С.В. Сирик, Н.Н. Сальников

О применении сосредоточения в методе конечных элементов Петрова–Галеркина при решении задач конвекции-диффузии

(Представлено членом-корреспондентом НАН Украины В. Ф. Губаревым)

Рассмотрены вопросы противодействия дисперсионным и диссипативным эффектам, возникающим после применения сосредоточения в конечноэлементном методе Петрова-Галеркина при решении задач конвекции-диффузии. Обобщены некоторые результаты в данной области, полученные ранее, и проведено сравнение с другими существующими подходами. Теоретические результаты исследования подтверждаются расчетными данными.

Метод Петрова–Галеркина (МПГ) [1–3] в форме метода конечных элементов (МКЭ) [4] считается одним из наиболее успешных подходов к построению устойчивых численных аппроксимаций в задачах моделирования процессов конвекции-диффузии [1, 2]. При пространственной аппроксимации МПГ нестационарного параболического уравнения конвективнодиффузионного типа получаем полудискретную аппроксимацию [1, 2, 8] — систему обыкновенных дифференциальных уравнений (СОДУ) вида $M\vec{a} = \vec{F}(t,\vec{a})$, где $\vec{a}(t)$ — вектор коэффициентов разложения искомого решения по базисным функциям МКЭ; \vec{F} – некоторая вектор-функция (в общем случае, нелинейная); М — так называемая матрица масс [1, 2, 4], которая, в общем случае, является недиагональной, несимметричной и разреженной. При последующем переходе от СОДУ к разностным схемам из-за недиагональности М схемы получаются неявными. Кроме того, при некоторых постановках задач матрица M оказывается зависимой от времени [1–3, 7], что может приводить к ситуациям, когда на каждом шаге интегрирования СОДУ приходится обращать М (или выполнять какую-либо ее факторизацию). Это требует значительных вычислительных затрат. Для устранения указанных трудностей в вычислительной практике часто используют так называемый прием cocpedoточения (mass lumping) [1, 4, 5], суть которого заключается в замене M диагональной матрицей М, в которой элементы диагонали являются суммами элементов соответствующих строк матрицы М. В результате, после выполнения указанной операции, получаем систему $\overline{M}\dot{a} = \overline{F}(t, \vec{a})$ (будем в дальнейшем называть ее cocpedomovenhoù annpokcumaqueй [7]). Использование сосредоточения позволяет в схемах МКЭ трактовать частную производную по времени таким же образом, как это делается в методах конечных разностей. Понятно, что после проведения указанной диагонализации матрицы M отпадает необходимость в выполнении трудоемких операций по ее обращению. Однако можно показать (см. [6–8]), что применение сосредоточения в ряде случаев вносит в численную схему дисперсионную и диссипативную ошибки и приводит к возникновению больших погрешностей (достаточно подробный обзор работ "за" и "против" использования сосредоточения в численных аппроксимациях приводится в [6]). Это является существенным недостатком приема сосредоточения, изучению и преодолению которого посвящены работы [7, 8]. Подход работы [7] основан

[©] С.В. Сирик, Н.Н. Сальников, 2014

на том, чтобы с помощью соответствующего выбора управляющих параметров МПГ сделать решение сосредоточенной аппроксимации МПГ близким (в некотором смысле) к решению исходной ("несосредоточенной") аппроксимации МПГ. Для этого сравниваются погрешности исходной и сосредоточенной аппроксимаций МПГ на решении дифференциального уравнения. Отметим, что в работе [7] рассматривался случай применения МПГ (и построения соответствующих полудискретных и дискретных аппроксимаций) к достаточно общему уравнению конвекции-диффузии с переменными коэффициентами. Подход работы [8] основан на использовании матричных рядов для аппроксимации M^{-1} : для этого M представляется в виде $M = \bar{M}(I - A)$ (где I — единичная матрица, $A \equiv \bar{M}^{-1}(\bar{M} - M)$), откуда $M^{-1} = (I + A + A^2 + \cdots) \bar{M}^{-1}$ (ряд Неймана). В [8] авторы отмечают, что уже использование $(I+A)\bar{M}^{-1}$ вместо M^{-1} способно значительно улучшить точность численного решения (однако не приводят никаких теоретических оценок качества и точности решения в зависимости от взятого числа членов матричного ряда). Заметим, что (в отличие от [7]) в работе [8] рассматривалось только уравнение переноса с постоянными коэффициентами, а основное внимание уделено полудискретным аппроксимациям Галеркина (и сходимость соответствующих матричных рядов Неймана доказана только для классического МКЭ Галеркина с линейными элементами). В данной работе результаты [7] обобщены и показано, что в некоторых случаях подходы работ [7] и [8] приводят к одинаковым вычислительным схемам.

Уравнение конвекции-диффузии и его аппроксимации МПГ. Рассмотрим одномерное нестационарное уравнение конвекции-диффузии [1, 2]

$$Lu \equiv \frac{\partial u}{\partial t} + \lambda \frac{\partial u}{\partial x} - \kappa \frac{\partial^2 u}{\partial x^2} = 0, \tag{1}$$

где коэффициенты $\lambda = \lambda(t)$ и $\kappa = \kappa(t)$ заданы, а u = u(x,t) — неизвестное решение. Используя в МПГ стандартные кусочно-линейные базисные и кусочно-квадратичные весовые функции [7, 1–3], для (1) получаем СОДУ, *i*-е уравнение (соответствующее узлу x_i) которой имеет вид [7, 1]

$$\left(\frac{1}{6} + \frac{\alpha_i}{4}\right) \frac{da_{i-1}}{dt} + \frac{2}{3} \frac{da_i}{dt} + \left(\frac{1}{6} - \frac{\alpha_i}{4}\right) \frac{da_{i+1}}{dt} + \lambda \frac{a_{i+1} - a_{i-1}}{2h} - \left(\kappa + \frac{\alpha_i \lambda h}{2}\right) \frac{a_{i-1} - 2a_i + a_{i+1}}{h^2} = 0,$$

$$(2)$$

где $\vec{a} = \{a_i(t)\}$ — коэффициенты разложения приближенного решения по соответствующим базисным функциям; $\{\alpha_i\}$ — стабилизационные коэффициенты [1, 2, 7]; h — шаг сетки (для упрощения выкладок сетка предполагается равномерной). При всех $\alpha_i = 0$, по определению, получаем классический МКЭ Галеркина. Вопросы учета начальных и граничных условий начально-краевых задач подробно освещены в [1–3]. Применяя к уравнению (2) сосредоточение относительно производных по времени, получаем следующее соотношение:

$$\frac{da_i^{(l)}}{dt} + \lambda \frac{a_{i+1}^{(l)} - a_{i-1}^{(l)}}{2h} - \left(\kappa + \frac{\alpha_i^{(l)}\lambda h}{2}\right) \frac{a_{i-1}^{(l)} - 2a_i^{(l)} + a_{i+1}^{(l)}}{h^2} = 0$$
(3)

(здесь верхние индексы (l) введены для того, чтобы отличать величины от соответствующих величин из соотношения (2)).

Получение основных уравнений. Найдем связь между коэффициентами α_i и $\alpha_i^{(l)}$ соотношений (2), (3) (данный подход к исследованию сосредоточенных аппроксимаций был

предложен и развит в работе [7], см. там более подробное обсуждение его аспектов). Обозначим через L_h и $L_h^{(l)}$ дифференциально-разностные операторы соотношений (2) и (3) соответственно. Приравнивая теперь погрешности $\psi \equiv L_h u - Lu$ и $\psi^{(l)} \equiv L_h^{(l)} u - Lu$ аппроксимации (в точке (x_i, t)) операторами L_h и $L_h^{(l)}$ дифференциального оператора L уравнения (1) на его решении u(x, t), получаем (тут $u_i \equiv u(x_i, t)$):

$$\left(\frac{1}{6} + \frac{\alpha_i}{4}\right) \frac{du_{i-1}}{dt} - \frac{1}{3} \frac{du_i}{dt} + \left(\frac{1}{6} - \frac{\alpha_i}{4}\right) \frac{du_{i+1}}{dt} - \frac{\alpha_i \lambda h}{2} \frac{u_{i-1} - 2u_i + u_{i+1}}{h^2} = -\frac{\alpha_i^{(l)} \lambda h}{2} \frac{u_{i-1} - 2u_i + u_{i+1}}{h^2}.$$

Выразив из данного равенства значение $\alpha_i^{(l)}$ и подставив в $(L_h^{(l)}u)(x_i,t),$ находим

$$(L_h^{(l)}u)(x_i,t) = \dot{u}_i + \lambda \frac{u_{i+1} - u_{i-1}}{2h} - \left(\kappa + \frac{\alpha_i \lambda h}{2}\right) \frac{u_{i-1} - 2u_i + u_{i+1}}{h^2} + \frac{h^2}{6} \frac{\dot{u}_{i+1} - 2\dot{u}_i + \dot{u}_{i-1}}{h^2} - \frac{\alpha_i h}{2} \frac{\dot{u}_{i+1} - \dot{u}_{i-1}}{2h}.$$
(4)

Раскладывая в ряды Тейлора и используя (1) для выражения частной производной по времени, преобразуем в (4) последние два слагаемых $\left(\frac{\partial^j u_i}{\partial x^j} \equiv \frac{\partial^j u}{\partial x^j}\Big|_{x=x_i}\right)$:

$$\frac{\dot{u}_{i+1} - \dot{u}_{i-1}}{2h} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial t} \right) \Big|_{x=x_i} + \frac{h^2}{6} \frac{\partial^3}{\partial x^3} \left(\frac{\partial u}{\partial t} \right) \Big|_{x=x_i} + O(h^4) =$$

$$= -\lambda \frac{\partial^2 u_i}{\partial x^2} + \kappa \frac{\partial^3 u_i}{\partial x^3} - \frac{\lambda h^2}{6} \frac{\partial^4 u_i}{\partial x^4} + \frac{\kappa h^2}{6} \frac{\partial^5 u_i}{\partial x^5} + O(h^4),$$

$$\frac{\dot{u}_{i+1} - 2\dot{u}_i + \dot{u}_{i-1}}{h^2} = \frac{\partial^2}{\partial x^2} \left(\frac{\partial u}{\partial t} \right) \Big|_{x=x_i} + \frac{h^2}{12} \frac{\partial^4}{\partial x^4} \left(\frac{\partial u}{\partial t} \right) \Big|_{x=x_i} + O(h^4) =$$

$$= -\lambda \frac{\partial^3 u_i}{\partial x^3} + \kappa \frac{\partial^4 u_i}{\partial x^4} - \frac{\lambda h^2}{12} \frac{\partial^5 u_i}{\partial x^5} + \frac{\kappa h^2}{12} \frac{\partial^6 u_i}{\partial x^6} + O(h^4).$$
(6)

Подставляя (5), (6) в (4) и учитывая, что

$$\frac{\alpha_i \lambda h}{2} \left(\frac{u_{i-1} - 2u_i + u_{i+1}}{h^2} - \frac{\partial^2 u_i}{\partial x^2} \right) = \frac{\alpha_i h^3 \lambda}{24} \frac{\partial^4 u_i}{\partial x^4} + O(h^5),$$

получаем

$$(L_h^{(l)}u)(x_i,t) = \dot{u}_i + \lambda \frac{u_{i+1} - u_{i-1}}{2h} - \kappa \frac{u_{i-1} - 2u_i + u_{i+1}}{h^2} - \left(\frac{\kappa \alpha_i h}{2} + \frac{\lambda h^2}{6}\right) \frac{\partial^3 u_i}{\partial x^3} + \left(\frac{\alpha_i \lambda h^3}{24} + \frac{\kappa h^2}{6}\right) \frac{\partial^4 u_i}{\partial x^4} - \left(\frac{\alpha_i \kappa h^3}{12} + \frac{\lambda h^4}{72}\right) \frac{\partial^5 u_i}{\partial x^5} + \frac{\kappa h^4}{72} \frac{\partial^6 u_i}{\partial x^6} + O(h^5).$$
(7)

Для упрощения записей при проведении выкладок введем следующие сокращенные обозначения (стандартные в теории разностных схем, см. [9]) для выражения разностных соотношений: $u_{\bar{x},i} \equiv (u_i - u_{i-1})/h$, $u_{x,i} \equiv (u_{i+1} - u_i)/h$, $u_{\hat{x},i} \equiv (u_{i+1} - u_{i-1})/(2h)$, $u_{\bar{x}x,i} \equiv (u_{\bar{x}})_{x,i} = (u_{i+1} - 2u_i + u_{i-1})/h^2$. Поскольку

$$\frac{\partial^3 u_i}{\partial x^3} = u_{\bar{x}\bar{x}x,i} - \frac{h^2}{4} \frac{\partial^5 u_i}{\partial x^5} + O(h^4), \qquad \frac{\partial^4 u_i}{\partial x^4} = u_{\bar{x}x\bar{x}x,i} - \frac{h^2}{6} \frac{\partial^6 u_i}{\partial x^6} + O(h^4)$$

ISSN 1025-6415 Доповіді Національної академії наук України, 2014, № 5

41

$$u_{\bar{x}x\dot{x}\bar{x}\bar{x}x,i} = \frac{\partial^5 u_i}{\partial x^5} + O(h^2), \qquad u_{\bar{x}x\bar{x}x\bar{x}x,i} = \frac{\partial^6 u_i}{\partial x^6} + O(h^2),$$

то $(L_h^{(l)}u)(x_i,t)$ из соотношения (7) можно представить в виде

$$\dot{u}_{i} + \lambda u_{\dot{x},i} - \kappa u_{\bar{x}x,i} - \theta_{3} u_{\bar{x}\dot{x}x,i} - \mu_{4} u_{\bar{x}x\bar{x}x,i} - \theta_{5} u_{\bar{x}x\dot{x}\bar{x}x,i} - \mu_{6} u_{\bar{x}x\bar{x}x\bar{x}x,i} + O(h^{5}), \tag{8}$$

где коэффициенты $\theta_3, \theta_5, \mu_4, \mu_6$ определяются следующими выражениями:

$$\theta_3 \equiv \frac{\kappa \alpha_i h}{2} + \frac{\lambda h^2}{6}, \quad \mu_4 \equiv -\left(\frac{\alpha_i \lambda h^3}{24} + \frac{\kappa h^2}{6}\right), \quad \theta_5 \equiv -\left(\frac{\alpha_i \kappa h^3}{24} + \frac{\lambda h^4}{36}\right), \quad \mu_6 \equiv \frac{\kappa h^4}{72}.$$

Отметим, что в случае, когда $\alpha_i = O(h)$, последний член в (7) и (8) будет величиной $O(h^6)$ (это следует из процесса вывода соотношений (7) и (8). Отбрасывая в (8) этот последний член, получаем следующую полудискретную аппроксимацию для нахождения коэффициентов $\{a_i(t)\}$:

$$\dot{a}_i + \lambda a_{\dot{x},i} = \kappa a_{\bar{x}x,i} + \theta_3 a_{\bar{x}\dot{x}x,i} + \mu_4 a_{\bar{x}x\bar{x}x,i} + \theta_5 a_{\bar{x}x\dot{x}\bar{x}x,i} + \mu_6 a_{\bar{x}x\bar{x}x\bar{x}x,i}.$$
(9)

Сравнение с подходом работы [8]. Отметим, что частный случай соотношения (9), уравнение

$$\dot{a}_i + \lambda a_{\dot{x},i} = \kappa a_{\bar{x}x,i} + \theta_3 a_{\bar{x}\dot{x}x,i} - (\kappa h^2/6) a_{\bar{x}x\bar{x}x,i},\tag{10}$$

был получен и исследован в работе [7]. Непосредственным подсчетом можно убедиться, что к (10) (при всех $\alpha_i = 0$) также приводит подход работы [8], если M^{-1} аппроксимировать выражением $(I + A)\bar{M}^{-1}$. Действительно, из уравнений (2), (3) следует, что *i*-е уравнение соответствующей системы записывается в форме $\dot{a}_i + \sum_{j=i-1}^{i+1} d_j \{\lambda(a_{j+1}-a_{j-1})/2 - \kappa(a_{j+1}-2a_j + a_{j-1})/h\}/h = 0$ (где $d_i = 4/3$, $d_{i\pm 1} = -1/6$), которая элементарными преобразованиями приводится к (10).

Рассмотрим теперь подход работы [8] в случае, когда матрица M^{-1} аппроксимируется выражением $(I + A + A^2)\bar{M}^{-1}$. Тогда, как прежде, непосредственным подсчетом убеждаемся, что *i*-е уравнение полудискретной аппроксимации будет иметь вид $\dot{a}_i + \sum_{j=i-2}^{i+2} \tilde{d}_j \{\lambda(a_{j+1} - a_{j-1})/2 - \kappa(a_{j+1} - 2a_j + a_{j-1})/h\}/h = 0$ (где $\tilde{d}_i = 3/2$, $\tilde{d}_{i\pm 1} = -5/18$, $\tilde{d}_{i\pm 2} = 1/36$), который элементарными преобразованиями приводится к виду (9), где значения θ_3 , θ_5 , μ_4 равны прежним значениям соответствующих параметров, а $\mu_6 = \kappa h^4/36$. Приведенные ниже расчеты свидетельствуют, что данная численная схема, в сравнении с оригинальной схемой (9), дает худшие результаты. При $\kappa = 0$, когда имеем чисто конвекционный процесс переноса (а в [8] рассматривался только этот случай), данная схема полностью совпадает с (9). Отметим, что для аппроксимации производных в (7) (и, соответственно, получения (9)) были использованы центрально-разностные формулы (повышенного порядка точности). Выбрав же для аппроксимации производных в (7) другие разностные соотношения, мы получили бы другие вычислительные схемы, отличающиеся от (9) и, соответственно, от схем работы [8]. Потому, в этом смысле, подход, использованный и развиваемый в данной работе, предоставляет бо́льшую свободу действий по сравнению с подходом работы [8].

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2014, № 5

42

Численный пример. Рассмотрим задачу для уравнения (1) с известным аналитическим решением $u(x,t) = \exp\left(-\frac{(x+3/5-(t+1))^2}{4\kappa(t+1)}\right)/2\sqrt{\pi\kappa(t+1)}, \lambda(t) = 1, \kappa =$ $= 10^{-3}$ на отрезке [0;1] (см. [7]). Количество узлов равно 100, все $\alpha_i = 0$. Для оценки уклонения численного решения \tilde{u} от аналитического u используем величину err_{max} = $= \max_i |\tilde{u}(x_i,t) - u(x_i,t)|$. Тогда при t = 0.35 расчет с помощью системы (2) дает err_{max} \approx $\approx 0,0098$, а с помощью (3) — err_{max} $\approx 0,4653$ (как видим, применение сосредоточения резко увеличивает погрешность). Расчет с помощью системы (10) дает err_{max} $\approx 0,017$, а с помощью системы (9) — err_{max} $\approx 0,0097$, откуда видим, что учет дополнительных разностных членов $a_{\bar{x}x\bar{x}\bar{x}x,i}$ и $a_{\bar{x}x\bar{x}x\bar{x}x,i}$ в (9) (по сравнению с (10)) значительно увеличивает точность численного решения. Расчет с помощью соотношений (9), где μ_6 положено равным $\kappa h^4/36$, дает err_{max} $\approx 0,01$. Для интегрирования СОДУ был использован явный адаптивный метод 3-го порядка из работы [10] (с начальным шагом по времени $\tau = 10^{-4}$ и соответствующими настройками точности).

Разностные схемы. Пусть по временной переменной t введена сетка с шагом τ и узлами $t_n = n\tau$. Для любой функции c(x,t) обозначим $c_i^n \equiv c(x_i,t_n)$ (или просто c, когда ясно, что речь идет о значении в текущем узле (x_i,t_n) сетки), $\hat{c} \equiv c_i^{n+1}$, $c_t \equiv (\hat{c}-c)/\tau$, $c^{(\sigma)} \equiv \sigma \hat{c} + (1-\sigma)c$ (см. [9, 7]). От полудискретной аппроксимации (9) можно перейти к разностной схеме, аппроксимировав \dot{a}_i разностью a_t и использовав взвешенную аппроксимацию для остальных членов:

$$a_t + \lambda^{(\sigma)} a_{\dot{x}}^{(\sigma)} = \kappa^{(\sigma)} a_{\bar{x}x}^{(\sigma)} + \theta_3^{(\sigma)} a_{\bar{x}\dot{x}x}^{(\sigma)} + \mu_4^{(\sigma)} a_{\bar{x}x\bar{x}x}^{(\sigma)} + \theta_5^{(\sigma)} a_{\bar{x}x\dot{x}\bar{x}x}^{(\sigma)} + \mu_6^{(\sigma)} a_{\bar{x}x\bar{x}x\bar{x}x}^{(\sigma)} .$$
(11)

Вместо $\lambda^{(\sigma)}$, $\kappa^{(\sigma)}$, $\theta_3^{(\sigma)}$, $\mu_4^{(\sigma)}$, $\theta_5^{(\sigma)}$, $\mu_6^{(\sigma)}$ можно было бы использовать $\lambda(t_{n+\sigma})$, $\kappa(t_{n+\sigma})$, $\theta_3(t_{n+\sigma})$, $\mu_4(t_{n+\sigma})$, $\theta_5(t_{n+\sigma})$, $\mu_6(t_{n+\sigma})$, где $t_{n+\sigma} \equiv t_n + \sigma\tau$. Исследуем вопрос устойчивости схемы (11) (об устойчивости схем (10) см. [7]). Для упрощения выкладок предположим (см. [9, 7]), что область по пространственной переменной x неограничена, сеточные функции финитны [9], а коэффициенты схемы (11) "заморожены" по пространству (не зависимы от x_i). Для произвольных сеточных функций y и v введем скалярное произведение $(y, v) = \sum_i y_i v_i h$ и норму $||y|| = \sqrt{(y, y)}$. Докажем теорему, что предоставляет достаточные условия для строгой равномерной устойчивости [9] схемы (11) в норме $||\cdot||$ по начальному условию.

Теорема. Если $\sigma \ge 1/2$, $\kappa^{(\sigma)} \ge 0$, $\mu_4^{(\sigma)} \le 0$, $\mu_6^{(\sigma)} \ge 0$, $a \lambda^{(\sigma)}$, $\theta_3^{(\sigma)} u \theta_5^{(\sigma)}$ могут принимать произвольные действительные значения, то для решения схемы (11) справедливо $\|\hat{a}\| \le \|a\|$.

Доказательство. Умножим скалярно уравнение (11) на $a^{(\sigma)}$. Представляя $a^{(\sigma)}$ в виде $a^{(1/2)} + (\sigma - 1/2)\tau a_t$ и учитывая, что $(a_t, a^{(1/2)}) = (\|\hat{a}\|^2 - \|a\|^2)/2\tau$, получаем $(a_t, a^{(\sigma)}) = (\|\hat{a}\|^2 - \|a\|^2)/2\tau + (\sigma - 1/2)\tau \|a_t\|^2$. В дальнейшем будем использовать разностные аналоги формул интегрирования по частям и формул Грина [9]: $(y_{\bar{x}}, v) = -(y, v_x), (y_x, v) = (-(y, v_{\bar{x}}), (y_{\bar{x}x}, v) = (y, v_{\bar{x}x})$. Тогда для выражения $(a_{\bar{x}}^{(\sigma)}, a^{(\sigma)})$ имеем (кососимметричность оператора центральной разности) $(a_{\bar{x}}^{(\sigma)}, a^{(\sigma)}) = ((a_{\bar{x}}^{(\sigma)}, a^{(\sigma)}) + (a_{\bar{x}}^{(\sigma)}, a^{(\sigma)}))/2 = ((a_{\bar{x}}^{(\sigma)}, a^{(\sigma)}) - (a^{(\sigma)}, a_{\bar{x}}^{(\sigma)}))/2 = 0$. Аналогично, $(a_{\bar{x}\bar{x}x}^{(\sigma)}, a_{\bar{x}}^{(\sigma)}) = -(a_{\bar{x}\bar{x}}^{(\sigma)}, a_{\bar{x}\bar{x}}^{(\sigma)}) = 0$ и $(a_{\bar{x}x\bar{x}\bar{x}\bar{x}x}^{(\sigma)}, a^{(\sigma)}) = (a_{\bar{x}x\bar{x}}^{(\sigma)}, a_{\bar{x}x}^{(\sigma)}) = 0$. Далее, $(a_{\bar{x}x}^{(\sigma)}, a_{\bar{x}}^{(\sigma)}) = -(a_{\bar{x}}^{(\sigma)}, a_{\bar{x}}^{(\sigma)}) = (a_{\bar{x}x}^{(\sigma)}, a_{\bar{x}x}^{(\sigma)}) = (a_{\bar{x}x}^{(\sigma)}) = (a_{\bar{x}x}^{(\sigma)}, a_{\bar{x}x}^{(\sigma)}) = (a_{\bar{x}x}^{(\sigma)}) = 1$. Аналогично, для 4-й разностной производной получаем выражение $(a_{\bar{x}x\bar{x}\bar{x}x}^{(\sigma)}) = (a_{\bar{x}x}^{(\sigma)}, a_{\bar{x}x}^{(\sigma)}) = (a_{\bar{x}x}^{(\sigma)}) = (a_{\bar{x}x}^{(\sigma)}, a_{\bar{x}x}^{(\sigma)}) = (a_{\bar{x}x}^{(\sigma)}) = (a_{\bar{$

ISSN 1025-6415 Доповіді Національної академії наук України, 2014, № 5

 $(a_{\bar{x}x\bar{x}x\bar{x}x}^{(\sigma)}, a^{(\sigma)}) = (a_{\bar{x}x\bar{x}x}^{(\sigma)}, a_{\bar{x}x}^{(\sigma)}) = -(a_{\bar{x}x\bar{x}}^{(\sigma)}, a_{\bar{x}x\bar{x}}^{(\sigma)}) = -\|a_{\bar{x}x\bar{x}}^{(\sigma)}\|^2$. В результате всех этих преобразований получаем энергетическое тождество

$$(\|\hat{a}\|^2 - \|a\|^2)/2\tau + (\sigma - 1/2)\tau \|a_t\|^2 + \kappa^{(\sigma)} \|a_{\bar{x}}^{(\sigma)}\|^2 - \mu_4^{(\sigma)} \|a_{\bar{x}x}^{(\sigma)}\|^2 + \mu_6^{(\sigma)} \|a_{\bar{x}x\bar{x}}^{(\sigma)}\|^2 = 0,$$

из которого, в силу условий теоремы, вытекает неравенство $\|\hat{a}\| - \|a\| \leqslant 0$. Теорема доказана.

- 1. *Finlayson B. A.* Numerical methods for problems with moving fronts. Seattle; Washington: Ravenna Park Publ., 1992. 613 p.
- Roos H.-G., Stynes M., Tobiska L. Robust numerical methods for singularly perturbed differential equations. – Berlin: Springer-Verlag, 2008. – 604 p.
- Сирик С. В., Сальников Н. Н. Численное интегрирование уравнения Бюргерса методом Петрова– Галеркина с адаптивными весовыми функциями // Пробл. управления и информатики. – 2012. – № 1. – С. 94–110.
- 4. Zienkiewicz O.Z., Taylor R.L. The finite element method. Vol. 1: The basis. Oxford: Butterworth-Heinemann, 2000. 690 p.
- Hansbo P. Aspects of conservation in finite element flow computations // Comput. Methods Appl. Mech. Engrg. - 1994. - 117. - P. 423-437.
- Wendland E., Schulz H. E. Numerical experiments on mass lumping for the advection-diffusion equation // Revista Minerva. – 2005. – 2, No 2. – P. 227–233.
- 7. Сирик С. В. Анализ применения сосредоточенных аппроксимаций в методе конечных элементов при решении задач конвекции-диффузии // Кибернетика и систем. анализ. 2013. № 5. С. 152–163.
- Guermond J.-L., Pasquetti R. A correction technique for the dispersive effects of mass lumping for transport problems // Comput. Methods Appl. Mech. Engrg. – 2013. – 253. – P. 186–198.
- Самарский А. А., Попов Ю. П. Разностные методы решения задач газовой динамики: Изд. 5-е. Москва: Либроком, 2009. – 424 с.
- 10. Скворцов Л. М. Простые явные методы численного решения жестких обыкновенных дифференциальных уравнений // Вычислит. методы и программирование. – 2008. – **9**. – С. 154–162.

Поступило в редакцию 09.01.2013

НТУ Украины "Киевский политехнический институт" Институт космических исследований НАН и ГКА Украины, Киев

С.В. Сірик, М.М. Сальніков

Про застосування зосередження в методі скінченних елементів Петрова–Гальоркіна при розв'язанні задач конвекції-дифузії

Розглянуто питання протидії дисперсійним та дисипативним ефектам, що виникають після застосування зосередження в скінченноелементному методі Петрова–Гальоркіна при розв'язанні задач конвекції-дифузії. Узагальнено деякі результати в даній області, отримані раніше, та проведено порівняння з іншими існуючими підходами. Теоретичні результати дослідження підтверджуються розрахунковими даними.

S.V. Siryk, N.N. Salnikov

On the application of mass lumping in the Petrov–Galerkin finite element method for convection-diffusion problems

We address the topics of overcoming the dispersive and dissipative effects that arise after the application of mass lumping in the finite-element Petrov–Galerkin method for convection-diffusion problems. A generalization of some earlier results in this field is carried out, as well as the comparison with other existing approaches. The test calculations confirm the theoretical results obtained.