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MynbTiMOaTBHUN METO/ 3BOAUTH 33/1a9y 3 BIIBHOIO IIOBEPXHEIO TIPO KOJIH-
BaHHA piauHu B 6aKax /10 CKIHIeHOBUMIPHUX (MOJAILHIX) CUCTEM 3BUYAii-
HUX HesiHIHUX JndepeHIiagbauX piBHAHb. Mero nepejbadae ijteasbay
HECTHUC/IIBY pifuHy 3 O€3BUXOPOBUMH TEUisfAMH, ajie 3JaTeH BPaXOBYBaTH
JUCHIIAIIO. HMoro OyJI0 3aIIPOIIOHOBAHO IS HEIMITyJIbCHUX TiApoamHaMi-
YHUX HABaHTa)KeHb Ha 0ak, ajie OCTaHHI JIOC/Ii/PKEHHs 1T0Ka3aJ/id, 1110 foro
MOKHA BJIAJIO KOMOIHYBATH 3 IHINMUMH AHATITHIHAMHA METOIAME JJIS MO-
JIeTIOBaHHS IMITyJIbCHAX HaBAaHTAXKEHb y IJIOMY 1 ciaamiHTy, 30Kpema. B
50-60 pokax XX cropidusi METOJI PO3BUBABCs sIK 3acCib OOYUCTIOBAIBHOL
rigpoapumuamiky, aje 3 1990 pokiB BiH mporpae iHmmM crerjiaaizoBaHuM Uu-
ceJIbHUM ajiropuTMaM. Ha cborojini BiH Mae mojBiiiHe 3HaYEeHHs. 3 OIHOIO
OOKY, METOJ € YHIKAJbHUM aHAJITUIHUM IHCTPYMEHTOM JIJIsI TIapaMeTpu-
YHUX JOCJI/?KeHb HEJIHINHUX peKUMIiB KOJMBAHHSA PIMHU, 1X CTIHKOCTI,
OIIHKM BUHUKHEHHSI Xaocy. VIOro BUKOPHCTOBYTH JUlsl IIPSIMUX PO3PAXYH-
KiB, KOJIU TPAAUIHIHI YrCe/IbHI CXeMHU He MPAIOI0Th, MPUMIpOM, st Oa-
KiB 3 nepdopoBaHnMU eKpaHaMu. 3 IHIOro GoKy, icHyroul ciaaboHeriniini
MOJAJIbHI cucTeMu € aHasioroMm piBHsHb Kopnesera—me-Bpiza, Bycinecka,
91 aHAJIOTTYHUX PIBHSHB TEOPil MOBEPXHEBUX XBUJIb, TOMY € IIIKABUME STK
MaTeMaTHIHUN 00 €KT.
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MybTUMOIATBHBII METO/T CBOJIUT 3a[a<y CO CBOOOIHOM MTOBEPXHOCTHIO TIPO
KOJIeOaHUST JKUJKOCTH B 0akaX K KOHEYHOMEDHBIM (MOOGAbHVLM) CHCTe-
MaM OOBIKHOBEHHBIX HEJIMHENHBIX AuddepeHnnaababix ypasaenuit. Meromr
IIPEJIIOIATACT UJICATBHYIO HECKUMAEMYIO KUJKOCTL (6e3BUXpEBbIE Tetve-
HUST), OJHAKO CIIOCOOEH yUUTBHIBATH JAUCCHIANMIO. Ero mpemioxKuiam Jjis
HENMITYJIbCHBIX THAPOIMHAMIYIECKIX HATPY30K HA CTEHKN OaKa, HO MOCTIe -
HIe WCCIEIOBAHMS MTOKA3AJIM, 9TO OH YCIENTHO KOMOMHUDPYEM C JAPYTUMHU
AHAJTUTUYIECKUMU METOJIAMU JIJI MOJEJIUPOBAHUS UMITYJIbCHBIX HAIPY30K,
B II€JIOM, U CJIAMMUHTA, B YacTHOCTH. B 50-60 robI MeTOT pa3BUBAJICS KaK
CPEACTBO BBIYUCIUTEIbHOM rugpogunaMuku, Ho ¢ 90-00 roJ10B OH IpOUTpHI-
BaeT CIEIUAJIN3UPOBAHHBIM YUCJIEHHBIM aJropuTMaM. B HacTosIee Bpemst
METOJ UI'PAET JABOHHYIO PoJib. C' 00H0l cmopoHv, OH sIBJIETCA yHUKAIb-
HBIM aHAJIUTUIECKUM HHCTPYMEHTOM JIJIsI TAPAMETPUIECKIX UCCTIEIOBAHMI
HEJIMHEHHBIX PEXKUMOB, UX YCTONYMBOCTH, OIEHKU BO3HHUKHOBEHUs XaoCa.
MeTton ucmob3yeTcs u Jijist TPAMBIX PACYETOB, KOT/Ia TPAIUITHOHHBIE THC-
JIEHHBIE CXEeMbI He paboTaloT, HAIIPUMeEpP, JJjisd 6aKoB ¢ nepdOopUpPOBaAHHbBI-
mu skpanamu. C dpyeot cmoponsl, CylecTByomue ciaabo-HeJInHeHbIe MO-
JaJIbHBIE CUCTEMbI SBJIAIOTCS aHajgoroMm ypasuenuit Kopsesera-me-Bpusa,
Byccunecka, nan momoOHBIX ypaBHEHUIT TEOPUM TTOBEPXHOCTHBIX BOJIH, IO-
9TOMY MHTEPECHBI KaK MaTeMaTUIeCKU OObHEKT.

1. Genesis

The coupled “rigid tank-contained liquid” dynamics is associated with
the so-called hybrid mechanical systems consisting of two coupled subsys-
tems of diverse mechanical and mathematical nature. The first subsys-
tem, the rigid tank, can move with six degrees of freedom and, therefore,
its dynamic governing equations are a six-dimensional system of ordinary
differential equations (ODEs). The hydromechanical subsystem, the con-
tained liquid, is governed by a free-surface problem and, as consequence,
implies an infinite number of degrees of freedom. Based on the free-
surface problem or its Lagrange variational formulation, the multimodal
method makes it possible to select, constructively, the hydrodynamic-
type generalised coordinates and derives a system of ODEs which plays
the role of approximate (Euler-Largange) hydrodynamic equations.
Etymology of the word “multimodal” in the liquid sloshing problems
comes, most probably, from the sentence “nonlinear multimodal analy-
sis” appearing in the title of the paper [16]. However, the multimodal
method was not originated in 2000 but forty-fifty years behind, in the
50-60’s, when aircraft, spacecraft and marine applications used to be
a great challenge for applied mathematicians and engineers involved in
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Fig 1. The photos made in the 60’s by Kiev’s research group demonstrate the
instant free-surface patterns for diverse resonant tank excitations that illus-
trate the free-surface nonlinearity. The cases (a—d) depict a weakly-nonlinear
sloshing when the lowest [degenerating] modes have the dominate character.
The second and third antisymmetric modes are nonlinearly excited in the cases
(c) and (d) but a stronger amplification of these modes is shown in (e), (f), and
(g). Even though the contained liquid is almost at the rest (h), the nonlinearity
may cause very steep wave profiles. The pictures (i-1) illustrate breaking waves,
overturning, bubbling (k), and other strongly nonlinear phenomena leading to
a free-surface fragmentation.
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studying the dynamics of vehicles carrying a partially-filled container.
All experimental, computational and theoretical aspects were of inter-
est. An enthusiastic atmosphere of these years is well expressed in the
memoir article by H. Abramson [2] who was a leader of the correspond-
ing NASA research program. A scientific heritage of these years reported,
partly, in the fundamental books and monographs issued, basically, in the
USA [3,25,32,86,92,93] and the Soviet Union [1,24,34,50,51,61-63,77].

The model tests made it possible to establish input parameters for
which the free-surface nonlinearity matters. The USA collection of exper-
iments is well reviewed in the NASA Report [3]. Systematic experiments
of the Soviet scientists were conducted in Moscow, Kiev, Dnipropetro-
vsk, and Tomsk. These are badly known from the open literature. Fig. 1
shows the photos made in the 60’s by Kiev’ research group. They demon-
strate an increasing importance of the free-surface nonlinearity becoming
visible due to steep wave patterns, breaking, overturning, bubbling, and
the free-surface fragmentations.

Linear multimodal method. Summarizing the main results of the
50-60’s, one should emphasise, among the aforementioned books and re-
ports, the papers [68,73,76] and the books [24,50,63] where the concept
of the linear multimodal method was originated and developed for an
ideal incompressible contained liquid with an irrotational flow. Accord-
ing to this concept, the coupled “rigid body—contained liquid” dynamics
is treated as a conservative mechanical system with an infinite number of
degrees of freedom whose generalised coordinates are explicitly chosen as
the time-depending amplitude parameters at the natural sloshing modes.
The linear multimodal method derives an infinite-dimensional system of
linear ODEs with respect to the six generalised coordinates governing
the small-magnitude rigid body motion and an infinite set of the hydro-
dynamic generalised coordinates responsible for linearly-perturbed (rela-
tive to the hydrostatic liquid shape) natural sloshing modes. The latter
hydrodynamic-type subsystem was called the linear modal system. The
derivation of the linear modal system requires to know the natural slosh-
ing modes and frequencies and the so-called Stokes—Joukowski potentials.

The Stokes—Joukowski potentials were introduced by the “father of
the Russian aviation”, Nikolay Joukowski (1885) [33], who studied a
spatially-moving rigid body with a cavity completely filled by an ideal in-
compressible liquid. He showed that the liquid moves as a rigid body due
to the translatory body motions but the angular body motions lead to
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specific liquid flows which are described by the Stokes—Joukowski velocity
potentials. The potentials are solutions of the corresponding Neumann
boundary value problems. Finding the Stokes—Joukowski potentials for
the linear sloshing problem implies solving these Neumann boundary
problems in the mean (hydrostatic) liquid domain.

The spectral boundary problem on the natural sloshing modes and fre-
quencies (the natural spectral sloshing problem, NSSP) is also formulated
in the mean liquid domain so that the spectral parameter x appears in
the mean free-surface boundary condition and defines the natural slosh-
ing frequencies by o = \/kg (g is the gravity acceleration). The natural
sloshing modes determine the standing surface wave patterns; they are
the eigenfunctions of the NSSP.

The standing waves (the natural sloshing modes) on the free surface
in an upright circular basin were first described by Mikhail Ostrogradskii
(his manuscript [74] was submitted to the Paris Academy of Sciences in
1826). These standing waves for some other basins were further analysed
by Poisson and Rayleigh. However, a rigorous mathematical theory of
the NSSP was created only in the 60’s. The theory establishes the purely
positive pointer spectrum consisting of an infinite set of eigenvalues. The
eigenvalues have the only limited point at the infinity. This is in the
contrast to the water wave theory which is characterised by a continuous
spectrum. The latter fact is extremely important for understanding why
the water wave theory dealing with the unlimited liquid volume yields ap-
proximate models in terms of partial differential equations but the same
nonlinear boundary problem in a bounded liquid domain (sloshing prob-
lem) leads, after implementation of the multimodal method, to the ODEs
appearing as the corresponding approximate mathematical models. Rep-
resentative mathematical publications on the NSSP are [12] and Ch. VI
in [24]. S. Krein [36] has generalised these spectral theorems for a vis-
cous incompressible liquid, but N. Kopachevskii proved the corresponding
spectral theorems for a capillary liquid (see, Part II in [66]).

Coupling the linear modal systems and the dynamic equations for
the rigid container becomes a mathematically simple procedure provided
by the so-called linearised Lukovsky formulas which express the hydro-
dynamic forces and moments in terms of the introduced hydrodynamic
generalised coordinates. The hydrodynamic coefficients in both the linear
modal system and the Lukovsky formulas are integrals over the Stokes—
Joukowski potentials and the natural sloshing modes as well as their
derivatives. After adding the corresponding initial conditions responsi-
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ble for initial shapes and velocities of the contained liquid and the rigid
body, the Runge-Kutta type simulations of the coupled linear ordinary
differential equations enable to describe the linear transient “rigid body—
contained liquid” dynamics. For the harmonic loads to the rigid tank,
one can also find, analytically, the periodic (steady-state wave) solution.

A canonical description of the linear multimodal method is reported
in [24,44]. Faltinsen & Timokha [17], Ch. 5, presents a contemporary
treatment of the linear multimodal method.

Because getting the hydrodynamic coefficients in the linear modal
equations exclusively depends on whether the natural sloshing modes
and the Stokes—Joukowski potentials are known, the majority of the 50-
80’s publications on the linear multimodal method were devoted to con-
structing approximate solutions of the NSSP and the Neumann boundary
value problem on the Stokes—Joukowski potentials. A lot of brilliant ideas
on how to construct the analytically approximate solutions are collected
in [44]. One of these ideas consists of constructing these solutions as a
decomposition of the harmonic polynomials whose completeness in the
so-called star-shaped domains is proved in [94,95]. This and other Tr-
efftz type solution methods are well outlined in [23,44]. The harmonic
polynomials are a basis for the Harmonic Polynomial Cell (HPC) method
proposed a few years ago [81].

Thanks to new computer facilities and methods developed in the 90’s,
numerical solutions of these spectral and Neumann boundary problems
can effectively be found by using various open and/or commercial solvers
based on, e.g., the finite element method. This means that the multi-
modal method gives, based these numerical solutions, an analytical so-
lution of the linear sloshing problem and, employing that solution, of
the linear coupled “rigid tank—contained liquid” problem. When can
the aforementioned solvers be invalid? An example is when the natural
sloshing modes are characterised by the singular behaviour at, e.g., sharp
edges (screen’s openings, baffles, ribs, etc.), causing a weak convergence
of the standard numerical packages. Accounting for this behaviour may
significantly improve the convergence [18-21,23].

Nonlinear sloshing analysis of the 50-60’s. The 50-60’s studies
founded most important directions in the nonlinear sloshing analysis. Un-

der certain circumstances, these directions can be associated with original
works by N.N. Moiseev [60], G.S. Narimanov [69], and L. Perko [64, 75].
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N.N. Moiseev [60] constructed an asymptotic steady-state wave (pe-
riodic) solution of the nonlinear free-surface problem for an upright tank
performing a prescribed horizontal and/or angular harmonic motion with
the forcing frequency o close to the lowest natural sloshing frequency o7 .
He suggested a finite liquid depth of an ideal incompressible liquid with
irrotational flows. Moiseev proved that, if the nondimensional forcing
amplitude is a small parameter of the order ¢ < 1, the primary excited
mode(s) amplification is characterised by the order €'/ and the matching
asymptotics (the so-called Moiseev detuning) is |02 — o7|/0F = O(*/?).
Moiseev implicitly assumed that there are no the so-called secondary res-
onances. The Moiseev type asymptotic steady-state solutions were an-
alytically constructed for two-dimensional rectangular [15,71] and some
other [6,32,49,85] tank shapes. Analytically, these were derived in terms
of the natural sloshing modes which were known in analytical (or ana-
lytically approximate) form. The natural sloshing modes are analytically
expandable over the mean free surface (together with higher-order deriva-
tives) for these tank shapes. Getting the Moiseev asymptotic solutions
leads to tedious analytical derivations.

Whereas Moiseev has exclusively focused on the resonant steady-
state sloshing occurring due to a prescribed harmonic tank excitation,
G.S. Narimanov [69], bearing in mind a simulation of both steady-
state and transient sloshing, proposed a perturbation technique deriving
a weakly-nonlinear analogy of the linear modal equations. The weakly-
nonlinear modal equations also facilitate studying the coupled “tank-
liquid” dynamics. To derive the weakly-nonlinear modal equations, Na-
rimanov [69] postulated a set of asymptotic relations between the hydro-
dynamic type generalised coordinates. The latter coordinates are intro-
duced in the same way as in the linear case. Even though Narimanov
did not know Mosieev’s results which were published one year later, the
used asymptotic relations between the hydrodynamic generalised coordi-
nates are, in fact, the same as those following from Moiseev’s analysis
if the Moiseev periodic solution is re-expressed in terms of the Fourier
solution by the natural sloshing modes. The Narimanov type multimodal
method was originally developed for an upright circular cylindrical tank,
but V. Stolbetsov [87-90] and I.A. Lukovsky [45,70] generalised it to other
tank shapes. Up to date, the Narimanov type modal systems are derived
for upright tanks of circular, annular and rectangular cross-sections, con-
ical and spherical tanks as well as for an upright circular cylindrical tank
with a rigid-ring baffle [28,45,47,70].
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One should note that the original Narimanov expressions contain alge-
braic errors. The right (corrected) expressions are reported in Lukovsky’
works published after 1975 (see, e.g., [45,47,70]). Unfortunately, as it has
been mentioned in the Moiseev case, constructing the Narimanov-type
weakly-nonlinear modal equations leads to difficult and tedious deriva-
tions that dramatically increase when introducing a long set of the hydro-
dynamic generalised coordinates. As a result, all the existing Narimanov-
type modal systems are of a low dimension — they couple from two to five
generalised coordinates only.

Due to a lack of computer facilities and suitable numerical methods,
engineering computations based on the space-and-time discretisation of
the free-surface sloshing problem are little presented in the literature
of the 60-70’s. They would appear en masse only in the 90’s. A unique
exception is the so-called Perko method [64,75] which can be interpreted
as both a numerical version of the multimodal method and a CFD solver.
The Perko method uses, on the one hand, the Galerkin projective scheme
and, on the other hand, the natural sloshing modes in a Fourier-type
presentation of the velocity potential. The Perko method is an origin
of some other numerical and semi-analytical techniques developed in the
forthcoming years. In the 00’s [37,80], the method was combined with
the Bateman-Luke variational statement.

2. Origins of the nonlinear multimodal method

I.A. Lukovsky and J.W. Miles [46,47,52] employed the Bateman-Luke
variational formulation [5,43] to derive the fully-nonlinear modal equa-
tions and, applying the Narimanov-Moiseev asymptotic relations, their
approximate weakly-nonlinear form. J.W. Miles [53, 54] generalised
the Moiseev results to study an amplitude modulation of the weakly-
nonlinear nearly steady-state sloshing (almost periodic solutions) for the
case of a harmonically-excited tank, again, by using the Bateman-Luke
variational formalism. Finally, O.S. Limarchenko [38-41] proposed a
weakly-nonlinear version of the Perko method combining it with the
classical Lagrange variational principle and a Galerkin projective scheme
which solves the kinematic part of the sloshing problem. These works are
the origins for different versions of the nonlinear multimodal method.

Lukovsky—Miles’ modal equations. In 1976, Lukovsky and Miles
have independently utilised the Bateman—Luke variational formulation
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for derivations of a fully-nonlinear modal system. In their original pa-
pers [47,52], the authors considered a prescribed harmonic translatory
tank motions but, later on, Lukovsky [16,46] generalised the derivations
for an arbitrary prescribed rigid tank motion and proposed the so-called
nonconformal mapping technique [22,45,48] to get the fully-nonlinear
modal equations for tanks with non-vertical walls. He also derived the
so-called [fully-nonlinear] Lukovsky formulas for the hydrodynamic force
and moment [47] (Ch. 7 of [17] gives an alternative derivation) and, fur-
thermore, showed how to use the Bateman—Luke formalism in derivations
of the dynamic equations of the coupled “rigid tank—contained liquid” me-
chanical system [47]. Because both kinematic and dynamic relations of
the free-surface problem naturally follow from the Bateman—Luke varia-
tional formulation, these modal equations fall into kinematic and dynamic
subsystems which appear as the first-order infinite-dimensional systems
of ODEs coupling the hydrodynamic-type generalised coordinates and
velocities. Pursuing an approximate finite-dimensional system of the
second-order differential (modal) equations, as it has been in Narimanov’s
case, Lukovsky and some other authors adopted the Narimanov—Moiseev
asymptotics for the generalised coordinates and “velocities”. A series of
those weakly-nonlinear modal systems was derived and used for analytical
studies of steady-state resonant regimes and transient wave motions.

Derivations of the Lukovsky—Miles modal equations assume that we
have got analytically approximate natural sloshing modes and the Stokes—
Joukowski potentials analytically defined over the mean free surface. This
is a serious limitation of the method preventing its generalisation to
arbitrary tank shapes that explains why an extensive use of the fully-
nonlinear modal equations and their finite-dimensional weakly-nonlinear
versions did start only from 2000, exploiting a treasure of analytical meth-
ods which construct approximate natural sloshing modes. The methods
have been worked out in the 70-90’s.

Miles’ equations. Bearing in mind a generalisation of Moiseev’s re-
sults on the resonant steady-state wave regimes, Miles [53,54] derived
the so-called Miles equations which govern a slow-time variation of dom-
inant amplitudes of an almost periodic sloshing occurring due to a small-
amplitude horizontal harmonic excitations of an upright circular cylin-
drical tank; the forcing frequency is close to the lowest natural sloshing
frequency. He adopted the Moiseev asymptotic ordering, the Moiseev de-
tuning, and the multiple time scales technique. Separation of the fast and
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slow time scales was done directly in the Bateman—Luke action. Accord-
ing to the Narimanov—Moiseev asymptotics, there are four (or less) inde-
pendent slowly-varying amplitudes for upright cylindrical tanks. These
are of the O(e'/3)-order (e is the nondimensional forcing amplitude). The
Miles equations were later derived for upright tanks of the rectangular
cross-section.

Using Miles equations is a rather popular approach in applied math-
ematical studies on classifying a nearly steady-state sloshing, detecting
periodic orbits and clarifying the chaos in the hydrodynamic systems.
Both horizontal and vertical (Faraday waves) harmonic excitations have
been in focus [26,27,30,31,54-59].

Krasnopolskaya and Shvets [35, 82] extended the Miles technique to
the case of the “rigid tank—contained liquid” mechanical system with a
limited power supply forcing.

Employing the Perko-type method. In the 70’s, the Perko method
was rarely used. An exception is the works [13,65] in which the Galerkin
type numerical schemes were proposed that are rather similar to that by
Perko. Instead, the Perko method was adopted as a component of com-
putational versions of the multimodal method [9,11,38,39]. The focus
was on simulating weakly-nonlinear transient sloshing and the weakly-
nonlinear tank—contained liquid dynamics. Those computational versions
are well exemplified by that of O.S. Limarchenko [38-42] who combined
the Perko method and the classical Lagrange variational formulation.
This variational formulation exclusively leads to the dynamic boundary
condition (the pressure balance on the free surface) but the kinematic
relations should be considered as a constraint. Adopting a modal-type
solution, Limarchenko solves the kinematic constraint by a Galerkin pro-
jective method (similar to that by Perko), but the dynamic modal equa-
tions are obtained with using the variational formulation as in the works
by Lukovsky and Miles. Furthermore, the kinematic and dynamic equa-
tions are recombined to derive a finite-dimensional system of the second-
order ODEs. These (i) are weakly-nonlinear, contain only second- and
third-order polynomial nonlinearities, (i) are based on a priori postu-
lated dominant and higher-order generalised coordinates, (iii) include the
zero-hydrodynamic coefficients which are difficult to select in an analyt-
ical way, and, therefore, (iv) are not applicable for analytical studies
but rather for ad hoc simulations of transients by employing the Runge-
Kutta solvers. In other words, the Perko-type weakly-nonlinear modal
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equations appear as a specific computer package (not an applied math-
ematical tool) which is not explicitly available for interested readers of
the corresponding papers.

3. Computational fluid dynamics

Extensive CFD simulations of the nonlinear sloshing had actually started
only in the 70-80’s. The primary focus was on the finite difference
(maker-and-cell, etc.) and finite element methods [4,14,67,72,78,83,91].
Along with publishing open-source algorithms, the FLOW-3D package
was founded out to become one of the leading commercial Navier-Stokes
solvers. A collection of FLOW-3D simulations was presented by F. So-
laas [84] who discussed its advantages and drawbacks.

In 2000, the papers [37,80] tried to breath a new life into the Perko
method by combining it with the Bateman-Luke variational formalism. In
fact, they employed the truncated fully-nonlinear Lukovsky—Miles modal
system in the time-step integrations with an appropriate initial condi-
tions. A drawback of this approach is that this modal system is unreal-
istically stiff so that special artificial damping terms should be incorpo-
rated to damp the rising parasitic higher harmonics. This is the same as
discussed in [13].

The 90-10’s have opened a new, computational era in simulating the
nonlinear sloshing of a viscous liquid. Volume of Fluid (VoF), Smoothed
Partitions Hydromechanics (SPH), and their modifications made it pos-
sible, using parallel computations, rather accurate and efficient compu-
tations of transient nonlinear sloshing and the coupled liquid-tank dy-
namics. Interested readers are referred to [10] which outlines the state-
of-the-art of the 90’s. The recent advances in the numerical sloshing are
reported in [29,79,96].

Advantages of the contemporary CFD are that it is normally based
on viscous and fully-nonlinear statement and allows for modelling specific
free-surface phenomena associated with (i) the free-surface fragmenta-
tion, (ii) wave breaking, (iii) overturning (typically at the walls), (iv) roof
and wall impacts, flip-through. The phenomena are partly illustrated
in Fig. 1. Against these abilities, the existing modal systems and the
Perko-type computational schemes look rather poor. They (i) are often
of weakly-nonlinear nature and based on ideal potential liquid motions,
(ii) unable to describe the aforementioned specific free-surface phenom-
ena, (iii) lead to stiff time-step simulations, (iii) need an extensive valida-
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tion by experiments due to the so-called secondary resonances to be cor-
rectly predicted and numerous physical and mathematical assumptions
done during derivation of the finite-dimensional modal systems. Perhaps,
this partly explains why the multimodal method was almost forgotten in
the 90’s when the main emphasis was placed on constructing efficient
CFD solvers.

In the 90-10’s, one can say that the multimodal method loosed the
competition to the CFD as a computational tool for simulating the liquid
sloshing dynamics. To some extend, the situation is similar to that in
the water wave theory and associated Kordeweg—de Vries, Boussinesq,
etc. equations which are currently of little interest in engineering com-
putations where various CFD packages with parallel computing schemes
play the practical role. This clarifies why the Perko-type methods, even
in their modified form [37,80], are no more developing in the literature.
The scopes of the multimodal method remain the analytical (mostly ap-
plied mathematical) studies as well as exceptional cases when traditional
CFD methods are inefficient. The latter is well exemplified by sloshing
in tanks within a perforated screen.

4. Reincarnation

A new era of the nonlinear multimodal method, now as, basically, an
analytical tool, has started in 2000, due to the paper [16]. The paper
re-derived the fully-nonlinear Lukovsky modal equations and proposed
a three-degrees-of-freedom weakly nonlinear modal system handling the
resonant liquid sloshing due to horizontal excitations of the lowest natural
sloshing frequency. The finite liquid depth and the so-called Narimanov—
Moiseev intermodal asymptotics were assumed. Experimental model
tests were done, in particular, for establishing limitations of the derived
weakly-nonlinear modal system. The modal system becomes invalid for
with decreasing the mean liquid depth, roof impact, increasing the forc-
ing amplitude and, in some cases, due to passage to three-dimensional
wave patterns. Both qualitative analytical studies of steady-state res-
onant sloshing and direct numerical simulations of transient waves by
the weakly-nonlinear modal system were presented as two perspective
directions in using the multimodal method.

As an analytical tool. The weakly-nonlinear modal equations derived
by employing the multimodal method play the same role as approximate
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weakly-nonlinear water wave theories, e.g., by Kordeweg—de Vries and
Boussinesq. Using these equations is efficient for analytical studies of the
dynamics and stability of liquid sloshing, classification of steady-state
wave regimes, and identifying the chaos as well as in parametric studies.
In addition, the multimodal method is of great importance for studying
novel sloshing problems for which the CFD remains less applicable.

As a numerical tool in exceptional cases. Generally speaking, the
weakly-nonlinear modal systems are not applicable for strongly nonlinear
and viscous phenomena which are now in focus of the CFD. As long as the
free-surface fragmentation is of less importance and strongly viscous flow
is of local character, the multimodal method may be applied provided by
accounting for the associated damping. This is as in the domain decom-
position method, the use of the multimodal method has more perspective
in simulations than using a fully-viscous and nonlinear solver. A limita-
tion is that model tests are required to evaluate whether the sloshing is
really weakly-nonlinear and the damping models are applicable.

The forthcoming extended survey will focus on the nonlinear multi-
modal method and associated modal systems of the 00-10’s. The focus is
on the so-called heavy liquid when the surface tension does not matter.
Interested readers are referred to [7,8] who gives the state-of-the-art on
the surface tension-affected sloshing.
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