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Abstract—This paper deals with the generalized differential dynamic equations of Euler—Hess, which
contain an arbitrary three-dimensional vector. From generalized equations it obtains classical equation
of Euler—Hess in the first form and new forms of dynamic equations in the Euler—Hess form without the
direction cosines. The integrable precession vector equation in the Euler—Gess form with two first inde-

pendent integral is received.

Index Terms—Euler—Poisson equations; Hess equations; equations in the Euler—Hess form; dynamic of

rigid body; gyrostat; irregular precession.

I. INTRODUCTION

We consider the traditional problem of order de-
creasing (reduction) of the six scalar classical dy-
namical Euler—Poisson equations system in the vec-
tor form [1] — [3]:

g=gxo-F[px7l, (1

Y =Tx®, 2)

formed by Euler’s equation (1) and by Poisson’s
equation (2). In this equations g — vector of kinetic

moment of a rigid body (RB); g=(dg/dt) — rela-
tive (local) ¢ time derivative of the kinetic momen-
tum vector g =S® of the RB (S — diagonal inertia
tensor); @ — vector of angular velocity of RB; p —

radius-vector of the mass center of the RB with the
origin at the fixed point of the RB; P. — body
weight; ¥ — vertical unit vector; y=(dy/dtf) —
relative derivative.

These equations have three independent algebraic
first integrals: 1) energy integral is the
C,=(g-®)/2-P.(y-p); 2) area integral is the
C,=(v-g); 3) geometric integral is the (y-y)=1,
where C,, C, are arbitrary constants.

Three scalar products are used to determine the
directional cosines of “vertical”: C,=(y-g),
fH=7-p), f.=(7-@). Where @ is the arbitrary
three-dimensional vector.

By substituting the expression for the vertical
unit vector in the Euler equations (1) the generalized
equations of the Euler-Hess form are obtained —
three scalar equations.

The Euler—Hess equations of particular (the first
[3, p. 37] form) were obtained for the first time by
the German mathematician V. Hess in 1890 and to

date they have been considered in many papers
without changes. V. Hess got them on the basis of
three classical integrals of the Euler-Poisson equa-
tions, excluding from Euler equations the direction
cosines — the coordinates of the Yy vertical unit vec-

tor. Herewith V. Hess has applied complex “symme-
trical” [1, p. 27] method for solving a system of
three nonlinear algebraic equations, two of which
are linear, and the third equation — non-linear, a qua-
dratic type. The complexity of V. Hess method is
due to the need to obtain and converse the partial
derivatives of the matrix of the system determinant
of inhomogeneous equations by arbitrary constants
of the equations first integrals.

The report proposes a new essentially and most
simple algebraic method for determining (initially)
the direction cosines of vertical based only on two
integrals of energy and area. At this stage it is pre-
viously solved a simple system of three linear inho-
mogeneous algebraic equations (given by the scalar
product of vectors) using the identities of linear vec-
tor algebra. One of the equations contains the coor-
dinates of an arbitrary three-dimensional & vector,
the selection of which allows receiving various new
dynamic equations. The generalized dynamic equa-
tions of the Euler—-Hess form were obtained by this
method. In these equations one only need to replace
the arbitrary & vector.

II. GENERALIZED EULER—HESS EQUATIONS

These equations are written in vector form

*

g=gxo-P[px7,], (3)
. =(/e,)(c, [px ]+ fi[@xE)+ £, [ExP]). (4

where sw:(g-[ﬁxa@]) is the mixed product of

non-collinear vectors; ¢, — arbitrary constant of the
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area integral; f,=(T—c¢,)/PB, , T=(g-®)/2 is the
kinetic energy of the RB; ¢, is the arbitrary constant
energy integral; f, = (7-6? ) is the function defined

by the unknown 7, vertical unit vector and arbitrary

assigned vector @& with coordinates in the principal
central axes of the RB inertia.

The function is determined as a result of solving
a quadratic equation obtained after the substituting a
unit vector (2) to the first (geometric) integral

(Vte 'Vte) :1‘
I11. CLASSIC EULER-HESS EQUATIONS

In the special case for & =g xp the classical Eu-

ler—Hess equations (Euler — equations in Hess form
[1, p. 30]) with the expansion of Hess for the ¥ unit
vector along three vectors g,p,gxp [3, p. 37] can
be obtained from (3), (4). The equations have the
integrating Jacobi multiplier, but have not the first
integral with arbitrary constant and they cannot be
integrated in quadratures.

IV. EQUATIONS IN THE EULER-HESS FORM WITH
CONSTANT ARBITRARY VECTOR

In the case of a constant vector @& = G expansion
(4) takes the form 7vy_=(/g,)(c, V+f[oxgl+

+/,[gxp]), where f =(7-G), V' =[pxc] isthea
constant vector.
The o,,0,,0, coordinates of G vector may be

equal to, for example, the main (central) momen-
tums A4, B, C of the RB inertia (than =0, is the

inertia vector [12]) or to the constant coordinates of
the vector of gyrostat gyrostatic moment (with flyw-
heels or gyroscopes).

V.EQUATION IN THE EULER—-HESS FORM
FOR GYROSTAT

The equations of the Euler—Hess form may be of
interest in the dynamics of gyrostat and in the tasks
of RB orientation control, considering that modern
spacecraft (including micro satellites, drones, un-
manned air- and spacecraft for special air- and
space missions), driven by a flywheel and strapdown
inertial systems are the gyrostats, for example [4]—
[11]. The particular interest are the equations forms
of the Euler-Hess form with first integrals about
which “almost nothing is known” [14, p. 19]. One
such equations form is obtained in [13] for known
[15, p. 81-87] case of “semi regular” precession
with constant modulus of the kinetic momentum
vector (asymmetric gyrostat) — arbitrary constant
function C, =(g-g)=const (similar to the first Eu-

ler integral in the case of Euler [1]-[3]). This equa-
tions form is obtained from generalized Euler equa-
tion (3) and has the form:

g=gx0+c,gxp , (5)
where ¢, is the constant scalar function (but not

arbitrary); g is an angular momentum vector of a

gyrostat, containing constant vector of the gyrostatic
momentum [15, pp. 19, 81].

C, constant function (integral of gyrostat kinetic

momentum), which exists only under condition
(7. -[2xp])=0 — complanarity relations for copla-
nar vectors 7v,,g,p (which are located in one
plane). The C, integral is obtained after scalar mul-
tiplication of equation (5) on the g vector and the
subsequent integration of the (g-g)=0 function
(as in the Euler case [1], [2] at p=0). Yy, — unit
vector is defined under condition (7.-[gxp])=0 by
expansion v, =ag+bp, where a, b is the constant
[15, p. 87] functions depending on the constant sca-
lar products C,, =(p-g)= const, ¢ =(V,-p) =
const. This expansion follows from the generalized
expansion (4) at e =[g xp], andat f, =0.
Arbitrary function C, — is constant function. It

is obtained after scalar multiplication of equation (5)
(or (3)) on the p vector and after the subsequent

(p-2)=0 function provided
(p-[gx®])=0 — complanarity of p, g, ® vectors.

integration of the

Condition ¢, = (7, -p)= const is provided, in its
turn by the presence of the third constant function of
RB: 2T'=C, =(g-®)=const. This constant function
is determined after scalar multiplication of equation
(5) onthe ® vector and integration of the (®-g)=0
function also under condition of complanarity of
p, g, @ vectors. Then the ¢, =(7,-p) function is

constant into force of the classical energy integral of
the (1), (2) equations for gyrostat.

VI. DEFINITION OF THE MASS CENTER VECTOR
OF THE RIGID BODY

We consider non-traditional task of RB dynamics
— the task of determining the constant p vector,
which enforces the conditions of vectors compla-
narity. As an example, we solve the system of three
algebraic equations defined by a system of three
scalar products (p,-c.)=c, (¢, — constant, G,—
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inertia  vector, see p.4); (p-8)=C,;

(p,-[gx®])=0. As a result the p, vector located in
the plane of the g, ® vectors is determined. Simi-
larly, we solve the system of scalar equations
(p,-0)=c.. (P,-8)=C,,, (p-[vxg)=0. After
substituting the expressions obtained for the p vec-
tor in the Euler equation (3) it is obtained the new
equations of the Euler—Hess form and of the Euler—
Poisson with arbitrary constant functions and com-
planarity relations, containing the &, vector instead
of a p vector. Complanarity relations can be used
for reduction of order of three differential equations
systems obtained [15, p. 136] of the Euler—Hess
form.

VII. INTEGRABLE PRECESSION EQUATION

IN THE EULER—GESS FORM

There is also a possibility to derive the inferable
equations of the Euler-Hess form (not containing
vertical unit vector) with use only the one first
integral - an area integral, instead of all three clas-
sical integrals used for deriving of the generalized
equations (3), (4). Such possibility appears under
condition of (y:-[®wx5,])=0 — a complanarity of
vectors Y, @, o, . Provided that the Poisson equa-
tion (2) supposes a special additional first (“preces-
sion” [3, p. 242]) algebraic integral C_= (G, 7).
This integral is as a result of scalar multiplication of
the Poisson equation (2) on a vector of inertia &,
and the subsequent first integration of scalar func-
tion (G, -y)=0.

Then the vertical unit vector y is uniquely de-

termined as a result of a solution of system of three
linear inhomogeneous algebraic equations, set by
three scalar products:

¥-g)=¢C, (y-5.)=C,, (v-[0ox5,])=0, (6)
and writes in the form of
¥, =0®—-pc,, (7

where: o=(w-G)/¢,; B=(w-w)/¢g,;
w=C5-C.3;
&, =(g-0):(6-6)-(g:6)(0-5)#0

Substitution of a unit vector (7) to the Euler eq-
uation (1) shall transform it to the “reduced” preces-
sion vector equation of Euler—Gess form (not con-

taining a vertical unit vector):

§=gx0-Bapxo+BBpxG. . ®)

Under  condition of a  complanarity
(v -[ox5,])=0 equation (8) is considered as inte-
gralable. It has the two first integrals, received of a
classical integral of total energy of RB and of a
geometrical integral after replacement in them of a
7y vertical unit vector by expression (7).

The equation (8) turns out also from the genera-
lized equation (3) at & =mxc and at replacement of
function f, by function C_ according to a equations

system (6). Thus function f, =(@&-y)=0.
VIII. CONCLUSIONS

The use of generalized Euler—Gess equations
enables to obtain new equation in the Euler—Gess
form with the first algebraic integrals corresponding
conditions of the vectors complanarity.
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A. I1. I1anoB. Y3aranbHeHi nudepenuiiini piBussnnsa Eiinepa—I'ecca B nmaamini TBepaoro Tija i ripocrara
PosrmsinyTo y3aranbHeHi qudepennianbHi piBHsHHS Buay Eitnepa—I'ecca, mo MicTsTh JOBUIBHUIN TPUBUMIPHHUN BEKTOP.
I3 y3aranpHeHHX piBHSIHB OTpHUMaHi KiacH4Hi piBHAHHA ['ecca i HOBI opMu nuHaMiyHuX piBHHB Buny Eitnepa—I'ecca
0e3 HaIpaBJSIFOYMX KOCHHYCIB BepTHKaii. OTpuMaHO mpereciiine BekTopHe piBHsSHHS Buay Eitnepa—I'ecca 3 nBoma
He3aJISKHUMU TIEPIIMMH IHTEerpallaMH, 10 MOKe OyTH 1HTErpoBaHe.

Karwuosi cioBa: piBusunsa Eitnepa—Ilyaccona; piBusiHHs ['ecca; piBHsHHs Buay Elnepa—I'ecca; muHamika TBepIoro
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A. II. ITanoB. OGo0menHble TuddepeHnuaIbLHbIe ypaBHeHus Jilnepa—I'ecca B JUHAMUKE TBEPAOro Tejaa M I'M-
pocrara

PaccmoTtpensl 0000meHHbIe auddepeHnanpusie ypaBHeHUs Buaa Dinepa—I'ecca, comeprkaliye IpOU3BOIBHBIA TpEX-
MEpHBII BeKTOp. V3 0000IICHHBIX YpaBHEHUH TOTYYCHBI KIIACCHUECKUE ypaBHEHUs [ ecca v HOBBIC ()OPMBI TUHAMUYC-
CKUX ypaBHEHHUH BHaa Jinepa—I ecca 03 HaNpaBJISAIOMINX KOCHHYCOB BepTUKAIH. [loNydeHO HHTETpUpyeMOoe Tperiec-
CHOHHOE BEKTOPHOE ypaBHEHHE Bua Ditiepa—I ecca ¢ IByMs HE3aBUCUMBIMHU IIEPBBIMU HHTETPAJIaMH.
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