m ABTOMaTH3allis TeXHoJoriYHuX i GizHec-mporecis Volume 9, Issue 4 /2017 m
http://www.atbp.onaft.edu.ua/

http://newsep.com.ua/new/1016.

[2]BounoBa C.A. O mpobGueme ympaBneHus 3()GEKTHBHOCTBIO (DYHKIIMOHHUPOBAHHS HM3HOIICHHOTO 000pyaoBaHHs /
Enepreruxa ta enexrpudikauis, 2016, Ne. 8.- C. 36 — 39.

[3]BounoBa C. A. OOHOBICHHE KaK WHCTPYMEHT pa3BHUTHs NPOU3BOACTBA/ M3BecTHs BY30B M JHEPreTUYCCKUX
ooweaurenuit CHI', Ne 2, 2013.- C. 69 - 74.

[4]BounoBa C. A. YacTkoBe OHOBICHHS — IHHOBAIlIMHWI IHCTPYMEHT VIpPaBIiHHA ¢()EKTHBHICTIO (YHKIIIOHYBAHHS
YCTAaTKYBaHHSI, 10 BiIpoOMIIO pecypc / ABTOMATH3aIlisI TEXHOJIOTIUHNX i 6i3Hec-mporeci, 2016, Volume 8, Issue 1.- C.
71-76.

[5]BonnoBa C. A. AkTyallbHbIE 3ala4d YIPABJIECHHs DKOJOTHYECKON H(PPEKTUBHOCTH TEXHUUYECKHX 00BEKTOB/ Martep.
MexnayH. koH(D. “CTparerusi kauecTBa B NMPOMBIIUICHHOCTH W oOpazoBanus’ (1-8 wmrons 2007r., Bapua, Bonrapus).
JuinporneTpoBebk - Bapua: “®@optyna”. — TY Bapua — 2007r., - T.1. - C.102 - 104.

[6]Bounos A.Il, Jdumurposa JK.B., BounoBa C.A. AKTyanbHOCTh OOHOBJCHHs O0OOpYIOBaHUS B CHCTEMax
LEHTPAIIN30BAHHOTO TEIUIO00ECTIeYeH s BO3pacTaeT ¢ yckopenuem / 30. Te3 1nonoB. MiKHAp. HayK.-TPaKT. KOHQ.
“CyuacHe micto — npoOiemu Ta ix Bupimenss”, 21 — 23 Bepecus 2017p., Oneca.- Oneca: OJJABA.- C. 91 - 92.

UDC 519.85:004.42

OVERVIEW OF POPULAR APPROACHES IN CREATING
CLIENT-SERVER APPLICATIONS BASED ON
SCIENTOMETRICS ONAFTS’ PLATFORM

D. Salskyi!, A. Kozhukhar?, O. Olshevska®, N. Povarova*

12340dessa National Academy of Food Technologies, Odessa, Ukraine

ORCID: %0000-0002-4512-3915, “0000-0003-3630-8384

Scopus ID: ¥57192687506, 56578764800

E-mail: *salsky.d@gmail.com, 2alex.kozhuchar@gmail.com, %olshevska.olga@gmail.com, “povarova.natasha@gmail.

Copyright © 2017 by author and the journal “Automation technological and business - processes”.

This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

s . ONAFT
M RTEA Open Access

DOI: 10.15673/atbp.v10i4.833

Abstract: Most of the currently developed systems are based on the client-server architecture. This architecture is used
everywhere, from mobile-native development to Web applications.

However implementing an application based on this architectural solution requires quite a lot of effort from the software
developer, and therefore, in order to simplify and speed up the development, certain standard solutions and approaches
appeared. This article will discuss the most popular technologies used in the development of Web applications in the context of
enterprise development.

Also in this article will be mentioned the project, built on the architecture of "client-server" - ScienceToMetrics.

The main theme of this project is the study of science-metric indicators for the structural divisions of the faculty of the
Odessa National Academy of Food Technologies. In fact, it is a portal for viewing and editing information on employees, in
the future this portal may be extended to subprojects.

In this project, the main idea of this architecture was embodied: decomposition of the application into atomic parts in
order to distribute it to several hardware units of capacity to improve performance. The client is an independent application,
which at the same time receives information from an external API-interface through REST-requests. In turn, the backend
provides this API with certain security restrictions on the content provided. The backend for this architecture provides a layer
for the content of the data users, whether it's a database (NoSQL, SQL) or an integration APl with external aggregation
systems. To ensure the necessary level of security, JWT (Javascript Web Token) authorization is used, which allows you not to
create an explicit session between the client and the backend, but allows you to communicate through a token that stores all
the necessary meta-information for this user.

21

m ABTOMaTH3allis TeXHoJoriYHuX i GizHec-mporecis Volume 9, Issue 4 /2017 m
http://www.atbp.onaft.edu.ua/

Annomayua: Bonvuwuncmeo cywecmsylowux 6 Hacmosujee 8pems CUcmem 0CHOBAHbL HA apXumeKmype Kiuenm-cepeep.
Dma apxumekmypa ucnoib3yemcsi NO8CeMecmHo, om MOOUIbHO-HAMUBHOU pa3pabOmKU 00 paspabomKu eO-nPuiLoNCceHull.

O0naro enedpenue npUIoICeHUst Ha OCHOBE IMO20 aAPXUMEKMYPHO20 peuleHus: mpebyem om paspadomuuxa
NPOSPAMMHO20 0becneyenuss OONLUWUX YCUNULL, NOIMOMY O/l YIPOUEHUsL U YCKOPEHUS pa3pAOOmMKU NOAGUIUCH ONPeOeleHHble
cmanoapmuule pewenus u no0xXoowl. B amoii cmamve 6yoym paccmompennvl camvle NONYAApHbLE U3 HUX, UCNOTb3YeMble NpU
paspabomie 8e0-NPULONCEHUL 8 KOHMeKCme SHMepnpaus paspadomxu.

Taxace 6 smoil cmamue Gyoem YROMAHYM NPoeKm, NOCMpoennbiil Ha apxumexmype "knuenm-cepsep” - ScienceToMetrics.

OcHosHas mema OAHHO20 NPOEKMA - U3VYUeHUS HAYKOMempUu4ecKux nokazameJeti no CmpyKmypHolM noopasoeneHusm
npogheccopcro-npenoodasamenvckozo cocmasa Odeccro Hayuonanvnou Axademuu Iuwesvix Texnonoeui. Ilo cymu
ABAAEMCS NOPMATOM 051 NPOCMOMPA U PEOAKMUPOBAHUSL UHDOPpMAYUU IO COMPYOHUKAM, 8 0YOVUeM 803MONCHbL
pacuupenus 0anHo20 NOpmMala noo doyephue NOONPOEKnbl.

B oannom npoexme 6vina sonnowena ocHogHas udest OaHHOU apXumexkmypul - 0eKOMNO3UYUL NPUTONACEHUS. HA AMOMAPHbLe
yacmu 8 Yeusix pacnpeoeienus Ha HeCKOIbKO annapamusix eOUuHUlY MOWHocmetl 0Jisk NOSbIULeHUs. NPOU3800UMETbHOCHIU.
Knuenm siensaemcs He3a8UCUMbIM NPUTOACEHUEM, KOMOPbIL NPU 9MOM ROLyyaem uHgopmayuro ¢ eHeuwneeo API-unmepgeiica
nocpeocmeom REST-3anpocos. B ceoro ouepedv bexksno npedocmasasiem oannoe API ¢ onpedenennvimu ocpanuyenusmu
bezonacHocmu no nPedoCmagieHHOMY CO0epACUMOMY. BaKkeHO 6 ciyuae dannoll apxumexkmypul npedocmasisient npoCciouKy
071 CO0epACUMO20 OaHHBIX noab3osamenet, 6y0b-mo baza danuvix (NoSQL,SQL) unu unmeepayuonroe API ¢ enewnumu
cucmemamu azpezayuu. /s obecneyenus Heooxooumozo yposHs bezonachocmu ucnoavsyemces JWT(Javascript Web Token)
asmopusayus, Komopas no36oJasaem He co30a8amby A8HYI0 CECCUI0 MeHCOY KIUEHMOM U 6IKIHOOM, d NO360.1aem 00uamscs
n0CPeOdCmeomM MoKeHa, KOMopblll XpaHum 6 cebe 6Clo HeoOX0OUMYI0 Mema-uHpopmayuro no OAHHOMY NOIb308AMENIO.

Keywords: dependency injection, ORM, client-server, html, css, javascript, MVC.

KitroueBble ciioBa: BHeapeHue 3apucumocteit, ORM, kiauent-cepsep, html, css, javascript, MVC.

1. Introduction

Android operating system provides a powerful foundation for developing applications that work on a variety of devices and
form-factors. Android applications have a more complex structure unlike desktop programs that have a single entry point and
run as a single monolithic process. A typical android application consists of various components: activities, fragments,
services, content providers and broadcast receivers, that complicate the architecture design.

Qualitative architecture makes the process of developing and maintaining the program more simple and effective. The
program must solve a set of tasks and perform its functions clearly and under different conditions. This includes such
characteristics as reliability, security, performance and scalability. Any application has to change over time - requirements
change, new ones are added. The faster and more convenient changes, which made by developers to the existing functional
bring the less problems and errors this will cause. The architecture should parallelize the development process so that many
people can work on the program at the same time. Also the project should be clearly structured, does not contain duplication,
has well-designed code and documentation. The system should use standard, common and familiar solutions for developers, if
possible. [4]

2. Theoretical part

Google did not provide recommendations for creating an application architecture, developer's had problems with a code
“swelling” in activities, testing, scaling and supporting applications. Long enough Android developers had been solving all
these problems on their own, and a "Clean Architecture™ concept gradually arose. It is desirable to keep in mind when
developing any application.

The “Clean Architecture” is based on such basic rules:

e Architecture should not depend on various libraries and frameworks.

e Business rules should be tested without Ul, database, server, etc.

e The Ul should change easily, without changing the rest of the system.

e The database should be easily replaced, business rules should not be based on the database structure.

e Business rules do not need to know anything about the outside world [1].

Circles represent different areas of software (Fig.1). In general, the further in you work, the higher level the software
becomes. External circles are android-frameworks, internal - pure java-code without android-dependencies. It is important to
consider The Dependency Rule: the code must have dependencies only in inner circles and should not know about what is
happening in external circles. [1]

A glossary of terms to better understand this approach:

Entities: the business logic of the application. These are functions or objects with methods that implement business logic
common to many applications, which are necessary for work and transition between layers.

Use cases: this layer contains the application's specific business rules. It encapsulates and implements all methods in the
system. They are also called interactors - objects that implement the scenarios using entities.

Interface adapters: this set of adapters converts data from a format convenient for use cases and entities to a format
convenient for Ul-frameworks. These adapters include Presenter/Controllers.

Frameworks and drivers: user interface, various tools and frameworks, databases, etc. [5]

22

m ABTOMaTH3allis TeXHoJoriYHuX i GizHec-mporecis Volume 9, Issue 4 /2017 m
http://www.atbp.onaft.edu.ua/

Controllers

Fig. 1 — “Clean Architecture” layers

The goal of "Clean Architecture™ is to separate tasks in such way as to keep the business rules not knowing anything at all
about the outside world, thus, they can be tested without any dependency to any external element.

To achieve this, it is proposed to break the project into 3 layers (Fig.2), each of which has its own goal and can work
independently of the others. It should be noted that each layer uses its own data model. Thus, the necessary independence and
abstraction can be achieved. This approach helps to ensure that the layers do not overlap completely.

Presentation Layer. The application logic is associated with Views. There is nothing more than a Model-View-Presenter
pattern, but it is possible to use any other pattern like Model-View-Controller or Model-View-ViewModel. This layer has only
Ul logic. Presenters communicate with the interactors, which involves working on a new thread, and passing through callbacks
information that will be displayed in the View.

Domain Layer. It contains the entities and the use cases. This layer is a module on a pure java, without any android
dependencies. All external components use interfaces to communicate with business objects.

Data Layer. All data required for the application is supplied from this layer through the implementation of the Repository.
It uses the Repository pattern with a Strategy pattern that through the Factory pattern selects a various data sources depending
on certain conditions. [5]

]]
]]
.] . i
Presentation i Domain i Data
Layer . Layer . Layer
]]
]]
]]
] -]
] =]
' = 2 '
] o =3]
' a . '
] o =]
i w ph i
]]
]]
]]
Model View : Regular Java : Repository
Presenter ' Objects ' Pattern
]]
]]
]]
]]

Fig. 2 — Project layers

The approaches of "Clean architecture™ are good, except that it is inappropriate to break logic into Ul and business in an
application. Many developers use an architecture, which can be represented by the following scheme (Fig.3):

23

m ABTOMaTH3allis TeXHoJoriYHuX i GizHec-mporecis Volume 9, Issue 4 /2017 m
http://www.atbp.onaft.edu.ua/

]
[}
1)
1 _
1)
1 —
! 2
X : Disk
o)
e [} —
o i
o f -
g i Repository —
View > Presenter » < + —» Implementation . Web
il i (
= ' =
o i
=
oy [}
o I
;4 '
' ‘ Memory ‘
1
1)
'
1)
[}
1)

Fig. 3 — Simplified ""Clean architecture' scheme

The main problem is that the problems of the lifecycle of android components aren’t taken into account. Developers solve
these problems on their own.

However, in 2017, Google presented their vision of architecture and offered their Architectural Components. The main idea
of the new architecture from Google is the maximum logic removal from activities and fragments. This structure is quite
similar to the previous one. Google has taken into account the previous ideas and efforts of developers (Fig.4).

1)
L]
1)
1) feal
1)
1 e
1)
sl Room ‘ Disk
1)
11}
g 1] S
ViewModel @ | |) ¥ —
=1 i Repository = :
Activity/Fragment » : » < 1 —» Implementation Web
ty/Frag LiveData = | P Retrofit
—l' g | ! -
=
ay 1)
o]
£ L]
i ‘ Memory ‘
1)
]
1)
]
1)
]

Fig. 4 — ""Clean architecture scheme ft. Google

New architecture components provide tools for binding the application kernel to lifecycle events and saving it from explicit
dependencies. The Observer pattern was used for this earlier. This sounds simple enough, but often there are several
simultaneous asynchronous calls and they all handle the lifecycles of their components. Some boundary cases can be easily
overlooked and new components can help in this. One of the main problems in Android is the need to constantly
subscribe/unsubscribe from some objects when calling lifecycle methods. And because only the Activity and Fragment have
lifecycle methods, and objects like GoogleApiClient, LocationManager, SensorManager and others must be located only inside
them, and this leads to a large number of lines of code in these files.[6] Google proposed using the LiveData class to solve this
and other problems. LiveData is an observable container for data. It allows application components to monitor LiveData for
changes without creating explicit dependencies between them. LiveData also takes into account the state of the lifecycle of
application components (activities, fragments, services) and does everything possible to prevent object leakage. The Lifecycle
component is used to ensure that LiveData considers the lifecycle, but also there is an ability to use it without reference to the
lifecycle. The LiveData class is an abstract generic class which encapsulates the logic of the component.[2] Exactly, the same
model can be used to implement server requests. The method of obtaining data does not change at all, but data is delegated to
LiveData, which is essentially a binding for View.

How to deal with the problem of the lifecycle? Google has given a component which is going through the Activity
recreation - ViewModel. ViewModel provides data for a specific component of the user interface, such as Activity or
Fragment, and communicates with the business part of data processing, for example, calling other components to loading data
or redirecting user changes.[2] That is, it can act as a Presenter/ViewModel in the presentation layer of “Clean Architecture”.
ViewModel does not know about the View and does not fall under the configuration changing, for example, screen rotation.
Since ViewModel is going through the Activity recreation, LiveData will be created only once and the server request will be
executed only once, that is, the main problems are solved.[6] In general, the ViewModel component can be described as a
singleton with a collection of LiveData instances. It ensures that it will not be destroyed while there is an active activity exists.
It is also worth noting that any amount of ViewModel can be bound to the Activity. In addition, Google released a new library

24

m ABTOMaTH3allis TeXHoJoriYHuX i GizHec-mporecis Volume 9, Issue 4 /2017 m
http://www.atbp.onaft.edu.ua/
for working with the database - Room, which will perfectly fit into the Repository implementation. Room abstracts some of the
basic details of the implementation of working with raw SQL tables and queries. It also allows to monitor changes of database
data using a LiveData object. [2]

The most important thing that needs to pay attention to is the division of responsibility in the application. Writing all code
into an Activity or a Fragment is a big mistake. Any code that does not handle interaction with the user interface or an
operating system should not be in these classes. Using them as independent as possible allows to avoid many problems related
to the lifecycle.

The second important principle is that the user interface control must come from a preferably constant model. "Viability" is
ideal for two reasons: users do not lose data even if the OS destroys the application to free resources and the application will
continue to work even when the network connection is unstable or not connected. Keeping the user interface code simple and
free from application logic simplifies management and maintaining. Basing on models with a clearly defined responsibility for
data management make it easily testable and suitable for requirements.

3. Practical part
The "Clean Architecture™ approach has been applied to communication application for mechatronics robot laboratory onaft

in order to speed up and simplify development, quickly add new functionality and easily navigate and understand the existing
code. Model-View-Controller pattern has been chosen for presentation layer of application. Domain and data layer were
combined into the one interactor. Interactor observes data changes in the database. Retrofit and Realm library are used for
server and database communication accordingly.

Orders View
- C server
E —Get orders—> —Get orders™> e
s Orders Orders
Presenter Interactor
€—Show orders— €—5Set orders—|
Realm
Orders activity a

Fig. 5 — Orders section scheme

To facilitate testing and add new functions, the Dagger 2 framework has been used, which makes the components
interchangeable. Dagger is a fully static, compile-time dependency injection framework for both Java and Android. It relies
purely on using Java annotation processors and compile-time checks to analyze and verify dependencies. It is considered to be
one of the most efficient dependency injection frameworks built to date.

Application W Orders 1
--------------- . OrdersFragment
' 1Builds)
1 Builds H .
v ¥ ‘
1 Injects
AppComponent OrdersComponent '
|]
P Depends '
< '
:

oy
AppModule r ~Vldles Com | [N
- ontg, .
Tt S Rt OrdersPresenter [» PR S

Provides Realm
RealmModule F----------) Needs

st %
ses Ry Retrofit Realm |<--f----==4----- Ordersinteractor
provl T

1

1l

RetrofitModulel- - :
1]

1

Fig. 6 — Dagger 2 scheme

Conclusions
Once the architecture components will have transferred from the alpha version to the release, they will be implemented

immediately without affecting the application structure and development time, since the layers are practically independent of
each other. Architecture components will take care of the configuration changes, that will make application even more stable

25

m ABTOMaTH3allis TeXHoJoriYHuX i GizHec-mporecis Volume 9, Issue 4 /2017 m
http://www.atbp.onaft.edu.ua/
and secure. In addition, RXJava library will be used to facilitate the work with the network, threads and simplify the code
inside the interactor.

RxJava is a Java VM implementation of Reactive Extensions: a library for composing asynchronous and event-based
programs by using observable sequences. It extends the observer pattern to support sequences of data/events and adds
operators that allow to compose sequences together declaratively while abstracting away concerns about things like low-level
threading, synchronization, thread-safety and concurrent data structures.

Referenses
[1] “Inversion of Control Containers and the Dependency Injection pattern,” martinfowler.com.

[2]J. Weiskotten , “Dependency Injection and Testable Objects,” Dr. Dobbs Journal, 2007. [Online]. Available:
http://www. ddj. com/development-tools/185300375. [Accessed: 2017].

[3] W. Scott , “Mapping Objects to Relational Databases: O/R Mapping In Detail,” Agile data. [Online]. Available:
http://www.agiledata.org/essays/mappingObjects.html. [Accessed: 12ADAD].

[4] L. Stevens and R. Owen, “The Truth About a Basic HTML5 Web Page,” The Truth About HTMLS5, pp. 13-15, 2013.

[5] N. Murray, A. Lerner, F. Coury , and C. Taborda, ng-book 2: The Complete Book on Angular 2. Fullstack.io, 2016.

[6] J. Duckett, HTML and CSS: design and build websites. Indianopolis, IN: Wiley & Sons, 2011.

Jlirepatypa

[1] Inversion of Control Containers and the Dependency Injection pattern [Enexrponnwuii pecypc] / — Pexum goctymy 1o
pecypcy: martinfowler.com.

[2] Weiskotten J. Dependency Injection and Testable Objects [Enexrponnwuii pecypc] / J. Weiskotten // Dr. Dobbs Journal. —
2007. — Pexxum moctymy 10 pecypey: http://www. ddj. com/development-tools/185300375.

[3] Scott W. Mapping Objects to Relational Databases: O/R Mapping In Detail [Enexrponnuii pecypc] / W. Scott // Agile
data — Pexxum noctymy 1o pecypcey: http://www.agiledata.org/essays/mappingObjects.html.

[4] Stevens L. The Truth About a Basic HTML5 Web Page / L. Stevens, R. Owen. // The Truth About HTML5. —2013. - C.
13-15.

[5] Ng-book 2: The Complete Book on Angular 2 / N.Murray, A. Lerner, F. Coury, C. Taborda., 2016. — 626 c.

[6] Duckett J. HTML and CSS: design and build websites. / J. Duckett. — Indianopolis: Wiley & Sons, 2011.

V]IK 681.51

PA3BPABOTKA AJITOPUTMA YIIPABJIEHUSI CACTEMOU
OTOIVIEHHUA U TOPAYEI'O BOAOCHABKEHUSA C
NCITOJB30OBAHUEM BO3OBHOBJ/IAEMbIX
NCTOYHHUKOB DOHEPT'UU

A.A. IIponumen?, E.O. Yaunkasn?®

12 Opecckuil HAIMOHANBHBIH OMIMTEXHUYECKUH YHUBEPCUTET, YKpauHa
ORCID: 0000-0001-6241-3458; 20000-0002-8572-538X

Copyright © 2017 by author and the journal “Automation technological and business - processes”.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

@ ® Gl | ONAFT
ng} Open Access

DOI: 10.15673/atbp.v10i4.818

AHHOFHQMMH: B uccnedosanuu npoeedeH aHaIu3 cucnemsvl OnonjieHust U copiadeco 6000CHAOICEHUS. C UCTIONL30BAHUCM
60300HOBNIACMbIX UCTOYHUKOB IHepauu.

26

