

Л.В. ФАДЕЕВ, канд. техн. наук, доцент, директор ООО "Спецэлеватормельмаш"

СПЕД ЭММ

ЧТО МЫ СЕЕМ??!

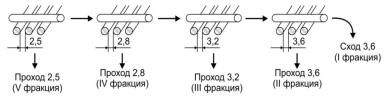
Необходимость получения высокого урожая, снижение затрат на производство с/х продукции побуждает повышать культуру земледелия. Высокое качество семян — обязательная составляющая современной культуры земледелия.

Сегодня на рынке семян Украины качество семян таких культур, как подсолнечник, кукуруза и некоторых других, в силу конкуренции зарубежных и отечественных производителей семян, достаточно высокое. Вместе с тем, многие фермеры используют для посева семена, полученные после очистки собственного урожая. Это, прежде всего, касается семян зерновых колосовых культур.

Причин тому много - и высокая цена сертифицированных семян, и необходимость высевать большие объемы семян при посевной норме около 200 кг/га (сравните с нормой для подсолнечника 4 кг/га), и традиция - когда-то основная масса полей засевалась семенами после их очистки от сорных примесей. В этом нет ничего странного, но очень часто такая очистка проводится на машинах устаревших не только по механике, но и морально устаревших. Мы сталкиваемся с этим, когда такие «готовые» к севу семена привозят к нам для их доработки. Если честно, то для меня лично это подарок, ибо работа с таким материалом сродни работе археолога, который точно знает, что место раскопки принесет ему не только радость самого процесса, но и интересный результат. Я обычно задаю вопрос хозяину (или агроному), привезшему семена: «На каких машинах проводилась очистка?». По ответу предвижу качество очистки и долю травмированных семян.

Поскольку мы реализуем *щадящую пофракционную технологию производства семян*, то и привезенную партию пропускаем через все ее этапы – аспирация с целью удаления из объема семян легковитаемого сора, очистку от мелкого и крупного минерального и растительного сора, калибровку семян по размерам и пофракционную сепарацию семян по плотности. После чего все образцы полученных фракций отдаем в *семенную лабораторию* и по результатам полного анализа делаем обобщающее заключение. В качестве примера ниже приводятся результаты обработки семян озимой пшеницы (урожай 2015 г.) сорта «Титона» (фото №1).

Агроном, который привез нам семена, сказал, что они дважды были пропущены при очистке после комбайна через центробежную машину типа БЦС. После такого ответа я чуть было не отказал агроному в услуге по подготовке семян из привезенного посевного материала, но любопытство исследователя взяло вверх, и мы приняли партию в работу. В то же время я прекрасно представлял, какое количество травм нанесено этим семенам при двукратном пропуске через виброцентробежный сепаратор типа БЦС. Я много писал об этом и пояснял причины травмирования семян в такого типа машинах. Вот и представился шанс еще раз показать на примере значимость щадящего обращения с зерном и, прежде всего, с семенами.


Итак, наша технология очистки разделяется на три этапа.

Первый. Семена пропускаются через очищающий комплекс «Дуэт», который состоит из аспиратора АФ-30 и очищающего калибратора ОКФ. Все зерно в АФ-30 проходит через поток воздуха с целью отбора легковитаемого сора. Очищенное зерно далее поступает на калибровку по размеру, а отвеенный материал поступает на ОКФ, где происходит отделение от него мелкого минерального и растительного сора на ситах Фадеева с гексагональной формой от-

верстий , проход зерновой примеси , проход зерновой примеси через решета Фадеева и сход с решета

через решета Фадеева и сход с решета крупного сора. Поскольку отвеенного материала в привезенной партии было всего несколько процентов, то основной результат этого этапа был в удалении дробленых семян, т.е. зерновая примесь была отобрана на первом этапе и выведена из дальнейшего процесса и, соответственно, анализа.

Второй этап – калибровка семян по размерам на решетах Фадеева. Семена последовательно были откалиброваны на четырех решетах следующих размеров.

Таким образом, было получено 5 фракций семян разной толщины семянок, поскольку решето Фадеева калибрует семена по самому маленькому размеру – толщине. Это важно, ибо именно толщина характеризует выполненность семян, т.е. характеризует наличие в них питательных веществ.

На третьем этапе каждая фракция (за исключением семян, прошедших через решето 2,5, поскольку эти семена семенами назвать нельзя) была просепарирована по плотности на пневмовибростоле ПВСФ-3 с разделением каждой фракции на три: тяжелые, средние по плотности и легкие. Таким обра-

зом, по размеру толщины семена были разделены на пять фракций (I, II, III, IV, V) и четыре из них были разделены по плотности.

Со своей задачей пневмовибростол справился. Посмотрите, как четко он распределил семена по массе 1000 шт. для каждой фракции (рис.1).

l – Результаты полного анс	

Таолица 1 – Результаты полного анализа кажоои фракции									
	3,6	I фракция сход с 3,6							
Характеристики семян									
	После калибровки	После сепарации по плотности (тяжелые)	После сепарации по плотности (легкие семена)						
Чистота	99,9%	99,96%	-						
Всхожесть	97%	95%	-						
Энергия прорастания	95%	95%	-						
Масса 1000 шт.	52 г.	53 г.	7						
	3,6	II фракция проход 3,6							
Чистота	99,9%	99,97%	99,08%						
Всхожесть	95%	97%	97%						
Энергия прорастания	95%	97%	97%						
Масса 1000 шт.	48 г.	48,8 г.	46,1 г.						
	3,2	III фракция проход 3,2							
Чистота	99,57%	99,84%	97,42%						
Всхожесть	96%	94%	96%						
Энергия прорастания	95%	94%	96%						
Масса 1000 шт.	42,9 г.	43,7 г.	40,6 г.						
	2,8	IV фракция проход 2,8							
Чистота	99,54%	99,94%	98,24%						
Всхожесть	93%	96%	97%						
Энергия прорастания	93%	91%	96%						
Масса 1000 шт.	36,4 г.	36,9 г.	31,5 г.						

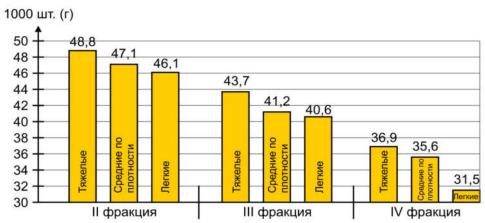
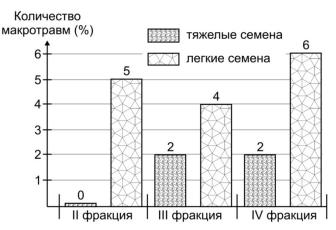



Рис. 1 – Пофракционное распределение семян по массе 1000 шт. на пневмовибростоле

Puc. 2 – Результат разделения макротравмированных семян на пневмовибростоле.

Необходимо заметить, что в партии семян, привезенных на доработку, масса 1000 шт. отличалась в 1,7 раза (масса 1000 шт. І фракции тяжелые семена 53 г и семена IV фракции легкие 31,5 г). Как при этом быть с посевной нормой?

В какой-то мере пневмовибростол справился и с разделением травмированных семян, но только с макротравмами (рис.2).

Но что эта замечательная машина может сделать с микротравмами? – Ничего! Как говорится, не стреляйте в пианиста – он сыграл, как смог.

Теперь ответим на вопрос — в какой степени травмируются будущие семена при первичной очистке их после комбайна по традиционной технологии: травмирующая (обычная) нория и виброцентробежная машина типа БЦС (двукратный пропуск)? Ответ простой — в абсолютной степени. А именно:

- целых семян 7,6%;
- семян с макротравмами 6,7%
- семян с микротравмами 85,7%

Результаты оценки травмированности исследуемых семян приведены в таблице №1. Исследования проведены к.с.н., доцентом Деревянко Д.А. на кафедре «Процессы машин и оборудование» Житомирского Национального агроэкологического университета.

Теперь зададимся вопросом, в какой степени штатные лабораторные исследования посевных качеств семян (лабораторная всхожесть и энергия прорастания) выявляют травмированность семян? Ответ — ни в какой.

На рисунке 3 приведены осредненные значения по *травмированности семян* (четыре фракции I, II, III, IV) и осредненные значения *результатов лабораторного анализа этих же фракций*.

Даже если взять пятую фракцию (проход через решето 2,5), которая по характеристикам относится к зерновой примеси:

- чистота 87%;
- масса 1000 шт. 30,8 г.;
- отход всего 13%
 (в том числе битые 11,88%);
- макротравмы 29%;
- выбит зародыш 4%;
- микротравмы 59% (фото \mathbb{N} 2), то и у этого материала лабораторная всхожесть 90%, а энергия прорастания 83%.

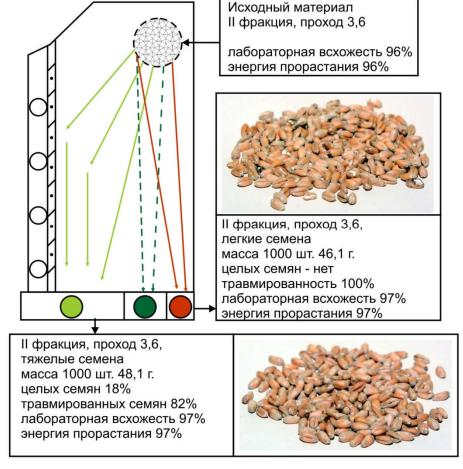


Таблица 1 – Результаты по оценке травмирования семян озимой пшеницы сорта «Титона» (урожай 2015г.)

Фракция семян		Макротравмы		Микротравмы				
		эндо- сперм	выбит зародыш	травма зародыша	оболочки зародыша	оболочки эндосперма	оболочки эндосперма и зародыша	Целые семена
Проход 2,5 щуплые, битые		29%	4%	нет	15%	3%	41%	8%
І фр., сход 3,6	тяжелая семянка	нет	2%	нет	6%	27%	65%	нет
II фр., проход 3,6	тяжелая семянка	нет		2%	36%	14%	30%	18%
	легкая семянка	3%	2%	нет	4%	18%	73%	нет
III фр., проход 3,2	тяжелая семянка	2%		2%	12%	17%	56%	12%
	легкая семянка	3%	1%	1%	19%	11%	61%	4%
IV фр., проход 2,8	тяжелая семянка	2%	нет	нет	12%	19%	56%	11%
	легкая семянка	6%	нет	нет	16%	5%	65%	8%

Рис. 3— Осредненные результаты травмирования семян озимой пшеницы сорта «Титона» (урожай 2015 г.) после очистки (двукратный пропуск) на зерноочистительной машине виброцентробежного принципа типа БЦС.

Puc. 4 — Результаты анализа одного образца (проход 3,6, травмированность и посевные свойства)

На рисунке 4 приведен образец разделения на пневмовибростоле II фракции на тяжелые семена и легкие.

Отлично видно, что никакого разделения травмированных семян по посевным качествам не произошло. Более того, легкие семена со 100% травмированием в лаборатории показывают всхожесть и энергию прорастания равную 97%.

На мой взгляд, причина простая - разрушенная оболочка позволяет в благоприятных лабораторных условиях набухнуть раньше целого зерна, прорасти и оказаться в «компании» семян с псевдовысокой энергией прорастания. А в поле такая семянка будет прорастать с большим трудом, расходуя вещества не на рост, а на сохранение жизни, в то время как почвенные микроорганизмы будут ее истощать оболочка-то нарушена, и доступ к зародышу и эндосперму открыт.

Выводы

- 1. Нельзя посевной материал очищать после уборки на травмирующем оборудовании. Никакие последующие ухищрения нанесенный вред не уменьшат.
- 2. Существующая методика оценки качества семян по лабораторной всхожести не может оценить травмированность семян, что приводит к завышению показателей семенных, а значит и урожайных качеств.

За матеріалами книги Фадєєва Л.В.

Надійшла 07.11.2016. До друку 28.02.2017 Адреса для переписки: вул. Канатна, 112, м. Одеса, 65039

