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Abstract—The application of non-Hamiltonian unnormalized quaternions of half-rotation in algorithms
of strapdown inertial systems is considered in the article. Non-Hamiltonian unnormalized quaternions
can be zero in contrast to the classical Hamiltonian normalized quaternion with the parameters of the
Euler (Rodrigues—Hamilton), their rates are not constant and depend on the Euler angles of final rota-
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I. INTRODUCTION

In algorithms of strapdown inertial navigation
system (SINS) [1] and orientation systems (SIOS)
[9] of the aerospace and unmanned aerial vehicle the
classical “Hamiltonian” quaternions of solid body
rotation with the parameters of the Euler (Rodri-
gues—Hamilton) [1], [9] are now (from the beginning
of the 70s of the last century) widely used. These
quaternions are normalized (with unit norm) and
they cannot be zero [1]-[10].

The possibility of using an unnormalized quater-
nion for SINS with no single the norms, depending
on the angle of the final Euler rotation of solid body
first is shown in [5] (2000), [10] (1999). Such qua-
ternions are obtained by multiplying the normalized
Hamiltonian quaternions of rotation (as unit vectors
of the real four-dimensional space) by an arbitrary
function of the angle of Euler rotation. They belong
to the sets of non-Hamiltonian quaternions of the
solid body “full” rotation.

The paper examines the new (previously pub-
lished in [6]) unnormalized quaternions of rotation
forming a set of non-Hamiltonian quaternions of the
solid body “half-rotation”.

Non-Hamiltonian unnormalized quaternions of
half-rotation are exceptional by virtue of their prop-
erties, in particular, the heterogeneity of systems of
four kinematic linear differential equations corres-
ponding to these quaternions.

II. PROBLEM STATEMENT

A. Non-Hamiltonian quaternions of half-rotation
We are considering two types of non-Hamiltonian,

quaternions of the half-rotation of solid body:

U=uy+A, V=v,+X, where u, =1-"2,;

vo=1+Xy; Ay =cos(qp/2); A=Mrk; A =sin(¢/ 2);

k is the unit vector of Euler’s axis of finite rotation
(turn) of the solid body in three-dimensional Eucli-
dean vector space [1], [3], [9]; ¢ is the Euler final
rotation angle.

Parameter A, and coordinates A, (n =1, 2, 3) of
three dimensional vector A (coordinate orthonormal
basis with unit vectors related to a solid body) are
Euler (Rodrigues—Hamilton as a function of the an-
gle @) real parameters [1], [3], [9], [10]. They define
the classic Hamiltonian quaternion of “full” rotation
[1], [3]: A=A, +A with unit norm

IAl=2 +2% =1, 2> =47 +2] + A2

Quaternions U, V are considered here as non-
Hamiltonian quaternions of half-rotation of solid
body and turn out as a result of multiplication of
non-traditional new normalized quaternion of half-
rotation P=m+p, M=p+m (m=sin(p/4),
p=cos(p/4k, p=cos(p/4), (m=sin(p/4)k)
respectively on the modules |U|:2m, |V|:2p,
(le U= U|P, 14 =| V|M ). This normalized “Ha-
miltonian” quaternions of half-rotation P, M are re-
garded as vectors in the real four-dimensional vector
space.

The different sets of the half-rotation quaternions
determined by the generalized non-Hamiltonian

quaternions of the half-rotation U.=c,U,

Vo =c¢,V, where ¢, ,c, are arbitrary constant coef-

ficients. When ¢, =¢, =1 viewed quaternions U, V'

are obtained.

Unlike quaternions A, unnormalized quaternions
U, V can be zero (at @ = 0 and ¢ = 27 respectively)
and their modules depend on angle ¢. Therefore,
they are of special practical interest in solving two
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major problems: inertial sensing and inertial attitude
control of the solid body provided that the shortest
turns (at angles ¢ <m and ¢ > r) are ensured.
Quaternions U, V are exceptional (from the set of
possible non-Hamiltonian unnormalized quaternions
of rotation [1], [5], [6], [10]) as those quaternions
and their corresponding kinematic differential equa-
tions and groups, group quaternions algebras of rota-
tion have a number of special or unique properties.
By the way for example, quaternions U, V in ad-
dition to going to zero, have a common vector A,
and their norms are equal to doubled scalar parts:

||U||=2u0 =UoU=u] +1\’;

) 1)
V| =2v, =V eV =v; +1%,

where U =(u, —1); V =(v, —\) are conjugate qua-
ternions.

In addition, the following equalities hold:
ugvy =A>=(-1), and U+U=UoU, V+V=
=V oV, unlike inequality A+A#A oA, where (°)
is the sign algebraic operations “Hamiltonian™ qua-
ternion multiplication [1], [3].

B. Quaternion differential kinematic equations

Quaternion kinematic differential equations for
“proper” quaternions [1], [9, p. 109] U, V, are linear,
but not homogeneous. Those equations are obtained
from the known [1] linear kinematic equations
2A = A o Q for quaternion A by substitution
of variable A, with variables u,,v, and are as fol-

lows:
20=0-00U; 2V=-Q+VoQ, Q)

where Q= (0+®) is the angular velocity quater-
nion; ® 1is the vector of absolute rotational velocity
of the solid body; A, U,V is the relative deriva-

tives of quaternions in time.

The equations (2) have a joint first integral
Uo + Vo = 2.

These equations because of their inhomogeneity
are of special interest for the solution of tasks of
synthesis of high-precision conical precession com-
puter algorithms of SIOS (the sixth or tenth order of
accuracy) using Taylor’s rows [9].

C. The formulas for the multiplication of
quaternions

The multiplication formulas (rules, laws) [9,
p. 109] of proper unnormalized quaternions U, V, are
obtained from the classic (group) [1], [3] multiplica-
tion formulas of normalized own quaternions A by
substitution of quaternion A with quaternions U, V,
according to the following formulas:

A=E,-U=V+E,,

where E,=(1+0) is a scalar unit quaternion; o is a

zero vector.

For two sequential finite rotations (turns) of the
solid body, the group multiplication formulas of
normalized quaternions A and unnormalized qua-
ternions U, V are written in symbolic form as:
A=A oA,; U=U,®U,; V=V,®V,, as well
as:

U=U,+U,-U,oU,;

_ )
V=2E,~V,~V,+V,oV,,

where A, U, V are the resulting rotation quaternions,
A,, Uy, V; are the first rotation quaternions, A,, U,

V, are the second rotation quaternions; (® ) is a con-
ventional sign of the group (non-Hamiltonian) mul-
tiplication [6], [10] of any non-normalized quater-
nions; (°) is a sign of the algebraic operation of Ha-
miltonian multiplication.

D. The group of non-Hamiltonian quaternions

The quaternion sets A, U, V, form a new four-
dimensional quaternions representations of three-
dimensional rotations classical groups [3], [4], [6] —
a groups of non-Hamiltonian quaternions of three-
dimensional rotations and half-rotation of the solid
body or of quaternion groups of three-dimensional
rotations and half-rotation with the above group mul-
tiplication formulas.

Multiplication formula (3) quaternion U, V de-
termines their name “non-Hamiltonian quaternions”.

The following equalities follow from the above
formulas:

UU=U®U =0;

.- 4)
VeV =V®V=2E,

where 0 =0+ 0 are zero quaternions; o is a zero
vector.

These equalities show that unit elements in
groups of quaternions of U, V are respectively the
zero quaternion and the doubled single quaternion
2E,, and reverse quaternions U~', V' are equal to

the conjugate U, V.

E. Non-Hamiltonian quaternion algebra

Unnormalized quaternion space U, V, together
with their multiplication formulas (3), determined the
actual new, associative, non-commutative and un-
normalized group [11, p.259] of quaternions alge-
bras of half-rotation with single-valued division and
without zero divisors [11], [12] (since these group
algebras and group there is no zero divisors).
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Multiplicity of the quaternions U, V forms a li-
near four-dimensional Euclidean vector space, while
the Hamiltonian quaternions rotation A not form a
vector space, since haven’t zero quaternions.

By analogy with the algebra of Hamiltonian qua-
ternions A of rotation the exceptional quaternions
algebras U, V of half-rotation are further endowed [4,
p- 103-104] the structures of: 1) the commutative
group under addition; 2) the non-commutative, asso-
ciative four-dimensional algebra of division over the
real. Thus the operations of addition and multiplica-
tion group (3) are distributive [3, p. 32].

III. PROBLEM SOLUTION: ALGORITHMS FOR
COMPUTING THE QUATERNION OF HALF-ROTATION

A. Application of non-Hamiltonian quaternions in
the algorithms of the control orientation

Parameters of quaternions of U, V are used for
the solution of tasks of control of orientation of the
spacecraft (SC), as solid body, in positive definite
quaternion functions f, and f, Lyapunov of a square
look [5], [10]:

£, = o)’ +B, (A 4,0) +7, (0 g);
£, =av +B, (L 4,1) +7, (0 9),

where o,,B,,v,>0 and a,,B,,y, >0; 4, 4, are

definitely positive symmetric constant operators;
g =Jo is the momentum kinematics vector of the

)

spacecraft; J is the operator (tensor) of inertia of the
spacecraft; @ is the angular velocity vector of the
spacecraft.

To ensure control shortest reversals spacecraft
function is used f, when up< 1, vy>1 (0 < ¢ < &), or
function f, when uy >0, <0 (n < ¢, <27).

With an appropriate choice of formulas deter-
mine the vector of control points (as described, for
example, in [10]) a negative definition of the deriva-
tive of Lyapunov functions in time provides. The
result is the asymptotic stability of the processes
controlling the orientation of the spacecraft and its
shortest spreads throughout the range of variation of
the angle from 0° to 360°.

B. Application of non-Hamiltonian quaternions in
the algorithms of the orientation determine

Parameters — the coordinates of exceptional qua-
ternions U, ¥ used in control algorithms by orienta-
tion of spacecraft are calculated on computer algo-
rithms of SIOS with are similar known algorithm for
computing the classical quaternions rotation Euler
(Rodrigues—Hamilton) parameters [1], [2], [7]-[9],
[14]-[18]. This calculation algorithms parameters
quaternions U, V easily obtained from the many

known algorithms for calculating parameters of Eu-
ler (Rodrigues—Hamilton) by simply replacing the
scalar parameter A, on the parameters u, and v,
respectively.

Based quaternion U, V' may also be prepared by
new biquaternions SINS algorithms [1].

The one-step algorithms of the third and fourth
orders of accuracy in the “scaled” [9, p. 78, 79] qua-
ternion type 0,5U used in the “HARTRON” Corp.

(Kharkov, Ukraine), in the task of determining the
orientation of the spacecraft [13].

Of particular practical interest now becomes a
four-step algorithm of the fourth — sixth order accu-
racy [1], [2], [9], [14], [15], [17], [18], it is possible
recurrence computing quaternion U, V with a time
step H = 4h (h — a constant and minimum possible
sample rate in the computer SINS of signals gyros-
copes in time).

The article [7], [8] shows that the four-step algo-
rithms are more effective for use in SINS than the
one-step, two-step and three-step algorithms. These
algorithms are used intermediate orientation parame-
ters [9, p. 144] — the coordinates ¢, ,, (k=1,2, 3)

small vector ¢,,, characterizing finite Euler rotation
of the object to a small angle for a time equal to step
H. The algorithms for computing these parameters
may be represented by a generalized four-step algo-
rithm of the form [9, p.172]

Onig =Gnis T 0014 + 0,059,
+a,(0,4,+0.9,) +a, (0,9, +04, ),

where gy =q,+q,+49,+49,, 9,999, are
column matrix (1 x 3), composed of angular incre-
ments corresponding quasi-coordinates ¢, (gyro
signal) generated in the on-board computer SIOS or
SINS on four successive “small” steps % poll gyros-
copes; Q0,,0 ,,0,,0Q, are the corresponding skew-
symmetric matrix.

The values of the constant coefficients aq,

(v=1 ... 4) to (6), that determine the specific form
of the case considered algorithms fourth order of
accuracy [9, p. 173], are presented in Table I in the
form of fractions. Algorithms 1, 2, 3, 5 are given in
[9, p. 169; 153; 173; 157], the algorithm 4 — article
[14] (“smoothing” algorithm of the fourth order
obtained on the basis of Chebyshev polynomials).

Algorithm 3 was first published in 1986 [7] and
was also considered in the paper [8] (1987).

Table II shows for comparison the values of con-
stant speed calculation drift of the algorithms (with
conical vibrations of SIOS gyroscopes block [14]
with conditions: nutation angle — 1 deg, the frequen-
cy of vibrations of tapered — 10 Hz, step with com-

(6)
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puting — 0.01) obtained in computer simulations by
the method of the parallel accounts [9, p. 218]. As
can be seen from Table II, algorithm 3 is significant-
ly superior in accuracy and other algorithms are

substantially so-called conical algorithm [15] (the
actual sixth-order of accuracy). Further analysis
showed the benefits of the algorithm 3 and also in
operation performance [8], [9].

TABLE I

THE CONSTANT COEFFICIENTS OF FOUR-STEP ALGORITHMS

Factors Number of algorithm
1 2 3 4 5
a 0 22/45 184/315 —74/45
a 16/9 22/45 112/315 -9/2
as 0 4/3 22/45 212/315 86/45
as 0 0 32/45 52/105 0
TABLE II
THE CONSTANT VELOCITY OF THE DRIFT COMPUTING OF FOUR-STEP ALGORITHMS
. Number of algorithm
Option 1 2 3 4 5
;l::; actual order of accu- 4 4 6 6 6
The drift velocity, deg/h | 2.5 1.4 3.9-10* 9.6:107 1.1-1072

The algorithm 3 (as the main part of the calcula-
tion algorithm parameters Rodrigues-Hamilton) has
been implemented [2, p. 316] in the laser system
“SINS-85” in serial production [16], [19], [20] since
2002 and is designed for use on aircraft 11-96-300,
Tu-204, Tu-334. Modification of “SINS-85”
(“SINS-777, “SIMS-T”, “SINS SP-17, “SINS SP-2”)
are used on the aircraft An-70, Tu-95, Tu-160, Tu-
214, Su-35, T-50, Yak-130 [21].

Of particular interest is the possibility of using
adaptive conical algorithms [18] for the calculation
of the parameters non-Hamiltonian quaternions of
half-rotation in SINS. There is the only one optimal
among the four-step algorithms the best in terms of
accuracy and operation performance adaptive algo-
rithm conical (6th order). It is obtained based on the
algorithm (6) with coefficients insist on a conical
motion. This configuration by choosing values of the
coefficient b,; in the formulas (3.3.107) of [9,
p- 173]. This algorithm is performed complete
(ideal) compensation conical error due coefficients
kos, ki1, k3 in square terms of the asymptotic esti-
mates (4.3.31) constant speed computing drift-order
terms O(h®) 9— 0 (39— nutation angle) [9, p. 215].
The accuracy of the algorithm, as shown by comput-
er simulation exceeds the accuracy of the algorithm
3 a decimal (2,210 deg / h) under the conditions of
calculation, the relevant Table II.

Optimum conical algorithm exceeds the accuracy
even of the four-step algorithm 8-order American
company Litton [15] providing for filtering signals
of laser gyroscopes (for example, in SINS LN-
100G) [21], [22]. The computational complexity of
optimal algorithm equal to the computational com-
plexity of the algorithm 4, and the algorithm of the
company Litton.

There is also the only one among the five-step al-
gorithms the optimal conical algorithm of 6.th order
with the ideal correction of the conical error.
A method for constructing such an algorithm and
computer study of its accuracy and operation per-
formance based on asymptotic estimates of similar
cases four-step algorithm [9, p. 218, p. 249-255].

IV.  CONCLUSION

The possibility of using non-Hamiltonian quater-
nions of half-rotation in strapdown inertial guidance
and control is shown. In contrast to the classical
Hamiltonian normalized quaternions of rotations the
considered non-Hamiltonian half-rotation quater-
nions can be zero and their modules and norms de-
pend on the corner of the end Euler rotation.

The parameters of the non-Hamiltonian quater-
nions of half-rotation are appropriate to use in ad-
vanced SIOS and SINS of aerospace aircrafts, along
with the classic parameters of Euler (Rodrigues—
Hamilton), or instead of them.
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HOT'0 BpallleHHs.

KnaroueBbie ciioBa: HEHOPMHUPOBAaHHBIE KBaTEPHUOHBI BPAIICHUH, MONMYBpAILEHNH; TPYIIIbI, alnreOpbl KBATEPHUOHOB;
OecnatdopMeHHbIe HHEPIMAILHBIE CHCTEMbI; OPUECHTALIUS, HABUTALUsI, YIIPaBJICHHE.

IManoB Anatonumii ITaBaoBu4. [IOKTOp TEeXHHYECKHUX HayK, Mpodeccop, NEHCTBUTENBHBIH wieH MexIyHapoIHoH
aKaJeMHM{ HaBUTAIlMK U YIIpaBJIeHUs IBIOKeHHeM, 1996.

MexnyHapoHas akaleMHsl HABUTAIMY ¥ yIpaBJICHHs IBI)KEHHEM, Y KpauHckoe otneneHue, Kues, Ykpanna.
Ob6pa3oBanue: JICHUHIpaJCKHI HHCTUTYT aBUAIIMOHHOT'0 IpuOOpocTpoeHus, Jleaunrpan (1964).

HampaBnenue Hay4qHOH NEesITENbHOCTH: MEXaHUKa TBEPJOro Tena, TeopHs OecruiaT()OpMEHHBIX MHEPLHAIbHBIX HABHIA-
LUOHHBIX CUCTEM.

Konugectro myOnukanuii: 6onee 100 HaygHBIX padoT.

E-mail: anatoliy panov@ukr.net

IHonomapenko Cepreii AnexceeBnd. Kanauaatr TeXHHUECKUX HayK, CTApIIUi Hay4HBIN COTPYIHUK.
l'ocynapcTBeHHBIN HAYYHO-UCCIIEAOBATENLCKUI MHCTUTYT aBuaiuu, Kues, Ykpausa.

Oo0pasoBanue: KueBckoe Briciee BOGHHOE aBHAIIMOHHOE HHXKeHepHoe yumnuiie, Kues (1985).

HampaBnenue HaydHOH nesrensHOCTH: OOpTOBOE OOOPYIOBaHHME JIETATENBHBIX ANNapaTroB, CUCTEMBI JTUCTAHIIMOHHOTO
HaOJII0IeHNs1, KOMILIEKCHast 00paboTka HABUTAIIMOHHOW HH(OPMAIIUH.

Konugectro myOnukanuii: 6osnee 110 HaygHBIX padoT.

E-mail: sol @ukr.net



