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The dependence of the test function on the phenomenological parameters used in the “NAV” (“New Algol Vari-
able”) algorithm (Andronov, 2012) is studied in the present work. Due to a presence of local minima, the method
of minimisation contains two steps: the “brute force” minimisation at a grid in the 4D parameter space, and further
iterations using the differential corrections. This method represents an effective approximation of the lightcurve
using the special pattern (shape) for the primary and secondary minima separately. The application of the method
to real star systems is briefly reviewed.
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introduction
Currently nearly 400 000 variable stars are listed

in the Variable Stars Index (VSX1). In the Gen-
eral Catalogue of Variable Stars (GCVS, Samus,
et al., 2007–2016 [27]), the online version of which
is available at SAI Web-page2, there are currently
52011 objects with official GCVS names, including
10845 objects classified as eclipsing ones. These ob-
jects distributed among the subtypes as 5294 (EA),
3018 (EB), 1434 (EW), 1099 (E). Only few dozens of
them were studied in details, using not only photo-
metric, but also spectral and (rarely) polarimetrical
observations. For such rare objects, the “physical”
modelling is possible with a determination of radii,
masses, and temperatures. The “standard” approach
is the so-called “Wilson – Devinney” model [33, 34],
which was realised in some famous programs: “Bi-
nary Maker" [16], Phoebe [25], and in the set of pro-
grams elaborated by S. Zoła et al. [35, 36]. Different
problems of the physical modelling were described e.
,g. in [18, 19, 20].

For the majority of stars, there are only photo-
metric observations, often obtained with one (or no)
filter, thus the “physical” modelling is not possible
because of unknown temperatures of the components
and their mass ratio. In this case, only “phenomeno-
logical” modelling is available, which is characterised
by a smaller number of parameters describing the
lightcurve, namely, the period P , the initial epoch
T0, brightness in primary maximum mmax and pri-
mary minimum mmin, the duration of the eclipse D.
Additionally, the brightness at the secondary mini-

mum and (if different from mmax) at the secondary
maximum, and the phase shift of the secondary mini-
mum in respect to the phase 0.5 (significant in a case
of elliptical orbits) are listed in the section “remarks"
of the GCVS [27, 30].

Typically the values of brightness and phases are
determined using local approximations of observa-
tions in intervals, which include the extrema (either
maximum, or minimum) (e. g. [4]).

Some methods use the trigonometrical polyno-
mial approximation of the complete lightcurve [26].
Also there is a set of studies based on the “simplified
physical" model, which suggests spherically symmet-
rical components with uniform brightness distribu-
tion [12, 22, 28].

More accurate methods, based on special shapes
(patterns) of the minima, were actively used re-
cently [5, 6, 23].

Another algorithm for statistically optimal de-
gree s of the trigonometrical polynomial (sometimes
called the “restricted Fourier series”) determination
is based on the minimisation of the r.m.s. estimate of
the accuracy of the smoothing function at the argu-
ments of observations [1, 2]. Another algorithm for
statistically optimal degree s of the trigonometrical
polynomial (sometimes called the “restricted Fourier
series”) determination is based on the minimisation
of the smoothing function accuracy r.m.s. at the
observational arguments [1, 2]. This method was ef-
fectively applied also for pulsating Mira-type vari-
ables [21].

In this paper, we compared previously used ap-
proximations with approximations that use the spe-
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cial shape (pattern) and studied behaviour of the test
function in the parameter space. For illustration, we
have used n = 1000 values of the phenomenologi-
cal “NAV” function [6] with fixed parameters, which
models the lightcurve of an EA-type eclipsing binary.

the methods of calculations:
trigonometric polynomial

There were oversimplified models, which could
be effective for automatic classification of numer-
ous newly discovered variable stars using the sur-
veys, e. g. the “EA” catcher with a parabolic shape
of minima of equal width and different depth [10].

More recently, Papageorgiou et al. [24] proposed
a model of parabolic shape either for the out-of-
the eclipse parts (phases (0.1..0.4) and (0.6 − 0.9)
of the lightcurve), or for the eclipses (fixed phases
(−0.2..0.2), (0.3..0.7)). The corresponding curve is
shown in Fig. 1. One may note a reasonably good ap-
proximation out of eclipses, but a bad approximation
at the phases of minima because of an overestimated
eclipse width.

Moreover, the lightcurve is not continuous. In the
much earlier “EA” catcher [10] the smoothing func-
tion was continuous, and the width (as well as the
phase shift) was determined using non-linear least
squares fitting (see examples of this and other func-
tions in [9, 13, 14]). The approximation of the vari-
able stars extrema using the algebraic polynomial of
the statistically optimal degree was realised in the
software [15, 17]. The separate case of abrupt de-
cline and inclined parts of the lightcurve, when the
analytical function gives obviously bad approxima-
tions, was discussed in [8]. The fixed width in the
method from [24] leads to a systematic differences
between the observations and the approximation.

Next approximation is a trigonometrical polyno-
mial:

xc(ϕ) = C1 +

s∑
j=1

[C2j cos(2πjϕ)+

+C2j+1 sin(2πjϕ)] = C1+

+

s∑
j=1

Rj cos [2πj(ϕ− ϕ0j)] ,

where ϕ is the phase, ϕ0j are initial phases corre-
sponding to the maximum of the wave with the jth

term of the sum, and Rj are corresponding semi-
amplitudes. The coefficients Cα (α = 1..m = 1+2s)
are determined using the least squares method.

The approximations, which use the trigonomet-
ric polynomial of different degrees s, are shown in
Fig. 2. One may note an expected refinement of the

approximation with an increasing of s. The coeffi-
cients C2j are shown in Fig. 3. They describe terms
with a cosine function, thereby the “symmetrical”
part of the lightcurve. For even j the absolute values
are typically larger, which is explained by a similar-
ity in depth of the primary and secondary minima,
as the coefficients with even j approximate a mean
lightcurve with a double frequency, and the coeffi-
cients with odd j approximate the difference:

xc(ϕ) + xc(ϕ+ 0.5)

2
= C1 +

s/2∑
k=1

[C4k cos(4πkϕ)+

+C4k+1 sin(4πkϕ)] ,

xc(ϕ)− xc(ϕ+ 0.5)

2
=

s/2∑
k=1

[C4k−2 cos(2π(2k − 1)ϕ)+

+C4k−1 sin(2π(2k − 1)ϕ] .

Additionally, if the O’Connell effect is practi-
cally absent (that is the case for the majority of ob-
jects) [24], the terms with sine vanish, and one gets
only sums of terms with cosines.

At this dependence, the coefficients tend to zero,
but too slowly. E. g. the last coefficient exceed-
ing an arbitrary limiting value of 0.001 occurs at
j = 64, so the corresponding number of parameters
m = 1 + 2 · 64 = 129 is extremely large.

For determination of the statistically optimal
value of s different criteria may be used (e. g. [1, 2]).
The first is based on the Fischer’s criterion, which as-
sumes uncorrelated observational errors obeying the
normal distribution. For our data set (which con-
tains computed values without any noise), this crite-
rion is not applicable, as the deviations between the
data and the approximation are systematic and not
random. For real stars, we used this criterion as well
(e. g. [2, 9]).

The second criterion is based on minimisation of
the r.m.s. accuracy estimate σ[xc] of the approxima-
tion xc(ϕ) at the arguments of observations ϕk:

σ2[xc] =
m

n
σ2
0m, σ2

0m =
Φm

n−m
,

Φm =

n∑
k=1

wk · (xk − xc(ϕk))
2.

Here σ0m is a “unit weight error”, Φm as a “test”
(“target”) function to be minimised in the parameter
space.

The dependence of σ[xc] on the number of pa-
rameters m is shown in Fig. 4. In fact, it may be
split into two almost monotonic sequences for even
and odd degrees of the trigonometric polynomial (as
a consequence of the separate dependencies of the
coefficients described above). The bottom sequence
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shows a systematic decrease with s, so formally the
degree of the trigonometric polynomial should be ex-
tremely large, close to n/2, i. e. the approximation
tends to an interpolating function. This is because
the data are precisely described by a function.

In a real situation, the present statistical errors
lead to qualitative and quantitative changes. For an
illustration, we have suggested an additional obser-
vational noise with a standard error of (arbitrarily)
0.001 and 0.01. The resulting dependencies show a
broad, but distinct minimum in Fig. 4 at s = 132
and s = 34, respectively.

The additional noise shifts the position of the
minimum of the dependence of the r.m.s. value of
the accuracy of the approximation towards smaller
values, leading to the systematic shifts. Anyway, the
degree is very large, which leads to a considerable
number of statistically insignificant coefficients.

the methods of calculations:
the nav algorithm

To decrease the number of the parameters, An-
dronov [5, 6] proposed the following approximation
called “the NAV” (“New Algol Variable”) algorithm:

xc(ϕ) = G1 +G2 cos(2πϕ) +G3 sin(2πϕ)+

+G4 cos(4πϕ) +G5 sin(4πϕ)+

+G6H(ϕ− C4, C1, C2)+

+G7H(ϕ− C4 − 0.5, C1, C3),

where the shape (pattern) is localised to the phase
interval

H(ζ, C1, β) =

{
V (z) = (1− |z|β)3/2, if|z| < 1,
0, if|z| ≥ 1,

where z = ζ/C1, and C1 is the eclipse half-width. In
the GCVS [27], the eclipse full width in per cent D is
required for the classiïňĄcation. Thus D = 200 ·C1,
which is rounded to integer number (of per cent),
C1 = D/200 is expressed in parts of the orbital pe-
riods, as phases.

The second-order trigonometrical polynomial is
typically sufficient to describe the effects of reflec-
tion, ellipticity and asymmetry (O’Connell effect).
The H− functions describe the shapes of the min-
ima, with a parameter β, which is generally different
for the primary (β1 = C2) and secondary (β2 = C3)
minima. Generally, there may be a shift ϕ0 = C4.
Phenomenological modelling of multi-color observa-
tions of a newly discovered eclipsing binary 2MASS
J18024395 + 4003309 = VSX J180243.9+400331 is
presented in [11].

In Fig. 5, we show dependencies of the best fit ap-
proximation with one parameter changing in a some
range, while other “non-linear” parameters (C1..C4)
are set to the best fit values, whereas the ”linear"

parameters (G1..G7) are determined using the least
squares subroutine.

The central thick line coincides with our artificial
data, which were used for an illustration. It is clearly
seen that the change of one of the “non-linear" pa-
rameters leads to changes in the “linear” parameters
and, thus, the approximation.

In Fig. 6, we show the “levels” – lines of equal
values of Φm at the two-parameter diagrams. They
resemble deformed ellipses and show only a slight in-
clination close to the best fit point (marked by an ar-
row). The most drastic changes of the lightcurve are
due to variations of the phase shift C4 = ϕ0. There
are only one global minimum of the function, ex-
cept for the dependence with a phase shift C4. Such
structure of the test function leads to the following
algorithm of determination of the global minimum –
at first, “brute force” determination of the minimum
at a grid of values of C1..C4 with a further iterations
using the differential corrections. However, the usage
of some middle point as a starting point may lead to
iterations convergence to a local minimum instead of
the global one.

conclusions
The approximations with special pattern (also

called “shape” or “profile”) to fit the minima have
much better quality of convergence of the smooth-
ing curve with the data points. In this paper, we
studied the dependence of the test function on four
“non-linear parameters” C1..C4, whereas the “linear”
parameters G1..G7 are determined using the method
of the least squares. The “NAV” (“New Algol Vari-
able”) algorithm is an effective tool presenting a good
pattern for the minima, which may be improved by
using an additional parameter, which describes its
shape.
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Fig. 1: The model lightcurve and its approximation by
parabola at the intervals of phases centred on minima and
maxima, as proposed by (Papageorgiou et al., 2014) Fig. 2: Trigonometrical polynomial approximations of the

phenomenological lightcurve. The degree s is shown by
numbers near corresponding curves.
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Fig. 3: Dependence of coefficients Cj on j.
Fig. 4: Dependence of the mean squared error estimate
σ[xc] of the approximation for an additional noise with
r.m.s value of 0 (bottom), 0.01 (up) , 0.001 (middle).

Fig. 5: Dependencies of the lightcurves (intensity vs. phase) on the parameters C8 = D/200 (left) and C9 = β1 (right).
The relative shift in intensity between subsequent curves is 0.1. The thick line shows a best fit curve.
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Fig. 6: Lines of equal levels of the test-function for different pairs of the parameters. Arrows show the best fit point.
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