I. О. Марек, О. К. Рубан, В. П. Редько, М. І. Даниленко, С. А. Корній, О. В. Дуднік^{*}

ВПЛИВ ТЕМПЕРАТУРИ ТЕРМІЧНОЇ ОБРОБКИ ВИХІДНИХ ПОРОШКІВ НА "СТАРІННЯ" КОМПОЗИТІВ СИСТЕМИ ZrO₂—Y₂O₃—CeO₂

Досліджено вплив температури термічної обробки вихідного нанокристалічного порошку складу (% (мол.)) 92,5ZrO₂—2,5Y₂O₃—5CeO₂ на прискорене "старіння" спеченого композита системи ZrO₂—Y₂O₃—CeO₂. Визначено, що на фазовий склад композитів впливає ступінь завершеності фазового перетворення F-ZrO₂ \rightarrow T-ZrO₂ у вихідних порошках: кількість M-ZrO₂ збільшується у зразках, які знаходяться на температурних границях фазового перетворення F-ZrO₂.

Ключові слова: система ZrO₂—Y₂O₃—CeO₂, гідротермальний синтез, T-ZrO₂, M-ZrO₂, трансформаційне зміцнення, прискорене "старіння".

Bcmyn

Композити на основі ZrO₂ перспективні для створення різноманітних конструкційних матеріалів, у тому числі медичного призначення [1, 2]. Максимально високий вміст метастабільного тетрагонального твердого розчину на основі ZrO₂ (T-ZrO₂) в композитах на основі ZrO₂ визначає унікальні характеристики міцності матеріалу завдяки дії механізму трансформаційного зміцнення та обумовлює схильність матеріалу до старіння у присутності води. Тому із застосуванням кераміки T-ZrO₂, незважаючи на високу хімічну стійкість й інертність, слід враховувати ефект старіння (низькотемпературної деградації властивостей), що виникає в результаті впливу вологого середовища на її фізико-хімічні властивості [3-5]. Старіння відбувається шляхом поступального неконтрольованого перетворення T-ZrO₂ \rightarrow M-ZrO₂ на поверхні композита, викликаного присутністю вологи, що призводить до поверхневої шорсткості і мікророзтріскування [6, 7]. Один зі шляхів вирішення проблеми старіння матеріалів на основі ZrO2 — спільна стабілізація ZrO2 оксидами ітрію і церію [8], тобто створення біоінертних композитів системи ZrO₂—Y₂O₃— CeO₂ [9].

Фактором оптимального мікроструктурного проектування біоінертних матеріалів на основі ZrO_2 системи ZrO_2 — Y_2O_3 — CeO_2 є використання нанокристалічного порошку на основі ZrO_2 , стабілізованого Y_2O_3 та CeO_2

^{*} І. О. Марек — молодший науковий співробітник Інституту проблем матеріалознавства ім. І. М. Францевича НАН України, Київ; О. К. Рубан — науковий співробітник цієї ж установи; В. П. Редько — кандидат хімічних наук, старший науковий співробітник цієї ж установи; М. І. Даниленко — кандидат фізико-математичних наук, старший науковий співробітник цієї ж установи; С. А. Корній — кандидат технічних наук, старший науковий співробітник Фізико-механічного інституту ім. Г. В. Карпенка НАН України, м. Львів; О. В. Дуднік — доктор хімічних наук, старший науковий спів робітник, завідуюча відділом Інституту проблем матеріалознавства ім. І. М. Францевича НАН України, Київ.

[©] І. О. Марек, О. К. Рубан, В. П. Редько, М. І. Даниленко, С. А. Корній, О. В. Дуднік, 2018 ISSN 0136-1732. Адгезия расплавов и пайка материалов, 2018. Вып. 51 71

[10]. Властивості вихідних нанокристалічних порошків визначаються методом їх одержання. Застосування гідротермального синтезу у лужному середовищі приводить до вироблення м'якоагломерованих порошків твердих розчинів на основі ZrO_2 , що характеризуються підвищеною активністю до спікання [11—13]. Це обумовлено тим, що після гідротермального синтезу у лужному середовищі нанокристалічних порошків системи ZrO_2 —Y₂O₃—СеO₂ утворюється термодинамічно нерівноважна система, до складу якої входить низькотемпературний метастабільний кубічний твердий розчин на основі ZrO_2 (F- ZrO_2) [14].

Основна вимога технології трансформаційно-зміцнених матеріалів на основі ZrO_2 — формування T-ZrO₂, здатного до фазового переходу T-ZrO₂ \rightarrow M-ZrO₂ під дією прикладеного механічного напруження. Отже, склад вихідного порошку повинен знаходитися в області існування T-ZrO₂ на відповідних діаграмах систем, що обмежують систему ZrO₂— Y₂O₃—CeO₂ [10, 15, 16]. Цей висновок став основою для вибору складу порошку для дослідження (% (мол.)): 92,5ZrO₂—2,5Y₂O₃—5CeO₂, який позначимо Zr(2,5Y5Ce).

Мета даної роботи — дослідити вплив температури термічної обробки вихідного нанокристалічного порошку на прискорене старіння композитів системи ZrO₂—Y₂O₃—CeO₂.

Матеріали та методи дослідження

Вихідними речовинами для синтезу нанокристалічного порошку Zr(2,5Y5Ce) обрано оксихлорид цирконію $ZrOCl_2 \cdot 8H_2O$, нітрати ітрію $Y(NO_3)_3 \cdot 6H_2O$ та церію $Ce(NO_3)_3 \cdot 6H_2O$. Процес гідротермального синтезу детально представлено в роботі [17]. Термічну обробку вихідного нанокристалічного порошку Zr(2,5Y5Ce) проведено за температур 400, 550, 700, 850, 1000, 1150 та 1300 °C у лабораторній електропечі Nabertherm LTH08/17. Термін витримки 2 год.

Властивості порошків досліджено методами рентгенофазового аналізу (ДРОН-1,5, Си K_{α} -випромінення, швидкість сканування — 1—4 град/хв, 2 θ = 15—90°), диференційно-термічного аналізу (дериватограф Q-1500 D, швидкість нагріву в інтервалі температур 20— 1000 °C становила 10 °C/хв), електронної мікроскопії (мікроскопи JEM-2100 F, ZEISS EVO 40 XVP), мікрорентгеноспектрального аналізу (Phylips Analytical X-ray). Розмір первинних частинок розраховано за формулою Шеррера [18]. Мікроструктурний аналіз здійснено петрографічним методом на мікроскопі МІН-8 з використанням стандартного набору імерсійних рідин (збільшення 60—620). Питому поверхню одержаних нанокристалічних порошків визначено за методом теплової адсорбції азоту (БЕТ).

Для встановлення фазової стабільності композитів з порошку Zr(2,5Y5Ce) вибрано метод прискореного старіння матеріалів у гідротермальних умовах. Обробка матеріалів в гідротермальних умовах за температури 140 °C і тиску до 250 кПа з наступним визначенням ступеня перетворення T-ZrO₂ \rightarrow M-ZrO₂ дозволяє прогнозувати стійкість матеріалу до низькотемпературної деградації властивостей (стабільності фазового складу). Випробування зразків у гідротермальних умовах

(140 °С, 7 год) еквівалентно 20 рокам знаходження біоімплантату в організмі людини [19]. Крім цього, застосовано повторну витримку зразків у гідро-термальних умовах з терміном 7 год для додаткового дослідження зміни фазового складу композитів Zr(2,5Y5Ce) у процесі прискореного старіння.

Для експериментів по визначенню стабільності фазового складу композитів з термічно обробленого за різних умов нанокристалічного порошку методом холодного одновісного пресування сформовано зразки, які спечено в повітрі за температури 1350 °С, 1,5 год. Охолодження зразків проведено разом з піччю. Відносна щільність зразків після спікання змінювалася від 0,9 до 0,98. Випробування проведено в автоклаві, який використано для одержання вихідного порошку Zr(2,5Y5Ce). Після закінчення експериментів (7 та 14 год) зразки охолоджували разом з автоклавом. Стабільність фазового складу композитів після спікання та обробки у автоклаві визначали за результатами РФА. Критерій оцінки відсутність або присутність у невеликій кількості (до 5%) M-ZrO₂ на рентгенограмах зразків після прискореного старіння.

Результати та їх обговорення

Результати хімічного аналізу показали, що склад порошку Zr(2,5Y5Ce) відповідає розрахованому, а домішки (CaO, HfO₂, La₂O₃, Nd₂O₃) в сумі становлять не більше 1% (мас.).

За даними мікроструктурного аналізу, у вихідній суміші утворилися два типи ізотропних агломератів: прозорі агломерати, по краях яких розташовуються шари дрібнозернистої фази з високим рельєфом, та дрібнозернисті. Таким чином, кристалізація порошку Zr(2,5Y5Ce) в процесі гідротермального синтезу не завершилася: утворився нанокристалічний порошок та залишилася прозора рентгеноаморфна фаза. За даними диференційно-термічного аналізу визначено, що кристалізація цієї фази проходить за температури 280 °C.

Після гідротермального синтезу у порошку Zr(2,5Y5Ce) утворилася термодинамічно нерівноважна система, до складу якої входить низькотемпературний метастабільний кубічний твердий розчин на основі ZrO₂ (F-ZrO₂). Розмір первинних частинок, за даними PФA, складає 8 нм. Питома поверхня становить 110 м²/г.

Дослідження морфології одержаного порошку Zr(2,5Y5Ce) показало, що в ньому сформувалася трирівнева структура: первинні частинки агрегати—агломерати. Морфологію порошку представлено на рис. 1. Видно, що первинні частинки округлої форми розміром 5—10 нм (рис. 1, *a*) утворюють агрегати розміром 20—100 нм (рис. 1, *б*). Пряме розділення граток (рис. 1, *a*) підтверджує, що кристалізація твердого розчину на основі ZrO_2 проходить в процесі гідротермального синтезу. Агрегати первинних частинок зібрано у м'які нещільні агломерати (рис. 1, *в*). На рис. 1, *г* видно, що розмір агломератів подовженої та округлої форм, які з'єднані між собою, досягає 5 мкм.

Зміну фазового складу нанокристалічного порошку Zr(2,5Y5Ce) в процесі термічної обробки в інтервалі 400—1300 °C представлено в (табл. 1). За результатами РФА встановлено, що низькотемпературний

Рис. 1. Морфологія первинних частинок (a), агрегатів (δ) та агломератів (b, c) нанокристалічного порошку Zr(2,5Y5Ce)

Fig. 1. Morphology of primary particles (*a*), aggregates (δ) and agglomerates (ϵ , ϵ) of nanocrystalline powder Zr(2,5Y5Ce)

F-ZrO₂ залишається до 700 °C. Підвищення температури термічної обробки порошку до 850 °C супроводжується фазовим перетворенням F-ZrO₂ \rightarrow T-ZrO₂ (табл. 1). Вказане перетворення завершується після термічної обробки за 1000 °C і до 1300 °C фазовий склад порошку не змінюється. Фазу M-ZrO₂ після термічної обробки порошку Zr(2,5Y5Ce) не ідентифіковано.

Під час фазового переходу F-ZrO₂ \rightarrow T-ZrO₂ розмір первинних частинок збільшується в 2,5 рази (табл. 1). Обробка порошку вище 1000 °C супроводжується його спіканням. На (рис. 2) видно, що в процесі термічної обробки порошку Zr(2,5Y5Ce), під час якої має місце фазове перетворення твердого розчину на основі ZrO₂, ущільняються агрегати та агломерати первинних частинок та утворюються перешийки між ними.

порошку Питома поверхня нанокристалічного Zr(2,5Y5Ce)зменшується від 110 до 1 м²/г після термічної обробки в інтервалі 400— 1300 °С (табл. 1). У цьому разі питома поверхня змінюється у декілька етапів: 400—550 °С, 550—1000 °С та 1000—1300 °С. Фазове перетворення $F-ZrO_2 \rightarrow T-ZrO_2$, яке, за даними мікроструктурного аналізу, розпочинається за температури вище 400 °C, супроводжується ростом первинних частинок та інтенсивним зниженням питомої поверхні порошку. Після спікання нанокристалічного порошку Zr(2,5Y5Ce) в інтервалі

Таблиця 1. Зміна властивостей порошку Zr(2,5Y5Ce) при термічній обробці

Температура термічної обробки порошку, °С	Фазовий склад	Розмір первинних частинок, нм	Питома поверхня, м ² /г
Вихідний стан	F-ZrO ₂	5	110
400	F-ZrO ₂	7	80
550	F-ZrO ₂	7	79
700	F-ZrO ₂	8	60
850	F-ZrO ₂ ,	10	42
	сліди T-ZrO ₂		
1000	$T-ZrO_2$	14	7
1150	T-ZrO ₂	20	2
1300	T-ZrO ₂	20	1

T a b l e 1. Variating the Zr(2,5Y5Ce) powder properties at heat treatment

Рис. 2. Морфологія нанокристалічного порошку Zr(2,5Y5Ce) після термічної обробки за температур 700 (*a*) та 1000 °C (*б*)

Fig. 2. Morphology of nanocrystalline powder Zr(2,5Y5Ce) after heat treatment at 700 (*a*) and 1000 °C (δ)

1150—1300 °С питома поверхня порошку зменшується до 1 м²/г.

Зміну параметрів кристалічних граток F-ZrO₂ та T-ZrO₂ в процесі термічної обробки розраховано за даними карток № 27-0997 для F-ZrO₂ та № 17-0923 (1314-23-4 CASNumber)—для T-ZrO₂. Результати розрахунку наведено у табл. 2. Видно, що з підвищенням температури до 850 °C параметри гратки F-ZrO₂ монотонно зменшуються табл. 2, це свідчить про фазове перетворення F-ZrO₂ → T-ZrO₂. Існування T-ZrO₂ під-тверджено результатами РФА лише після термічної обробки за температури 850 °C, що зумовлено роздільною здатністю методу РФА. Об'єм елементарної комірки T-ZrO₂ та ступінь тетрагональності збільшуються після термічної обробки за температури 1150 та 1300 °C.

Таблиця 2. Зміна параметрів кристалічної гратки нанокристалічного порошку Zr(2,5Y5Ce) після термічної обробки в інтервалі 400—1300 °C

<i>T</i> , ℃	<i>a</i> _f ·10 ⁻¹ , нм	<i>a</i> _f ·10 ⁻¹ , нм	<i>c</i> _t ·10 ⁻¹ , нм	V _f 10 ⁻³ , нм ³	V _t ·10 ⁻³ , нм ³	Ступінь тетрагональності, <i>c_t/a</i> t·10 ⁻¹ , нм
Вихід- ний	5,1569	-	-	137,14	-	-
400	5,1342	-	-	135,33	-	-
550	5,1281	-	-	134,86	-	-
700	5,1271	-	-	134,78	-	-
850	-	3,6070	5,1522	-	136,76	1,0284
1000	-	3,6053	5,1894	-	139,74	1,0394
1150	-	3,6086	5,1918	-	139,94	1,0439
1300	-	3,6045	5,1980	-	140,44	1,0440

T a b l e 2. Variating the crystalline lattice parameters of nanocrystalline powder Zr(2,5Y5Ce) after heat treatment from 400 to 1300 °C

Фазовий склад композитів після прискореного старіння в гідротермальних умовах з різним терміном витримки наведено у табл. З. Фаза M-ZrO₂ з'являється у різній кількості у всіх зразках вже після першого старіння (7 год). Після термічної обробки порошку Zr(2,5Y5Ce) в інтервалі 400—700 °С його склад, за даними РФА (табл. 1), не змінюється — F-ZrO₂. Мікроструктурний аналіз показав, що фазове перетворення $F-ZrO_2 \rightarrow T-ZrO_2$ в порошку починається за температури вище 400 °C. З табл. 2 слідує, що вміст M-ZrO₂ в композитах знижується після початку вказаного фазового перетворення в вихідних порошках. Найменшу кількість M-ZrO₂ (2% (мас.)) визначено у зразку, одержаному з порошку Zr(2,5Y5Ce) після термічної обробки за температури 700 °C. Вміст M-ZrO₂ різко збільшується (до 14%) у зразку з порошку, термічно обробленого за температури 850 °C. За даними РФА, саме цей порошок Zr(2,5Y5Ce) знаходиться на границі завершеності фазового перетворення $F-ZrO_2 \rightarrow T-ZrO_2$. Після утворення $T-ZrO_2$ у вихідному порошку вміст M-ZrO₂ в композитах зі старінням знижується і подальша термічна обробка вихідного порошку суттєво не впливає на кількість M-ZrO2 (табл. 2). Подальше збільшення витримки композитів до 14 год у гідротермальних умовах призводить до суттєвого зростання кількості

Таблиця 3. Зміна фазового складу зразків після прискореного старіння

Температура термічної обробки вихідного порошку, °С	Фазовий склад зразків, %					
		7 год	14 год			
	T-ZrO ₂	M-ZrO ₂	T-ZrO ₂	M-ZrO ₂		
400	90	10	70	30		
550	95	5	52	48		
700	98	2	63	37		
850	86	14	61	39		
1000	94	6	60	40		
1150	98	2	84	16		
1300	93	7	63	37		

T a b l e 3. Changing the phase composition of samples after accelerated aging

Рис. 3. Фрактограми зразків з порошку Zr(2,5Y5Ce), термічно обробленого за температури 700 °C, після першого (*a*) та другого (*б*) старіння в гідротермальних умовах

Fig. 3. The digraphs of specimens from powder Zr(2.5Y5Ce), heat treated at 700 °C after the first (*a*) and second (δ) aging in hydrothermal conditions

M-ZrO₂ (табл. 2). Фрактограми зламів зразків представлено на рис. 3. Видно, що під час збільшення витримки в гідротермальних умовах зростає розмір структурних складових та поруватість зразків, що призводить до подальшого фазового перетворення T-ZrO₂ \rightarrow M-ZrO₂.

Висновки

Встановлено, що ступінь фазового перетворення $T-ZrO_2 \rightarrow M-ZrO_2$ в процесі прискореного старіння композитів системи ZrO_2 — Y_2O_3 — CeO_2 у

вологому середовищі визначається температурою термічної обробки вихідного порошку. Завершеність фазового перетворення F-ZrO₂ \rightarrow T-ZrO₂ після TO вихідного порошку складу (% (мол.)) 92,5ZrO₂— 2,5Y₂O₃—5CeO₂ обумовлює кількість M-ZrO₂, що утворюється в композитах з прискореним старінням: вміст M-ZrO₂ збільшується у зразках, які знаходяться на границі фазового перетворення F-ZrO₂ \rightarrow T-ZrO₂ Одержані дані буде використано для мікроструктурного проектування матеріалів медичного призначення.

РЕЗЮМЕ. Исследовано влияние температуры термической обработки исходного нанокристаллического порошка состава (% (мол.)) 92,5ZrO₂— 2,5Y₂O₃—5CeO₂ на ускоренное старение композитов системы ZrO₂— Y₂O₃—CeO₂. Определено, что на фазовый состав композитов влияет степень завершенности фазового превращения F-ZrO₂ \rightarrow T-ZrO₂ в исходных порошках. Вмыст M-ZrO₂ увеличивается в образцах, которые находятся на температурных границах фазового превращения F-ZrO₂ \rightarrow T-ZrO₂.

Ключевые слова: система $ZrO_2 - Y_2O_3 - CeO_2$, гидротермальный синтез, *T-ZrO*₂, *M-ZrO*₂, трансформационное упрочнение, ускоренное "старение".

- Prakasam Myth. Biodegradable materials and metallic implants A review / [Myth. Prakasam, J. Locs, Kr. Salma-Ancane et al.] // J. Funct. Biomater. — 2017. — 8. — P. 44—59; doi:10.3390/jfb8040044
- 2. *Kang Ch.-W.* State of the art of bioimplants manufacturing: part I / Cheng-Wei Kang, Feng-Zhou Fang // Adv. Manuf. 2018. 6. P. 20—40.
- Гайко Г. В. Керамічні головки на основі диоксиду цирконію для ендопротеза кульшового суглоба / [Г. В. Гайко, В. В. Лашнева, О. О. Розенберг та ін.] // Вісник ортопедії, травматології та протезування. — 2010. — № 3. — С. 5—10.
- Hannink R. H. J. Transformation toughening in zirconia containing Ceramics / R. H. J. Hannink, P. M. Kelly, B. C. Muddle // J. Amer. Ceram. Soc. — 2000. — 83, No. 3. — P. 461—487. http://dx.doi. 10.1111/j.1151-2916.2000.tb01221.x
- 5. *Reddy Ch.* Synthesis and structural, optical, photocatalytic, and electrochemical properties of undoped and yttrium-doped tetragonal ZrO₂ nanoparticles / [Chandragiri Venkata Reddy, I. Neelakanta Reddy, Jaesool Shim et al.] // Ceram. Int., Режим доступа к документу: (https://doi.org/10.1016/j.ceramint.2018.04.020).
- Manicone P. F. An overview of zirconia ceramics: Basic properties and clinical applications / P. F. Manicone, P. R. Iommetti, and L. Raffaelli // Dentistry. — 2007. — 35. — P. 819—826.
- Марек І. О. Особливості мартенситного перетворення в композитах на основі ZrO₂ / І. О. Марек, О. В. Дуднік // Современные проблемы физического материаловедения. — К. : Ин-т пробл. материаловедения НАН Украины. — 2017. — Вып. 26. — С. 43—49.
- 8. *Djurado E.* Crystallite size effect on the tetragonal monoclinic transition of and oped nanocrystalline zirconia studied by XRD and Raman
- 78 ISSN 0136-1732. Адгезия расплавов и пайка материалов, 2018. Вып. 51

spectrometry / E. Djurado, P. Bouvier, G. Lucazeau // J. Solid. Chem. — 2000. — **149**. — P. 399—407.

- 9. *DudnikE*. V. Phase diagrams of refractory oxide system sand microstructural design of materials / [E. V. Dudnik, S. N. Lakiza, Ya. S. Tishchenko et al.] // Powder. Metallurgy and Metal. Ceramics. 2014. **53**, No. 5—6. P. 303—310.
- Stubican V. S. Phase equilibria and matastabilities in the system ZrO₂— MgO, ZrO₂—CaO and ZrO₂—Y₂O₃ // Advan. Ceram. Scien. Technol. Zirconia III. — American Ceramic Society, Columbus, OH. — 1988. — 24. — P. 71—82.
- Espinoza-Gonzáleza R. Hydrothermal grow thand characterization of zirconia nanostructures onnon-stoichiometric zirconium oxide / [Rodrigo Espinoza-Gonzáleza, Edgar Mosquera, Ítalo Moglia et al.] // Ceram Int. — 2014. Режим доступа к документу: (http://dx.doi.org/10.1016/j.ceramint.2014.07.034).
- 12. *Reddy Ch.* Synthesis and structural, optical, photocatalytic, and electrochemical properties of undoped and yttrium-doped tetragonal ZrO₂ nanoparticles / [Chandragiri Venkata Reddy, I. Neelakanta Reddy, Jaesool Shim et al.] // Ibid. Режим доступа к документу: (<u>https://doi.org/10.1016/j.ceramint.2018.04.020</u>).
- Grain Growth. Characteristics of hydrothermally prepared yttria stabilized zirconia nanocrystals during calcination / [Growth Grain. Li Fei, Li Yanhuai et al.] // Rare Metal Mater. Engineering. 2017. 46 (4). P. 899—905.
- Dudnik E. V. Variation in properties of ZrO₂—Y₂O₃—CeO₂—Al₂O₃ powders during thermal treatmentat 400 to 1300 °C / E. V. Dudnik and A. V. Shevchenko // Powder Metallurgy Metal Ceramics. 2010. 49, No. 3—4. P. 125—134.
- 15. Dudnik E. V. Microstructural design of ZrO_2 — Y_2O_3 — CeO_2 — Al_2O_3 materials / [E. V. Dudnik, A. V. Shevchenko, A. K. Ruban et al.] // Ibid. 2011. **49**, No. 9—10. P. 528—536.
- 16. Андриевская Е. Р. Взаимодействие оксида церия с оксидами циркония и иттрия при 1500 °С / Е. Р. Андриевская, В. П. Редько, Л. М. Лопато // Порошковая металлургия. 2001. № 7/8. С. 109—118.
- 17. *Марек I. О.* Нанокристалічні порошки на основі ZrO₂ для виготовлення композитів, стійких до процесу старіння / [І. О. Марек, О. К. Рубан, В. П. Редько та ін.] // Наносистеми, наноматеріали, нанотехнології. 2017. **15**, № 1. С. 91—98.
- *Kamminga J.-D.* Diffraction line broadening analysis if broadening is caused by both dislocations and limited crystallite size / J. D. Kamminga, L. J. Seijbel // J. Res. Natl. Inst. Stand. Technol. 2004. 109. P. 65—74. http://dx.doi.10.6028/jres.109.005.
- Deville S. In fluence of surface finish and residuals tresseson theagingsen sitivity of biomedical grade zirconia / S. Deville, J. Chevalier, L. Gremillard // Biomaterials. — 2006. — 27. — P. 2186—2192.

Надійшла 13.10.18

Marek I. O., Ruban A. K., Red'ko V. P., Danilenko M. I., Korniy S. A., Dudnik O. V.

Effect of the heat treatment temperature of initial powders on "aging" of composites in the ZrO_2 — Y_2O_3 —CeO₂system

The effect of the thermal treatment temperature, of the initial nanocrystalline powder (% (mol)) of 92,5ZrO₂—2,5Y₂O₃—5CeO₂ on the accelerated "aging" of the sintered composites of the ZrO₂—Y₂O₃—CeO₂ system was investigated. It was determined that the phase composition of composites was influenced by the degree of completeness of the F-ZrO₂ \rightarrow T-ZrO₂ phase transformation in the powders: M-ZrO₂ increases in samples that are on the temperature boundaries of the phase transformation of F-ZrO₂ \rightarrow T-ZrO₂.

Keywords: ZrO_2 — Y_2O_3 — CeO_2 system, hydrothermal synthesis, T- ZrO_2 , *M*- ZrO_2 , transformation hardening, accelerated "aging".