after small algebra we rewrite problem (1.1) in the following form
find function u = u(t) such that
— (pu') + Pe[Bu’ + Stou] = f in Q = (0,1); (2.1)
(v = au)l_g = go, —(pu’ = yu)limy = g1,

where v/ := %’, and dimensionless numbers
L3 L|G
Pe .= 7”75”00’(;, St := 7”?”&’6; (2.2)
1l 1B,
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are well-known Peclet criteria and Strouhal criteria respectively.
3. Variational formulation. The boundary value problem (2.1) admits the
following variational formulation

find w €V := H'(Q) such that (3.1)
CQ(U,’U) = <lQ7v> Vo € ‘/a .
where
CQ(’LL, 1)) ::(Mul7 U/)Lz(Q) + Pe[(ﬂu’, U)Lz(g) + St(ou, ’U)LZ(Q)H- (3 2)

+ auv|,_, + yuv|,_; Yu,v €V,
(lo,v) := (f,v)12(0) + agov(0) +vg1v(l) Vv € V. (3.3)

4. Petrov-Galerkin finite element scheme. Let {V}}, , be a family of
finite element approximation subspaces V}, C V, dimV}, = Np, < 400 is dense in V,
moreover, for each v € V there is v, € V}, such that

lv —vnll 1) < Chk||U||Hk+1(Q),C = const > 0. (4.1)

Let {Wh},~o be the family of spaces with the same properties as {V4},-,- In
general case Petrov-Galerkin finite element scheme deal with following discrete vari-
ational problem

given subspaces Vi, C Vand Wy, C V;

dim V), = dim W), = N}, < 400,
find up, € Vi, such that
calup,v) = (lg,v) Yo € Wy,

(4.2)

Let {gbj};.\[:l and {w,,}.'_, be basis of and spaces respectively. Then problem
(4.2) results to system of linear algebraic equations

given subspaces Vi, C Vand W), C V;
dim V), =dim Wy, = N, < 400,
N

find up, = Z qxPx € Vi, such that (4.3)
k=1

N
> akca(dr,wi) = (lg,wi) i =1,...,N.
k=1

In the current paper we use classic Galerkin method i.e. V;, = W),. In general we
can use Petrov-Galerkin method to obtain system of linear equations with symmetric
matrix by choosing w; := z¢;, where

z(x) == eacp[—Pe/,u_lﬁ dt], vz € [0, 1]. (4.4)
0

5. A posteriori error estimators of finite element approximations. Let
us describe different ways for obtaining error level on each finite element. We can use
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explicit estimator - an explicit formula which gives us upper bound of error estimate
as one number or implicit estimator which is obtained as function which approximates
actual error of finite element discretization. To obtain it we solve auxiliary variational
problem.

5.1. Explicit error estimator. To estimate error level we can use explicit error
estimator i.e. explicit formula which gives us upper bound to approximation error on
each finite element. Let us define the approximation error e = u —up € Vi C V, the

residual
Rlup) :== f + (uu})' — BPeu), — o PeStuy,, (5.1)

and bubble function
wi () = (zx — z)(x — K1), suppwr = K,VK € Sy,. (5.2)

Then for each element we can compute the following error indicator [11]

“hK] HLZ(K) J (5-3)

C
" oty VR

where px = deg(uy|| K) and

C = 4[min(po, co)] ™", p(t) > po = const > 0,
a(t) — PeB'(t) > co = const > 0 a.e. in .
5.2. Implicit error estimator. Described estimator gives us only one number

per finite element which we interpret as error level. To combine k- and p- refinements
of elements we need to construct some type of estimator which:

i. will give us distinct error estimate for each of available refinement patterns of
element;

ii. will be simply computable on each element.

For this purposes we will solve auxiliary variational problem for error on each element,
using finite element method for different finite element spaces. Let us define X?(a, b)
as a space of all polynomials of order p on closed interval [a,b]. For all refinement
patterns we may define corresponding approximation spaces. We will use only two
refinements: division of the element into two elements with the same polynomial
orders and increasing element order by one. Corresponding spaces are the following:
Vi (K) := {v € Co(K)| v € XPX(wp_1, Tp_1/2),
() EXPK(Z‘kfl/Q,J?k)}, (54)
Vip (K) = {v € XP*FH(K)| v|ox = 0} .
To obtain error estimate as a single number for finite element error approximation
on each space for m = 1,2 we solve the next problems for local error:

find function e € V;7 2 (K) such that

caolept,vp) = /R [uf} vpdr, Yoy € Vi (K). (5.5)
K
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then error estimates for given two refinements are defined as ry, = ||e}|| g, m = 1,2.

5.3. Error estimator based on fundamental solution. For error indicator
Nk, introduced in 6.1, instead of using explicit formula, defined by error estimate
(5.3) we can use implicit indicator in the form of problem (5.5) but with special
assumptions [12]:

i. for local error approximation we use 1D space of finite functions;

ii. those functions are constructed for element K = [ty_1, x| in the form:

p1(t) =cr111(t) + crap12(t) on t € [tr_1,tp_1/2],
e1(th-1) = 0,01(tk-1/2) = 1

Yrlx) = 5.6
(=) ©a(t) =ca1021(t) + ca2p22(t) on t € [t_1/2,11], (56)
Pa(tr—1/2) = 1, a(tr) = 0,
where {©1;(t)}, {p2:(t)} are the sets of fundamental solutions for equation
— () + Pe[pu’ + Stou] =0 (5.7)

with constant coefficients (selected as mean values of corresponding functions) on cor-
responding intervals [tx_1,%5_1/2] and [t;_1/2,%x]. Then we solve (5.5) and use the
energy norm of obtained approximation as an error indicator ng. To find correspond-
ing fundamental solutions we solve quadratic equation

—fiX% 4 PefA + PeSts = 0. (5.8)
For the roots A1, Ay we have three cases possible:
i if )\1, Ay € R, A1 75 Ao then (pil(t) = eXp(/\lt), (piQ(t) = eXp(/\Qt);
ii. if )\1, Ay € ]R, A1 = Ao then (Pll(t) = exp()\lt), 9012(t) = texp()\lt)
iii. if A, Ap € (C\R, A1 = a+ Bi, Ao = a — (i then
pi1(t) = exp(at) sin(Bt), i (t) = exp(at) cos(Bt).
6. Element selection criteria.
To drive adaptation algorithm we need some rule using which we will be able
to choose elements for the further refinement procedure. The key and most wide-
used idea is to choose elements with greater error, in some sense. Suppose we have

calculated error indicators {ng} for each elements on the mesh. In this paper we use
two selection criteria:

i. ("mazimum” criteria) element K is refined if
nr > (1 — ) Nmaws (6.1)
where Npar = Max 1 and 6 € (0,1) is fixed value;

ii. (7average” criteria) element K is refined if

\/NUK
VIunlE + g i

where ¢ is is acceptable tolerance in % for average error level over finite element,
N is element count.

100% > ¢, (6.2)




50 Drebotiy R., Shynkarenko H.

7. Adaptation algorithm. Let us define: TOL - acceptable relative error level
in percent, Pyq, - maximum element order (polynomial degree).

Step 1: Find finite element solution uy on the current mesh p;

Step 2: Stop condition check. For all elements K compute 1y as in section 6.1 (or 6.3).

Key,
(TOL is acceptable relative error level in percent), else:

1/2
Define n:= | > n%) I pllunl|zt x 100% < TOL we stop the algorithm

Step 3: Choose elements for refinement using (6.1) (or (6.2)). The set of all selected
elements we name as Ayg.

Step 4: Mesh modification. For all selected elements K = [x_1, 2] (px := deg (un|x))
choose between bisection and increasing of polynomial degree on it by one.
Compute values r,, = ||ef’||g,m = 1,2 by solving problems (5.5). Consider
the difference A = r9 —r1. If A > §, where § > 0 is predefined value, then
we increase element order by 1, otherwise we bisect it into two elements with
approximation polynomial orders (px, pr)-

Step 5: Go to Step 1.

Remark 1. From the theoretical point of view we should set 6 = 0 but in prac-
tice, according to errors in numerical quadratures and round-off errors, furthermore
the mazimum order of approximating polynomial is bounded - so it’s logically to use
bisection in case when A is very small. For this purposes we choose small number
0> 0.

8. Numerical results. In this chapter we present results of our algorithm for
some singular perturbed problems. Parameters 6 and 6 are equal for all iterations
and are selected using search from several values to provide ”optimal” values which
minimize final number of iterations and final count of degrees of freedom.

We will analyze two sample problems and for each of them we obtain numerical
results for four combinations derived from two estimators described in s.6.1 (explicit
estimator) and s.6.3 (estimator based on fundamental solution) and two selection
criteria (6.1) (or "maximum” criteria) and (6.2) which we will call ”average” criteria.
Initial mesh size is 7 elements. Average convergence rate was calculated using least
squares method.

Problem 1: We consider boundary value problem (1.1) with the following data

p=10=00=10%"%f=10°,a =~y =10% 4o =y, =0,L = 1.

Algorithm parameters are: TOL = 1%, pypas = 9,0 = 2,60 = 0.6. Figure 1 and table 1
demonstrates algorithm behavior for Problem 1 when using indicators from sections
6.3 and 6.1 in combination with ”maximum” criteria (6.1).

We can observe from table 1 than indicator based on fundamental solution can be
more efficient but its error is not monotonically decreasing as in example with explicit
error indicator.

Figure 2 and table 2 demonstrates algorithm behavior for Problem 1 when using
indicators from sections 6.3 and 6.1 in combination with ”average” criteria (6.2).
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Figure 1: Approximation to solution of Problem 1 using implicit error indicator based
on fundamental solution basis which was introduced in section 6.3 (left part) and explicit
indicator from 6.1 (right part). Both combined with the ”maximum” criteria (6.1). The row
in the bottom of each plot shows polynomial degrees on each finite element.

Fundamental solution indicator Explicit indicator
n|N|N CEZ} e i pn|m| N | N CEZJ)C e 7l Dn
0 7 8 | 20.58 | 8.58 0 7 8 | 2124.36 | 886.20
11 7 10| 7.51|3.04] 451 | 1| 7 10 | 669.04 | 271.33 | 5.17
219 141 3.00| 139 229 2| 9 14 | 221.91 | 89.12 | 3.27
3110 16 | 292|117 129 3| 11 18 7771 | 31.07 | 4.17
4112 20| 3.42 | 1.37 | -0.71 || 4 | 12 21 29.82 | 11.90 | 6.21
5|12 21 1.92 1 0.76 | 11.84 || 5 | 12 23 12.94 5.16 | 9.17

6| 12 25 6.10 2.68 | 7.84
7|12 32 1.77 0.70 | 5.39

average rate of convergence 2.37, average rate of convergence 5,

execution time 208ms execution time 330ms

Table 1: Convergence history for Problem 1 with the ”"maximum” criteria (6.1): n is

an iteration number, N element count, N CEZ} count of degrees of freedom, €2 = 7 ab-
solute error indicator, rs} = 7nllus||z' x 100% relative error, p, = — (In €2 —In 62_1) X

-1
(ln Né:} —1In N;Z;l)) rate of convergence.
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Figure 2: Approximation to solution of Problem 1 using implicit error indicator based on
fundamental solution basis which was introduced in section 6.3 (left) and explicit indicator
from 6.1 (right). Both combined with the "average” criteria (6.2). The row in the bottom
of each plot shows polynomial degrees on each finite element.

Fundamental solution indicator Explicit indicator
n| N|N CSZ} 62 7“,(3 Pnlln| N|N é:} 62 7“53 Dn
0] 7 8| 21.43 | 8.94 0] 7 8 | 2124.30 | 886.20
1] 7 12| 408 |165| 408 | 1| 7 15| 627.39 | 2564.32 | 1.94
21 9 16 | 544|218 | -0.99 || 2 | 14 29 | 220.92 | 88.72 | 1.58
3111 20| 3.96 | 1.58 | 1.42 | 3|20 41 77.51 | 30.99 | 3.02
4112 23| 0.84 033 |11.04 | 4| 23 50 29.30 | 11.69 | 4.90
5|23 54 12.02 4.79 | 11.57
6|23 56 4.82 1.92 | 25.11
7123 58 1.77 0.70 | 28.48
average rate of convergence 1.88, average rate of convergence 3.08,
execution time 197ms execution time 504ms

Table 2: Convergence history for Problem 1 with the ”average” criteria (6.2).
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The results for fundamental solution indicator in table 2 are almost the same as
in table 1. Furthermore the behavior of the error has the same specialty with small
peak inside. In general for Problem 1:

i. Comparing table 2 with example from table 1 we can see explicit indicator was
twice more deficient in according to iterations, element and d.o.f. counts.

ii. Error is monotonic in relation to count of d.o.f.

iii. From examples above we can clearly see that convergence rate is monotoni-
cally increasing so this is the fact that approves the possibility of presence of
exponential convergence.

Q
Ing,

In N,

Figure 3: Dependency between absolute error indicator ¢ and number of degrees of free-
dom Nég} in logarithmic scale for Problem 1. a) for algorithm with indicator based on fun-
damental solution described in section 6.3 and ”maximum” criteria (6.1); b) for algorithm
with explicit error indicator from section 6.1 and ”maximum” criteria (6.1); c) for algorithm
with indicator based on fundamental solution described in section 6.3 and ”average” criteria
(6.2); d) for algorithm with explicit error indicator from section 6.1 and ”average” criteria
(6.1).

Also we can conclude from numerical examples for Problem 1: fundamental
solution-based indicator is a bit more efficient but it is not providing monotonically
convergent error. For the last example we possibly observed exponential convergence.
Comparing two criteria for element selection leads to conclusion that ”maximum”
criteria from (6.1) is a bit more efficient than ”average” criteria (6.2) but in general
they are almost identical in according to numerical results.

Problem 2: We consider boundary value problem (1.1) with the following data

p=1,8=e2—2.102,0 = 10%(cosz + 2), f = 103 10*(==0-5)*
a=~v=10% 4y =a; =0,L = 1.

Algorithm parameters are: TOL = 1%, pyae = 9,0 = 0,0 = 0.6. Figure 4 and table 3
demonstrates algorithm behavior for Problem 2 when using indicators from sections
6.3 and 6.1 in combination with ”maximum” criteria (6.1).
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Figure 4: Approximation to solution of Problem 2 using implicit error indicator based on
fundamental solution basis which was introduced in section 6.3 (left) and explicit indicator
from 6.1 (right). Both combined with the ”maximum” criteria (6.1). The row in the bottom
of each plot shows polynomial degrees on each finite element.

Fundamental solution indicator Explicit indicator
n| N|N CEZ} € s pnll n| N|N éZ} el 7S} Dn
1] 7 8| 1997 | 118.83 0 8 | 53.86 | 320.53
1] 12 13 | 16.62 | 96.31 | 0.37 1] 11 12 | 33.56 | 194.66 | 1.16
2|15 16 3.8 2781 | 7.09 2| 14 15 | 18.85 | 135.13 | 2.58
317 18 | 5.07 | 48.95 | -2.42 3] 16 17 | 11.07 | 104.86 | 4.25
4118 19 | 1.66 | 18.85 | 20.65 4| 17 19| 5.09| 57.91 | 6.96
5119 20| 1.15 12.1 7.1 5| 18 20| 3.44 | 36.14 | 7.64
6|20 23 | 0.65 6.86 | 4.04 6| 20 26 | 1.54 | 16.25 | 3.04
7|26 31| 0.32 3.33 | 2.39 7| 24 30| 0.92 9.63 | 3.61
8133 40 | 0.32 | 3.3381 0 81 35 44 | 0.48 5.02 | 1.7
9|37 44 | 0.27 2.88 | 1.59 91 56 69 | 0.22 2.34 | 1.69
10 | 37 46 | 0.21 226 | 551 10| 8 | 101 | 0.11 1.24 | 1.6
11 | 42 53 | 0.15 1.57 | 253 || 11 | 138 | 160 | 0.06 0.66 | 1.35
12 | 58 69 | 0.08 0.93 | 1.98
average rate of convergence 2.72, average rate of convergence 2.29,
execution time 825ms execution time 1248ms

Table 3: Convergence history for Problem 2 with the ”maximum” criteria (6.1).




Comparison of error indicators for hp-algorithm

As in the Problem 1 results error is not monotonic for indicator based on fun-
damental solution and it is monotonic for explicit indicator i.e. exactly the same

behavior as in the Problem 1.

Figure 5 and table 4 demonstrates algorithm behavior for Problem 1 when using

indicators from sections 6.3 and 6.1 in combination with ”average” criteria (6.2).
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Figure 5: Approximation to solution of Problem 2 using implicit error indicator based on
fundamental solution basis which was introduced in section 6.3 (left) and explicit indicator
from 6.1 (right). Both combined with the ”average” criteria (6.2). The row in the bottom

of each plot shows polynomial degrees on each finite element.

Fundamental solution indicator

Explicit indicator

n| N|N ég} el T oo |l n| N|N U(lg} el 7Sl DPn
0 7 81 9.17651 | 54.6 -1 0 7 8 | 53.86 | 320.53
114 15 | 11.58043 | 67.35 | 0.37 || 1| 14 15 | 33.33 | 193.88 | 0.76
2125 29 | 10.38023 | 75.74 | 0.16 || 2| 25 29| 17.3 | 126.26 | 0.99
3| 36 45 | 3.89025 | 37.63 | 2.23 | 3| 37 48 | 8.75 | 84.66 | 1.35
4141 51 | 1.96705 | 22.38 | 544 || 4| 42 56 | 4.38 | 49.93 | 4.47
5| 44 58 | 1.03781 | 10.91 | 4.97 | 5| 44 60 | 2.19 | 23.11 | 10.02
6 | 49 63 0.4601 | 4.83 1983 | 6| 49 65| 1.09 | 11.54 | 8.64
7|58 721 0.23279 | 243 | 51| T | 60 771 0.55 5.76 | 4.08
8 | 69 83| 0.11914 | 1.24 | 471 | 8| 77 95 | 0.27 2.89 | 3.27
9184 98 | 0.06066 | 0.63 | 4.06 | 9| 100 | 119 | 0.14 1.48 | 2.96
10 | 129 | 149 | 0.07 0.83 | 2.56

average rate of convergence 2.58,

execution time 1222ms

average rate of convergence 2.44,

execution time 1719ms

Table 4: Convergence history for Problem 2 with the ”average” criteria (6.2).
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Figure 6: Dependency between absolute error indicator ¢ and number of degrees of free-
dom N, ég} in logarithmic scale for Problem 2. a) for algorithm with indicator based on fun-
damental solution described in section 6.3 and ”maximum” criteria (6.1); b) for algorithm
with explicit error indicator from section 6.1 and ”maximum?” criteria (6.1); ¢) for algorithm
with indicator based on fundamental solution described in section 6.3 and ”average” criteria

(6.2); d) for algorithm with explicit error indicator from section 6.1 and ”average” criteria
(6.1).

In general we can see from provided numerical examples that: 1) the better choice
in according to count of elements, iterations and d.o.f. reached is a combination of the
indicator from chapter 6.3 based on fundamental solution and ”"maximum” criteria
(6.1); 2) there is no large difference between ”maximum” and ”average” selection
criteria; 3) if we need to have monotonic error decreasing we need to choose explicit
indicator from 6.1.

CONCLUSION. In this work we constructed hp-adaptive algorithm for solving the
diffusion-advection-reaction boundary value problems with self-adjoint operators. We
proved the optimality in some sense of refinement selection step used in algorithm.
Also we introduced symmetrization procedure which can be used to transform given
nonsymmetrical variational problem to equivalent symmetric problem, therefore mak-
ing possible application of constructed algorithm to nonsymmetrical problems too.
Also we studied precisely conditions which problem data needs to satisfy to make
boundary problem well-posed.

To drive adaptation process we introduce two a posteriori error estimators. For
element selection for refinement procedure we use explicit estimator, i.e. explicit
formula which gives upper bound of actual error on finite element. After elements
for refinement were selected we need to choose on each element refinement pattern:
bisection with original element order preservation or increment of polynomial degree
on element by one. For this purpose we use classic implicit error estimator (i.e. in the
form auxiliary variational problem for error function). Using explicit estimator gives
us way of homogeneous computation of per-element error, needed for proper selection
elements for refinement. Respectively, using auxiliary error problem gives us elegant
way to choose between different types of elements refinement.

In the end we present comparative analysis of numerical results obtained using
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combination of introduced algorithm with different kinds of a posteriori error estima-
tors, and element refinement criteria.
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