Advanced Information Systems. 2021. Vol. 5, No. 2

ISSN 2522-9052

UDC 004.49

doi: https://doi.org/10.20998/2522-9052.2021.2.20

Zhang Ligiang®, Cao Weiling®, Jan Rab¢an?, Viacheslav Davydov?, Nataliia Miroshnichenko®

! Neijiang Normal University, Neijiang, China
2 University of Zilina, Zilina, Slovakia

®National Technical University "Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

ANALYSIS AND COMPARATIVE STUDIES
OF SOFTWARE PENETRATION TESTING METHODS

Abstract.

Information security is one of the most important components in any organization. The disclosure of this

information can lead not only to material losses, but also to the loss of the reputation and image of the company, which
ultimately, in some cases, can lead to its complete collapse. Therefore, in order to avoid these consequences, it is necessary
to analyze the security and reliability of information processing systems. One of the most effective ways to do this is
through the use of "penetration testing” methods. The results obtained. The section provides software vulnerabilities
analysis. The most frequently used types of attacks and intrusions by cyber intruders are highlighted. In contrast to this,
methods comparative analysis for identifying software vulnerabilities was carried out. It is concluded that it is advisable to
improve the methods for identifying vulnerabilities through the recommendations complex use taking into account the
existing security risks of software tools, the features of modern methodologies and software development tools, as well as
the modern software penetration testing methods capabilities.

Keywords: information security; testing methods; vulnerable software; security testing.

Introduction

Currently, information security is one of the most
important components in any organization, since the
information processed in their information systems, to a
greater or lesser extent, belongs to the categories of
commercial secrets and personal data. The disclosure of this
information can lead not only to material losses, but also to
the loss of the reputation and image of the company, which
ultimately, in some cases, can lead to its complete collapse.
Therefore, in order to avoid these consequences, it is
necessary to analyze the security and reliability of
information processing systems. One of the most effective
ways to do this is through the use of “penetration testing"
methods. The term "penetration testing" means imitation of
the actions of a real attacker to implement unauthorized
entry into the information system [3, 7].

1. Software Vulnerabilities Analysis

Currently, modern digital computing and
communication tools cannot be imagined without
appropriate software. Moreover, the level of its quality
is largely determined by the presence (or absence) of
critical errors (bugs). This objectively existing factor
cannot be ignored when assessing software
vulnerabilities. Vulnerability can be the result of errors

Vulnerabilities By Year

II I153 |

2008 3
2009 39
2010 150

M 2011 266

M 2012 249
2013174
2014127
2015 157

M 2016 172

M 2017 153
2018 161
2019177

made at various stages of software development (design,
coding, etc.), of outdated cryptographic systems and
authentication systems use, disregard for the rules and
algorithms of secure programming, etc. Analysis of
different levels standards and recommendations for
information security showed that the term vulnerability
is used to denote a flaw in the system, using which you
can violate its integrity or cause incorrect operation.

Studies carried out have shown that some
vulnerabilities are known only theoretically, while
others are actively used and have known exploits. Free
software security study by Edgescan, Coverity, OWASP
fund, which analyzed the security of more than 1000
projects containing more than 150 million lines of code,
showed that they contain more than 60 thousand
vulnerabilities [1]. And the most common types of
vulnerabilities can be identified (Table 1)

As you can see in Table 1, Microsoft software
products and various Web browsers have been the most
vulnerable types of software for a number of years.
Edgescan Vulnerability Stats Report 2020 shows
vulnerabilities exist in all popular Web browsers.

The report gives a security analysis for such
popular Web browsers as Mozilla Firefox, Opera and
Chrome. For example, the statistics of Chrome
vulnerabilities is shown in Fig. 1.

Vulnerabilities By Type

M Denial of Service 901

M Execute Code 121

W xss 70
Overflow 371
Mermory Corruption 91
Bypass Something 189
Gain Information 116
CSRF 3
Gain Privilege 6
Directory Traversal 7

901

371

189

16

121
91 306 7

.m
.

Fig. 1. Chrome Web Browser vulnerability statistics

136

© Zhang Ligiang, Cao Weiling, Rabéan J., Davydov V., Miroshnichenko N., 2021

ISSN 2522-9052

CyuacHi indopmariitai cucremu. 2021. T. 5, Ne 2

Table 1 — The most common types of vulnerabilities

vulnerability tvpe The percentage of identified vulnerabilities Degree of
yop 2018 [2019 | 2020 criticality
Vulnerabilities in software of private firms and non-governmental organizations
BLUEKEEP CVE-2019-0708 15% 18% 17% High
UNSUPPORTED SQL SERVER 14% 17% 17% Middle
SQL INJECTION (WEB APPLICATION ATTACK) 17% 12% 11% Middle
MS Office Memory Corruption Vulnerability CVE-2017-11882 - 8% 10% Middle
RDP, MS12-020/, CVE-2012-0002 6% % % High
SMB, MS17-010/, CVE-2017-0143 TO, CVE-2017-0148 6% 6% 6% High
OTHER 42% 32% 32%
Vulnerabilities in software of state institutions

SQL INJECTION 41% 42% 42% Middle
CROSS-SITE SCRIPTING (XSS) 20% 19% 20% Middle
PHP MULTIPLE VULNERABILITIES 14% 16% 17% High
REMOTE CODE EXECUTION 5% % 8% High
SENSITIVE FILE DISCLOSURE 3% 5% 5% High
OTHER 17% 11% 8%

The studies carried out have shown that the most vulnerabilities, specific ~ testing methods and

common vulnerabilities are the following: recommendations are used. The goals, methods,
Overriding a null pointer allows to execute a code algorithms and means of verification, rules for

outside the vulnerable software.

Resource leak. If after the program terminates or
memory releases, the released resources are not cleared,
then these memory areas may still contain the values of
variables and other confidential information.

Dead code. The presence of unused sections of a
code in the program allows an attacker to inject software
bookmarks into these sections of the code and then use
them to get unauthorized access to protected resources.

Using values before validation. If the software
processes information coming from external sources
without verification, then it is possible to generate such
a variable value that will allow you to get full control
over the vulnerable software.

Access to uninitialized variables. This
vulnerability is similar in nature to the "Dead Code"
vulnerability, when unused parts of software are used by
an attacker to get a full control over a program.

Using an object after release allows to access the
restricted information. Buffer overflow is a vulnerability
that occurs when a computer program writes down data
outside a buffer allocated in memory. Buffer overflow
usually occurs due to improper handling of data
received from outside and memory, without tight
protection from the programming subsystem (compiler
or interpreter) and the operating system. It should be
noted that the mentioned above statistics and the list of
vulnerabilities are not the exhaustive data.
Unfortunately, the level of motivational components of
cyber intruders very often exceeds the capabilities of
individual IT companies which resist cyber-attacks.
However, a number of methods for identifying software
vulnerabilities have been developed and are currently
being used. Let's conduct out their comparative analysis.

2. Comparative analysis of methods
for identifying vulnerabilities

The studies carried out have shown that currently,
to improve the efficiency of identifying software

conducting and verification are indicated in them. The
following ones are relevant for Ukraine: [1-8]:

— OSSTMM (Open Source Security Testing
Methodology Manual);

— OWASP (Open Web Application Security
Project) Testing Guide;

— PTES (Penetration
Standard);

— NIST Special Publication 800-115: Technical
Guide to Information Security Testing and Assessment
(NIST SP 800-115);

— BSI - Study A Penetration Testing Model;

— ISSAF Information System Security
Assessment Framework;

- THE NATIONAL BANK OF UKRAINE
BOARD RESOLUTION of 28.09.2017 Ne 95 «On
Approval the Provision about Organization of Measures
on Ensure Information Security in the Banking System
of Ukraine».

Each of these documents has its own
characteristics (advantages and disadvantages). The
research is carried out in several stages (Fig. 2), which
allow to structure knowledge and comprehensively
assess the security of software. In general, the results of
comparing methodologies by phases of vulnerability
tests can be illustrated with Fig. 3.

Testing Execution

PLANNING PHASE

FOOTPRINTING

DISCOVERY

PHASE SCANNING & ENUMERATION

'VULNERABILITY ANALYSIS

ATTACK
PHASE

REPORTING PHASE

Fig. 2. Software security testing stages

137

ISSN 2522-9052

Advanced Information Systems. 2021. Vol. 5, No. 2

1591 AljIqeJauna Jo saseyd Aq saibojopoyiaw Jo uonealisse]D g B4

*AS0|0pOY3IaW BY3} YHM JUSISISUOD e SUO1399304d Y3 18] 24NSUD 0] 51591 palinbay

30B1E |NJSSIIINS B U0J UOIIEUWIOJUI P2129dXd JO ISI7

ININLSSO

n |euonippe Suljjeisu
uoj3oadsul waysAs ¢
uole|easa aga|Inld "7
ssadoe §ululen '

Hoday

Adeny

sisAjeue Ajljiqesau|np ‘¢
uoljewJoyul
po109]|02 a3 Suines ‘Bulsa) 14e1S T

yoJeasay

| 1]

Suruue|d

dSVMO

syoejiue dn Suluesd 'z

uoneasd 1ioday poday 'T Hoday

s92e41 SUIpIH 9

uoIINJAXD 159 ssa22e poddns *g
asiwosdwo) 'y

ssadoe Sujuien ‘g
uoljesipuad ‘T

uonesedaid S31}|1GBJ2UINA JO UOIIBDIHIUSP] "€ uoijenjeng
Suiddew suomiaN ‘¢

UOI1BWIO4UI JO UOI}23]|0D 'T

ELAN|

uoljeasd poday

uoneald 1joday

UOIINDIX3 1591

uonesedald

uo10adsul walsAs "¢
uole|essa ags|IALd ‘T
ssad0e Sululen ‘T

sa1}|1an [euonippe Suljjeisu] i

1odau ‘sisAjeue jeuly _ _

uoneald jjoday

UuoI1NJ3Xa 19|

sishjeue Ayljiqesauina ‘g

(w.Joy1e(d 1591) JUBWILOIIAURG 159) dJedald ‘T

aules|n Jo

waisAs Supjueq ay3 Ul A1INJ3S UOIIBWLIOJU] BUNSUS 01 SaJnseaw Jo |eaoidde ayy uo suonenday

sa1|nn |euonippe uljjesul
uo3dadsul waysAs ¢
uole|easa aga|Inld '
ssadoe §ululen ‘T

sisAjeue Ayljigesauinp 'z
uolewJojul
Pa3103]|02 33 Sulnes ‘Suisal 14e1S '

poday

Xoeny

yaieasay

Suruue|d

STT-008 uonedlignd [e12ads 1SIN

uone}o|dxa 1s0d '€
uoIINJ3XD 159 uoneyo|dx3 'z
sisAjeue Ajjiqessu|np T

Suljapow jeaiyl ‘¢
uoew.ojul Sui3dd||0) "7

uonesedald
uonoesdul Aleuiwiiaid ‘T

1dwalie uoiseAul ANIIY UOIINJ9X3 3153
(/ $3180|0pOYISIN HJ\L/
S)SII puUB uolleWIOUl JO SISAjeuy “€
uonesedald 2ouasijPIul T exaoLolroy
uonesedaid ‘T
1S9
uoljeasd yoday yoday uoijeald poday

uoIlNJdaxa 1S9

uonesedald

S3ild

138

ISSN 2522-9052

CyuacHi indopmariitai cucremu. 2021. T. 5, Ne 2

Table 2 contains a comparison of the methods
being studied, where the objects of research are divided
into 3 standard phases:

— Preparation,

— Execution of tests

— Generation of a report.

Table 3 contains a comparison of methods
according to the specified criteria using a similar system
of point grades from 0 to 10.

The presented results of the methodologies
assessment showed the imperfection of any of them. For
example, the best methodology in the test execution and
reporting phases — OWASP does not meet the
requirements of the experts in the preparation phase.
Vice versa, the OSSTMM methodology, which was
highly appreciated by experts at the first stage of
preparing the pre-test material, has a low rating at the
later stages of software security research.

Table 2 — Comparison of the investigated methodologies according to three standard phases

Resolution of the
Methodology, Phases OWASP|OSSTMM|NIST SP| BSI [ISSAF|PTES NBU Board No 95
Preparation
Customer approval of testing modes 0 7 1 0 5 7 7
Execution and signing of the contract 0 7 5 8
Tests execution
Collecting information about the object 8 1 4 8 8 7 0
Identification of vulnerabilities 8 1 3 8 8 8 1
Analysis of information and risks 8 1 2 8 8 8 2
Active invasion attempts 8 1 5 8 8 8 0
Enabling the following intrusion 8 0 0 0 8 8 0
Report creation
Artifact cleaning 5 1 2 4 5 8 0
Report creation 5 7 4 8 7 9 2
Analysis and recommendations for found
\vulnerabilities elimination 10 2 4 8 4 9 1
Description of risks 10 1 3 8 4 9 2
Table 3 — Comparison of methodologies by criteria
Resolution of the

Methodology, Phases OWASP|OSSTMMINIST SP| BSI |ISSAF|PTES NBU Board No 95
Description of the information a cracker can obtain 5 8 1 0 2 0 2
Description of the penetration testing goals 10 4 5 10 1 5 3
Detailed description of the methodology 10 4 9 7 6 10 0

Based on this, it can be concluded that it is
advisable to improve the methods for identifying
vulnerabilities through the complex use of
recommendations taking into account the existing
security risks of software tools, the features of modern
methodologies and software development tools and the
capabilities of modern software penetration testing
methods.

Conclusions

The section analyzes the software vulnerabilities.
The priority of software security requirements and the
obligation to follow these requirements at all stages of
the software life cycle are shown. Research and

comparative analysis of methods for identifying
vulnerabilities have been carried out; lack of attention
from developers to security issues has been indicated.

The expediency of improving the existing methods
of software penetration testing by synthesizing a new
software testing method taking into account increased
security requirements is indicated.

Acknowledgment

The Slovak Research and Development Agency
(Agenttra na Podporu Vyskumu a Vyvoja) supported
this work under the contract no. APVV-18-0027 titled
“New methods development for reliability analysis of
complex system”.

REFERENCES

1. (2020), Edgescan’s 2020 Vulnerability Stats Report Released, available at: https://www.edgescan.com/edgescans-2020-

vulnerability-stats-report-released/

2. Kostadinov, Dimitar (20160, Introduction: Intelligence Gathering & Its Relationship to the Penetration Testing Process
available at: https://resources.infosecinstitute.com/penetration-testing-intelligence-gathering/
3. Nickerson, C. (2012), The Penetration Testing Execution Standard, available at: http://www.pentest-standard.org/index.php/

PTES Technical Guidelines

4. Scarfonem K., Souppayam M., Codym A. and Orebaugh, A. (2012), NIST Special Publications 800-115 Technical Guide to
Information Security Testing and Assessment, USA, Gaithersburg, 80 p., available at: http:/csrc.nist.gov/publications/

nistpubs/800-41-Rev1/sp800-41-revl.pdf

5. (2012), Study A Penetration Tesing Model, Germany, Bonn, 111 p., available at: https://www.bsi.bund.de/SharedDocs/
Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf? _blob=publicationFile

139

https://www.edgescan.com/edgescans-2020-vulnerability-stats-report-released/
https://www.edgescan.com/edgescans-2020-vulnerability-stats-report-released/
http://www.pentest-standard.org/index.php/%20PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/%20PTES_Technical_Guidelines
http://csrc.nist.gov/publications/%20nistpubs/800-41-Rev1/sp800-41-rev1.pdf
http://csrc.nist.gov/publications/%20nistpubs/800-41-Rev1/sp800-41-rev1.pdf
https://www.bsi.bund.de/SharedDocs/%20Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/%20Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile

Advanced Information Systems. 2021. Vol. 5, No. 2 ISSN 2522-9052

6. (2018), The Open Source Security Testing Methodology Manual, available at: http://mwww.isecom.org/mirror/OSSTMM.3.pdf.
7. Vacca, John R. (2017), Computer and Information Security Handbook Elsevier, 1280 p.
8. (2018), XPathinjection, available at: URL:https://portswigger.net/kb/issues/00100600_xpath-injection.

Hapitina (received) 21.01.2021
Tpuitasita 1o npyky (accepted for publication) 07.04.2021

B110MOCTI ITPO ABTOPIB / ABOUT THE AUTHORS

Jlimzsan JIzkaH — BUKIIa[ad KOJIE/DKY KOMIT FOTEpHHUX Hayk, TumnoBwid yHiBepcuteT Helsana, Heitizsa, Kitaid;
Zhang Ligiang — teacher, College of Computer Science, Neijiang Normal University, Neijiang, China.
e-mail: zhangig@nijtc.edu.cn; ORCID ID: https://orcid.org/0000- 0003-1278-2209.

L ao Beiiain — Buknanay indopmariiinoro nenrpy IT, Tunosuit yrieepcurer Helinzsina, Heiinzsn, Kitaid;
Cao Weilin — teacher, Department of IT information Centre, Neijiang Normal University, Neijiang, China.
e-mail: caowl@njtc.edu.cn; ORCID ID: https://orcid.org/0000-0001-8230-5235.

PaGuan SIu — PhD, dakynbreT ynpapiiHCKUX HayK Ta iHpopMaTuku, JKuTiHChKUI yuisepeurer, XKunina, ClioBayunna;
Jan Rabéan — PhD, Faculty of Management Science and Informatics, University of Zilina, Zilina, Slovakia;
e-mail: Jan Rabcan@fri.uniza.sk; ORCID ID: https://orcid.org/0000- 0003-2835-9114.

HdaBuaoB BsivectaB BaauMoBHMY — KaHIWIAT TEXHIYHMX HayK, JgoneHT kKadeapm "OOuumciroBanbHa TeXHiKa Ta
nporpamyBaHHs", HamionansHuil TexHigHMi yHiBepcuTeT " XapKiBCHKUHA MOMITEXHIYHIH iHCTHTYT", XapKiB, YKpaiHa;
Viacheslav Davydov — Candidate of Technical Sciences, Associate Professor of Computer Engineering and Programming
Department, National Technical University "Kharkiv Polytechnic Institute”, Kharkiv, Ukraine;
e-mail: vyacheslav.v.davydov@gmail.com; ORCID ID: https://orcid.org/0000-0002-2976-8422.

Mipommnivenko Haraniss MuxogaiBHa — KaHIUIAT TEXHIYHMX HayK, JOUEHT Kagenpu "OOumciroBanbHa TeXHIKA Ta
nporpamyBanHs", HanioHansHui TexHiYHUN yHIBepcuTeT "XapKiBChbKUIA MoniTexXHIuHMH iHCTUTYT", XapKiB, YKpaiHa;
Nataliia Miroshnichenko — Candidate of Technical Sciences, Associate Professor of Computer Engineering and
Programming Department, National Technical University "Kharkiv Polytechnic Institute”, Kharkiv, Ukraine;
e-mail; natnikdr@gmail.com; ORCID ID: https://orcid.org/0000 0003-4329-7126.

AHaJni3 i nopiBHAJIBHE 10CII’KEeHHs] METOiB TeCTYBAaHHS NPOIPAMHOI0 3a0e3le4YeHHs] HA POHUKHEHHS
Wskan Jliusty, Lao Beiinin, 5. Pabuan, B. B. /laBunos, H. M. MupomHndeHko

AHoTanis. [HpopmamiiiHa Oe3reka € OAHMM 3 HAWBAXIUBIMIMX KOMIIOHEHTIB B OyIb-sKili oOprasizaiii, OCKUIBKH
iHpopMaris, mo o0pobiseThcs B 1X IHQOPMALIHUX cHucTeMaxX, B OUIBIINM YM MEHIUNIA Mipi BiTHOCHTHCS 1O KaTeropii
KOMEPIIIHOT TAEMHUII i IEPCOHATIBHUX JaHUX. PO3KpUTTS wiel iHpopMallii MoXKe IPU3BECTH HE TUIBKU 0 MaTepialbHUX BTpar,
a il 1o BTpaTu pemyrauil Ta iMi/UKy KOMIaHii, [0 B KiHIIEBOMY MiICYMKYy B ASSKHX BHIAAKaxX MOXE MPHBECTH 10 1i OBHOTO
kpaxy. ToMy, 1100 YHHKHYTH IMX HACIIJKiB, HEOOXIJHO MpoaHaizyBaTy Oe3neKy i HamiifHICTh cucteM oOpoOKH iH(popMmaii.
OpuH 3 HalOITBII e(EeKTUBHUX CIIOCOOIB 3pOOUTH Iie - BUKOPHCTOBYBATH METOAU «TECTYBaHHS Ha MPOHMKHEHH:s». OTpHMaHi
pe3ynbTaTi. Y pO3MIiNi TNPOBEINCHO aHaji3 BpPa3IMBOCTEH IMpOrpaMHOro 3abe3nedyeHHs. BuaineHo HaWOLIBII YacTo
BHUKOPUCTOBYBaHi KiOep3IOyMHUIUICHHIKAMI BHOM aTtak i BTOprHeHb. Ha mpoTuBary 1ipoMy NpOBEAEHO IMOPIBHSJIBHUE aHai3
METOOMK BHABJICHHS BpasiauBocTei II3. 3poONeHO BHCHOBOK MO JOLINBHICTH BIOCKOHAICHHS METOIUK BHSIBICHHS
BPa3IMBOCTEH MUISIXOM KOMIUIEKCHOTO BHUKOPHUCTAHHS PEKOMEHIALH 3 ypaXyBaHHSIM ICHYIOUHMX PHU3UKIB O€3MeKd MporpamMHUX
3aco0iB, 0COOIMBOCTEH CydacHHX METOAOJIOrH 1 3acobiB po3podku 10, a TakokK MOXKIMBOCTEH CydaCHUX METOJHMK TECTYBaHHSI
IO Ha mpoHWKHEHHs. 3 METOK apryMEHTOBAHOIO BHOOPY TEXHONOri MareMaTH4yHOi (opmaiizauii Mmpouecy TecTyBaHHSI
MPOBE/ICHI aHaJi3 i MOPiBHSUIbHE JTOCIIKEHHS HAHOLIbII IEPCIIEKTUBHUX 3 HUX.

KawuoBi cioBa: indopmaiitHa Ge3riexa; METOIM TECTYBaHHS, BPa3JIMBe IPOrpaMHe 3a0e3MeueHHs; TeCTyBaHHsI Oe3eKH.

AHaJm3 U CPaBHUTEJIbLHOE MCCJICJIOBAHUE METOA0B TECTUPOBAHUSA
NnmporpaMmmMHOro odecneyeHHust Ha NMPOHUKHOBEHHE

Wxan Jlnusn, LHao Beiinun, 1. Pabuan, B. B. [laBbinos, H. H. Mupouanyenko

Annotanus. MudopmaironHas 6€30MacHOCTD SIBJISETCS OJHAM U3 BaKHEHIIINX KOMIIOHEHTOB B JIFOOOW OpraHu3alu,
MOCKOJIBKY MH(pOpMalys, oOpadaTsiBaeMasi B UX MHPOPMALMOHHBIX CUCTEMaX, B OOJbLICH MM MEHbIIEH CTEIeHH OTHOCUTCS K
KaTeropusiM KOMMEPYECKOH TalHbI U MEPCOHANbHBIX IaHHBIX. PackpbITHe STOH HH(OPMALMKM MOXET MPUBECTH HE TONBKO K
MaTepUaIbHBIM MOTEPSIM, HO U K OTEpEe PEMyTallui U UMHIXKa KOMIIAHUHU, YTO B KOHEUHOM UTOre B HEKOTOPBIX CIIydasX MOXKET
MPUBECTH K €€ MOJTHOMY Kpaxy. [1oaToMy, 4T00bI N30eXkaTh ITHX IOCIEACTBHI, HEOOXOANMO IPOAHAIU3UPOBATH OE30MACHOCTh
U HaJIKHOCTh cucTeM 00paboTku unHpopMaimu. OmuH u3 Hanboiee IPPEKTUBHBIX CIIOCOOOB CHENATh ITO - HCIONB30BaTh
METOJbl «TECTHPOBAaHUsI Ha NpoHUKHOBeHHE». IloiydeHHBIe pe3yibTaTbl. B pa3szgene npoBeleH aHamu3 YSI3BUMOCTEil
MPOrpaMMHOro obecreueHus. BrlieneHsl Hanbosee 4acTo HCHoNb3yeMble KHOep3JI0yMbIIITIEHHUKAMH BH/IbI aTaK M BTOP)KCHHUH.
B mnporuBoBec 3TOMYy MNpOBEAECH CPaBHUTENBbHBIM aHANW3 METOMUK BbIsBIeHHA ya3BuMocTeidl [10. Cheman BwIBOO 0
1L[e7IeCO00Pa3HOCTH YCOBEPLICHCTBOBAHUS METOAWK BBIABICHUSA YA3BHUMOCTEH IIyTeM KOMIUIEKCHOIO —HCIHOJIb30BaHUS
PEKOMEH/IAMK C YYETOM CYIIECTBYIOIIMX PHCKOB OE€30MacCHOCTH IPOrPAMMHBIX CPEICTB, OCOOCHHOCTEH COBPEMEHHBIX
METOmONIOTHi © cpeAcTB pa3paborku [10, a Takke BO3MOXKHOCTEH COBPEeMEHHBIX METOAMK TectupoBanus [0 Ha
npoHuKHOBeHUe. C 11eNIbI0 apryMEHTHPOBAHHOT'O BEIOOpA TEXHOIOTHH MaTeMaTHYeCKOH (hopMalTi3alii IpoLecca TECTUPOBAHUS
MIPOBEICHBI aHAIN3 U CPABHUTENIFHOE UCCIIeOBAaHNE Hanbosee MePCIIeKTUBHBIX U3 HUX.

KaoudeBbie caoBa: mHPpOpMALMOHHAS OE30IACHOCTh; METO/IbI TECTHPOBAHUS; YA3BHMOE POrpaMMHOE OOecriedeHHe;
TECTHPOBaHHE OE30MACHOCTH.

140

http://www.isecom.org/mirror/OSSTMM.3.pdf
https://portswigger.net/kb/issues/00100600_xpath-injection
https://orcid.org/0000-%200003-1278-2209
https://orcid.org/0000-%200003-1278-2209
https://orcid.org/0000-%200003-1278-2209
https://orcid.org/0000-%200003-2835-9114.
mailto:vyacheslav.v.davydov@gmail.com
https://orcid.org/0000-0002-2976-8422
https://web.kpi.kharkov.ua/otp/team_member/miroshnichenko-nataliya-mikolayivna/
mailto:natnikdr@gmail.com
https://orcid.org/0000-0003-4329-7126

